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a b s t r a c t

An easy-to-implement method to measure relevant elastic and damping properties of

the constituents of a sandwich structure, possibly with a heterogeneous core, is

proposed. The method makes use of a one-point dynamical measurement on a thick-

plate. The hysteretic model for each (possibly orthotropic) constituent is written

parameters relies on a mixed experimental/numerical procedure. The frequencies and

dampings of the natural modes of the plate are obtained from experimental impulse

responses by means of a high-resolution modal analysis technique. This allows for

considerably more experimental data to be used. Numerical modes (frequencies,

dampings, and modal shapes) are computed by means of an extended Rayleigh–Ritz

procedure under the ‘‘light damping’’ hypothesis, for given values of the mechanical

parameters. Minimising the differences between the modal characteristics yields an

estimation of the values of the mechanical parameters describing the hysteretic

behaviour. A sensitivity analysis assesses the reliability of the method for each

parameter. Validations of the method are proposed by (a) applying it to virtual plates

on which a finite-element model replaces the experimental modal analysis, (b) some

comparisons with results obtained by static mechanical measurements, and (c) by

comparing the results on different plates made of the same sandwich material.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

For plates having a mechanical function, sandwich structures, with possibly a heterogeneous core, are often preferred
to a homogeneous constitutive material because they can be made lighter. However, the relevant mechanical properties of
the sandwich as a whole or even of its individual components may be difficult to predict accurately, particularly when
heterogeneous cores are used or if damping is considered. Here ‘‘relevant’’ refers to the parameters that matter in the plate
dynamics (see Section 2.1). In this paper, a method for estimating the complex moduli of elasticity of the constituents
of sandwich structures having a heterogeneous core based on one dynamical test on a plate is proposed. The proposed
mixed experimental/numerical procedure (for an introduction to such procedures, see for example [1,2]) is based on the
thick-plate model and frequency-independent mechanical properties of each constituent of the sandwich. It is intended to
be easier to implement or to yield more parameters than other methods.
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Using structural vibrations for the estimation of homogeneous material parameters is a widespread technique.
Compared to static measurement campaigns which must be performed on a number of isolated samples of the sandwich
components, dynamic tests leave the sandwich structure untouched and can be performed on one single panel of more or
less arbitrary dimensions.

The problem of the estimation of solely elasticity parameters of a homogeneous material using plate vibrations has been
widely addressed in a thin-plate context [1–7] and in a thick-plate context [8–21]. In a thin-plate context, only in-plane

parameters can be estimated. Using a thick-plate yields some of the so-called out-of-plane parameters.
The problem of estimating elasticity and damping parameters of homogeneous materials by using point measurements

[22–25] has retained some attention in a thin-plate context. In a thick-plate context, methods involving full-field

measurements are currently available [26–28], but they are very time-consuming or need sophisticated equipment.
Recently, some efforts have however been done to overcome these limitations by using point measurements instead of
full-field measurements [29]. However, the experimental data used by these authors severely limits the possibilities of
estimation, as discussed below.

For heterogeneous materials, such as sandwich materials, the literature addresses mainly the estimation of elasticity

parameters, using either beams [30–32] or plates [33,34]. A few studies have been devoted in the last years to the problem
of estimating their damping properties in beams [31,32], in plates by means of sophisticated full-field measurements
[35,36], and quite recently in plates by single point measurements [37,38]. Since none of these studies present a sensitivity
analysis, the validity of the model they used for damping is difficult to assess. The following reasoning explains how we
access to significantly more experimental data than previous studies. The sensitivity analysis (Section 7) shows that these
are determinant for some estimated parameters.

Exploiting the vibrations of sandwich panels with heterogeneous cores requires that the panel dimensions meet several
conditions. In order to consider the sandwich core as homogeneous in the in-plane directions up to a given frequency f, the
corresponding wavelength l must contain at least 50 cells [39]. For a typical cell side-length scell and height h, this implies
that the panel’s dimensions are such that lx,y4l450scell. Moreover out-of-plane elasticity and damping parameters can be
estimated only on thick-enough plates. In brief, the panel must be large enough and the observed dynamics must include
high-enough modes, within the limit of a plate model. Due to the intrinsic dissipation of materials, high-order modes may
be impossible to characterise with methods based on the Fourier-transform (FT): those are limited to modal overlaps of
mC30 percent in most implementations [35] (see Section 4.3 for the definition of m). The high-resolution modal analysis
(HRMA) technique recently developed by Ege et al. [40] is a successful substitute to the FT-based modal analysis
techniques up to significantly higher modal overlap values.

From a methodological point of view, the present work is an extension to heterogeneous and thick plates of the work
done by de Visscher et al. [23] on homogeneous thin plates. The proposed method is performed on large sandwich panels
which meet the above conditions. Up to C40 modes are extracted by means of the HRMA. This is considerably more than
the 6 or 12 modes used in [29] for the determination of six elastic parameters. It will be shown in Section 7 that high-
frequency modes are indeed necessary for a reliable estimation of some of these parameters. As far as damping parameters
are considered, experimental data used in [29] do not allow their reliable determination (as stated by the authors and
confirmed by the sensitivity analysis in Section 7).

The mixed experimental/numerical procedure yielding the in-plane and most out-of-plane elasticity and damping
parameters (complex elasticity moduli) of the constituents of the sandwich is schematically presented in Fig. 1. The
analytical model of the sandwich panel is presented in Section 2. Based on this model, the numerical modal frequencies
f Num
n and dampings aNum

n are derived by means of an extended Rayleigh–Ritz procedure (Section 3). The experimental
protocol and the extraction method that yield the experimental modal frequencies f XP

n and dampings aXP
n are presented in

Section 4. Given the numerical and experimental data, the optimisation procedure that estimates elasticity and damping
parameters of the constituents of the sandwich material is detailed in Section 5. The procedure is validated in Section 6 by
Fig. 1. Overview of the proposed mixed experimental/numerical procedure: modal characteristics derived experimentally and numerically are

compared; their differences tend to zero when the correct values of the mechanical parameters are reached.
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means of a finite-element analysis. Measurements performed on three real plates are shown in Section 7 which provides
additional validation insight as well.

2. A mechanical model of sandwich panels

In order to access the modal dampings and frequencies of a sandwich panel, an adapted mechanical model is needed. In
this section, such a complex structure is modelled as an equivalent thick-plate under the Reissner–Mindlin hypothesis. A
frequency-independent model for the materials composing the sandwich is also described. Notations used in this section
are summarised by Tables D1, D2 and D3 in Appendix D.

2.1. Hypothesis

The sandwich panel consists of two identical skins and a core (Fig. 2). The thicknesses of the core, skins, and panel are hc, hs,
and h¼ hcþ2hs respectively. In the following, ‘‘panel’’ designates the physical structure whereas ‘‘plate’’ refers to the idealised
structure made out of the equivalent homogeneous material. The following hypotheses are made on the panel and plate:
�
 Displacements are small so that the materials and structures behave linearly.

�
 Only flexural waves of frequencies far from the delamination frequency (the frequency of the first transverse mode of

the panel) are considered.

�
 The plate is considered to follow the Reissner–Mindlin approximations (thick-plate: first-order shear deformation

theory, FSDT), with no direct strain in the z-direction. As pointed out by Refs. [41–43], the accuracy of the thick-plate
model to describe the dynamics of sandwich plates having a soft core depends mainly on the thickness to length ratio
and on the skins Young modulus to core shear modulus ratio: Es

x,y=Gc
yz,xz. Generally, the thicker and the softer the core,

the less the thick-plate model is appropriate for modelling purposes as compared to higher-order models. In [42, Fig. 4],
a comparison between thick-plate theory (FSDT) and high-order shear deformation theory (HSDT) is performed on the
first modal frequency of a sandwich panel with a soft core. At least for orders of magnitude considered, it could be
extended to a higher modal frequency of wavelength l by considering the ratio 2h=l instead of h=lx,y (the ‘‘h’’ written
here is defined in Fig. 2 and corresponds to the writing ‘‘2h’’ in [42]). According to [42, Fig. 4(c) and (d)], the difference
between FSTD and HSDT does not exceed 5 percent for Es

x,y=Gc
yz,xzC100 and a 2h=l ratio less than 0.08. The plates that

are considered in this paper exhibit a Es
x,y=Gc

yz,xzC100 ratio and the highest modes under consideration are
characterised by 2h=lC0:08. A thick-plate model based on FSDT is thus appropriate enough in the present study.

�
 The wavelengths l include at least 50 cells. According to Burton et al. [39], this ensures that errors on the modal

frequencies of the plate (with a homogeneous equivalent core) are less than 2 percent when compared to those of the
panel as computed by various finite-elements models.

The skin and core materials are considered as homogeneous, orthotropic in the x- and y-directions.

The formalism chosen for describing the hysteretic behaviour is that of complex moduli E ¼ Eð1þ jZÞ which do not

depend on the frequency (see the model of materials in Section 2.2). Young’s and shear moduli and the Poisson coefficient
of the core are Ec

x, Ec
y, Ec

z , Gc
xy, Gc

xz, Gc
yz, nc

yx, nc
xz, nc

yz and nc
xy. The same parameters for the skins are denoted by the index ‘‘s’’.

The properties of the homogeneous material equivalent to the whole sandwich are denoted by the index ‘‘H’’. Additional
symmetry relationships are given in Section 2.2.

