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Abstract Models with impact or dry friction, yield-

ing discontinuous velocities or accelerations, have

motivated research for appropriate numerical methods

in the community of non-smooth dynamics. In this

work, we apply such methods on the grand piano

action. This multibody system has two properties of

interest in terms of modelling and simulation: it is

extremely sensitive to small misadjustments, and its

functioning strongly relies on dry friction and stick–

slip transitions—known to be crucial for the touch of

the pianist. Using numerical methods of non-smooth

contact dynamics, the non-smooth character of dry

friction was conserved, in contrast to classical

approaches based on regularization which additionally

impose the somewhat arbitrary choice of a regulariz-

ing parameter. The use of such numerical method

resulted in computations about a few hundred times

faster than those reported in recent literature. For the

first time, the presented predictions of the piano

action’s simulations are forces (in particular, the

reaction force of the key on the pianist’s finger),

instead of displacements which filter out most of the

dynamical subtleties of the mechanism. The compar-

isons between measured and simulated forces in

response to a given motion are successful, which

constitutes an excellent validation of the model, from

the dynamical and the haptic points of view. Alto-

gether, numerical methods for non-smooth contact

dynamics applied to a non-smooth model of the piano

action proved to be both accurate and efficient,

opening doors to industrial and haptic applications of
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sensitive multibody systems for which dry friction is

essential.

Keywords Non-smooth dynamics � Multibody

simulation � System modelling � Piano action

1 Introduction

Dynamical models with contact often include impact or

dry friction, such as Coulomb friction. From the

mathematical point of view, they induce discontinuities

of velocities or accelerations, so that the dynamics can

no longer strictly be written as a set of ordinary

differential equations (ODEs); for example, the velocity

is not differentiable at an impact instant, since it is not

continuous, hence the acceleration is not properly

defined at that time. This is usually overcome by

regularizing the model, i.e. approximating it somehow

with a smooth model (see for example [13, 15, 39] for

the treatment of dry friction in the case of the piano

action mechanism). From the numerical point of view,

while this approach allows the direct use of numerical

methods of ODEs, it has severe drawbacks: it can lead

to stiff equations and hence the need for extremely

small time steps [32], deteriorates the local order of

consistency (error in one time step), the global order of

accuracy and stability of the numerical scheme [1]. In

short, regularizing the singularities of the ODEs is

computationally quite unefficient and can lead to large

numerical errors. Additionally, convergence is not

ensured as the computed solutions of ODEs converges

to continuous functions, loosing the non-smooth char-

acter of impact or dry friction.

In this work, the dynamic behaviour of the piano

action mechanism (see Fig. 1 for a scheme and the

functioning details) is modelled and simulated in quasi-

real time. This multibody system has the following two

particularities: (1) the stick–slip transitions stemming

from dry friction at the contact points and in the hinges

are known to be critical for the touch of the pianist,1 (2)

the mechanism is very sensitive to tiny misadjustments,

below the measurements error, making its modelling

and simulation challenging in terms of accuracy.

Additionally, there are requirements for an efficient

simulation: an industrial need, because the touch of

digital pianos are of very poor quality—to the extend

that the top digital keyboard Yahama AvantGrand N2

includes a complete action from an actual grand

piano—as well as a need in the domain of haptics—to

understand why such a mechanism provides the pianist

with such a high-controllability [28]. For these reasons,

the piano action was modelled and simulated with

special attention in the treatment of dry friction and

stick–slip transitions using measure differential inclu-

sions [1] and dedicated numerical methods, developed

by the non-smooth dynamics community, therefore

avoiding regularization in the numerical treatments

proposed in this paper. Although more mathematically

sophisticated, this treatment avoids using time steps

several orders of magnitude smaller than the smallest

physical characteristic time. To illustrate the drawbacks

of the regularizing approach, all the computation times

that we found in the literature for the piano action were

reported in Table 1. The most recent one [22] reports a

simulation time of 910 s for a quasi-rigid body model

(the backcheck wire is flexible, and an elastic model of

the string is used), even though it has only a few

degrees-of-freedom. The corresponding physical dura-

tion is not explicitly given, but based on the duration of

the corresponding figure (200 ms), this would corre-

spond to a factor of 4550 from simulated duration.

Another contribution of this work is in the valida-

tion of the model. Several dynamical models of the

piano action have already been proposed, from very

simple models (e.g. [26, 27]) to more complex ones

(e.g. [10, 13]). An overview of these models is given

in Table 2. Most of them are presented as valid by

their authors although they display very different

degrees of complexity. In our opinion, the output of

this large body of literature is hampered with the key

question of the validation of the proposed models.

In [36], we showed that the validation of any complex

dynamical model of the piano action can hardly be

ensured by comparing measured and simulated dis-

placements of the key, in response to a given force

exerted on the key. Unfortunately, this is what most, if

not all, papers adopt as their validation procedure. The

rationale behind our statement goes as follows. It turns

out that when a key is pushed by a realistic stroke, or a

ramp of similar level and duration, or even a step of

similar level, the displacement of the key is very

smooth, see Figs. 8 and 9 or [16]. As this displacement

can be fitted by a curve with a very limited number of

1 The non-smooth character of the key action is also used by

technicians during the adjustment procedure.
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parameters (one or two), it is unlikely to be sensitive to

the accuracy of a complex model. By contrast, the

complexity of the dynamics is reflected in the reaction

force of the key exerted against any simple-profile

imposed displacement. The conclusion of [36] is that

measured and simulated forces should be compared

instead of displacements. Comparing measured to

simulated accelerations may be an alternative pro-

vided that a level of force comparable to at least a

mezzoforte musical level is used.

The model is provided in Sect. 2, the measurements

of the mechanism are described Sect. 3, details on the

non-smooth simulation methods are detailed in Sect. 4

and finally, measurements and simulations are com-

pared in Sect. 5.

