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A B S T R A C T

Modeling of subcutaneous injections in soft adipose tissue – a common way to administer
pharmaceutical medication – is a challenging multiphysics problem which has recently attracted
the attention of the engineering community, as it could help optimize medical devices and
treatments. The underlying continuum mechanics of this process is complex and involves finite
strain poro-mechanics – where a viscous fluid, containing different charged species, is injected
into a porous viscoelastic matrix and absorbed by blood and lymph vessels – as well as
electrochemistry, that generates osmotic pressure due to electrical charges attached to the tissue.
In this paper, we present a chemo-mechanical model of subcutaneous injections that accounts
for the diffusion of electrically charged chemical species – contained in the interstitial fluid –
into the tissue, blood and lymph vessels. This work provides the methodology to derive a general
theory accounting for the electro-chemo-poro-mechanical couplings in a thermodynamically
consistent framework, avoiding phenomenological biases or inconsistencies likely to arise in the
derivation of nonlinear theories with many couplings. To motivate its use for the modeling of
subcutaneous injections, it is complemented by a simplified, linearized boundary value problem
that illustrates the importance of considering these couplings for the prediction of subcutaneous
injections key performance indicators.

. Introduction

The subcutaneous1 injection is a widely used method of drug administration since it does not need patient hospitalization and
an easily be performed at home. While the convenience of the procedure is appreciated by the medical community, the range
f treatments that can be injected in the subcutaneous tissue could be limited due to patient acceptability, along with concerns
ssociated to the effect of such injections on the receiving tissue. Understanding the physics involved and developing a chemo-
echanical model of the subcutaneous injection can give tools to better analyze and then control the parameters of this procedure

n order to optimize its effectiveness and patient acceptability.
The biomechanics community has already investigated the subject from the experimental side with observations, tests, measure-

ents, e.g. see Thomsen et al. (2012, 2014, 2015), and more specifically focusing on the feasibility of large volume subcutaneous
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E-mail address: nicolas.triantafyllidis@polytechnique.edu (N. Triantafyllidis).

1 The term subcutaneous tissue is used to describe to the fat layer that is located between the skin and the muscle.
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injections of viscous drugs, e.g. see Schwarzenbach et al. (2015), Woodley et al. (2021, 2022), Rini et al. (2022) and references
quoted therein. In spite of the complexity of the problem, the modeling side has also received attention from the mechanics
community. Initially solid and fluid mechanics models were used, e.g. see Comley and Fleck (2011), gradually evolving to
more sophisticated recent ones involving finite strain poro-elasticity including viscous effects and diffusion of chemical species,
e.g. see Zheng et al. (2021), Leng et al. (2021a,b), de Lucio et al. (2023) and references therein.

An essential aspect for the correct modeling of injections must rely on taking into account the various and complex underlying
hysical phenomena. There is a vast continuum mechanics literature on problems related to the physical mechanisms involved in
ubcutaneous injections, motivated by different engineering and physics applications involving one or more of these mechanisms.
ne could thus cite the modeling of clay (Gajo and Loret, 2003, 2007), cartilage (Lai et al., 1991; Sun et al., 1999; Loret and
imões, 2004; Huyghe and Janssen, 1999), tissue growth (Loret and Simões, 2005), ionic polymers (Xiao and Bhattacharya, 2001),
ydrogels (Chester and Anand, 2010, 2011; Brassart and Suo, 2013), chemical diffusion in solids (Fried and Gurtin, 1999; Anand,
012), electronic couplings in semi-conductors (Guin et al., 2018), fluid flow in porous media (Coussy, 2004), the biphasic approach
f poro-mechanics (Biot, 1941, 1972), microstructure and homogenization problems in the same topic (Coussy et al., 1998; Dormieux
t al., 1991), just to name a few. Given the extreme microstructural complexity of biological tissue and the macroscopic nature of
he phenomena of interest, we focus henceforth on the continuum modeling of the problem at hand.

Starting with the purely mechanical aspect of the problem, Gil et al. (2022) have recently proposed an objective, finite strain
oro-elasticity model. Since the complete modeling of subcutaneous injections must involve the diffusion and absorption of chemical
pecies as well as electroneutrality considerations – essential for the prediction of pressure and the associated osmotic contribution –
nd based on the recent work by Gil (2020), we present here a thermodynamically consistent, objective and fully coupled finite strain
heory for electro-chemo-poro-elasticity to serve as a complete model for the boundary value problem of subcutaneous injections.

Although continuum models for this problem have already appeared in the literature, with different models covering different
spects, the previous work of Gil (2020) and Gil et al. (2022) highlighted the risk of introducing inconsistencies with objectivity
n finite strain, especially in the case where multiple couplings are phenomenologically postulated when writing balance laws.
he present thermodynamically consistent formulation that includes the multiphysics aspects of the problem at hand is novel and
ence, in our opinion, merits a separate presentation. To emphasize the necessity of a full electro-chemo-poro-mechanical coupling
or modeling subcutaneous injections, the general theory is complemented by the inclusion of a simplified, linearized model injection
roblem that shows the importance of the osmotic efficiency coefficient and the fixed charges in the tissue for predicting the pressure,
olume changes, interstitial fluid and chemical species velocities as well as absorption rates, which are key performance indicators
f subcutaneous injections.

After the introduction in Section 1, the presentation continues with some notation and other preliminaries in Section 2, followed
y the general principles using the direct (current configuration Eulerian) approach of continuum mechanics in Section 3. Using the
oleman–Noll framework of thermodynamics, we establish in Section 4 constitutive restrictions for the volume and surface field
uantities involved, followed in Section 5 by the corresponding constitutive choices. A summary of the system of governing equations
nd interface conditions is given in Section 6. We illustrate the interplay between mechanics, chemistry and electroneutrality in
ection 7 via a simplified, time-independent linearized injection model and conclude in Section 8. The derivation details for the
eneral theory are given in Appendix A and the details of the linearized boundary problem in Appendix B.

. Preliminaries

To set the stage for the continuum modeling of subcutaneous injections, we start with a brief description of the relevant physics,
iology and chemistry of the problem in Section 2.1, followed by the notations, assumptions and definitions of the basic field
uantities for the proposed continuum model in Section 2.2.

.1. Problem description

A general pattern can be used to describe the human skin-subcutaneous complex (Herlin et al., 2014, 2015). This medium
s distinguished in three main parallel layers (see Fig. 1): the skin which represents the impermeable membrane separating the
nner body from the atmosphere, one stiff deep layer (muscle) and, in between, the so-called subcutaneous region into which the
ubcutaneous injections are performed.

Structural description The subcutaneous region is not homogeneous and to a first level, is structured by skin ligaments and
embranes that partition the adipose tissue, as sketched in Fig. 1. Extensive work has been done to observe and mechanically

characterize the adipose tissue (Comley and Fleck, 2010, 2011, 2012; Alkhouli et al., 2013; Wu et al., 2007). It consists of a network
of collagen fibers that support lipid cells called adipocytes. Adipocytes contain a single lipid droplet held in a phospholipid bilayer.

hey are inserted in a collagen meshed membrane whose role is to reinforce the adipocytes membranes.
The interlobular septa and the absorption system The reinforcement membrane surrounding each adipocyte is commonly described

as a closed-cell foam, hence it is barely permeable. The adipocytes are gathered in clusters called lobules that are separated by a
atrix made of oriented collagen fibers, called the interlobular septa (Comley and Fleck, 2010). Due to the fibril structure of the

nterlobular septa, it is described as a fully saturated open-cell foam, in which the interstitial fluid2 can flow. Therefore, the injected

2 It refers to the fluid filling the interlobular septa in the natural configuration, it is mixed with the injected fluid during injection.
2
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Fig. 1. Schematic of the subcutaneous region showing different scales involved in the injection process.

fluid mainly flows through the interlobular septa as it can be observed in experimental visualizations of injected depots in porcine
adipose tissue (Thomsen et al., 2012, 2015).