The following hypotheses are made on the sandwich panel:
�
 The sandwich panel is symmetric with respect to its mid-plane.

�
 Skins are thin compared to the core and the core is softer than the skins so that shear stress in the skins can be ignored:

hs=Gs
xz5hc=Gc

xz (and the same in the y-direction).
Fig. 2. Geometry of the sandwich plate.
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�
 The core is very soft (Ec
x5Es

x, Ec
y5Es

y and Gc
xy5Gs

xy). Given the generic expression of the moduli of the homogeneous
equivalent material EH ¼ ðhc=hÞ3Ecþ½1�ðhc=hÞ3�Es, this ensures that all in-plane stress in the plate are entirely due to
those in the skins.

According to these hypotheses, there is no stress associated with Ec,s,H
z , nc,s,H

xz , nc,s,H
yz ,Gs

xz, Gs
yz, Ec

x, Ec
y, Gc

xy, nc
xy, nc

yx which
are ignored in what follows. The relevant remaining mechanical parameters describing such a plate are thus [36]:
�
 In-plane parameters (bending of the skins): Es
x, Es

y, Gs
xy, ns

yx, ns
xy.
�
 Out-of-plane parameters (shearing in the core) : Gc
xz, Gc

yz (excluding Ec
z).
In the rest of the article, it will thus be understood that ‘‘elastic parameters’’ means ‘‘relevant elastic parameters for the

dynamics of thick-plates’’.
These hypotheses are generally fulfilled in common sandwich panels. Typical orders of magnitude for parameters are:

hs=hc C10�1

Ec
x=Es

xCEc
y=Es

yCGc
xy=Gs

xyC10�4

8<
: (1)

2.2. Model of the materials

The damping of plate vibrations has different origins. In the present study, it is assumed that panels vibrate below
their coincidence acoustical frequencies [44]. Consequently, damping due to acoustical radiation in surrounding air is
very small compared to the structural damping [45]. Among the different structural damping models, the standard
hysteretic model (which is frequency-independent, see for example [46,47]) has been retained. The relationship between
the stress eg and the strain rg in each g-material (g¼ s,c, or H) involves seven complex numbers and can be written, to first
order in Zg, as

rg ¼

Egxð1þ jZgxÞ ngyxEgx ½1þ jðZgnyx
þZgxÞ� 0 0 0

ngxyEgy½1þ jðZgnxy
þZgyÞ� Egyð1þ jZgyÞ 0 0 0

0 0 Gg
xzð1þ jZgxzÞ 0 0

0 0 0 Gg
yzð1þ jZgyzÞ 0

0 0 0 0 Gg
xyð1þ jZgxyÞ

2
66666664

3
77777775
eg (2)

The symmetry of the strain/stress relation adds the following relationships ngxyEgy ¼ n
g
yxEgx and Zgn ¼ Z

g
nxy
þZgy ¼ Z

g
nyx
þZgx

which leaves 12 independent real parameters to be identified for each material (24 altogether).
2.3. Equivalent thick-plate

Under the hypothesis and for the orders of magnitude given in Section 2.1, the sandwich panel behaves in the
low-frequency range like a homogeneous thick-plate [48]. The thickness of the plate is chosen to be h. Its mecha-
nical properties are given in Eqs. (3) and (4) as functions of the mechanical and geometrical properties of the skins and
the core:

EH
x ¼ Es

x 1�
hc

h

� �3
" #

, EH
y ¼ Es

y 1�
hc

h

� �3
" #

, nH
xy ¼ ns

xy

GH
xy ¼ Gs

xy 1�
hc

h

� �3
" #

, GH
xz ¼ Gc

xz, GH
yz ¼ Gc

yz

8>>>>><
>>>>>:

(3)

ZH
x ¼ Zc

x

Ec
x

Es
x

hc

h

� �3

þZs
x 1�

hc

h

� �3
" #

, ZH
y ¼ Zc

y

Ec
y

Es
y

hc

h

� �3

þZs
y 1�

hc

h

� �3
" #

ZH
xy ¼ Zc

xy

Gc
xy

Gs
xy

hc

h

� �3

þZs
xy 1�

hc

h

� �3
" #

, ZH
xz ¼ Zc

xz, ZH
yz ¼ Zc

yz, ZH
n ¼ Zs

n

8>>>>><
>>>>>:

(4)

The 12 independent real parameters fEH
x ,ZH

x ,EH
y ,ZH

y ,GH
xy,ZH

xy,GH
xz,ZH

xz,GH
yz,ZH

yz,nH
xy,ZH

n g are to be estimated. Their knowledge
yields the elastic and damping properties of each layer of the sandwich panel provided that the 12-equation system
formed by Eqs. (3) and (4) is invertible. A sufficient condition is

Zc
x

Ec
x

Es
x

5Zs
x, Zc

y

Ec
y

Es
y

5Zs
y, Zc

xy

Gc
xy

Gs
xy

5Zs
xy (5)
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since Ec
x=Es

x51, Ec
y=Es

y51, and Gc
xy=Gs

xy51 (see Section 2.1). This condition is not satisfied only if the Zc-coefficients are
several orders of magnitude larger than the Zs-ones. This is not the case here and rarely the case in general.1 Consequently,
the estimation of EH

x , etc. yields an estimation of the mechanical properties of the skin and core materials.
2.4. Potential, kinetic and dissipated energies in the equivalent thick-plate

Within the frame of the first-order Reissner–Mindlin theory [49, Chapter 3], the displacements fu,v,wg in the
{x, y, z}-directions respectively can be written within a good approximation (see below) as

uðx,y,zÞ ¼�zFxðx,yÞ, vðx,y,zÞ ¼�zFyðx,yÞ, wðx,y,zÞ ¼w0ðx,yÞ (6)

The potential energy of the plate is

U ¼
1

2

ZZZ
V
ðrHÞ

TeH dt

¼
1

2

ZZ
S

D1
qFx

qx

� �2

þD2
qFx

qx

qFy

qy

� �
þD3

qFy

qy

� �2

þD4 F2
y�2Fy

qw0

qy
þ

qw0

qy

� �2
 !"

þ � � � þD5 F2
x�2Fx

qw0

qx
þ

qw0

qx

� �2
 !

þD6
qFx

qy

� �2

þ2
qFx

qy

qFy

qx
þ

qFy

qx

� �2
 !#

dx dy (7)

with

D1 ¼
EH

x h3

12ð1�nxynyxÞ
, D2 ¼

nxyEH
y h3

6ð1�nxynyxÞ
, D3 ¼

EH
y h3

12ð1�nxynyxÞ

D4 ¼ 2k2
yzhGH

yz, D5 ¼ 2k2
xzhGH

xz, D6 ¼
GH

xyh3

6
(8)

The shear correction factors k2
yz and k2

xz account for the fact that Eq. (6) is an approximation: the (functional) angles Fx

and Fy depend lightly on z and sections of the plate do not remain plane in the flexural deformation. The values
kyz ¼ kxz ¼ 1 have been chosen according to the recommendations of [50] for sandwich panels.

By definition, the fraction of energy lost during one cycle T is

DU ¼�

Z
T

ZZZ
V
ðrHÞ

Tqe
H

qt
dt

� �
dt (9)

Based on Section 2.2, DU can then be expressed as

DU ¼�p
ZZ
S
ZH

x D1
qFx

qx

� �2

þZH
n D2

qFx

qx

qFy

qy

� �
þZH

y D3
qFy

qy

� �2

þZH
yzD4 F2

y�2Fy
qw0

qy
þ

qw0

qy

� �2
 !"

þ � � � þZH
xzD5 F2

x�2Fx
qw0

qx
þ

qw0

qx

� �2
 !

þZH
xyD6

qFx

qy

� �2

þ2
qFx

qy

qFy

qx
þ

qFy

qx

� �2
 !#

dx dy (10)

The kinetic energy T of the system is given in Eq. (11) as a function of Fx, Fy, and w0. In this expression, rH is the
density of the equivalent homogeneous thick-plate. It is given by hrH ¼ hcrcþ2hsrs.

T ¼
rHo2

2

ZZZ
ðVÞ
½u2þv2þw2� dt¼ r

Ho2

2

ZZ
ðSÞ

h3

12
ðF2

xþF
2
y Þþhw2

0

� �
dx dy (11)
3. Estimation of modal parameters by an extended Rayleigh–Ritz procedure

In order to compare experimental results to numerical simulations, it is necessary to evaluate the frequencies f Num
n and

damping factors aNum
n of the numerical modes corresponding to the sandwich panel. The dynamics of the plate is given by

the hypotheses listed in Section 2.1, by Eqs. (2), and by the boundary conditions. Under the ‘‘light damping’’ hypothesis,
which assumes that modal shapes and frequencies are unchanged by the addition of damping, the frequencies f Num

n of the
numerical modes are easily accessible. The problem consists thus in evaluating the relationships between the aNum

n

damping factors and the ZH loss-factors. Notations used in this section are summarised by Table D4 in Appendix D.
1 It can be the case when skins are made of metal and the core is made of paper honeycombs or of viscoelastic foam.
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3.1. Light damping hypothesis

The honeycomb sandwich panel is considered here as a non-conservative system PNC having N degrees of freedom. The
associated conservative system, without hysteretic damping and having also N degrees of freedom, is denoted by PC . The N

modes of PC have their modal shapes denoted by nC
n and their real modal frequencies denoted by f C

n . The N modes of PNC

have their modal shapes denoted by nNC
n and their complex modal frequencies denoted by f NC

n .
If PNC is lightly damped, it can be shown [51] that nNC

n CnC
n and that f NC

n C f C
n þ jan to first order. The ‘‘light damping’’

hypothesis thus assumes that modal shapes and real parts of the frequencies are unchanged by the addition of damping.
This hypothesis has been shown to be acceptable for values of material loss factors lower than 0.1 [52]. This assumption is
similar to the assumption made in the ‘‘Modal Strain Energy’’ approach used to model sandwich panels having visco-
elastic cores [52–54].