2 Model

A piano keyboard can be seen as an interface between

the pianist and the vibrating ensemble (strings and

soundboard). It consists in a set of nearly identical planar

actions, each associated with one single note (a note is

produced by 1, 2 or 3 coupled strings). As an interface,

the role of one piano action (Fig. 1) is to transform the

pianist gesture into the motion of a hammer towards the

strings (description of the sequence in the caption of

Fig. 1, also illustrated in Fig. 11). Among other require-

ments (maintenance, ease of making, etc.), a piano

action is designed as to favour the precision with which

the pianist controls the velocity of the hammer when it

hits the strings and the instant at which this contact

occurs. One of its fundamental property is to free the

hammer from the mechanism before it hits the strings

(escapement) and to catch it afterwards, further away

from the string than the position at which it has escaped

from the mechanism. This guarantees that the pianist

can push the key without preventing the strings from

vibrating. This article focuses on the grand piano action.

The present model is based on the same approxi-

mations and physical components as complex models

available in the literature (see Sect. 2.1 for the rigid-

body approximation, Sect. 2.2 for the general descrip-

tion of the degrees of freedom, Sects. 2.3, 2.4 for the

treatment of joints and contacts). It is described by

means of measure differential inclusions (Sect. 2.5).

Ground

Felt material

Backcheck

Hammer

Repetition lever

Whippen

Jack

Escapement button

Key

Fig. 1 Scheme of an action, without the damper. The key, the

whippen and the hammer rotate around fixed axes (with a slight

complication for the key) whereas the axes of the lever and the

jack are attached to the whippen. Under the push exerted by the

pianist (on the right end of the key), the key pivots and lifts the

whippen. The {whippen–lever–jack} assembly then lifts the

hammer until the jack reaches the escapement button. At that

time, the jack begins to pivot (with respect to the whippen). This

motion makes the hammer escape. The key and the {whippen–

lever–jack} ensemble continue the same motion until the key is

blocked by the punch rail (bottom right felt of the diagram)

whereas the hammer travels on its own towards the strings, hits

them, and comes back on the lever. Since the jack is now out of

the way of the roller, the hammer can push the lever which

rotates clockwise (with respect to the whippen) until the tail of

the hammer meets the backcheck and stops its motion. The two

functions—escapement of the hammer, catch away from the

strings after hammer–string contact—are ensured. Subtleties of

the repetition are not discussed here. More details of the main

steps are given in Fig. 11
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We consider the wooden and other solid parts of the

piano action as five bodies moving in a plane (two-

dimensional model). Since modelling the damper does

not seem to present special difficulties, this part has

been ignored in this paper for the sake of simplicity

and clarity of the conclusions. Its inclusion in the

model is left for future studies. By piano action, in

what follows, we understand without damping, corre-

sponding to the musical situation when the forte pedal

is engaged.

Table 1 Excerpts of the literature relating to the duration of the simulations

Van den Berghe et al.

[38]

Because ours is a stiff system and the action topology is changing during simulation (e.g., depending on the

position of the action, the hammer looses contact with the jack), a simulation of 1 s in real life takes about

4 h on a 486DX33 IBM PC-compatible computer. This is one reason why we are working on a reduced-

parameter model

Running on a Digital Equipment Corp. DEC 5000/33 work-station, the simulation of 1 s in real life took

about 15 s with the reduced model

Oboe [26]

Izadbakhsh [15]

The realization of a multi-instrument active keyboard may require the design of a complex dynamic

simulator, in which all parts composing the real mechanism are included. This approach, however, is very

expensive in terms of computation and may be unsuitable for real-time operation

Running a complete simulation, for the system with the force profile in Figure 2.11 as the input to the piano

action, requires about 75 min on a 2.4 GHz PC computer. This is true for the case when the hammer shank

and the connection of the key to the ground have been modelled with a flexible beam and a prismatic-

revolute joint, respectively. However, the Maple environment is not the most efficient platform for running

simulations in terms of time, and the simulation time can be significantly reduced by implementing the

model and solvers in a dedicated, compiled language such as C

Masoudi and Birkett

[22]

The computational cost of the flexible shank is not insignificant. Simulation process (CPU) time is almost

doubled (1720 s) as compared to that for a rigid hammer shank (910 s)

Table 2 Schematic literature review of the grand piano action models

References Input Output DOF(s) Simulation methods

Dijksterhuis [9] Force –

Oledzki [27] Force (step-wise) Displacements, velocities

(very smooth: only 10

points)

2 Numerical (2 ODEs)

Mori [25] Force (constant) –

Hayashi et al. [11] Constant velocity and

constant acceleration

(key)

Displacement, velocity

(hammer)

2 Closed-form expression

Oboe [26] Measured force (key) Displacement (hammer) 2

Van den Berghe et al.

[38]

Simple force profile

(key)

Displacements (key,

hammer)

3 Numerical (solved with DYNAST)

Hirschkorn et al. [13] Measured force (key) Displacements (hammer,

key)

5 DYNAFLEXPRO generates ODEs

solved in MATLAB (ODE15 stiff

solver)

Gillespie et al. [10] Measured force (key) Displacements (hammer,

key)

5 MATLAB using Simulink/StateFlow

Izadbakhsh [15] and

Izadbakhsh et al.

[16]

Measured force (key) Displacements (hammer,

key, whippen)

5 DYNAFLEXPRO generates ODEs

solved in MAPLE (lsode Livermore)

Links [19] Force Kinematics 5 Index-3 DAE transformed to ODEs and

solved in MATLAB

Bokiau et al. [4] Force profile (key) Kinematics 6 ROBOTRAN

Masoudi and Birkett

[22]

Measured force (key) Displacements (key,

hammer, whippen)

5 ODEs solved in MATLAB (ODE15

stiff solver)
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2.1 The rigid-body approximation

All the bodies are supposed to be rigid. Some papers in

the literature have examined and dealt with the

flexibility of the hammer-shank and it has also been

argued that the flexibility of the key might be felt by

the pianists [7, 16]. For these reasons, the degree to

which the rigid-body approximation is valid is exam-

ined here. One considers that the approximation alters

the dynamics in a consistent way when (a) the period

of the first mode of vibration of one piece is longer

than 5 ms, corresponding to one fourth of the duration

of the fastest keystroke (�20 ms in the forte nuance)

and (b) the piece itself is significantly flexible com-

pared to the flexibility induced by its environment

(namely, the felts).