The injected fluid contains chemical molecules that may react with each other and be absorbed by the body through the septa
into blood and lymph vessels (see Fig. 1). For an extensive description of the septa, one can refer to Swartz and Fleury (2007),
Aukland and Nicolaysen (1981), McGurk (2010), Richter et al. (2012), Richter and Jacobsen (2014), Levitt (2003) and Wiig and
Swartz (2012). It is vascularized by both blood and lymphatic vessels that absorb and release the molecules of the interstitial fluid.

The blood system is a closed loop whose convection is forced by the heart beats whereas the lymphatic system is an open system.
The lymph flows at low speed from the lymphatic capillaries towards the lymphatic nodes. Consequently, the absorption by blood
capillaries is a lot faster than the absorption by the lymphatic system. However, the permeability of the blood capillaries membrane
decreases with the size of the molecules. It has been shown that after injection in subcutaneous tissue, large molecules are slowly
absorbed by the lymphatic system while smaller molecules are absorbed by the blood system (McLennan et al., 2005).

Fixed charge density At physiological pH, the hydrated subcutaneous tissue is electrically charged due to the presence of proteins,
called proteoglycans. Proteoglycans are made of a protein core holding glycosaminoglycans that carry electric charges (see Fig. 1).
Proteoglycans are in the interstitial fluid but are trapped in the collagen fibers network due to their size. Therefore, they cannot
move through the interlobullar septa or be absorbed by the blood or the lymph. This is usually modeled by a fixed charge density
carried by the tissue. The value of the electric charge may vary depending on individuals and body location. Extensive work has
been done on the modeling of connective tissue and cartilage which is made of hydrated collagen carrying negatively charged
proteoglycans (see for instance (Sun et al., 1999; Loret and Simões, 2004; Lai et al., 1981, 1991)).

2.2. Assumptions, notations and definitions

Dyadic notation convention is followed here; since several variations exist in the literature, a brief overview of the version used
in this paper is presented below.3

• Scalars are denoted by script Latin or Greek letters (e.g. 𝑎, 𝑏, 𝑐, 𝑚, 𝛼, 𝛽, 𝛾, 𝜓 , 𝑀 , 𝛹 , etc.).
• Vectors are denoted by bold small case Latin or Greek letters, e.g. 𝐚, 𝐛, 𝐜, 𝜶, 𝜷, 𝜸, etc. Their components are denoted using

the script version of the same symbols a𝑖, 𝛼𝑖, etc.
• Second-order tensors are denoted by BOLD UPPER CASE Latin or Greek letters, e.g. 𝐀, 𝜮. Their components are denoted using

the script versions of the corresponding symbol A𝑖𝑗 , 𝛴𝑖𝑗 .
• Sets of variables are denoted by script uppercase calligraphic  , e.g. , ,  .

3 It is tacitly assumed that all boundary value problems here are set in the three-dimensional Euclidean space R3. A Cartesian basis is used for all field
quantities, although the proposed dyadic notation allows for a straightforward extension to curvilinear coordinates.
3
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There are two notable exceptions to the aforementioned convention; to stay consistent with usual notations in solid mechanics, we
denote the spatial position of a point in the current configuration by the vector 𝐱 and reference coordinate vector of the corresponding

aterial point by 𝐗. Moreover, the Cauchy stress (second order tensor) is denoted by the bold small case letter 𝝈.
Spatial differentiation is indicated by two nabla operators: the small nabla operator 𝛁 for the current configuration and the

orresponding large nabla operator 𝛁 for the reference configuration

𝛁 ∶= 𝜕
𝜕𝐱
, 𝛁∶= 𝜕

𝜕𝐗
.

Dyadic notation uses a dot ( ⋅ ) for the single contraction operation, a double dot ( ∶ ) for the double contraction operation, a triple dot
... ) for the triple contraction operation and so on.

We consider a porous skeleton saturated with an interstitial fluid. A point of the skeleton (tissue) with reference coordinate 𝐗
oves to its current position 𝐱 and the resulting skeleton displacement 𝐮 is given by 𝐱 = 𝝌 (𝐗, 𝑡) = 𝐗+𝐮 (𝐗, 𝑡). As fluid flows through

the solid, we adopt an Eulerian description of mass transfer in the continuum and make the following hypotheses:

(H-1) The thermodynamic system is composed of the solid skeleton (tissue), an impermeable surface membrane (skin), the
interstitial fluid and the absorption systems. Any interaction between them is considered as internal to the system and does
not contribute to the balance laws. There is no internal source of momentum or energy.4

(H-2) There is no mass exchange between the solid skeleton and the fluids (interstitial or absorption system).
(H-3) The skeleton moves with velocity 𝐯𝑠 (𝐱, 𝑡) =

.
𝝌 =

.
𝐮, where the upper dot represents the material time derivative as usually

defined in continuum mechanics. i.e. derivation where the material point with reference configuration coordinate 𝐗 is held
fixed.

(H-4) To each material point of the continuum we assign an apparent density5of skeleton6 𝑚𝑠 (𝐱, 𝑡), an apparent density of interstitial
fluid7 𝑚𝑓 (𝐱, 𝑡), and an apparent density of fluid in the absorption system 𝑚𝑎𝑓 (𝐱, 𝑡). For the sake of simplicity, we will only consider
one system of absorption: the blood vessels network. Note that there is no obstacle to the extension of this model to account
for several absorption systems. In the rest of this work, the term fluid will systematically refer to the interstitial fluid. Also,
any quantity with the superscript 𝑎 will refer to the absorption (blood) system.

(H-5) Both the fluid and the blood contain 𝑛 electrically charged chemical species of apparent densities 𝑚𝑖 (𝐱, 𝑡) and 𝑚𝑎𝑖 (𝐱, 𝑡)
respectively,8 1 ≤ 𝑖 ≤ 𝑛, in solution in a neutral solvent (𝑖 = 0).

(H-6) The fluid mass flows with velocity 𝐯𝑓 (𝐱, 𝑡), the blood mass flows with velocity 𝐯𝑎𝑓 (𝐱, 𝑡).
9

(H-7) The flux of chemical species 𝑖 is the sum of its average flux 𝑚𝑖𝐯𝑓 – due to the average fluid motion by velocity 𝐯𝑓 – plus a
relative to the average fluid mass flux 𝐣𝑖 (𝐱, 𝑡). Analogous definitions hold for the blood with a relative to the average blood mass
flux 𝐣𝑎𝑖 (𝐱, 𝑡).

(H-8) The fluid and blood chemical mass densities can change due to mass transfer of species between them. Chemical species 𝑖
can be absorbed/released at a mass rate 𝑟𝑖, per unit current volume of the continuum, by/to the blood vessels.

(H-9) We do not distinguish between a solid and a fluid temperature (thermal equilibrium at miscroscale). However, we derive the
set of equation in the general context of a non-isothermal framework to account for the fact that a drug can be injected at
a lower temperature than the body’s physiological temperature. This can impact the physics of the injection as the thawing
of the drug can change its viscosity and the cooling of the tissue by the drug can also change its mechanical properties.

H-10) Chemicals in the fluids can be charged, but the continuum must have no net electrical charge. We further assume that both
the fluid and the blood are individually electrically neutral.