Let UNC
n be the potential energy associated with the nth mode of PNC for a maximum vibrational amplitude of 1 on the

plate. It varies in time as expð�2antÞ so that the energy lost by this mode during one cycle, DUNC
n , is

DUNC
n ¼�2

an

f C
n

UNC
n (12)

Since PC and PNC have the same modal shapes, i.e. nNC
n CnC

n , and the potential energy depends only on the modal shapes
(see Eq. (7)), then UNC

n ¼UC
n . And since for the conservative system PNC, the equality UC

n ¼ TC
n is true, one then obtains

DUNC
n ¼�2

an

f C
n

TC
n (13)

Thanks to the light damping hypothesis, Eq. (13) gives a straightforward way to obtain the modal dampings an from
DUNC

n , TC
n and, f C

n .
3.2. Derivation of f Num
n

A Rayleigh–Ritz procedure has been used to derive numerically the modal frequencies f Num
n and the mode shapes nNum

n

of PC . To this end, the generalised-displacement fields Fxðx,yÞ, Fyðx,yÞ, and w0ðx,yÞ are projected on the elements of an
orthonormal polynomial basis of order Q satisfying partially the free–free boundary conditions [55,56]:

Fxðx,yÞ ¼
X

i,j

LijpiðxÞpjðyÞ, Fyðx,yÞ ¼
X

i,j

MijpiðxÞpjðyÞ, w0ðx,yÞ ¼
X

i,j

NijpiðxÞpjðyÞ (14)

where the polynomials piðkÞ are generated as described in Appendix A.
This procedure generates a new set of 3Q2 generalised displacements Lij, Mij and Nij. The next step consists in writing

the kinetic and potential energies T and U which have been expressed as functions of Fx, Fy, and w0 in Section 2.4. The
Hamilton principle reads as

8ði,jÞ 2 ½0,Q�1�2 :
qðT�UÞ

qLij
¼ 0,

qðT�UÞ

qMij
¼ 0,

qðT�UÞ

qNij
¼ 0 (15)

The above system of 3Q2 linear equations can be re-written as ½K�4p2f 2M�q¼ 0. The expressions of the partial
derivatives of U with respect to Lij,Mij,Nij yield K while the partial derivatives of T with respect to Lij,Mij,Nij yield M. The
explicit expressions for these partial derivatives as functions of the pi’s and of the generalised displacements are given in
Appendix B. The resolution of this eigenvalue problem gives a straightforward access to the modal frequencies f Num

n and
mode shapes nNum

n of PC . Under the light damping hypothesis, nNum
n and f Num

n found for PC are also the modal shapes and
frequencies of PNC (see Section 3.1).
3.3. Derivation of aNum
n

Introducing the modal coefficients nNum
n (expressed in the fLij,Mij,Nijg system of coordinates) into Eqs. (14) yields

analytical expressions for the Fx, Fy, and w0 modal fields and also for their x- and y-derivatives. For each of the N modes,
the potential, lost, and kinetic energies can be written by introducing these expressions into Eqs. (7), (10) and (11):

8n 2 ½1,N� : TC
n ¼ 4p2ðf Num

n Þ
2tn, UNC

n ¼UC
n ¼

X6

k ¼ 1

Dkun
k , DUNC

n ¼�p
X6

k ¼ 1

ZkDkun
k (16)

where the subscripts {1,2,3,4,5,6} of Z stand for fx,n,y,yz,xz,xyg respectively. The coefficients tn and un
k are given explicitly in

Appendix C. They depend on the geometry and mass parameters of the plate, and are quadratic in modal shapes nNum
n . Note

that tn can be considered as half the modal mass for some normalised displacement. The product Dkun
k represents the

k-contribution to the nth modal stiffness (where k stands for x, n, y, yz, xz, or xy).
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The expression (17) of the modal dampings aNum
n can be deduced from Eq. (13) and the last two expressions of (16) or,

equivalently, by (12) and the first two expressions of (16):

aNum
n ¼�

f Num
n DUNC

n

2TC
n

¼
1

8pf Num
n tn

X6

k ¼ 1

ZkDkun
k or aNum

n ¼�
f Num
n DUNC

n

2UC
n

¼
f Num
n p

2
P6

m ¼ 1 Dmun
m

X6

k ¼ 1

ZkDkun
k (17)

One can notice that aNum
n is a linear combination of the Zk. This set of equations is a generalisation to all the modes of a

thick-plate of the expression given by de Visscher et al. [23, Eq. (13)] for three particular modes of a thin plate. This
expression is also a generalisation to all the loss factors of the expression established by Johnson et al. [53] for sandwich
structures having a visco-elastic core.

4. Estimation of modal parameters by high-resolution modal analysis

In this section, the experimental protocol that has been followed to obtain impulse responses and to extract the modal
frequencies f XP

n and the damping factors aXP
n is presented. This protocol combines the procedures and implementation

details presented by Rébillat et al. [57,58] and Ege et al. [40].

4.1. Experimental setup

Throughout all measurements, panels were suspended by thin wires in order to ensure free–free boundary conditions.
Light panels were acoustically excited by an electro-dynamical loudspeaker driven by a wide-band electrical signal [27]. The
velocity response was measured in one corner of each panel with a laser Doppler vibrometer (Ometron VH300þ type 8329).
Eventual nonlinearities arising from the loudspeaker were removed and the impulse response of the panel was reconstructed
[57,58]. Since heavy panels can hardly be excited by acoustical means, impact excitations were also used; in this case, the
acceleration resulting from the impact was recorded with a light accelerometer fixed in the vicinity of one corner of the panel.
The impulse response was obtained after deconvolution with the nearly impulsive force signal [40]. Since no nodal line goes
through corners of a free vibrating plate, all excited modes contribute to the resulting impulse response.

4.2. High-resolution modal analysis

It is hypothesised that the experimental data are corrupted by additive noise. Thus, an impulse response h(t) is
mathematically represented as a sum of decaying exponentials (natural modes) and measurement noise b(t) as in Eq. (18).
Each contribution of a natural mode is characterised by its amplitude AXP

n , frequency f XP
n , damping aXP

n and phase fXP
n :

hðtÞ ¼
XN

n ¼ 1

AXP
n expð�aXP

n tÞcosð2pf XP
n tþfXP

n ÞþbðtÞ

¼
XN

n ¼ 1

AXP
n

2
½expð�aXP

n tþ j2pf XP
n tþ jfXP

n Þþexpð�aXP
n t�j2pf XP

n t�jfXP
n Þ�þbðtÞ (18)

In order to extract experimental modal frequencies f XP
n and damping aXP

n from h(t), the recently developed ‘‘high
resolution modal analysis’’ (HRMA) [40] has been applied and is briefly sketched below. The signal is projected onto two
subspaces: the subspace spanned by the sinusoids (signal subspace) and its supplementary (noise subspace) according to the
ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm [59]. The frequencies f XP

n and
Fig. 3. Block diagram of the high-resolution modal analysis method, adapted from [40]. The deconvolution block is described in [57].



M. Rébillat, X. Boutillon / Journal of Sound and Vibration 330 (2011) 6098–6121 6105
dampings aXP
n of a given number of modes are the eigenvalues of a matrix obtained after some computation on the

observed signal. The amplitudes AXP
n and phases fXP

n are estimated afterwards by a least-mean-square method.
In the ESPRIT procedure, the dimensions of both subspaces must be chosen a priori and the quality of the estimation

significantly relies on a proper choice for these parameters. The best choice for the dimension of the signal subspace is the
number of exponentials (twice the number of decaying sinusoids, or real modes, see Eq. (18)). This number can be
estimated, before the analysis, by means of the ESTER technique [60].

To improve the performance of the ESPRIT algorithm, signals are split into several frequency-bands [61], thus reducing
the number of modes to be processed. In order to limit computation time, the responses of the band-pass filters are
frequency-shifted and down-sampled.

A block-diagram describing the different steps involved in HRMA is shown in Fig. 3.