First, a very rough approximation of the period of

the first mode of vibration of each piece is estimated

using a clamped-beam model. For each body, the

section of the equivalent beam is chosen rectangular of

width b and height h corresponding to the dimensions

of the body’s smallest cross section, so that the area is

S ¼ bh and the moment of inertia of the section is

I ¼ bh3=12. The density and Young’s modulus along

the grain correspond to those of the hornbeam (case of

this Renner action [29]) or hard maple: q �
750 kg m�3 and E � 12 GPa. The first modal fre-

quency of a clamped-free beam is given by

f1 ¼ 1:8752

2p
1

L2

ffiffiffiffiffiffi

EI

qS

s

ð1Þ

where L is the length of the beam. Results are reported

in Table 3 and call for a more thorough study of the

key and the hammer (by inspection, it is clear that the

flexibility of the other pieces is very small).

For these two pieces, slightly more elaborate

models are presented in ‘‘Appendix’’. The first modal

frequencies are estimated as fkey ¼ 355 Hz and

fhammer ¼ 39 Hz, corresponding to ðfkeysÞ�1 ¼ 0:56

and ðfhammersÞ�1 ¼ 5:1. The ratio is correct for the key

but not for the hammer. This may be related with the

tuners’ practice of ‘‘sounding the hammer shanks’’.2

As mentioned above, the rigid body approximation

may be invalid for the hammer and the key if their

flexibility (see ‘‘Appendix’ for the precise definition) is

significantly lower than the apparent flexibility induced

by felts. The situation is analysed in details in the second

part of ‘‘Appendix’’. Considering rigid boundaries and

linear elasticity leads to we
key ¼ 1:5 � 10�5 m N�1 and

we
hammer ¼ 1:2 � 10�3 m N�1. Taking into account

felts at the boundary of a rigid model yields wf
key ¼

9:5 � 10�5 m N�1 and wf
hammer ¼ 4:8 � 10�3 m N�1.

In other words, felts contribute more to flexibility than

elasticity in a static model of the piano action, by at

least factors of 6 and 4 for the key and hammer,

respectively. A fortiori, the influence of the flexibil-

ities of the key and of the hammer is even less in a

mobile piano action.

In conclusion, due to its relatively low first modal

frequency, the vibrations of the key and the hammer

may influence the dynamics of the whole mechanism.

However, their relatively small flexibility leads to the

assumption that this influence is rather small, at least

compared to the level of the differences which will be

observed between simulations and measurements. The

dynamics of the hammer has been studied in [2] and

taken into account in [16]. The former study had

concluded that no influence of the dynamics of the

hammer on the sound could be predicted. The author

of the latter study concludes from force-driven sim-

ulations that the only observed significant influence of

the flexibility of the hammer shank occurs during the

contact with the string. This is consistent with the

evaluation presented here of the rigid body approxi-

mation. As far as haptics is concerned, the most

important phases are before escapement and when the

key meets the front rail punching. Because the

hammer has already escaped from the mechanism

when it hits the string, the flexibility of the hammer is

Table 3 Order of magnitude of the approximate dynamical

characteristic parameters of each element of the action

Piece (cf. Fig. 1) L (m) b (m) h (m) 1=ðf1 sÞ

Key 0.380 0.015 0.025 1.8

Whippen 0.060 0.010 0.008 0.14

Jack 0.025 0.005 0.005 0.039

Lever 0.030 0.005 0.005 0.056

Hammer 0.130 0.005 0.005 1.0

Damper 0.070 0.010 0.02 0.076

2 According to piano technicians, the sound of a note is

sensitive to the ‘‘quality’’ of the shank. In order to select shanks

(before gluing the hammer’s head), a common practice consists

in listening to the sound they emit when thrown on the floor (for

example).
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assumed to have no effect on the touch and is not taken

into account here. For the same reason, fine modelling

of the hammer–string interaction is not relevant in this

work; a simple ad hoc Newton elastic law suffices to

reproduce the kinematic measurements of the veloc-

ities of the hammer after it escapes the mechanism and

before it is captured again.

2.2 The degrees of freedom

Within the frame of the rigid-body approximation,

each element except the key is rotating around a

mechanical axis inserted in the action frame or in the

whippen. The motion of each body is considered to

have only one degree-of-freedom described by hX

where X can be W, J, L or H for the Whippen, the Jack,

the repetition Lever or the Hammer, respectively.

The fixture of the key—a vertical thick pin, called

balance rail key pin which goes throughout a hole in

the key—represents a typical traditional wood-work.

In this case, two degrees of freedom are involved:

rotation around a horizontal axis and vertical transla-

tion. The vertical motion is limited by the small piece

of felt between the main frame and the key. The

rotational motion is restrained by the elasticity of

wood and by the friction between wood and the

balance rail key pin. At an early stage of this study, it

proved difficult to repeat the experiments to the degree

of precision that was desirable for comparing them

with the simulations of the model. Overcoming it

would have required estimating separately rotation

and translation. Instead, we preferred to block the

translation motion of the key (by replacing the small

felt with a metallic ring of the same thickness) when

measuring the dynamics and to prescribe that the

motion of the key is a rotation around a fixed axis in

the simulation. Although such a modification would

not be acceptable in practice (it makes the action fairly

noisy), this is yet a very minor alteration of the action

from the mechanical standpoint.

2.3 Joints

The hinge joints (blue dots in Fig. 2) are modelled as

dry- and viscous-frictional elements. Dry friction

torques are taken as

CdðhÞ ¼ cd sign _h ð2Þ

sign: _h 2 R�!
�1 if _h\0

�1; 1½ � if _h ¼ 0

1 if _h[ 0

8

>

<

>

:

ð3Þ

where _h is the corresponding angular velocity, cd is a

coefficient determined experimentally (see Sect. 3)

and sign is a set-valued function (see Sect. 4 for the

numerical treatment within the framework of non-

smooth dynamics)]. Viscous friction torques are given

by:

CvðhÞ ¼ cv
_h ð4Þ

where cv is also a coefficient determined experimen-

tally (see Sect. 3).

In order to ensure the repetition capability, the jack

and the repetition lever must be pulled back to their

resting position on the whippen once the forces

Roller

Contact with Coulomb friction

Hinges with dry and viscous friction
Rotational spring

Weights

Felt material

K

J

W

H
L

Fig. 2 Schematic representation of the physical elements considered in the model. (Color figure online)
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exerted by escapement button and the hammer (when

blocked by the backcheck) have vanished. This

function is ensured by two springs (which may be

combined into one single metal thin rod as in Fig. 2).