An immediate consequence of (H-5) is the following relation between the total and chemical species mass densities for the fluid
nd the blood

𝑚𝑓 (𝐱, 𝑡) =
𝑛
∑

𝑖=0
𝑚𝑖 (𝐱, 𝑡) , 𝑚𝑎𝑓 (𝐱, 𝑡) =

𝑛
∑

𝑖=0
𝑚𝑎𝑖 (𝐱, 𝑡) , (2.1)

nd from (H-6), the absolute velocities of species 𝑖 in the fluid 𝐯𝑖 and in the blood 𝐯𝑎𝑖 satisfy

𝑚𝑓 𝐯𝑓 =
𝑛
∑

𝑖=0
𝑚𝑖𝐯𝑖, 𝑚𝑎𝑓 𝐯

𝑎
𝑓 =

𝑛
∑

𝑖=0
𝑚𝑎𝑖 𝐯

𝑎
𝑖 . (2.2)

4 The presence of the interstitial fluid and absorption systems is similar to the framework used in multiple-porosity networks (Coussy, 2004). The difference
ith existing poromechanics theories (single or multiple porosity networks) lies in the consistent thermodynamic treatment – that preserves objectivity and

equires a minimum set of hypotheses – developed by the authors (Gil et al., 2022).
5 Mass per unit current volume of the continuum as opposed to true density which is mass per unit volume of pure material.
6 In skeleton we gather all the solid components of the tissue: collagen fibers, closed-cell foams, adipocytes, membranes...
7 By interstitial, we describe the fluid that flows within the interstitial network.
8 There is no loss of generality in assuming that the interstitial fluid and the blood are composed of the same chemical species; absence of a particular

pecies in either fluid system is accounted for by setting the corresponding mass density to zero.
9 Note that, in accordance with the standard works on chemical species diffusion (Gurtin, 1971; Gurtin and Vargas, 1971; Fried and Gurtin, 1999; Jabbour

nd Bhattacharya, 2003), the fluid (resp. blood) absolute velocity is equivalent to the mass averaged velocity of the species in the fluid (resp. blood).
4
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According to the assumption (H-7), 𝐣𝑖 and 𝐣𝑎𝑖 the relative fluxes of species 𝑖 in the fluid and the blood, are expressed in terms of
the corresponding absolute velocities 𝐯𝑖 and 𝐯𝑎𝑖 and the fluid velocities 𝐯𝑓 and 𝐯𝑎𝑓

𝐣𝑖 = 𝑚𝑖(𝐯𝑖 − 𝐯𝑓 ), 𝐣𝑎𝑖 = 𝑚𝑎𝑖 (𝐯
𝑎
𝑖 − 𝐯𝑎𝑓 ); 𝑖 = 0⋯ 𝑛. (2.3)

In deriving the governing equations, we write the balance laws in Section 3 in the current configuration on an arbitrary material
ontrol volume 𝑣 which follows the motion of the solid skeleton material points. We allow the volume 𝑣 to be crossed by a material
iscontinuity surface 𝗌̂, which can be of use to model some membranes or ligaments that may be present in the tissue and contribute
s elastic discontinuities. We further assume there is no sliding or debonding of the continuum at the discontinuity surface, i.e. that 𝗌̂
eforms with the continuum following the mapping 𝝌 (𝐗, 𝑡) and the skeleton displacement and velocities are thus continuous across

[[𝐱]] = 𝟎,
[[

𝐯𝑠
]]

= 𝟎, 𝐱 ∈ 𝗌̂. (2.4)

An important role is played in the theory by the concept of relative fluid 𝐯𝑟 and blood 𝐯𝑎𝑟 velocities

𝐯𝑟 ∶= 𝐯𝑓 − 𝐯𝑠, 𝐯𝑎𝑟 ∶= 𝐯𝑎𝑓 − 𝐯𝑠. (2.5)

Following the introduction of the primitive variables 𝑚𝑠, 𝑚𝑓 and 𝑚𝑎𝑓 describing the state of the system, we define the total mass
density of the continuum 𝑚𝑡, its average velocity 𝐯 and the mass ratios 𝑐𝑠, 𝑐𝑓 , 𝑐𝑎𝑓

𝑚𝑡 ∶= 𝑚𝑠 + 𝑚𝑓 + 𝑚𝑎𝑓 , 𝑐𝑠 ∶=
𝑚𝑠
𝑚𝑡
, 𝑐𝑓 ∶=

𝑚𝑓
𝑚𝑡
, 𝑐𝑎𝑓 ∶=

𝑚𝑎𝑓
𝑚𝑡
, 𝐯 ∶= 𝑐𝑠𝐯𝑠 + 𝑐𝑓 𝐯𝑓 + 𝑐𝑎𝑓 𝐯

𝑎
𝑓 . (2.6)

ote also the identities that follow directly from the definitions (2.6)

𝑚𝑡𝐯 = 𝑚𝑠𝐯𝑠 + 𝑚𝑓 𝐯𝑓 + 𝑚𝑎𝑓 𝐯
𝑎
𝑓 , 𝐯 = 𝐯𝑠 + 𝑐𝑓 𝐯𝑟 + 𝑐𝑎𝑓 𝐯

𝑎
𝑟 , 𝑐𝑠 + 𝑐𝑓 + 𝑐𝑎𝑓 = 1. (2.7)

It is also useful to introduce the definition of the material time derivative, denoted by a superposed dot for scalars 𝑎(𝐱, 𝑡) and
ectors 𝐚(𝐱, 𝑡) defined in an Eulerian description (𝐱(𝐗, 𝑡), 𝑡) (derivation at 𝐗 fixed)

.
𝑎(𝐱, 𝑡) ∶= 𝜕𝑎

𝜕𝑡
+ (𝛁𝑎)⋅𝐯𝑠,

.
𝐚(𝐱, 𝑡) ∶= 𝜕𝐚

𝜕𝑡
+ (𝛁𝐚)⊺⋅𝐯𝑠. (2.8)

The Reynolds transport theorem is recorded here as it is repeatedly used in the following work. Consider a material control volume
in the current configuration 𝑣 moving with the skeleton at speed 𝐯𝑠. For any for scalar field 𝑎(𝐱, 𝑡) or vector field 𝐚(𝐱, 𝑡), the following
identities hold

d
d𝑡 ∫𝑣

𝑎 d𝑣 =∫𝑣

[ .
𝑎 + 𝑎

(

𝛁 ⋅ 𝐯𝑠
)

]

d𝑣, d
d𝑡 ∫𝑣

𝐚 d𝑣 =∫𝑣

[ .
𝐚 + 𝐚

(

𝛁 ⋅ 𝐯𝑠
)

]

d𝑣. (2.9)

The stage is now set for the derivation of the general governing equations for the continuum modeling of the subcutaneous
njection problem.

. General principles

Using the direct approach of continuum mechanics (current configuration, arbitrary material control volume 𝑣 with boundary
𝜕𝑣), we present here the mass conservation laws in Section 3.1. Regarding the linear momentum, angular momentum and energy
balance laws respectively in Section 3.2, Section 3.3 and Section 3.4 and the entropy imbalance law in Section 3.5, we follow the
methodology of the author’s previous work (Gil et al., 2022) which was motivated by some inconsistencies (e.g. with objectivity)
that could arise in continuum poromechanics theories, as well as the difficulty of choosing phenomenological terms for momentum
and energy fluxes in mixture theories. The schematics of the boundary value problem are shown in Fig. 2.

3.1. Mass conservation

We write the mass conservation separately for the skeleton, the fluid, the blood, as well as for each one of the chemical species
contained in each of the two fluid systems.

Skeleton The integral form of mass conservation for the solid skeleton is

d
d𝑡 ∫𝑣

𝑚𝑠 d𝑣 = 0. (3.1)

pplying to (3.1) the Reynolds transport theorem (2.9) yields the local form10

.
𝑚𝑠 + 𝑚𝑠

(

𝛁 ⋅ 𝐯𝑠
)

= 0, 𝐱 ∈ 𝑣. (3.2)

10 The corresponding jump condition is automatically satisfied in view of the assumption (2.4).
5
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Fig. 2. Schematic of the material control volume 𝑣 with boundary 𝜕𝑣 and discontinuity surface 𝗌̂.