4.3. Uncertainties in modal parameters estimation

To give an overview of the precision offered by the HRMA, this method is applied to a synthetic signal obtained by
adding two decaying exponentials of equal amplitudes to white noise. The sampling frequency is fs¼44.1 kHz. The two
modal frequencies are 592 and 596 Hz, very close one from each other. For relatively important modal dampings, these
two modes overlap in the frequency-domain and therefore, their frequencies and dampings are difficult to estimate with
methods based on the Fourier transform (FT). The modal overlap factor m (i.e. the ratio between the half-power modal
bandwidth Df�3 dB and the average modal spacing Dfmode) quantifies this phenomenon [40]. If the modal damping a is the
same for both modes m is

m¼ 1

Dfmode

a
p

(19)

In practice, the FT cannot efficiently separate modes when m430 percent [35]. For HRMA, this upper limit depends on
the signal/noise ratio and on the number of components which are retained in the pre-conditioning step. As an example,
Fig. 4. Contour plots of the uncertainty on the estimated ‘‘modal’’ frequencies and dampings of a synthetic signal containing two decaying sinusoids as a

function of the modal overlap and the signal-to-noise ratio. The uncertainty is the mean of 50 absolute values of the relative error between original and

estimated data, for 50 different realisations of the noise. (a) Uncertainties on the frequency of the first mode. (b) Uncertainties on the frequency of the

second mode. (c) and (d) idem relatively to the dampings.
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estimations of modal frequencies and dampings have been performed on the synthetic signal with various a-values
(corresponding to modal overlaps from m¼ 1 percent to 150 percent) and a signal-to-noise ratio (SNR) increasing from
20 dB to 50 dB. SNR is understood here as 20 log10ðSRMS=BRMSÞ, where SRMS is the RMS value of signal in the absence of noise
and BRMS the RMS value of noise in absence of signal. For each couple fm,SNRg, modal parameters were estimated 50 times.
For each mode of the synthetic signal, the uncertainty in frequency or damping is defined as the mean of the absolute
values of the relative error between the original and the estimated data. These uncertainties, expressed in dB, are shown as
contour plots in Fig. 4.

It can be seen in Fig. 4 that the uncertainties are very small for both dampings and frequencies even for high modal overlaps
and low SNR. In general, the uncertainty increases with m and decreases slightly when SNR increases. The HRMA gives better
estimations of the eigenfrequencies and dampings than the FFT for a wide range of m and SNR. Since the modal overlap m
generally increases in the impulse response of a plate, and the SNR decreases with the frequency, the HRMA gives access to
significantly more modes than the usual FT-based modal-analysis techniques and is thus of great interest in the present context.

5. Optimisation procedure

This section describes how to derive, in two steps, the complex moduli of elasticity of the homogenised equivalent

material of the sandwich plate fEH
x ,ZH

x ,EH
y ,ZH

y ,GH
xy,ZH

xy,GH
xz,ZH

xz,GH
yz,ZH

yz,nH
xy,ZH

n g from the experimental and numerical values of

the modal frequencies and dampings f XP
n , f Num

n , aXP
n , and aNum

n .

5.1. Elastic properties

The estimation of the elasticity parameters fEH
x ,EH

y ,GH
xy,GH

xz,GH
yz,nH

xyg is done by comparing the experimental and numerical
modal frequencies. The estimation problem to solve is nonlinear and several orders of magnitude are involved in the
property values. The following cost-function was used:

Cf ¼
XN

n ¼ 1

f XP
n �f Num

n

f XP
n

� �2

(20)

A steepest-descent (with backtracking) algorithm [62] using rigidities fD1,D2,D3,D4,D5,D6g as design variables has been
chosen. In the present case, the coefficients of the gradient can be easily derived analytically, making the method easy to
implement and computationally light.

Estimation results obtained by gradient methods are known to be very dependent on the initial values of the parameters.
To minimise the influence of the starting point, the following initialisation strategy for the rigidities has been chosen:
1.
 Initial values of in-plane rigidities D1, D2, D3 and D6 are the most influential; they were derived from the three lowest
modal frequencies of the panel, as proposed in [22].
2.
 Initial values of out-of-plane rigidities D4 and D5 are less critical; homogenisation theory proposed by Gibson [63] for
honeycomb core sandwich panels is used. This theory requires a value for the elasticity moduli of the material
composing the honeycomb core. The first estimation was based on static tests.

In the following examples, 10 iterations were enough to reach convergence: 10�7 for the gradient.

5.2. Damping properties

As can be seen in Eq. (17), modal dampings depend linearly on the loss factors fZH
x ,ZH

y ,ZH
xy,ZH

xz,ZH
yz,ZH

n g once the rigidities
have been found. The estimation of the loss factors is therefore much easier than that of the elasticity parameters. A simple
least-square optimisation procedure is sufficient to estimate the loss factors from the modal dampings.

The following cost-function has been chosen:

Ca ¼
XN

n ¼ 1

aXP
n �aNum

n

aXP
n

� �2

(21)

The optimisation procedure is not iterative and needs no particular initialisation.

5.3. Determination of the order Q of the polynomial basis and of the number N of included modal parameters

Two parameters have to be chosen in order to apply the optimisation procedures described in Sections 5.1 and 5.2.
These methodological parameters are the order Q of the polynomial basis associated with the extended Rayleigh–Ritz
procedure (see Section 3.2) and the number N of modal parameters (frequencies or dampings) to be included in the
optimisation procedure.

The parameters Q and N can be chosen differently for the estimation of the elastic material properties and for the
estimation of the material loss factors respectively. For the estimation of the elastic material properties, the parameters Qf
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and Nf that minimise the cost functions Cf given by Eq. (20) are chosen. For the estimation of the damping properties, the
parameters Qa and Na that minimise the cost functions Ca given by Eq. (21) are chosen. Selecting the optimal Q and N

values is done empirically by running the optimisations for different values of these parameters, typically in the ranges
N 2 f20,40g and Q 2 f10,18g.
5.4. Sensitivity analysis

For the estimation procedures described in Sections 5.1 and 5.2 to be efficient, modal frequencies and dampings must
convey a sufficient amount of information relative to each parameter to be estimated. In other words, modal dampings and
frequencies have to be sensitive to the parameters of interest.

Relevant sensitivities can be defined and calculated analytically. The sensitivity of the modal value t to the parameter g
is noted Stg and defined by Eq. (22): if g is increased by 1 percent, t increases by Stg percent.

Stg ¼
Dt
Dg

g
t
¼

Dt
t
Dg
g

(22)

According to Eq. (16) and with the same notations, the sensitivity Sfn

Dk
of the nth modal frequency fn to the rigidity

Dk 2 fD1,D2,D3,D4,D5,D6g can be written as

Sfn

Dk
¼

Dkunk

8p2f 2
n tn

(23)

Similarly, using Eq. (17), the sensitivity San
Zk

of the nth modal damping an to the loss factor Zk 2 fZ1,Z2,Z3,Z4,Z5,Z6g can
be written as

San
Zk
¼
ZkDkunk

4pfnantn
(24)

The amount of information relative to one given parameter and contained in one given mode can be easily quantified
with Eqs. (23) and (24). Examples are given in Figs. 7, 10 and 12 (see Section 7).

6. Validation of the estimation procedure

A validation of the mechanical model and procedures given in Sections 2, 3 and 5 is proposed as follows: the experimental
results of the modal analysis are replaced by those of the simulation of a finite-element model (FEM) of two virtual plates
with known properties. The modes of a homogeneous thick-plate as modelled using the FEM are first compared to those
given by the extended Rayleigh–Ritz procedure applied to the mechanical model given in Section 2. The method for deriving
elasticity and damping parameters as sketched in Fig. 1 is afterwards validated on a virtual sandwich plate.
Table 1
Geometry and constituent densities of the homogeneous virtual plate (HVP) and of the virtual sandwich-plate (VSP).

lx (m) ly (m) h (m) r (kg/m3)

HVP 0.4 0.6 4�10�3 700

Core Skin Core Skin

VSP 0.4 0.6 4�10�3 0.2�10�3 40 700

Table 2
Mechanical parameters chosen for the homogeneous virtual plate (HVP) and for the virtual sandwich-plate (VSP).

Ex Ey nxy Gxy Gxz Gyz

HVP

Real part 4 GPa 5 GPa 0.33 1 GPa 10�2 GPa 10�2 GPa

Loss factor (%) 2 5 1 0.5 1 1

VSP skins

Real part 4 GPa 5 GPa 0.33 1 GPa 1 GPa 1 GPa

Loss factor (%) 2 5 1 0.5 1 1

VSP core

Real part 1�10�3 GPa 1�10�3 GPa 0.33 1�10�3 GPa 1�10�2 GPa 3�10�2 GPa

Loss factor (%) 1 1 1 1 3 5
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6.1. Finite-element model of the virtual plates

To validate the extended Rayleigh–Ritz procedure applied to the mechanical model, a homogeneous thick virtual plate
was designed. A FE-model of the sandwich panel has also been built to test the accuracy of the estimation method. The
chosen sandwich plate is made of three homogeneous layers and is symmetrical with respect to its mid-plane.
Geometrical, mechanical and mass parameters of the two plates are given in Tables 1 and 2.

For the two virtual plates under study, the finite-element model is built on a 2D rectangular mesh made of 60 by 60
regularly spaced points. This value is justified at the end of this section. At each point an 8-node shell element is placed
with a linear expansion of the in-plane displacements in the thickness coordinate and a constant transverse displacement
through the thickness (COQ8 of the Cast3M code [64]). Each of these elements possess 6 degrees of freedom (the
translations in the x-, y-, and z-directions and the rotations around the x-, y- and z-axes). In the case of the virtual sandwich
plate, the three-layers are modelled as one equivalent layer as in Section 2.3.
6.2. Modal frequencies and dampings of the virtual plates

Finite-element modelling and the associated computations have been performed using Cast3M [64], a free software
developed by the French Centre for Atomic Energy (CEA). This software is used here as it allows to find the complex modes
(modal shapes nFEM

n , dampings aFEM
n and frequencies f FEM

n ) of a problem put in the form: Kþ joC�o2M ¼ 0: In this
formulation, M, C and K must be real matrices to be accepted by the VIBC function of the Cast3M code. Complex modes are
then found by solving a complex valued generalised eigenvalue problem using a QZ-algorithm. According to the
possibilities offered by Cast3M, modal frequencies and dampings of the virtual plates are computed using the following
procedure:
1.
 The conservative system is described according to the constitutive model of Section 2.2 with no hysteretic damping
taken into account. A mass matrix M and a real stiffness matrix K 0 are deduced from this model.
2.
 The N first modal frequencies ff FEM
n gn2½1,N� of the conservative system are computed by solving, in the Fourier domain,

the real-valued eigenvalue problem K 0�o2M ¼ 0.