In some piano actions (including ours), a spring is also

inserted between the whippen and the main frame. The

torque exerted by any of these springs is generically

given by

CsðhÞ ¼ jðh� h0Þ ð5Þ

where j is the stiffness of the spring, h its angular

extension and h0 its resting angular position (see

Sect. 3 for values).

2.4 Contacts

Twelve different contacts may occur in this 5-dof-

system. There is a felt in each of the contact zones,

which somehow smoothens contact forces in the

normal direction. Note that contrary to a regularisation

approach where the numerical efficiency directly

depends on the stiffness of the felts, numerical

methods adopted here allow for an efficient simulation

for any stiffness and even rigid contacts, opening

doors to efficient sensitivity analyses. In the model, a

felt is treated as a very small mass attached to its

supporting element by means of a nonlinear viscous

spring (Kelvin–Voigt model). The following phe-

nomenological visco-elastic compression law has

been retained [6]:

FfeltðdÞ ¼ k dr þ b d2 _d ð6Þ

where d denotes the compression of the felt and Ffelt

denotes the corresponding reaction force of the felt.

References for experimental estimations for the

parameters k, r and b are given in Sect. 3. Since [5],

it has been observed that the loading curves of the

hammer felt were nearly velocity-independent. The

small but significant dependency in velocity (b 6¼ 0)

has been investigated thoroughly by several research-

ers, particularly in papers by Stulov (see for example

[34]). It must be emphasized that the purpose of this

felt model (with only three parameters) is to account

for the felt behavior in a large dynamical range, both

on compression and on the rate of compression. This

range must be at least as large as the range of the

dynamical levels encountered in piano playing

between the piano and the forte levels. The interest

and justification of this heuristic model are that it is

simple to handle and that it mimicks direct dynamical

experiments on the felts in use in the piano action

fairly closely.

Friction in the tangential direction is considered

only for the three contacts circled in Fig. 2. Friction

between the hammer and the backcheck is crucial for

stopping the motion of the hammer after hitting the

string. Friction between the jack and the roller is easily

felt by the pianist and must also be considered in the

model, because the piano technicians adjust it care-

fully. Additionally, we chose to take friction into

account between the jack and the escapement button.

Friction is ignored in the other contacts which are

subject to a rather small translational motion. The

friction law is taken as in Eq. (2):

FdðvÞ ¼ fd sign v ð7Þ

where v is the tangential velocity and fd the dry friction

coefficient.

The duration of contact is longer than one sampling

period, calling for the simulation of the compression

and possibly, the decompression of the felts. The

contact for each of the twelve felts is treated as

follows: a small additional rigid body (labelled ‘‘A’’ in

Fig. 3), a prismatic joint (‘‘P’’) and a visco-elastic

element ‘‘V’’ (Kelvin–Voigt model) are inserted

between the felt support and the contacting body

(‘‘B’’). A unilateral constraint prevents this additional

body ‘‘A’’ from penetrating the contacting body ‘‘B’’.

Additionally, an impact law must be introduced for

this auxiliary body ‘‘A’’, that we choose to be inelastic

to allow permanent contact phases. The inelastic

impact law dissipates kinetic energy of the contacting

mass, however very little energy is dissipated if the

A

PV

B
gap g

δ

Fig. 3 Generic model of the contact between two pieces, here

the roller and the jack. The distance, or gap, between the two

pieces is g� 0 (condition of non-penetration). The compression

of the felt is d� 0 (unilateral constraint)
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mass of the auxiliary body ‘‘A’’ is much smaller than

the mass of its supporting body. Here, this condition

was met by taking arbitrarily 1 mg for the mass of all

the ‘‘A’’ elements.

The twelve contacts are described with geometries

as simple as possible, similarly to [13]. The geometries

are reported in Table 4. The backcheck–hammer

contact geometry is described by two circles. The

jack–roller contact geometry consists of a two per-

pendicular lines joined with a circular arc. All the

other contacts are described with a circle and a line

segment.

2.5 Dynamics as a measure differential inclusion

The dry friction model is intrinsically non-smooth in

the sense that it induces acceleration discontinuities at

stick–slip transitions. It cannot be written as a single-

valued function because the friction force (or torque)

can take an infinity of values for a zero velocity, hence

an infinity of possible static states in a sticking phase.

To the best of the authors’ knowledge, all the models

in the piano literature that include dry friction

([12, 13, 15], etc.) are simulated by regularizing the

friction law. This goes along with the following

problems:

• The sticking phase disappears and the stick–slip

transitions are lost: the dry friction force or torque

vanishes when the velocity vanishes.

• At least one non-physical parameter (the so-called

regularization parameter) is introduced, weaken-

ing the robustness of the simulation. This might

prove critical in a sensitivity analysis.

• Spurious oscillations can occur if the regularized

zone is too narrow, or inaccurate results are

obtained if the regularized zone is too wide.

• Reduction of spurious oscillations calls for a

reduction of the time step, resulting in an increase

of computation time. Time step reduction might

also be required to ensure stability of the chosen

numerical scheme.

• The condition number of the matrices involved

increases as the slope of the regularized function

increases.

Some of the above drawbacks of regularization cannot

be observed in the force-driven simulations reported in

the literature because they are masked by the intrinsic

smoothness of the resulting motions, as mentioned in

the introduction.

One simple example of the interest of not regular-

izing is the following. A basic adjustment of the key

mechanism consists in measuring the maximum mass

to be put on the key without initiating the down-motion

from the resting position and conversely, the minimum

mass that prevents the up-motion from the down-

position. The result directly depends on the dry friction

coefficient in the hinges. However, this simple test

cannot be simulated with a regularized friction law.

The counterpart of not regularizing is that the

model cannot be formulated as ordinary differential

equations (ODEs) for which a large variety of

commercial software applications exists. The reason

for this is that non-smooth laws cannot be properly

captured with twice-differentiable functions of time

because of the discontinuities in acceleration or

velocity. Several mathematical frameworks may be

used to describe the non-smooth model, mainly

measured differential inclusion (MDI), variational

inequalities (VI) or nonlinear complementary problem

(NLCP): a general presentation is given in [1]. We

chose to express the model of the grand piano action in

terms of a measure differential inclusion (MDI),

following [1, 32]. The mathematical foundations are

given in the cited references. In summary, this

formalism can be seen as an extension of the usual

dynamical equations (ODEs) to non-smooth laws. In

the inclusions below, the 2 symbol underlines a

difference of mathematical nature: the left-hand side

of 2 is an array of scalar numbers, while the right-hand

side is an array of set-valued functions.