(Interstitial) fluid The control volume moves with the skeleton at velocity 𝐯𝑠 and the fluid flows with an absolute velocity 𝐯𝑓 ,
creating a relative flux with velocity 𝐯𝑟 of fluid through the control volume boundary11

d
d𝑡 ∫𝑣

𝑚𝑓 d𝑣 = −∫𝜕𝑣
𝑚𝑓

(

𝐯𝑟⋅𝐧
)

d𝑎 + ∫𝑣
𝑟𝑓 d𝑣, (3.3)

where 𝑟𝑓 is the rate of fluid mass absorption/release by the blood per unit current volume and 𝐧 denotes the outward unit normal
to 𝜕𝑣, resulting with the help of (2.9) in the following local form and associated interface condition

.
𝑚𝑓 + 𝑚𝑓

(

𝛁 ⋅ 𝐯𝑠
)

+ 𝛁 ⋅
(

𝑚𝑓 𝐯𝑟
)

= 𝑟𝑓 , 𝐱 ∈ 𝑣, 𝐧⋅
[[

𝑚𝑓 𝐯𝑟
]]

= 0, 𝐱 ∈ 𝗌̂. (3.4)

Chemical species in fluid At the border of the control volume 𝜕𝑣, the mass flux of species 𝑖 corresponds to the mass brought by the
fluid motion, corrected by the species motion relative to the fluid. Hence, for all chemical species solved in the fluid,12 the integral
form of the mass balance reads

d
d𝑡 ∫𝑣

𝑚𝑖 d𝑣 = −∫𝜕𝑣

[

𝐣𝑖 + 𝑚𝑖𝐯𝑟
]

⋅𝐧 d𝑎 + ∫𝑣
𝑟𝑖 d𝑣, 1 ≤ 𝑖 ≤ 𝑛. (3.5)

The localization process yields the following governing equation and interface condition
.
𝑚𝑖 + 𝑚𝑖

(

𝛁 ⋅ 𝐯𝑠
)

+ 𝛁 ⋅
(

𝐣𝑖 + 𝑚𝑖𝐯𝑟
)

= 𝑟𝑖, 𝐱 ∈ 𝑣, 𝐧⋅
[[

𝐣𝑖 + 𝑚𝑖𝐯𝑟
]]

= 0, 𝐱 ∈ 𝗌̂, 1 ≤ 𝑖 ≤ 𝑛. (3.6)

According to (H-8), the term 𝑟𝑓 appearing in (3.3) is the sum of the absorption rates of all the chemical species 𝑟𝑖, including the
solvent’s 𝑟0

𝑟𝑓 =
𝑛
∑

𝑖=0
𝑟𝑖. (3.7)

Also note that since 𝐯𝑓 is the mass average velocity of all species, it follows from (H-7)
𝑛
∑

𝑖=0
𝐣𝑖 = 𝟎, (3.8)

where 𝐣0 is the mass flow of the solvent, relative to the fluid motion.
Absorption system (blood) In analogy to (3.3) for the fluid flowing through the skeleton, one can write the corresponding balance

for the blood flowing in the absorption system

d
d𝑡 ∫𝑣

𝑚𝑎𝑓 d𝑣 = −∫𝜕𝑣
𝑚𝑎𝑓

(

𝐯𝑎𝑟 ⋅𝐧
)

d𝑎 − ∫𝑣
𝑟𝑓 d𝑣, (3.9)

where we have already accounted for the fact that 𝑟𝑎𝑓 = −𝑟𝑓 since what is absorbed from (or released in) the interstitial fluid is
released in (or absorbed from) the blood. The corresponding governing equation and interface condition are

.
𝑚
𝑎
𝑓 + 𝑚𝑎𝑓

(

𝛁 ⋅ 𝐯𝑠
)

+ 𝛁 ⋅
(

𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

= −𝑟𝑓 , 𝐱 ∈ 𝑣, 𝐧⋅
[[

𝑚𝑎𝑓 𝐯
𝑎
𝑟

]]

= 0, 𝐱 ∈ 𝗌̂. (3.10)

11 Following the chemical transport theories (Gurtin, 1971; Gurtin and Vargas, 1971; Fried and Gurtin, 1999; Jabbour and Bhattacharya, 2003), this mass
balance is exact from the mixture point of view since it is equivalent to the sum of the mass balances of all the species, including the solvent.

12 We only write the mass balance for chemical species 𝑖 = 1,… , 𝑛 in solution (not for the solvent 𝑖 = 0) since the solvent mass balance is implicitly satisfied
through (3.3).
6
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Chemical species in blood Similarly to (3.5), and recalling that 𝑟𝑎𝑖 = −𝑟𝑖, the mass balance for the chemical species 𝑖 solved in the
blood yields

d
d𝑡 ∫𝑣

𝑚𝑎𝑖 d𝑣 = −∫𝜕𝑣

[

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖
(

𝐯𝑎𝑟 ⋅𝐧
)]

d𝑎 − ∫𝑣
𝑟𝑖 d𝑣, 1 ≤ 𝑖 ≤ 𝑛, (3.11)

while the localization process yields the following governing equation and interface condition
.
𝑚
𝑎
𝑖 + 𝑚

𝑎
𝑖
(

𝛁 ⋅ 𝐯𝑠
)

+ 𝛁 ⋅
(

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
)

= −𝑟𝑖, 𝐱 ∈ 𝑣, 𝐧⋅
[[

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
]]

= 0, 𝐱 ∈ 𝗌̂, 1 ≤ 𝑖 ≤ 𝑛. (3.12)

Finally, from (H-7), the mass fluxes 𝐣𝑎𝑖 satisfy a relation similar to (3.8)
𝑛
∑

𝑖=0
𝐣𝑎𝑖 = 𝟎. (3.13)

3.2. Linear momentum balance

We define 𝐛 as the external body force density (per unit current volume of the continuum) and the generalized traction vector 𝐭 (per
unit current surface area of the continuum) associated to a generalized Cauchy stress tensor 𝝈 such that 𝐭 = 𝐧⋅𝝈. Moreover, we allow
the discontinuity surface 𝗌̂ to sustain a traction.13 Following the formalism of evolving surfaces of Gurtin and Jabbour (2002), we
define 𝝂 as the outward unit normal vector to the boundary curve, defined as the intersection 𝗌̂ ∩ 𝜕𝑣.14 Define 𝐭𝗌 the surface tension
ector applied to the boundary curve 𝗌̂ ∩ 𝜕𝑣, associated to a surface Cauchy stress tensor such that 𝐭𝗌 = 𝝂⋅𝝈 𝗌̂. Accordingly from (2.7),
he integral form of the linear momentum balance is15

d
d𝑡 ∫𝑣

(

𝑚𝑡𝐯
)

d𝑣 = d
d𝑡 ∫𝑣

(

𝑚𝑠𝐯𝑠 + 𝑚𝑓 𝐯𝑓 + 𝑚𝑎𝑓 𝐯
𝑎
𝑓

)

d𝑣 = ∫𝑣
𝑚𝑡𝐛 d𝑣 + ∫𝜕𝑣

𝐭 d𝑎 + ∫𝗌̂∩𝜕𝑣
𝐭𝗌 d𝑙. (3.14)

ote that both the interstitial fluid and the blood are part of the thermodynamic system. Therefore in accordance to (H-1), all
nteractions are internal to the system and should not appear in the linear momentum balance.

Using (3.2), (3.4), (3.10), the pointwise form of the linear momentum governing equation and interface condition are:

𝑚𝑡
.
𝐯 − 𝛁 ⋅

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯 − 𝛁 ⋅ 𝝈 − 𝑚𝑡𝐛 = 𝟎, 𝐱 ∈ 𝑣, 𝐧⋅ [[𝝈]] + 𝛁𝗌̂⋅𝝈 𝗌̂ = 𝟎, 𝐱 ∈ 𝗌̂, (3.15)

here 𝛁𝗌̂ denotes the surface gradient operator.
At this stage, this work follows the framework of Gil et al. (2022) and differs from most approaches where momentum fluxes

hrough the boundary 𝜕𝑣 would have been phenomenologically postulated, such as a decomposition of momentum brought by the
nterstitial fluid, chemical species, just to cite a few. With this approach, we avoid any phenomenological bias brought at this stage
f the derivation.