3.
 The non-conservative system is described according to the constitutive model of Section 2.2, including hysteretic

damping. A mass matrix M and a complex stiffness matrix K ¼K 0 þ jK 00 are deduced from this model.

4.
 The ‘‘light damping hypothesis,’’ is retained. The real part of the modal frequencies of the non-conservative system are

thus already known (see Section 3.1).

5.
 For each one of the N first modes of the non-conservative system, the following operations are then performed:

(a) The dynamic equation of the dissipative system are formulated, in the Fourier domain, as �o2Mqþ joCqþK 0q¼ 0
with C ¼K 0=ð2 p f FEM

n Þ. The problem is thus formulated as expected by the VIBC function with C real but frequency-
dependent. Its important to notice that this equation models correctly the hysteretic damping model described in
Section 2.2 only near oC2pf FEM

n .
(b) The modal loss factor an is obtained as the imaginary part of the eigenvalue of this new problem solved near

oC2pf FEM
n .
For the homogeneous virtual plate, increasing the number of elements above 60 elements per side results in less than a
1 percent relative variation of the 35 first modal frequencies (conservative and non-conservative cases) and in less than 0.4
percent of the 35 first modal dampings. The same convergence is observed for the 3-layer virtual sandwich plate. Thus, 60
elements per side are enough to ensure the desired precision on the analysis of the first 35 modes of the two plates.
6.3. Validation of the extended Rayleigh–Ritz resolution of the mechanical model

Comparing the modal frequencies and dampings given by the extended Rayleigh–Ritz resolution method (18-order)
and by the FE-model for the homogeneous thick virtual plate provides an estimate of the reliability of the retained
mechanical model coupled with the extended Rayleigh–Ritz resolution method for the first 35 modes.

The plate under study in the present section is not a sandwich panel as the one modelled in Section 2 but a
homogeneous thick plate. For such homogeneous plates, values for the shear correction factors are usually chosen between
2/3 and 5/6 instead of 1, which is recommended only for sandwich panels [50]. Values of kyz ¼ kxz ¼ 0:7 have been
arbitrarily chosen here in the range [0.666,0.833].

With shear correction factors kyz ¼ kxz ¼ 0:7, the mean absolute difference between FE-results and Rayleigh–Ritz results
is lower than 1.2 percent for modal frequencies and lower than 25 percent for modal dampings. The larger error on modal
dampings may be explained as follows. The damping matrix C provided to the FEM results from the writing of the stiffness
matrix and is not necessarily diagonal when expressed in the basis of the conservative modes. By contrast, the extended
Rayleigh–Ritz procedure accounts for dissipation by associating one damping coefficient aNum

n to each mode, neglecting by
construction any coupling between conservative modes.



Fig. 5. Comparison between the values of the mechanical parameters used in the FEM (Original), and their estimated values (Estimated) for each

constituent (skins, core) of the virtual sandwich plate. Original parameters are represented as black bars with their numerical value indicated above.

White bars represent the ratio of the estimated to the original parameters. Elasticity parameters have been estimated with 35 modes and with a model

order Q¼16. Loss-factors have been estimated with 28 modes and with a model order Q¼18.
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6.4. Estimation results for the 3-layer virtual sandwich-plate

A 3-layer virtual sandwich-plate has been used to validate the estimation procedure described in Fig. 1. Since, for this
3-layer virtual sandwich-plate, convergence problems were encountered with the steepest-descent algorithm, a simplex
search method [65] was used instead in this case (function ‘‘fminsearch’’ in MatlabTM). The initialisation procedure remains
the same as the one described in Section 5.1. For all other optimisations, the steepest-descent algorithm is used.

Based on the first N¼35 modal frequencies given by the FEM and using a Rayleigh–Ritz order Q¼16, the estimated
values of the elasticity parameters are compared to the original values given to the FEM. The loss factors have been
estimated with N¼28 modes and a model order Q¼18. The estimated mechanical parameters are presented in Fig. 5 for
each layer of the sandwich.

The residual mismatch between the results of estimation and the original values is discussed here. The mean absolute
value /9Dfn=fn9S of the relative difference between experimental and numerical modal frequencies is 2.6 percent. For the
dampings, the residual mismatch /9Dan=an9S is 21.6 percent. These orders of magnitude, as compared to the one obtained
in Section 6.3, suggest that the assumption that a 3-layer sandwich plate can be modelled as a simple homogeneous thick-
plate is correct in the frequency range under study.

It can be seen in Fig. 5 that the agreement between estimated and original parameters is globally very good. In-plane
elasticity parameters of the skins and out-of-plane elasticity parameters of the core are estimated with a mean absolute
relative error of 10.2 percent. Principal in-plane loss-factors Zs

x and Zs
y are estimated with a comparable accuracy of 7.5

percent. The imaginary part of ns
xy is largely overestimated while the imaginary part of Gs

xy is underestimated. However, the
overestimation of one parameter may be the result of the underestimation of the other, by compensation. The imaginary
parts of Gc

xz and Gc
yz are assigned zero values by the estimation process. The fact that zero values are found illustrates the

limitations of the thick-plate model under Reissner–Minldin hypothesis. Physically, this underestimation is due to the fact
that only a marginal part of the total energy-loss per cycle is dissipated through the mechanical couplings described by Gc

xz

and Gc
yz. Modal damping factors are thus here not very sensitive to these material loss factors.

A complete validation study should have established the validity limits of the estimation method. Even though this is
not what has been done here, the above results suggest that the mixed numerical/experimental procedure is potentially an
accurate tool for the estimation of the main elasticity moduli and loss-factors of 3-layer sandwich plates.

7. Experimental results

7.1. Plate specimens

Three different sandwich panels with heterogeneous cores have been investigated. The first two – HC1 and HC2 – are
rectangular lightweight honeycomb sandwich panels. Their skins and honeycomb cores are made of epoxy and paper. The
third panel, made of two stainless steel sheets (skins) and two bidirectionally corrugated steel layers with a 20 percent



Table 3
Geometry and constituent-densities of three sandwich panels HC1, HC2, and CC. The characteristic side-length of the core-cells is scell.

lx (cm) ly (cm) hs (mm) hc (mm) scell (mm) rc (kg/m3) rs (kg/m3)

HC1 39.15 59.10 0.20 4.88 4.0 37.8 713

HC2 80.00 99.95 0.20 3.80 4.0 37.8 713

CC 17.78 22.86 0.20 1.48 1.0 2164 7800

Table 4
Estimated mechanical parameters for panel HC1. Parameters relative to the skins and the core are obtained after inversion of Eqs. (3) and (4).

Ex Ey nxy Gxy Gxz Gyz

Equivalent plate

Real part 1.0 GPa 1.4 GPa 0.25 0.46 GPa 12 MPa 26 MPa

Loss factor (%) 1.5 1.3 0 1.2 5.5 4.1

Core

Real part – – – – 12 MPa 26 MPa

Loss factor (%) – – – – 5.5 4.1

Skins

Real part 4.8 GPa 6.8 GPa 0.25 5.6 GPa – –

Loss factor (%) 1.5 1.3 0 1.2 – –

Skins

Tensile tests 5.3 GPa 70.5 GPa 7.3 GPa 70.7 GPa 0.2870.04 – – –
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relative density (core), is denoted CC (for ‘‘corrugated core’’). The geometry and mass parameters of each panel are given in
Table 3.

The Es
x,y=Gc

yz,xzC100 criterium (see Section 2.1) that must be satisfied turns out to be met for all the plates that have
been tested. According to Section 1, the sandwich core can be considered as homogeneous in the in-plane directions up to
a given frequency fmax if the corresponding wavelength lmin contains at least 50 cells [39]. For a typical cell side-length scell

and height h, this implies that lmin=scell450. Moreover, plates must be thick-enough in order that out-of-plane elasticity
parameters and loss-factors be estimated, but not too thick for the thick-plate theory to remain valid. This implies
2h=lmino0:08 [42]. The validity of these assumptions will be discussed.
7.2. Results for panel HC1

Panel HC1 was acoustically excited [27] and 46 modes were identified. Elasticity parameters and loss-factors were
estimated with N¼40 modes and a model order Q¼14 using the steepest-descent algorithm of Section 5.1. The estimated
parameters of the equivalent homogeneous plate and the corresponding skin and core parameters are given in Table 4.

The equivalent plate corresponding to panel HC1 was found to be slightly orthotropic. This is a consequence of the
laminated skins and of the orthotropy of the honeycomb structure. One can also notice that very low values are found for
the loss factors associated with the Poisson ratio: little energy is dissipated via the Poisson effect in panel HC1. Also, out-of-
plane loss factors are relatively larger than the in-plane loss factors; this denotes that dissipation in honeycomb core
structures is larger for out-of-plane shearing than for bending.