The proposed model is given by the following

inclusions:

• Internal moments (dry friction in hinges) given

generically by Eq. (2) are now written in a

condensed way as:

Table 4 Simplified geometry of the contact zones

Geometries Quantity

Backcheck–hammer 1

Jack–roller 1

All other contacts 10
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rP 2 cd signð _xÞ ð8Þ

where rP (now standing for the torquesCd) belongs

to R12 and signð _xÞ is an array of components

signð _xiÞ.
• The twelve gaps between bodies (condensed with

the same writing convention as above) remain

positive (unilateral contact condition or condition of

non-penetration) which writes mathematically as:

gðxÞ 2 Rþ12 ð9Þ

• The normal reaction forces at contacts are given in

a compact way by:

�rN 2 N
Rþ12 ðgðxÞÞ ð10Þ

which means that reaction forces are either 0 (no

contact, gðxÞ[ 0) or negative (compression, if one

contact occurs, i.e. one component gðxÞ ¼ 0Þ. The

expression N
Rþ12 ðgðxÞÞ denotes the normal cone

to the convex set Rþ12
in gðxÞ 2 Rþ12

(see e.g.

[30] for general knowledge about convex

analysis).

• The tangential reaction forces (Coulomb friction)

are written without writing the usual logical

disjunction explicitly:

� H>ðxÞv
� �

3i�2;3i�1
2 NBðlðrNÞiÞ

�

ðrTÞ2i�1;2i

�

ð11Þ

where H> is the geometric operator which yields

the relative velocities in the (local) contact frame

as a function of the generalized velocities. This

slightly cumbersome inclusion simply relates local

velocities to normal forces and to reaction forces

imposed by the Coulomb friction model. For each

contact i, the indices 3i� 2 and 3i� 1 refer to the

tangential components of the velocity, ðrNÞi is the

normal reaction force and ðrTÞ2i�1;2i is the reaction

force in the tangential direction.

These four inclusions can be expressed generically

[Eq. (14)] as one inclusion in a set K. Altogether, the

dynamics is written as the following measure differ-

ential inclusion (MDI):

MðxÞ dv ¼ FHðx; _x; tÞ dt þHðxÞ di ð12Þ

vþ ¼ ð _xÞþ ð13Þ

gðxÞ; H>ðxÞvþ; di
� �

2 K ð14Þ

The (non-smooth) dynamics is expressed by Eq. (12)

where dv and di are vector-valued measures on R and

can therefore be non-smooth. All the smooth terms,

such as non-linear dynamic terms or viscous friction,

are included in FH. The non-restrictive assumption

that the local variations of the velocities v are bounded

implies that velocities have right (and left) limits at

any time [14]; the dynamics can therefore be written as

a function of right-continuous bounded variations,

which explains the ‘‘?’’ sign in Eq. (13). Equa-

tion (14) gathers the non-smooth laws (tangential

Coulomb friction at contact points, joint friction,

unilateral contacts) and equality constraints.

3 Measurements

Measurements are focused on the key because that is

where the pianist interacts with the action. Additional

measurements on each piece improve the comparison

with the results of simulation. The measurements were

done on an isolated action by Renner (Fig. 4) equipped

as follows (Fig. 5):

Fig. 4 Overview of the experimental setting

force sensor

accelerometer

position
sensors

Fig. 5 Location of the different measurement devices (see text)
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• a piston compressing a piece of silicone, between

the end of the key and the finger. This auxiliary

device was needed for technical reasons associated

with the simulation algorithm as explained in

Sect. 4,

• patches with black-and-white patterns on each

rigid body, aimed at measuring their motion by

optical means,

• position laser sensors (top of the piston and key),

• acceleration and force sensors.

The values of the model’s parameters are given in

[35], Chapter 4, Section 5 (pp. 60–68).

3.1 Measurements of the parameters of the model

The geometrical quantities (positions and angles)

were estimated by analysing two high-definition

pictures: a view of the complete mechanism and a

close-view of the hammer and the whippen–jack–

lever assembly, at rest. The photographs were taken

at 3 m from the action to reduce the parallax effect,

and the lens distortion was corrected using the

Optics Pro software by DxO. Because of the time-

worn felts of the used action and as a double-check,

additional measurements were done with a dial

caliper.

Parameters relative to bilateral constraints, namely

the dry friction coefficient cd and the viscous friction

coefficient cv on the various pivots, were taken from

the measurements performed on a different copy of the

same action model (see [20]; the detailed measure-

ment protocol is given in Chapter 3). The felt param-

eters (unilateral constraints) were identified in [6],

measured again in [20] and reported in [35] (p. 67). In

both cases, for a given felt, the identification of the

parameters consisted in minimizing a cost functional

measuring the distance between a series of dynamical

measurements from piano to forte and the prediction

of the model. This resulted in one single set of three

parameters for each felt, which captures the corre-

sponding range of dynamical levels.

The measurements of the inertial parameters (cen-

ter of gravity, mass and rotational inertia) as well as

the parameters of the springs (rest angles h0 and

stiffness Cs) were also measured in [20] and reported

in [35] (pp. 60–68).

3.2 Measurements of the dynamics

Since the variations of hK remain small, rotational

quantities are obtained by axial measurements on the

key.

The displacements of the key and of the top of the

piston were measured by laser sensors (Keyence

LB12 with LB72 amplifier units), positioned as

shown in Fig. 5. What can be interpreted in the data

sheet as an integration time was set to 0.15 ms,

coming along with a resolution of 50 lm. The

sensitivity of each sensor was estimated statically by

means of a graduated marking gauge (0.398 and

0.449 V mm�1).

The acceleration of the key was measured with a

piezoelectric accelerometer (Endevco R 2250A, mass

0.4 g, sensitivity 0:316 V m�1 s�2), placed midway

between the center of rotation of the key and the piston

(finger-end) and associated with a Brüel and Kjær

Nexus conditioning amplifier and filter (0.1 Hz–

3 kHz).