.3. Angular momentum balance

In accordance with (3.14), the balance of angular momentum of a control volume 𝑣 takes the form

d
d𝑡 ∫𝑣

𝐱 ∧
(

𝑚𝑡𝐯
)

d𝑣 = ∫𝑣
𝑚𝑡𝐱 ∧ 𝐛 d𝑣 + ∫𝜕𝑣

𝐱 ∧ 𝐭 d𝑎 + ∫𝗌̂∩𝜕𝑣
𝐱 ∧ 𝐭𝗌 d𝑙. (3.16)

aking the pointwise form and substituting (3.2), (3.4), (3.10) and (3.15) gives the following condition16

𝝈 +
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯𝑠 =
[

𝝈 +
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯𝑠
]⊺
, 𝐱 ∈ 𝑣, 𝝈 𝗌̂ = 𝝈 𝗌̂

⊺, 𝐱 ∈ 𝗌̂. (3.17)

.4. Energy balance

The total energy of the control volume 𝑣 can usually be decomposed into the sum of its internal energy and its kinetic energy.
n this work, we follow instead the approach developed in Gil et al. (2022) to avoid inconsistencies with thermodynamics and
bjectivity and introduce a total energy density 𝜖, resulting in an energy ∫𝑣 𝜖 d𝑣 of the control volume, plus the surface energy
ensity 𝜖𝗌̂ which contributes ∫𝗌̂∩𝑣 𝜖𝗌̂ d𝑎 to the total energy. Since 𝐛 is assumed uniform and identical for all continua (e.g. gravity),
e write its power expenditure on the control volume as ∫𝑣 𝑚𝑡𝐯⋅𝐛 d𝑣.

The surface contribution to the energy is associated to a directional flux vector 𝐡 of the form − ∫𝜕𝑣 𝐡⋅𝐧 d𝑎. Similarly to the
inear momentum balance, this work differs from most approaches where energy fluxes through the boundary 𝜕𝑣 would have been
henomenologically postulated such as a decomposition of internal and kinetic energies brought by the interstitial fluid, chemical
pecies, the absorption system, as well as work expenditures of the solid, fluid and even sometimes chemical constituents. With this

13 Such discontinuity surface can be used to model the contribution of elastic membranes, such as surface-covering skin.
14 The vector 𝝂 is tangent to the surface 𝗌̂ and normal to the curve 𝗌̂ ∩ 𝜕𝑣, but is not necessarily normal to 𝜕𝑣.
15 Following Noll (1974), we make a type-I constitutive assumption, which corresponds to the standard inertial form of the linear momentum for the control
olume.
16 No further restriction is obtained from the interface/jump relations.
7
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approach, we avoid any phenomenological bias brought at this stage of the derivation as well as potential inconsistencies with the
objectivity principle. Instead, the use an unknown flux 𝐡 is enough to derive the thermodynamic restrictions: the thermodynamics
rinciples and mathematics alone will allow to identify the unique form of 𝐡 in an isotropic framework (Gil et al., 2022).

Due the presence of a surface energy 𝜖𝗌̂,17 we must add the corresponding discontinuity surface power input ∫𝜕𝑣∩𝗌̂ 𝝂⋅𝐭𝗌 d𝑙.
Introducing the external energy source density 𝑞, the integral form of the energy balance is then

d
d𝑡

[

∫𝑣
𝜖 d𝑣 + ∫𝗌̂∩𝑣

𝜖𝗌̂ d𝑎
]

= −∫𝜕𝑣
𝐡⋅𝐧𝑑𝑎 + ∫𝑣

𝑚𝑡𝐯⋅𝐛 d𝑣 + ∫𝑣
𝑞 d𝑣 + ∫𝜕𝑣∩𝗌̂

𝝂⋅𝐭𝗌 d𝑙. (3.18)

The governing equations and corresponding interface conditions resulting from (3.18) are
.
𝜖 + 𝜖 𝛁 ⋅ 𝐯𝑠 − 𝑚𝑡𝐯⋅𝐛 − 𝑞 + 𝛁 ⋅ 𝐡 = 0, 𝐱 ∈ 𝑣, 𝐧⋅ [[𝐡]] +

.
𝜖𝗌 − 𝛁𝗌̂⋅

(

𝝈 𝗌̂⋅𝐯𝑠
)

= 0, 𝐱 ∈ 𝗌̂. (3.19)

sing (3.15) to eliminate the external body force 𝐛 in (3.19)1, one obtains an alternative expression
.
𝜖 − 𝑚𝑡𝐯⋅

.
𝐯 + 𝜖𝛁 ⋅ 𝐯𝑠 + 𝛁 ⋅

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯2 + (𝛁 ⋅ 𝝈) ⋅𝐯 − 𝑞 + 𝛁 ⋅ 𝐡 = 0, 𝐱 ∈ 𝑣. (3.20)

3.5. Entropy imbalance

Let 𝜂 be the volume entropy density of the continuum and 𝜂 𝗌̂ the surface entropy density associated to 𝗌̂. Denote by 𝜃 the
absolute temperature of the continuum, assumed uniform through all its constituents (solid, fluid, blood) by (H-9). The second law
of thermodynamics (Clausius–Duhem inequality) gives

d
d𝑡

[

∫𝑣
𝜂 d𝑣 + ∫𝑣∩𝗌̂

𝜂 𝗌̂𝑑𝑎
]

≥ −∫𝜕𝑣
𝐪
𝜃
⋅𝐧 d𝑎 + ∫𝑣

𝑞
𝜃

d𝑣. (3.21)

n (3.21), we follow again the formalism of Gil et al. (2022) by using a single flux vector 𝐪 and the external energy source 𝑞, thus
xplaining the entropy contribution of 𝑞∕𝜃 with the same source 𝑞 as in the energy balance (3.18). Following the same approach as
or the energy balance, there is no need to split the entropy flux in postulated phenomenological terms.

In local form, the entropy inequality and the associated interface condition are
.
𝜂 + 𝜂

(

𝛁 ⋅ 𝐯𝑠
)

+
𝛁 ⋅ 𝐪
𝜃

−
𝐪⋅ (𝛁𝜃)
𝜃2

−
𝑞
𝜃
≥ 0, 𝐱 ∈ 𝑣, 𝐧⋅

[[𝐪
𝜃

]]

+
.
𝜂𝗌̂ ≥ 0, 𝐱 ∈ 𝗌̂. (3.22)

nstead of working with the total volume 𝜖 and surface 𝜖𝗌̂ energy densities, it is more convenient to introduce their free-energy
ounterparts 𝜓 and 𝜓𝗌̂

𝜓 ∶= 𝜖 −
𝑚𝑡
2
𝐯2 − 𝜃𝜂, 𝜓𝗌̂ ∶= 𝜖𝗌̂ − 𝜃𝜂 𝗌̂, (3.23)

nd upon combining (3.23) with (3.20) and (3.22) to eliminate the external energy source 𝑞 and assuming a continuous temperature,
.e. [[𝜃]] = 0, 𝐱 ∈ 𝗌̂, we obtain the following governing equations and corresponding interface conditions

−
.
𝜓 − 𝜂

.
𝜃 − 𝜓𝛁 ⋅ 𝐯𝑠 − 𝛁 ⋅

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

) 𝐯2
2

− (𝛁 ⋅ 𝝈) ⋅𝐯 − 𝛁 ⋅ (𝐡 − 𝐪) −
𝐪
𝜃
⋅𝛁𝜃 ≥ 0, 𝐱 ∈ 𝑣,

−
.
𝜓 𝗌̂ − 𝜂 𝗌̂

.
𝜃 + 𝛁𝗌̂⋅

(

𝝈 𝗌̂⋅𝐯𝑠
)

− 𝐧⋅
[[

𝐡 − 𝐪
]]

≥ 0, 𝐱 ∈ 𝗌̂,

(3.24)

thus concluding the presentation of the general balance/imbalance principles in integral and local form.

4. Constitutive restrictions

In this section, we apply the principles of the thermodynamics of nonequilibrium processes in order to derive constitutive
restrictions from the inequality (3.24), based on the Coleman–Noll procedure which is presented in Section 4.1. The details of
the derivation following the approach of Gil et al. (2022) are reported in Appendix A and the associated conclusions are gathered
in Section 4.2.