Static tensile tests have been performed on two samples of the skin material in the x- and y-directions respectively. The
results are: Es

x ¼ 5:370:5 GPa, ns
xy ¼ 0:2870:04, Es

y ¼ 7:370:7 GPa, ns
yx ¼ 0:2770:04. These values are in excellent

agreement with the values estimated using the proposed method. This constitutes an additional validation for the
proposed method.

The optimisation procedure consists in minimising the difference between the experimental modal frequencies and
dampings and numerical modal frequencies and dampings. The residual differences are presented in Fig. 6 and provide an
estimation of the reliability of the method. One can observe that there is a very low relative difference between the
measured and numerical modal frequencies: /9Dfn=fn9S¼ 2 percent. Thus, the homogeneous thick-plate model based on
the Reissner–Mindlin hypothesis agrees with the real dynamical behavior of panel HC1. Moreover, there is also a low
relative difference between measured and numerical modal dampings: /9Dan=an9S¼ 10 percent. The frequency-
independent loss factors combined with the ‘‘light damping’’ hypothesis appears to be a good model for the constitutive
material of panel HC1.

Based on the estimated values given in Table 4, the modal shapes can be computed by means of the extended Rayleigh–
Ritz procedure. In the y-direction, panel HC1 has a maximum of eight nodal lines in the frequency range under
consideration. This corresponds to 4:5lmin: the shortest wavelength is 13 cm and contains lmin

y =scellC30 cells. In the
x-direction, there are up to six nodal lines: lmin

x ¼ 11 cm, lmin
x =scellC28 cells. Theoretically, this is hardly sufficient for the



Fig. 6. Residual differences on eigenfrequencies (a) and dampings (b) for panel HC1. Numerical values have been obtained using elasticity and damping

parameters from Table 4.

Fig. 7. Sensitivities of the modal frequencies to the in-plane (a) and the out-of-plane (b) elasticity parameters. Sensitivities of the modal dampings to the

in-plane (c) and the out-of-plane (d) loss factors for panel HC1. Modes are identified by the numbers of their nodal lines in the x- and y-directions

(top and bottom numbers respectively, on top of each bar).
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core to be considered as homogeneous. The condition 2h=lminp0:08 is met for almost all modes since 2h=lmin
¼ 0:08 in the

y-direction and 2h=lmin
¼ 0:1 in the y-direction. However, a very good agreement is observed in Fig. 6 between the

homogeneous model and the experimental values. Therefore, 30 cells per wavelength may be enough in the present case
for the core to be considered as homogeneous. The thick-plate theory also seems sufficient for 2h=lmin

¼ 0:1.
Sensitivities of the modal frequencies and dampings to the in-plane and out-of-plane mechanical parameters for panel

HC1 are shown in Fig. 7. Modal frequencies and dampings are sensitive to all the in-plane elasticity and damping
parameters. The estimated in-plane mechanical properties are thus reliable. Sensitivities to the out-of-plane mechanical
properties are relatively important. This ensure a high degree of confidence for the estimated values of ReðGH

xzÞ and ReðGH
yzÞ

since a large number of sensitive modes are involved in the optimisation procedure. Sensitivity to the out-of-plane loss
factors is one order of magnitude lower. Thus, estimated out-of-plane loss factors are less reliable than in-plane loss
factors.
7.3. Results for panel HC2

Panel HC2 was excited by an impact hammer and 26 modes were extracted. Elasticity parameters and loss-factors were
estimated with N¼26 modes and a model order Q¼14 using the steepest-descent algorithm of Section 5.1. The estimated
parameters of the equivalent homogeneous plate are given in Table 5.

As can be seen in Fig. 8, in-plane and out-of plane elasticity and damping parameters are similar to those of panel HC1.
Theoretically, if the cores of the two plates were made of the same material (which is not known with certainty but seems
to be the case), ReðGH

xzÞ and ReðGH
yzÞ should be equal for both panels, according to Eq. (3). This is verified here with a good
Table 5
Estimated mechanical parameters for panel HC2. Parameters relative the skins and the core are obtained after inversion of Eqs. (3) and (4).

Ex Ey nxy Gxy Gxz Gyz

Equivalent plate

Real part 1.0 GPa 1.2 GPa 0.27 0.48 GPa 13 MPa 28 MPa

Loss factor (%) 1.0 1.1 0.0 3.2 44 30

Skins

Real part 3.8 GPa 4.7 GPa 0.27 1.9 GPa – –

Loss factor (%) 1.0 1.1 0.0 1.2 – –

Core

Real part – – – – 13 MPa 28 MPa

Loss factor (%) – – – – 44 30

Fig. 8. Comparison between the skins and core mechanical parameters estimated from panels HC1 and HC2. Numerical values indicated as references

black bars correspond to the results obtained for the panel HC1. White bars represent the ratio of the estimated value for HC2 relatively to the one

estimated for HC1.



Fig. 9. Residual differences on eigenfrequencies (a) and dampings (b) for panel HC2. Numerical values have been obtained with elasticity and damping

parameters given in Table 5.
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degree of precision. This robustness against the size of test-panels constitutes an additional indication that the proposed
method is reliable with regard to material properties.

The residual differences /9Dfn=fn9S and /9Dan=an9S for panel HC2 are shown in Fig. 9. They are approximately 3.8
percent and 16.7 percent respectively. Plate and material models can be considered as appropriate for these honeycomb
core sandwich panels (panels HC1 and HC2).

Based on the estimated values given in Table 5, the modal shapes of the extracted modes can be computed with the
extended Rayleigh–Ritz procedure (Section 3.2). In the y-direction, panel HC2 has a maximum of five nodal lines in the
frequency range under consideration: its side-length is 3lmin

y and lmin
y ¼ 33 cm, containing C80 cells. In the x-direction,

panel HC2 has a maximum of five nodal lines: lmin
x ¼ 26:5 cm, lmin

x =scellC65 cells. This is more than sufficient for the core
to be considered as homogeneous. Moreover in both directions, 2h=lminC2:4� 10�2o0:08, which is theoretically
sufficient for modal frequencies to be predicted using thick-plate theory. The core of panel HC2 can be considered as
homogeneous and all the modal frequencies can be predicted using thick-plate theory.

Sensitivities of the modal frequencies and dampings to the in-plane and out-of-plane mechanical parameters for panel
HC2 are shown in Fig. 10. Sensitivities to the elastic out-of-plane mechanical properties are lower for panel HC2 than for
panel HC1. However, since results obtained on panel HC2 are in close agreement with those obtained with panel HC1, this
suggests that a sensitivity of C10�2 may still yield reliable results. Very low sensitivities to the out-of-plane loss factors
explain that values of loss factors estimated on panel HC2 deviate significantly from the values obtained with panel HC1.
7.4. Results for panel CC

Panel CC was excited with an impact hammer. Elasticity material parameters have been estimated with N¼35 modes
and a model order Q¼14 using the steepest-descent algorithm of Section 5.1. Loss factors have been estimated with N¼23
modes and a model order Q¼13. The estimated parameters of the equivalent homogeneous plate are given in Table 6.

At first, it can been seen from Table 6 that the real parts of Ex and Ey for skins match standard values for the elasticity modulus
of steel (C210 GPa [49]). Since panel CC is a metallic sandwich panel, its loss factors are much lower than those of panels HC1

and HC2. The residual differences on eigenfrequencies and dampings are shown in Fig. 11. It can be seen that the uncertainty on
the estimation of damping is large /9Dan=an9S¼ 34 percent and increases with frequency. Since the estimated structural loss
factors are very low, the measured modal dampings are very sensitive to the way the panel is suspended (thin wires) and to
damping due to acoustical radiation. Moreover, these damping mechanisms are also mode-dependant. In the high-frequency
range, a systematic discrepancy appears between the measured and the (numerically) modelled damping factors. For the
equivalent homogeneous plate, the coincidence frequency fc is estimated to be approximately 4 kHz. Damping due to acoustical
radiation increases as the modal frequency comes close to fc. In the same spirit, the difference between f XP

n and f Num
n seems to be

systematically negative by C2 percent. By order of magnitude, this is consistent with air loading in the low-frequency range. The
relative differences between experimental and numerical modal frequencies remain small /9Dfn=fn9S¼ 2:3 percent.

Based on the estimated values given in Table 6, the modal shapes of the extracted modes can be computed by means of
the extended Rayleigh–Ritz procedure of Section 3.2. In the y-direction, panel CC has a maximum of seven nodal lines in
the studied frequency range: its side-length is 4lmin

y and lmin
y ¼ 5:7 cm, containing lmin

y =scellC55 cells. In the x-direction,
panel CC has a maximum of six nodal lines: lmin

x ¼ 5 cm, containing lmin
x =scellC50 cells. This is sufficient for the core to be

considered as homogeneous. Also, 2h=lmin
¼ 6:6� 10�2o0:08 in the y-direction, and 2h=lmin

¼ 7:52� 10�2o0:08 in the
y-direction, which is also sufficient for modal frequencies to be predicted by the thick-plate theory. In the frequency range



Table 6
Estimated mechanical parameters for panel CC. Parameters relative the skins and the core are obtained after inversion of Eqs. (3) and (4).