Since the model includes viscosity, the key velocity

had to be estimated. The velocity was obtained

numerically by two independent algorithms: integra-

tion of the acceleration signal (after removal of the

average value of the signal at rest) and differentiation

of the position signal, using a total-variation regular-

isation [8] (here: 30 iterations, 200 sub-iterations, a

regularization parameter of 5 � 10�5 and e ¼ 10�9).

In practice, choosing one or the other estimation of the

velocity had very small influence on the simulation

results. The velocity was estimated using the algo-

rithm of total-variation regularization.

Additional measurements of the positions of

each body were carried out to estimate their

qualitative evolutions with respect to time: of

special interest are the instants of significant

variations in €h which should correspond with changes

in contacts. The positions were measured using a high-

speed and high-resolution camera (Simi HCC-1000,

equipped with four CMOS sensors, 923 fps,

1024 px � 512 px). The camera acquisition was syn-

chronized with the other measuring devices. The

images (successive positions of the patches) were

treated with the KLT tracking algorithm [21, 37] using

the CRToolbox implementation [3]. An illustration of

the tracking is given in Fig. 6.
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The force exerted on the end of the key is measured

with a light-weight (1.2 g) piezoelectric sensor

(Kistler 9211), with a charge amplifier (Kistler 5015)

operating in the frequency range [1 Hz–3 kHz] (the

data sheet indicates fcut�off � 1 Hz).

According to the data sheet provided by Kistler,

the sensitivity of the sensor is 10 mN, the nonlin-

earity and hysteresis effects are contained within

±1% of the full scale output (thus depending on the

choice made on the charge amplifier for the

operating range). In our experiments, this scale

was usually adjusted to 10 N.

The signal is sampled at 50 kHz (ADC USB-6211

by National Instruments, also used for the motion

signals). Sampling begins about 1 s before the

keystroke in order to perform the following post-

treatments: the 50 Hz component is identified in phase

and in amplitude on the force-data preceding the

keystroke and is removed from the entire time series.

The 0 Hz component is identified and removed in the

same way.

4 Simulation method

The simulations were done with eXtended Dynamic

Engine (XDE), a software developed at CEA LIST for

industrial virtual prototyping and simulations in

robotics. This software is available, on request, to

members of the academic community for research

purposes. The part we used is XDE Physics, a C??

development kit consisting in a kernel for interactive

mechanical simulation of rigid multibody systems

with kinematic constraints, intermittent contacts and

dry friction. It includes efficient methods for collision

detection. In this paragraph, we expose the numerical

scheme and methods that we used. More details are

given in [24].

The MDI Eqs. (12), (13) and (14) are discretized

using the scheme given in the seminal paper by Jean

[17] and summarized in [23].

For the time-step Dt, the dummy variable a and

tnþa ¼ tn þ aDt, we introduce the following linear

interpolations:

xnþaðkxÞ ¼ xn þ aDt kx ð15Þ

vnþaðkvÞ ¼ vn þ aDt kv ð16Þ

Equation (15) yields the position at time tnþa as a

function of the position at time tn and the unknown

velocity kx. Similarly, Eq. (16) yields the velocity at

time tnþa as a function of the velocity at time tn and the

unknown acceleration kv. The dummy variable a 2
1
2
; 1

� �

stands either for h or c in the time-stepping

scheme presented below.

The chosen time-discretization of Eqs. (12), (13)

and (14) is, term by term:

MðxnþhðkxÞÞ kv ¼ FHðxnþhðkxÞ; vnþhðkvÞ; tnþhÞ
þHðxnþcðkxÞÞ r ð17Þ

vnþhðkvÞ ¼ kx ð18Þ

ðgðxnþcðkxÞÞ; H>ðxnþcðkxÞÞvnþcðkvÞ; rÞ 2K ð19Þ

where the unknowns are kx; kv and the reaction

forces r, all of them to be considered at the nþ 1th

iterate. The numerical parameter h3 controls the

stability of the numerical scheme for the smooth

dynamics; here h ¼ 1. The numerical parameter c
relates to the non-smooth events; here, c ¼ 1 which

means that constraints are satisfied at the end of every

time step.

Using (18), kx can be eliminated in (17) and (19).

The remaining unknowns are kv and r. Then, the

contact kinematics H and the smooth dynamics (Mkv
and FH) in Eq. (17) are linearised around the preced-

ing iterate of kv. Using a Newton loop results in a so-

called One-Step Non-Smooth Problem ([1]) where kv
can be eliminated in Eq. (19) yields an algebraic

inclusion of unknown r (for the first time step, r ¼ 0).

This inclusion can be reformulated using an aug-

mented Lagrangian and solved with a Gauss–Seidel-

like algorithm (see [33], Chap. 4).

Currently, XDE performs force-driven simulations

directly whereas position-driven simulations are per-

formed by inserting a proportional-derivative correc-

tor. Experimentally, this situation was mirrored by the

insertion of a piston (see Sect. 3) which displays

approximately a linear viscoelastic behaviour.

Another current limitation is that the nonlinear law

of Eq. (6) is implemented by adjusting the stiffness

and viscosity coefficients of the linear element ‘‘V’’ at

3 Even though it is not related to the angle of Eqs. (2)–(5), the

notation h is used here to conform with the standard notation in

numerics.
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each time step. These two limitations are by no way

intrinsic to the methods used in XDE and are to be

lifted in future versions.

5 Results and discussion

Because of its extreme sensitivity to geometrical

alterations, every piano action has to be regulated by a

technician. This sensitivity is reflected in our model,

hence the latter was preliminarily adjusted by hand

using a common regulation procedure (see Appen-

dix A of [35]).

The model is validated in both force-driven simu-

lations and position-driven simulations by comparing

simulated to measured positions and forces at the end

of the key. In order to exemplify the conclusions of

[36], we introduce a variation of the model by making

the felts rigid (from now on, referred to as the Bad

Model or BM). Of course, doing so on a piano action

would be calamitous and the hammer would probably

not even reach the string when the key is pressed

down.

The calculated position in response to a force-

driven piano keystroke is plotted in Fig. 7. The

smoothening effect of the piano action is clear: the

position outputs are much smoother than the force

signal and the estimation of the measured position is

good. The relative error of the model, defined as the

ratio of the integral of the absolute value of the

difference and the integral of the reference signal, is

3%. The results of the Bad Model are almost as good

(error: 9%) showing, in line with the conclusions of

[36], that force-driven simulations are virtually insen-

sitive to the quality of the model.