4.1. Framework of the coleman–noll procedure

To complete the set of governing equations derived from the general principles, we need to specify the expressions of 𝜓 , 𝜓𝗌̂, 𝜂,
𝜂 𝗌̂, 𝐪, 𝐯𝑟, 𝐯𝑎𝑟 , 𝝈, 𝝈 𝗌̂, 𝐣𝑖, 𝑟𝑖, 𝐣𝑎𝑖 and 𝐡. We follow the methodology exposed in Gil et al. (2022) to ensure consistency with the principles

17 We assume there is no mass density, no fluid and no chemical charge carried by the membrane and that its contribution is only mechanical with no kinetic
8

erms. For an extension to a model with such couplings see Gurtin and Jabbour (2002).
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of material frame indifference in the derivation of constitutive restrictions. We postulate here the following set of thermodynamic
variables18 with the assumption of homogeneous19 material

 ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩


⏞ ⏟⏟ ⏞
𝑚𝑠, 𝑚𝑓 , 𝑚

𝑎
𝑓 ,
{

𝑚𝑖
}𝑛
1 ,

{

𝑚𝑎𝑖
}𝑛
1 , 𝜃,


⏞ ⏟⏟ ⏞
𝛁𝑚𝑠,𝛁𝑚𝑓 ,𝛁𝑚𝑎𝑓 ,

{

𝛁𝑚𝑖
}𝑛
1 ,

{

𝛁𝑚𝑎𝑖
}𝑛
1 ,𝛁𝜃,𝐅,𝛁𝐅

⏟ ⏞⏞ ⏟
𝑂

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∪
{

𝐯𝑠
}

, (4.1)

where 𝐅 = (𝛁𝝌)⊺ is the continuum’s deformation gradient,  is the set of scalar thermodynamic variables and  the set of the first
spatial gradients of . We henceforth make a distinction between the set 𝑂 and the skeleton velocity field 𝐯𝑠. It can be shown (Gil
et al., 2022) that an objective quantity cannot depend on 𝐯𝑠 and hence only the set 𝑂 can be used to describe objective fields. The
thermodynamic state of the continuum is thus defined by the following fields

𝜓(), 𝜓𝗌̂(), 𝜂(), 𝜂 𝗌̂(), 𝝈(), 𝝈 𝗌̂(), 𝐪(), 𝐯𝑟(), 𝐯𝑎𝑟 (),
{

𝐣𝑖()
}𝑛
1 ,

{

𝐣𝑎𝑖 ()
}𝑛
1 ,

{

𝑟𝑖()
}𝑛
0 , 𝐡(). (4.2)

Note that the above list includes the relative fluid velocities 𝐯𝑟 and 𝐯𝑎𝑟 which are treated as a constitutive variables; different
alternatives where these fields are primitive quantities can be explored, as described in Gil et al. (2022). In defining the set of
thermodynamic variables (4.1), we chose not to introduce any constraint such as incompressibility or electroneutrality. The system’s
(small, but physically realistic) deviation from such constrained states will be accounted for by using appropriate penalty energies.
Nevertheless, in the case of an analytical solving in simplified frameworks an alternative formulation involving Lagrange multipliers
can be more tractable (see e.g. Section 7 for the use of a Lagrange multiplier to enforce electroneutrality). Some of the quantities
in (4.2) can still be linked to inertial effects, hence their potential dependence on 𝐯𝑠, which is not an admissible dependence for
bjective fields. In the forthcoming derivations, when a term of (4.2) is required to be objective, it will depend on the objective
estriction of , denoted 𝑂, as indicated in (4.1).

Applying the chain rule of time derivation to
.
𝜓 and after substitution of mass balances (3.2), (3.4), (3.6), (3.10), (3.12) in the

ree-energy imbalance (3.24), time derivatives and higher order spatial gradients of  will appear. In order to apply the Coleman–
oll procedure, one must identify the terms that can have arbitrarily assigned values for a given set . We denote the set of these
rbitrarily assignable quantities ⋆20 Gil et al. (2022)

⋆ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

.
𝜃,

.
⏞⏞
𝛁𝑚𝑠,

.
⏞⏞
𝛁𝑚𝑓 ,

.
⏞⏞
𝛁𝑚𝑎𝑓 ,

⎧

⎪

⎨

⎪

⎩

.
⏞⏞
𝛁𝑚𝑖

⎫

⎪

⎬

⎪

⎭

𝑛

1

,

⎧

⎪

⎨

⎪

⎩

.
⏞⏞
𝛁𝑚𝑎𝑖

⎫

⎪

⎬

⎪

⎭

𝑛

1

,

.
⏞⏞
𝛁𝜃 ,

.
𝐅,

.
𝐯𝑠,

.
⏞⏞
𝛁𝐅 ,

⏟ ⏞⏞ ⏟
Time rates

𝛁2𝑚𝑠,𝛁2𝑚𝑓 ,𝛁2𝑚𝑎𝑓 ,
{

𝛁2𝑚𝑖
}𝑛
1 ,

{

𝛁2𝑚𝑎𝑖
}𝑛
1 ,𝛁

2𝜃,𝛁2𝐅
⏟ ⏞⏞ ⏟

Second order gradients

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (4.3)

here all the fields of (4.3) are independent21 and the symbol
.

⏞⏞
− is used to illustrate that the ‘‘dot’’ operator applies to the whole

ield.
The Coleman–Noll procedure consists in finding the restrictions on the fields (4.2) that ensure that the inequality (3.24) is

atisfied for any arbitrary values of the fields in (4.3) (Coleman and Noll, 1963). For the sake of clarity, the full derivation following
he procedure introduced by Gil et al. (2022) is reported in Appendix A.

.2. Results of the application of nonequilibrium thermodynamics principles

Following the derivation of Appendix A, the necessary constitutive restrictions in the volume are gathered in (4.4) below
𝜕𝜓
𝜕𝛁𝑚𝑠

=
𝜕𝜓
𝜕𝛁𝑚𝑓

=
𝜕𝜓
𝜕𝛁𝑚𝑎𝑓

= 𝟎, 𝜕𝜓
𝜕𝛁𝑚𝑖

=
𝜕𝜓
𝜕𝛁𝑚𝑎𝑖

= 𝟎, 1 ≤ 𝑖 ≤ 𝑛,

𝜂 = −
𝜕𝜓
𝜕𝜃
,

𝜕𝜓
𝜕𝛁𝜃

= 𝟎, 𝜕𝜓
𝜕𝛁𝐅

= 𝟎, 𝜕𝜓
𝜕𝐯𝑠

= 𝟎,

𝝈 = 2𝐁⋅ 𝜕𝜓
𝜕𝐁

+

(

𝜓 − 𝑚𝑠𝜇𝑠 − 𝑚𝑓𝜇𝑓 − 𝑚𝑎𝑓𝜇
𝑎
𝑓 −

𝑛
∑

𝑖=1

{

𝑚𝑖𝜇𝑖 + 𝑚𝑎𝑖 𝜇
𝑎
𝑖
}

)

𝐈 −
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯,

(4.4)

18 This approach is a generalization of the procedure proposed by Coleman and Noll (1963) and complemented by Müller (1967, 1968), Gurtin (1971), Gurtin
nd Vargas (1971) and Truesdell and Noll (1992).
19 This assumption allows to drop the dependence on 𝜒 .
20 Note that the set (4.3) is not a new postulated set of variables but these time derivative terms and spatial gradients appear in (3.24) when applying the

hain rule of time derivation.
21 In the following work 𝛁𝐯 will be used when convenient instead of

.
𝐅 as the independent time rate variable.
9
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r

a

together with a unique expression found for the unknown flux 𝐡 in the case of an isotropic material

𝐡 = 𝐪 + 𝐯2
2

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

⏟ ⏞⏞ ⏟
1⃝

−
[

𝝈 +
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯
]

⋅𝐯𝑠
⏟ ⏞⏞ ⏟

2⃝

+

(

𝑚𝑓𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝜇𝑖

)

𝐯𝑟

⏟ ⏞⏞ ⏟
3⃝

+
𝑛
∑

𝑖=1
𝜇𝑖𝐣𝑖

⏟⏞⏞⏟
4⃝

+

(

𝑚𝑎𝑓𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖 𝜇

𝑎
𝑖

)

𝐯𝑎𝑟
⏟ ⏞⏞ ⏟

5⃝

+
𝑛
∑

𝑖=1
𝜇𝑎𝑖 𝐣

𝑎
𝑖

⏟⏞⏞⏟
6⃝

.