Ex Ey nxy Gxy Gxz Gyz

Equivalent plate

Real part 117 GPa 102 GPa 0.33 43 GPa 77 GPa 163 GPa

Loss factor (%) 0.1 0.1 0.0 0.1 0.0 0.7

Skins

Real part 229 GPa 200 GPa 0.33 84 GPa – –

Loss factor (%) 0.1 0.1 0.0 0.1 – –

Core

Real part – – – – 77 GPa 163 GPa

Loss factor (%) – – – – 0.0 0.7

Fig. 10. Sensitivities of the modal frequencies to the in-plane (a) and out-of-plane (b) elasticity parameters. Sensitivities of the modal dampings to the in-

plane (c) and out-of-plane (d) loss factors for panel HC2. Modes are identified by the numbers of their nodal lines in the x- and y-directions (top and

bottom numbers respectively, on top of each bar).
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under consideration, the core of panel CC can be considered as homogeneous and the high modal frequencies are expected
to be well predicted by the thick-plate theory.

Results of the sensitivity analysis are presented in Fig. 12 for panel CC. It can be seen that sensitivities to the out-of-
plane properties are very low compared to sensitivities relative to the in-plane properties and also as compared to
sensitivities to the out-of-plane properties of panels HC1 and HC2. This means that the modal frequencies and modal
dampings are hardly influenced by the out-of-plane complex moduli. As a consequence, the estimations of these
parameters must be interpreted very carefully. In this case the core material is too stiff (the last hypothesis listed in
Section 2.1 is not valid): the out-of-plane shear moduli are too high to allow for their precise identification.



Fig. 11. Residual difference on eigenfrequencies (a) and dampings (b) for panel CC. Numerical values have been obtained using elasticity and damping

parameters given in Table 6.

Fig. 12. Sensitivities of the modal frequencies to the in-plane (a) and out-of-plane (b) elasticity parameters. Sensitivities of the modal dampings to the in-

plane (c) and out-of-plane (d) loss factors for panel CC. Modes are identified by the numbers of their nodal lines in the x- and y-directions (top and

bottom numbers respectively, on top of each bar).
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8. Conclusion

In this paper, a method for the measurement of six elasticity moduli and six loss-factors of the constituents of a three-layer
symmetrical sandwich material, namely Es

x, Es
y, ns

xy, Gs
xy, Gc

xz, Gc
yz, has been presented (sandwich structure in the xy-plane). The

method directly extends the work of de Visscher et al. [23] by proposing a means to measure also out-of-plane complex moduli. It
continues the work of Bastos et al. [33] with the inclusion of loss factors in the mixed experimental/numerical procedure.
Compared to the work of Pagnacco et al. [26] and to that of Matter et al. [27,36], the present method does not require full-field
measurements and is thus much simpler to implement and faster to execute. Compared to the method of [29,37,66], high
resolution modal analysis allows for more modal data to be extracted and used for the estimation of the elastic and damping
properties of sandwich materials. Moreover, residuals obtained in the present paper for modal frequencies (C1 percent) and
dampings (C10 percent) are fully in agreement with residuals obtained in [36–38] which estimate mechanical parameters of
sandwich panels using much less modal data than does the present study.

The method is suited to sandwich structures with heterogeneous cores (e.g. honeycomb cores) provided that the panels on
which the tests are performed satisfy several geometrical requirements. It has been validated successfully on virtual plates.
Results obtained on three sandwich panels suggest that the dynamic behaviour of the sandwich material can be accurately
modelled using (1) an equivalent homogeneous plate modelled with first order shear deformation theory, (2) a simple hysteretic
model of the type ‘‘Eð1þ jZÞ’’ for each constituent material and (3) the ‘‘light damping’’ hypothesis for the panel. The consistency
of the results with those obtained by static measurements, or on two different panels having the same sandwich structure, also
contributes to the validation of the method. The extensive sensitivity analysis combined with the examination of the residual
differences left by the optimisation process yields the degree of confidence that can be attributed to the value of each extracted
mechanical parameter.

Since this method is simple and needs no heavy experimental apparatus, it is suited to the in-line control of the production of
sandwich-materials. This method can also replace classical tensile tests (with some profit) and also, within the frame of the
proposed model, the dynamical mechanical analysis (DMA) for the measurement of elastic and damping material properties.
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Appendix A. Generation of the orthonormal polynomial basis

The orthonormal polynomial basis fpiðkÞgi2½0,N� [55,56] used in the extended Rayleigh–Ritz procedure of Section 3 is
generated by an iterative Gram–Schmidt process as follows:

i¼ 0, ~p0 ðkÞ ¼ 1ffiffi
2
p

i¼ 1, ~p1ðkÞ ¼ ðk�/kp0ðkÞ,p0ðkÞSÞp0ðkÞ
i41, ~piðkÞ ¼ ðk�/kpi�1ðkÞ,pi�1ðkÞSÞpi�1ðkÞ�/kpi�2ðkÞ,pi�2ðkÞSpi�2ðkÞ

8>><
>>: (A.1)

The scalar product between two polynomials aðkÞ and bðkÞ is: /aðkÞ,bðkÞS¼
R 1
�1 aðkÞbðkÞ dk. The normalised and not-

normalised versions of the ith element of the polynomial basis are denoted respectively by piðkÞ and ~piðkÞ. The former is
derived from the latter by: ~piðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ ~piðkÞ, ~piðkÞS

p
piðkÞ. The basis is orthonormal since the following equation is satisfied:

8ði,jÞ 2 ½0,N�2 /piðkÞ,pjðkÞS¼ dij, where dij is the Kronecker symbol.

Appendix B. Analytical expressions of the derivatives of T and U

The matrices K and M of the eigenvalue problem ½K�4p2f 2M�q¼ 0 (Section 3.2) are derived from the analytical
expressions of the derivatives of T and U relatively to the generalised displacements Lij,Mij,Nij. Those are related to the
‘‘natural’’ displacements Fx, Fy, and w0 by

Fxðx,yÞ ¼
X

i,j

LijpiðxÞpjðyÞ, Fyðx,yÞ ¼
X

i,j

MijpiðxÞpjðyÞ, w0ðx,yÞ ¼
X

i,j

NijpiðxÞpjðyÞ (B.1)

The derivatives of the kinetic energy T ¼ ðrHo2=2Þ
RR
ðSÞ½ðh

3=12ÞðF2
xþF

2
y Þþhw2

0� dx dy are

qT

qLij
¼
rHlxlyho2

4
Lij

qT

qMij
¼
rHlxlyho2

4
Mij

qT

qNij
¼
rHlxlyho2

4
Nij

8>>>>>>>>><
>>>>>>>>>:

(B.2)
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The simplicity of the formulas is due to the fact that no space derivatives appear in the expression of the kinetic energy
and that all products pipj (iaj) cancel out once integrated (orthogonality of the polynomials).
The derivatives of the potential energy U (given by Eq. (7)) are

qU

qLij
¼

XN

k ¼ 0

�
lx
2

D4NikIðj,kÞþ
lx
ly

D4LikJðj,kÞ�
ly
2

D5MkjIði,kÞþ
ly
lx

D5LkjJði,kÞ

� �

qU

qMij
¼

lxly
4

D5Mijþ
XN

k ¼ 0

ly
lx

D1MkjJði,kÞ�
ly
2

D5LkjIðk,iÞþ
lx
ly

D6MikJðj,kÞ

� �

þ � � �
P
k,l

D2

2
Iði,kÞIðl,jÞþD6Iðk,iÞIðj,lÞ

� �
Nkl

qU

qNij
¼

lxly
4

D4Nijþ
XN

k ¼ 0

lx
ly

D3NikJðk,jÞ�
lx
2

D4LikIðk,jÞþ
ly
lx

D6NkjJðk,iÞ

� �

þ � � �
P
k,l

D2

2
Iðk,iÞIðj,lÞþD6Iði,kÞIðl,jÞ

� �
Mkl

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(B.3)

where
P

k,l stands for
P
ðk,lÞ 2 ½0,N�2 and where the following integrals have been introduced:

Iði,jÞ ¼
dpiðkÞ

dk ,pjðkÞ
� �

¼

Z 1

�1

dpiðkÞ
dk pjðkÞ dk, Jði,jÞ ¼

dpiðkÞ
dk ,

dpjðkÞ
dk

� �
¼

Z 1

�1

dpiðkÞ
dk

dpjðkÞ
dk dk (B.4)
Appendix C. Analytical expressions of tn and un
k

The explicit expression of the coefficients tn and un
k , representing respectively the nth modal mass (for some normalised

displacement) and the k-contribution to the nth modal stiffness, are necessary to compute the numerical modal dampings
and the sensitivities of the modal frequencies and dampings to the rigidities and loss factors respectively, as explained in
Sections 3.3 and 5.4. The coordinates of the nth modal shape are denoted by fLn

lm,Mn
lm,Nn

lmg. The calculation is sketched in
Section 3.3. The expression of tn is

tn ¼
rHlxlyh

8

X
l,m

ðLn
lmÞ

2
þ

h2

12
ððMn

lmÞ
2
þðNn

lmÞ
2
Þ

� �
(C.1)
Table D1
Notations for the geometrical and mass parameters of the panels.

lx (m) Length of the x-side of the plate

ly (m) Length of the y-side of the plate

hs (m) Skin thickness

hc (m) Core thickness

h¼ hcþ2hs (m) Sandwich panel thickness

rs (kg m�3) Skin mass density

rc (kg m�3) Core mass density

rH ¼ 1=h� ðhcrcþ2hsrsÞ (kg m�3) Equivalent homogeneous plate mass density

scell (m) Characteristic side-length of the core-cells

Table D2
Notations for the complex mechanical parameters (elastic parameters and loss factors) of the panels (j2

¼�1).