The results of position-driven simulations are

plotted in Figs. 8 and 9. One notes that the time

Fig. 6 Illustration of the KLT tracking algorithm used to measure the qualitative evolution of the bodies positions with time. Left

resting position. Right after hammer–string contact. (Color figure online)
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Fig. 7 Measured and simulated positions of the key-end, for a

piano keystroke (force-driven simulations)
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Fig. 8 Measured and simulated reaction forces at the end of the

key for a piano keystroke (position-driven simulation)
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evolution of the (measured) position is very smooth

and does not reveal much information on the

dynamic complexity of the piano action. On the

contrary, both the measured and simulated force

display many irregularities, corresponding to non-

smooth events (contact activation and stick–slip

transitions) which occur during the keystroke.

Despite this complexity in the profile of the results,

the prediction of the model is very close to the

measurements in the first phase (descent of the

key), by far the most complex one, and the one

that matters most for the pianist.

The holding phase (when the finger maintains the

key in the down-position) is not rendered correctly in

the position-driven simulations. This is not too

surprising for a quasi-static phase. Presumably, this

is mostly due to the discrepancy between the real

behaviour of the piston (introduced between the finger

and the key, see Sect. 3) and the ideal viscoelastic

behaviour which would correspond to the propor-

tional-derivative corrector (added to the model of the

piano action, see Sect. 4). Another source of discrep-

ancy between the simulated and the observed forces

during the holding phase is that it is difficult to

maintain a pure vertical force on the piston once the

key has been blocked by the punchrail. Since the

piston has its own 3D-mobility, it is probable that the

top and the bottom of the piston encounter different

motions so that the input of the simulation does not

correspond to the real motion-input. Since this point is

a minor artefact of the simulation method,4 this

discrepancy was not investigated further.
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Fig. 9 Measured and simulated reaction forces at the end of the

key for a forte keystroke (position-driven simulation)

Table 5 Velocity of the hammer at the escapement

Dynamics Experimental (m s�1) Simulated (m s�1)

piano 1.01 1.00

forte 1.56 1.56
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Fig. 10 Kinematic results for a position-driven simulation,

piano keystroke

4 In the scheduled future versions of the simulation software, a

direct motion-input is possible, eliminating the need for the

piston.
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Fig. 11 Film and

simulation screenshots

comparison for

notable events. All the

images correspond to the

same keystroke. Each pair of

images correspond to the

exact same time instant. a At

rest, b beginning of

escapement, c hammer–

string impact, d check catch,

e jack repositioning
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As opposed to the force-driven simulations, the force

simulated according to the Bad Model is off the measured

force which is what is expected of a ‘‘Bad Model’’.

The escapement velocity of the hammer determines

the intensity of the produced sound, and is therefore of

great importance. Table 5 gathers the values obtained

from the measurements and the simulation, for piano

and forte dynamics. The prediction is very good.

In Fig. 10, the simulated positions of the different

bodies are compared to their experimental estimations

using the KLT tracking algorithm (see Sect. 3.2).

Because of the limited resolution of our high-speed

camera, angular measurement errors are significant: red

dots in Fig. 6 are not perfectly tracked. As explained in

Sect. 3, these measurements are rather intended to

compare the time instants of non-smooth events, namely:

(a) beginning of contact between jack and let-off

button punching;

(b) beginning of contact between key and front rail

punching;

(c) contact between hammer and string;

(d) catch of the hammer;

(e) return of the jack to its resting position.

It appears in Fig. 10 that the simulation catches these

non-smoothnesses well. This explains why most

irregularities of the forces in Figs. 8 and 9 are captured

by the model.

By means of CAD software, we also built a

parametric virtual piano action based on the geomet-

rical description of the real action. This made visual

inspection of the motion possible, and opens doors to

easier understanding of the functioning of the action as

well as helping innovating design. Screenshots of the

most significant events are represented in Fig. 11.

They compare very well with the pictures obtained

with the high speed camera.

The characteristic time of the piano action is about a

few milliseconds. All the simulation results have been

calculated with a time step of 0.5 ms (2 kHz: red curve

in Fig. 12). Results obtained with different time steps

are represented in Fig. 12. They do not significantly

differ between 2 and 10 kHz and this convergence

indicates that there is no need to run the simulations

with a higher frequency than 2 kHz. This is a great

advantage of the non-smooth methods chosen: there is

no numerical parameter for impact or dry friction

calling for a very small time-step.

6 Conclusion

The model of the piano action that is presented in this

paper overcomes several limitations of what was

offered by the literature so far. (a) The strong

nonlinearities in the action dynamics (shocks, dry

friction) which were accounted for by regularization,

are now formally described by a measure differential

inclusion (MDI). (b) The validation of the model is

granted by position-driven simulations which prove

far more reliable than the usual force-driven simula-

tions. The holding phase was not captured very

accurately, due most probably to methodological

artefacts in the experimental set-up. (c) The non-

smooth formalism proved to allow for simulations of

about two orders of magnitude faster than the regu-

larizing approach, as reported in the literature.

Minor improvements of the model include (a) tak-

ing into account the first mode of vibration of the

hammer’s shank by inserting a spring between the

hammer’s head and the knuckle and (b) introducing

the felt underneath the key-bed.

In terms of performance, the simulations run about

twenty times slower than real time on a 2010-com-

puter equipped with a 2.1 GHz Intel Core i5. The

future versions of the simulation software will allow

direct position-driven simulation (thus eliminating the

need for the proportional-derivative corrector and its

approximate experimental counterpart), include a

more efficient implementation of the nonlinear springs

laws and perform direct 2D dynamics rather that 3D.

Presumably, the resulting computing efficiency will be

more than sufficient for a real-time computation of the

piano action dynamics on a standard laptop. Practi-

cally, this will open doors to a large variety of

applications, from numerical lutherie, innovative

design, sensitivity analysis of the piano action, to

real-time haptic investigations.
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Fig. 12 Simulated forces (in piano) for different time steps.
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Appendix: Models for estimating the rigid body

approximation for the key and the hammer

The purpose of this appendix is to give the details of

the estimation, for the key and the hammer, of:

• their first modal frequency (dynamics);

• their flexibility as linear elastic bodies compared

the flexibility of the felts (statics).