(4.5)

For the sake of simplicity in the subsequent derivations, the relative chemical potentials were introduced in (4.4) and (4.5) as a
enaming such that

𝜇𝑠() ∶=
𝜕𝜓
𝜕𝑚𝑠

, 𝜇𝑓 () ∶=
𝜕𝜓
𝜕𝑚𝑓

, 𝜇𝑎𝑓 () ∶=
𝜕𝜓
𝜕𝑚𝑎𝑓

, 𝜇𝑖() ∶=
𝜕𝜓
𝜕𝑚𝑖

, 𝜇𝑎𝑖 () ∶=
𝜕𝜓
𝜕𝑚𝑎𝑖

, 1 ≤ 𝑖 ≤ 𝑛, (4.6)

nd also the absolute chemical potentials as22

𝜇0() ∶= 𝜇𝑓 , 𝜇̃
𝑎
0() ∶= 𝜇𝑎𝑓 , 𝜇𝑖() ∶= 𝜇𝑖 + 𝜇𝑓 , 𝜇̃𝑎𝑖 () ∶= 𝜇𝑎𝑖 + 𝜇

𝑎
𝑓 , 1 ≤ 𝑖 ≤ 𝑛. (4.7)

Note that in this work, the chemical potentials are introduced as a renaming of variables as also proposed by Gurtin (1971) and Gurtin
and Vargas (1971). Since they were not introduced as primitive variables, they do not come from constitutive restrictions as it is
usually the case (see e.g. Fried and Gurtin (1999), Gurtin et al. (2010), Chester and Anand (2011), Gajo and Loret (2007), Hong et al.
(2008) and Loret and Simões (2004)). This notation allows for easy manipulation of these partial derivatives in the calculations and
is consistent with the common definition of chemical potential as the derivative of the free energy with respect to concentrations
or densities (depending on whether the energy is expressed per unit volume or per unit mass).

An important result to note in (4.4) and (4.5) is the constitutive restrictions derived for the stress tensor 𝝈 and the flux 𝐡 which
where introduced in Sections 3.2 and 3.4 following the general framework of Gil et al. (2022). The only possible energy fluxes and
power expenditures terms naturally appear in the expression of 𝐡 without any phenomenological assumption at the stage of the
energy balance. One can see in 1⃝ the form of the kinetic energy flux with only a contribution of the averaged velocity conveyed
by the relative fluid velocities.23 The terms 3⃝ and 5⃝ represent the internal energy fluxes brought by the interstitial and absorption
fluids while the terms 4⃝ and 6⃝ show the contribution of the diffusion of the chemical species with respect to the fluids.

Moreover, the general stress tensor expression contains a momentum flux term and one can also identify the following elastic
stress tensor for easier manipulation of the coming calculation and identification of the elastic power expenditure 2⃝

𝝈𝑒 ∶= 2𝐁⋅ 𝜕𝜓
𝜕𝐁

+

(

𝜓 − 𝑚𝑠𝜇𝑠 − 𝑚𝑓𝜇𝑓 − 𝑚𝑎𝑓𝜇
𝑎
𝑓 −

𝑛
∑

𝑖=1

{

𝑚𝑖𝜇𝑖 + 𝑚𝑎𝑖 𝜇
𝑎
𝑖
}

)

𝐈 = 𝝈 +
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯. (4.8)

The remaining terms in the entropy imbalance represent dissipation 𝐷 of the system

𝐷(𝑂) ∶= −
𝐪
𝜃
⋅𝛁𝜃 − 𝐯𝑟⋅

[

𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝛁𝜇𝑖

]

−
𝑛
∑

𝑖=1
𝐣𝑖⋅𝛁𝜇𝑖

−𝐯𝑎𝑟 ⋅
[

𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖𝛁𝜇

𝑎
𝑖

]

−
𝑛
∑

𝑖=1
𝐣𝑎𝑖 ⋅𝛁𝜇

𝑎
𝑖 −

𝑛
∑

𝑖=0
𝑟𝑖
(

𝜇𝑖 − 𝜇𝑖𝑎
)

≥ 0.

(4.9)

22 Here, we follow the terminology used by Gurtin and Vargas (1971) and Fried and Gurtin (1999). Indeed, our expression of 𝜇𝑖 corresponds to the definition
of the relative chemical potential in their work.

23 Note that at the stage of the energy balance (3.18), one could have postulated many different forms of the kinetic energy flux involving kinetic energies of
fluids or chemical species extrapolated from the microscopic phenomenology (see section 4.3.3 of Gil et al. (2022)). This current approach allowed to converge
10

to a single form, compliant with the objectivity principle at the macroscopic scale.
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t

N

t

The next steps of the derivation of constitutive restrictions in the volume in Appendix A give the following expressions of 𝐪, 𝐯𝑟,
𝐯𝑎𝑟 , 𝐣𝑖, 𝐣

𝑎
𝑖 and 𝑟𝑖, at first order close to the equilibrium state

𝐪 = −𝐊𝜃,𝜃 ⋅𝛁𝜃 −𝐊𝜃,𝑝⋅𝛁𝑝 −𝐊𝜃,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝜃,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝜃,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐯𝑟 = −𝐊𝑓,𝜃 ⋅𝛁𝜃 −𝐊𝑓,𝑝⋅𝛁𝑝 −𝐊𝑓,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑓,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐯𝑎𝑟 = −𝐊𝑓𝑎 ,𝜃 ⋅𝛁𝜃 −𝐊𝑓𝑎 ,𝑝⋅𝛁𝑝 −𝐊𝑓𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑓𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐣𝑖 = −𝐊𝑖,𝜃⋅𝛁𝜃 −𝐊𝑖,𝑝⋅𝛁𝑝 −𝐊𝑖,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑖,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

, 1 ≤ 𝑖 ≤ 𝑛,

𝐣𝑎𝑖 = −𝐊𝑖𝑎 ,𝜃⋅𝛁𝜃 −𝐊𝑖𝑎 ,𝑝⋅𝛁𝑝 −𝐊𝑖𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎−
𝑛
∑

𝑗=1

{

𝐊𝑖𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

, 1 ≤ 𝑖 ≤ 𝑛,

𝑟𝑖 = −
𝑛
∑

𝑗=0
𝖱𝑖,𝑗

[

𝜇𝑗 − 𝜇𝑗 𝑎 −
(

𝜇𝑗
𝑒 − 𝜇𝑗 𝑎,𝑒

)]

, 1 ≤ 𝑖 ≤ 𝑛.