Core Skin Equivalent homogeneous plate

Young modulus in the x-direction Ec
x ¼ Ec

xð1þ jZc
xÞ Es

x ¼ Es
xð1þ jZs

xÞ EH
x ¼ EH

x ð1þ jZH
x Þ

Young modulus in the y-direction Ec
y ¼ Ec

yð1þ jZc
yÞ Es

y ¼ Es
yð1þ jZs

yÞ EH
y ¼ EH

y ð1þ jZH
y Þ

Young modulus in the z-direction Ec
z ¼ Ec

zð1þ jZc
zÞ Es

z ¼ Es
zð1þ jZs

zÞ EH
z ¼ EH

z ð1þ jZH
z Þ

Shear modulus in the xy-plane Gc
xy ¼Gc

xyð1þ jZc
xyÞ Gs

xy ¼ Gs
xyð1þ jZs

xyÞ GH
xy ¼ GH

xyð1þ jZH
xyÞ

Poisson ratio in the xy-plane nc
xy ¼ nc

xyð1þ jZc
nxy
Þ ns

xy ¼ ns
xyð1þ jZs

nxy
Þ nH

xy ¼ nH
xyð1þ jZH

nxy
Þ

Shear modulus in the xz-plane Gc
xz ¼Gc

xzð1þ jZc
xzÞ Gs

xz ¼ Gs
xzð1þ jZs

xzÞ GH
xz ¼ GH

xzð1þ jZH
xzÞ

Poisson ratio in the xz-plane nc
xz ¼ nc

xzð1þ jZc
nxz
Þ ns

xz ¼ ns
xzð1þ jZs

nxz
Þ nH

xz ¼ nH
xzð1þ jZH

nxz
Þ

Shear modulus in the yz-plane Gc
yz ¼ Gc

yzð1þ jZc
yzÞ Gs

yz ¼ Gs
yzð1þ jZs

yzÞ GH
yz ¼GH

yzð1þ jZH
yzÞ

Poisson ratio in the yz-plane nc
yz ¼ nc

yzð1þ jZc
nyz
Þ ns

yz ¼ ns
yzð1þ jZs

nyz
Þ nH

yz ¼ nH
yzð1þ jZH

nyz
Þ



M. Rébillat, X. Boutillon / Journal of Sound and Vibration 330 (2011) 6098–61216118
The expressions of fun
kgk2½1,6� are

un
1 ¼

ly
2lx

P
l,m

Mn
lm

XN

p ¼ 0

Mn
pmJðl,pÞ

" #

un
2 ¼

1

2

P
l,m

Mn
lm

P
p,q

Nn
pqIðl,pÞIðlqÞ

" #

un
3 ¼

lx
2ly

P
l,m

Nn
ml

XN

p ¼ 0

Nn
lpJðm,pÞ

" #

un
4 ¼

lxly
8

P
l,m

ðNn
mlÞ

2
�

lx
2

P
l,m

Nn
ml

XN

p ¼ 0

Ln
lpIðp,mÞ

" #
þ

lx
2ly

P
l,m

Ln
ml

XN

p ¼ 0

Ln
lpJðm,pÞ

" #

un
5 ¼

lxly
8

P
l,m

ðMn
mlÞ

2
�

ly
2

P
l,m

Mn
ml

XN

p ¼ 0

Ln
pmIðp,lÞ

" #
þ

ly
2lx

P
l,m

Ln
ml

XN

p ¼ 0

Ln
pmJðl,pÞ

" #

un
6 ¼

lx
2ly

P
l,m

Mn
ml

XN

p ¼ 0

Mn
lpJðm,pÞ

" #
þ
P
l,m

Mn
ml

P
p,q

Nn
pqIðp,lÞIðm,qÞ

" #
þ

ly
2lx

P
l,m

Nn
ml

XN

p ¼ 0

Nn
pmJðl,pÞ

" #
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where the Iðl,pÞ and Jðl,pÞ are defined at the end of Appendix B.
Appendix D. Nomenclature

See Tables D1–D4.
Table D3
Notations used in the dynamical model of the panels.

uðx,y,zÞ (m) Displacement in the x-direction

vðx,y,zÞ (m) Displacement in the y-direction

wðx,y,zÞ (m) Displacement in the z-direction

Fxðx,yÞ (rad) Rotation around the x-axis (Reissner–Mindlin hypothesis)

Fyðx,yÞ (rad) Rotation around the y-axis (Reissner–Mindlin hypothesis)

w0ðx,yÞ (m) Displacement in the z-direction (Reissner–Mindlin hypothesis)

U (J) Potential energy

DU (J) Energy lost per cycle

T (J) Kinetic energy

D1 ¼
EH

x h3

12ð1�nxynyxÞ
(N m)

Plate rigidity in the x-direction

D2 ¼
nxyEH

y h3

6ð1�nxynyxÞ
(N m)

Plate rigidity in the xy-plane

D3 ¼
EH

y h3

12ð1�nxynyxÞ
(N m)

Plate rigidity in the y-direction

D4 ¼ 2k2
yzhGH

yz (N m) Plate rigidity in the yz-plane

D5 ¼ 2k2
xzhGH

xz (N m) Plate rigidity in the xz-plane

D6 ¼
GH

xyh3

6
(N m)

Plate rigidity in the xy-plane

kxz (dimensionless) Shear correction factor in the xz-plane

kyz (dimensionless) Shear correction factor in the yz-plane

Zc,s,H
n ¼ Zc,s,H

nxy
þZc,s,H

y ¼ Zc,s,H
nyx
þZc,s,H

x

(dimensionless)

Global loss factor due to the Poisson ratio effects in the xy-plane

Z1 ¼ ZH
x (dimensionless) Loss factor in the x-direction

Z2 ¼ ZH
n (dimensionless) Global loss factor due to the Poisson ratio effects in the xy-plane

Z3 ¼ ZH
y (dimensionless) Loss factor in the y-direction

Z4 ¼ ZH
yz (dimensionless) Loss factor in the yz-plane

Z5 ¼ ZH
xz (dimensionless) Loss factor in the xz-plane

Z6 ¼ ZH
xy (dimensionless) Loss factor in the xy-plane

f (Hz) Frequency

o¼ 2pf (rad s�1) Angular frequency

l (m) Wavelength of the flexural vibrations

lmin
x (m) Minimal wavelength of the flexural vibrations in the x-direction in the frequency range under study

lmin
y (m) Minimal wavelength of the flexural vibrations in the y-direction in the frequency range under study



Table D4
Notations used in the numerical model of the panels.

K (N m�1) Stiffness matrix

M (kg) Mass matrix

C (N m�1 s�1) Damping matrix

f XP
n (Hz) Experimentally obtained modal frequency of the nth-mode

aXP
n (s�1) Experimentally obtained modal damping of the nth-mode

AXP
n (s�1) Experimentally obtained modal amplitude of the nth-mode

fXP
n (s�1) Experimentally obtained modal phase of the nth-mode

f Num
n (Hz) Numerically obtained modal frequency of the nth-mode

aNum
n (s�1) Numerically obtained modal damping of the nth-mode

nNum
n (m) Numerically obtained modal shape of the nth-mode

m (dimensionless) Modal overlap

PC (dimensionless) Conservative system associated to the plate

f C
n (Hz) Modal frequency of the nth-mode of PC

nC
n (Hz) Modal shape of the nth-mode of PC

UC
n (J) Potential energy of the nth-mode of PC

TC
n (J) Kinetic energy of the nth-mode of PC

PNC (dimensionless) Non-conservative system associated to the plate

f NC
n (Hz) Modal frequency of the nth-mode of PNC

an (Hz) Modal damping of the nth-mode of PNC

nNC
n (Hz) Modal shape of the nth-mode of PNC

UNC
n (J) Potential energy of the nth-mode of PNC

TNC
n (J) Kinetic energy of the nth-mode of PNC

DUNC
n (J) Energy lost per cycle by the nth-mode of PNC

Q (dimensionless) Order of the polynomial basis (Rayleigh–Ritz procedure)

N (dimensionless) Number of modes retained in the analysis

pi(x) (dimensionless) ith element of the polynomial basis in the x-direction (Rayleigh–Ritz procedure)

pj(y) (dimensionless) jth element of the polynomial basis in the y-direction (Rayleigh–Ritz procedure)

Lij (rad) Coordinates of Fxðx,yÞ in the polynomial basis (Rayleigh–Ritz procedure)

Mij (rad) Coordinates of Fyðx,yÞ in the polynomial basis (Rayleigh–Ritz procedure)

Nij (m) Coordinates of w0ðx,yÞ in the polynomial basis (Rayleigh–Ritz procedure)
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[57] M. Rébillat, R. Hennequin, E. Corteel, B.F.G. Katz, Prediction of harmonic distortion generated by electro-dynamic loudspeakers using cascade of

Hammerstein models, in: 128th Convention of the Audio Engineering Society, 2010.
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