Four different models were considered in total: two for

each piece, see Fig. 13.

The first mode of vibration was approximated using

the Rayleigh–Ritz method (see for example [18]). The

mass of the key was assumed to be equally distributed

while for the hammer, it was assumed to be concen-

trated at the center of the hammer head. The static

deformations ukey, uhammer in response to the corre-

sponding weight were calculated and used as the shape

functions for the Rayleigh quotient. With point O

corresponding to the origin of the x-axis, the calcu-

lated expressions are:

and

An approximation of the frequency of the first

eigenmode is
ffiffiffi

R
p

=ð2pÞ where R is the Rayleigh

quotient

R ¼
R L1þL2

0
EIu00ðxÞ2

dx
R L1þL2

0
qSuðxÞ2

dx
ð22Þ

The calculations yield f1;key ¼ 355 Hz and

f1;hammer ¼ 39 Hz.

The flexibilities we
key;hammer of the key as seen from

the finger, or of the hammer as seen from the hammer

head, and due to the elasticity of wood, can be

estimated with the same models (see Fig. 13a, b). The

strain energy U of the beams for a force F applied at

position L1 þ L2 is given by the integration of the

squared moment over the length, divided by 2EI; it

comes:

U ¼ F2

6EI
L1

2ðL1 þ L2Þ ð23Þ

The flexibility we is given by Castigliano theorem (see

for example [31]):

we ¼ 1

3EI
L1

2ðL1 þ L2Þ ð24Þ

With L1 ¼ 0:18 m, L2 ¼ 0:13 m for the key and

L1 ¼ 0:13 m, L2 ¼ 0:016 m for the hammer, the

ukeyðxÞ ¼

1

24EI L2

ð�2L2
1ðL2

2 � x2Þ þ L2 L3
2 � 2L2x

2 þ x3
� �

for x 2 ½0; L2�

1

24EI
ðL2 � xÞ 2L3

2 þ 2L2
1ðL2 � 3xÞ þ 4L1ðL2 � xÞ2 � 3L2

2xþ 3L2x
2 � x3

� �

for x 2 ðL2; L1 þ L2�

8

>

>

<

>

>

:

ð20Þ

uhammerðxÞ ¼

L1

6EI L2

xðL2 � xÞðL2 þ xÞ for x 2 ½0; L2�

�1

6EI
L1ðL2 � 3xÞ þ ðL2 � xÞ2

� �

ðL2 � xÞ for x 2 ðL2; L1 þ L2�

8

>

>

<

>

>

:

ð21Þ

Meccanica

123



flexibilities for the elastic model with rigid boundary

conditions are we
key ¼ 1:5 � 10�5 m N�1 and

we
hammer ¼ 1:2 � 10�3 m N�1 (the value of the other

parameters is given in Table 3).

The flexibilities wf
location due to felts only, estimated

at a given location, come as follows: each beam is

considered rigid, with its motion limited by nearby

felts (see Fig. 13c, d). For the nonlinear felt law given

in Eq. (6), the average flexibility is

wf
felt ¼

d
Ffelt

¼ kð�1=rÞF
ð1�rÞ=r
felt ð25Þ

The ratio of the flexibilities at the finger end of the key

(respectively, at the hammer’s head) and at the

corresponding felt (whippen and knuckle, respec-

tively) is wf
key;hammer=w

f
felt ¼ k2 where k ¼ L1=L2 (re-

spectively ðL1 þ L2Þ=L2). Since the force applied at

the finger end (respectively at the hammer’s head

position) is Fkey;hammer ¼ Ffelt=k, it comes

wf
key;hammer ¼ kð�1=rÞkðrþ1Þ=rF

ð1�rÞ=r
key;hammer

ð26Þ

Since the felts are nonlinear springs, it is normal that

the flexibility depends on the force level.

For the key, 5 N represents a typical force level

exerted by the finger. For the hammer, the mass is

concentrated at its head. With a mass of 12 g, typical

of the bass hammers, a forte keystroke corresponds to

a displacement of 5 cm of the head in about 20 ms,

hence an average inertia force F ¼ 3 N at the head

position. With the parameters values

k ¼ 1:6 � 1010 uSI and r ¼ 2:7 for the whippen-key

felt and k ¼ 7 � 109 uSI and r ¼ 3 for the knuckle’s

felt, the flexibilities are wf
key ¼ 9:5 � 10�5 m N�1 and

wf
hammer ¼ 4:8 � 10�3 m N�1. For lower force levels,

the flexibilities are larger since the felts are hardening

springs.
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Theses. École Polytechnique (2013). https://pastel.archives-

ouvertes.fr/pastel-00939493v1

36 Thorin A, Boutillon X, Lozada J (2014) Modelling the

dynamics of the piano action: is apparent success real? Acta

Acust United Acust 100(6):1162–1171

37 Tomasi C, Kanade T (1991) Detection and tracking of point

features. School of Computer Science, Carnegie Mellon

University, Pittsburgh

38 Van den Berghe G, De Moor B, Minten W (1995) Modeling

a grand piano key action. Comput Music J 19(2):15–22

39 Vyasarayani CP, Birkett S, McPhee J (2009) Modeling the

dynamics of a compliant piano action mechanism impacting

an elastic stiff string. J Acoust Soc Am 125:4034

Meccanica

123

http://dx.doi.org/10.5402/2011/164564
http://dx.doi.org/10.5402/2011/164564
http://dx.doi.org/10.1115/1.2908180
https://pastel.archives-ouvertes.fr/tel-00280538
http://www.rennerusa.com
https://pastel.archives-ouvertes.fr/pastel-00939493v1
https://pastel.archives-ouvertes.fr/pastel-00939493v1

	Non-smooth dynamics for an efficient simulation of the grand piano action
	Abstract
	Introduction
	Model
	The rigid-body approximation
	The degrees of freedom
	Joints
	Contacts
	Dynamics as a measure differential inclusion

	Measurements
	Measurements of the parameters of the model
	Measurements of the dynamics

	Simulation method
	Results and discussion
	Conclusion
	Appendix: Models for estimating the rigid body approximation for the key and the hammer
	References