(4.10)

where the pressure gradient-like terms 𝛁𝑝 and 𝛁𝑝𝑎 were introduced – by abuse of notation since no pressure is defined here – to allow
comparison with poro-mechanics literature24

𝛁𝑝 ∶= 𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝛁𝜇𝑖, 𝛁𝑝𝑎 ∶= 𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇

𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖𝛁𝜇

𝑎
𝑖 . (4.11)

The second order tensors 𝐊⋯ appearing in (4.10) are objective functions of ℎ𝑂 ∶= { , 𝟎,𝐁, 𝟎} as are the scalar coefficients 𝖱𝑖,𝑗 .
The direct application of representation theorems (Truesdell and Noll, 1992) implies that they must have the following form

𝐊⋯ = 𝑘⋯,0𝐈 + 𝑘⋯,1𝐁 + 𝑘⋯,2𝐁2 (4.12)

where 𝑘⋯,𝐽 (with 𝐽 = 0, 1, 2), are scalar functions of ℎ𝑂. Finally, from (4.10), the positivity of the dissipation (4.9) also implies that
the matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐊𝜃,𝜃 𝐊𝜃,𝑝 𝐊𝜃,𝑝𝑎 𝐊𝜃,1 .. 𝐊𝜃,𝑛 𝐊𝜃,1𝑎 .. 𝐊𝜃,𝑛𝑎 𝟎
𝐊𝑓,𝜃 𝐊𝑓,𝑝 𝐊𝑓,𝑝𝑎 𝐊𝑓,1 .. 𝐊𝑓,𝑛 𝐊𝑓,1𝑎 .. 𝐊𝑓,𝑛𝑎 𝟎
𝐊𝑓𝑎 ,𝜃 𝐊𝑓𝑎 ,𝑝 𝐊𝑓𝑎 ,𝑝𝑎 𝐊𝑓𝑎 ,1 .. 𝐊𝑓𝑎 ,𝑛 𝐊𝑓𝑎 ,1𝑎 .. 𝐊𝑓𝑎 ,𝑛𝑎 𝟎
𝐊1,𝜃 𝐊1,𝑝 𝐊1,𝑝𝑎 𝐊1,1 .. 𝐊1,𝑛 𝐊1,1𝑎 .. 𝐊1,𝑛𝑎 𝟎
𝐊1𝑎 ,𝜃 𝐊1𝑎 ,𝑝 𝐊1𝑎 ,𝑝𝑎 𝐊1𝑎 ,1 .. 𝐊1𝑎 ,𝑛 𝐊1𝑎 ,1𝑎 .. 𝐊1𝑎 ,𝑛𝑎 𝟎
∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶ ∶

𝐊𝑛,𝜃 𝐊𝑛,𝑝 𝐊𝑛,𝑝𝑎 𝐊𝑛,1 .. 𝐊𝑛,𝑛 𝐊𝑛,1𝑎 .. 𝐊𝑛,𝑛𝑎 𝟎
𝐊𝑛𝑎 ,𝜃 𝐊𝑛𝑎 ,𝑝 𝐊𝑛𝑎 ,𝑝𝑎 𝐊𝑛𝑎 ,1 .. 𝐊𝑛𝑎 ,𝑛 𝐊𝑛𝑎 ,1𝑎 .. 𝐊𝑛𝑎 ,𝑛𝑎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

(

𝖱𝑖,𝑗
)

{1,𝑛}2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(4.13)

is positive semi-definite.
Moreover, as shown in Appendix A, the following restriction holds

𝑛
∑

𝑖=0
𝖱𝑖,𝑗

(

𝜇𝑖
𝑒 − 𝜇𝑖𝑎,𝑒

)

= 0, 0 ≤ 𝑗 ≤ 𝑛, (4.14)

which means that, in case
(

𝖱𝑖,𝑗
)

{1,𝑛}2 is symmetric, (4.10)6 becomes

𝑟𝑖 = −
𝑛
∑

𝑗=0
𝖱𝑖,𝑗

(

𝜇𝑗 − 𝜇𝑗 𝑎
)

, 1 ≤ 𝑖 ≤ 𝑛. (4.15)

Finally, the constitutive restrictions on the surface 𝐱 ∈ 𝗌̂ derived in Appendix A are

𝜂 𝗌̂ = −
𝜕𝜓𝗌̂

𝜕𝜃
, 𝝈 𝗌̂ =

(

𝜕𝜓𝗌̂

𝜕𝐅𝗌̂
⋅𝐅⊺

𝗌̂

)⊺

, (4.16)

ogether with the jump conditions
[[

𝜇𝑓 +
(

𝑐𝑓 𝐯𝑟
)2 ∕2

]]

= 0,
[[

𝜇𝑎𝑓 +
(

𝑐𝑎𝑓 𝐯
𝑎
𝑟

)2
∕2

]]

= 0,
[[

𝜇𝑖
]]

= 0,
[[

𝜇𝑎𝑖
]]

= 0, 1 ≤ 𝑖 ≤ 𝑛. (4.17)

The continuity conditions (4.17) show an important feature of the boundary conditions for a chemoporomechanical model.
otice that the continuity applies for a dynamic-like chemical potential of the fluid. In case of an incompressible fluid, the chemical

24 In the dissipation Eq. (4.9) the term 𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
∑𝑛
𝑖=1 𝑚𝑖𝛁𝜇𝑖 appears as the conjugate of 𝐯𝑟 and the term 𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇

𝑎
𝑓 +

∑𝑛
𝑖=1 𝑚

𝑎
𝑖 𝛁𝜇

𝑎
𝑖 appears as

he conjugate of 𝐯𝑎.
11
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(

f

potential is usually equivalent to pressure divided by the mass density of the fluid. Hence (4.17) looks like the continuity of a
Bernoulli quantity.

Regarding the chemical species, one can note that the continuity condition applies to the relative chemical potentials and not
o the species concentrations. This is a very important feature since, in the case of the presence of fixed charges in the continuum,
he species concentrations cannot be continuous at the boundary, but the energies are.

The continuity conditions (4.17) are also important when solving boundary value problems, since it will dictate our choice of
roblem unknowns. For instance, when considering the diffusion of chemical species, the easiest choice will be to work with the
hemical potentials as unknowns (Loix et al., 2008; Sun et al., 1999), instead of the chemical species concentrations, especially
hen it comes to applying Dirichlet-like boundary conditions in an FEM code.

. Constitutive choices

The set of governing equations and interface conditions derived in Section 3 and the constitutive restrictions derived in Section 4
re given in their most general form. In order to guide the modeling of subcutaneous injections, we proceed to the following
anipulations on the previously derived relations.

.1. Lagrangian free energy

The application of the proposed general theory is aimed at the solution of boundary value problems. Given the importance of
inite strains, the predominantly numerical solution methods are more easily applied when a Lagrangian formulation of the problem
s used, thus motivating the following version, based on the introduction of the reference – i.e. per unit undeformed volume – mass
ensities 𝑀𝑠, 𝑀𝑓 , 𝑀𝑎

𝑓 , 𝑀𝑖, 𝑀𝑎
𝑖 and energy density 𝛹

𝑀𝑠 ∶= J𝑚𝑠, 𝑀𝑓 ∶= J𝑚𝑓 , 𝑀𝑎
𝑓 ∶= J𝑚𝑎𝑓 , 𝑀𝑖 ∶= J𝑚𝑖, 𝑀𝑎

𝑖 ∶= J𝑚𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

𝛹
(

𝑀𝑠,𝑀𝑓 ,𝑀𝑎
𝑓 ,
{

𝑀𝑖
}𝑛
1 ,

{

𝑀𝑎
𝑖
}𝑛
1 , 𝜃,(𝐁)

)

∶= J𝜓,
(5.1)

here J ∶= det 𝐅 is the determinant of the deformation gradient of the skeleton (Coussy, 2004). A direct consequence of the above
efinitions and (4.6) and (4.8) are the following expressions for the relative chemical potentials, entropy and for the elastic stress
ensor25

𝜇𝑠 =
𝜕𝛹
𝜕𝑀𝑠

, 𝜇𝑓 = 𝜕𝛹
𝜕𝑀𝑓

, 𝜇𝑎𝑓 = 𝜕𝛹
𝜕𝑀𝑎

𝑓
, 𝜇𝑖 =

𝜕𝛹
𝜕𝑀𝑖

, 𝜇𝑎𝑖 =
𝜕𝛹
𝜕𝑀𝑎

𝑖
, 1 ≤ 𝑖 ≤ 𝑛,

𝜂 = −1
J
𝜕𝛹
𝜕𝜃
, 𝝈𝑒 = 2

J
𝐁⋅ 𝜕𝛹
𝜕𝐁

.

(5.2)

.2. Porosity and saturation

We define the Lagrangian porosity 𝛷 as the current volume of fluid per unit reference volume of tissue. By analogy, we introduce
𝑎 as the current volume of blood per unit reference volume of tissue. Furthermore, we assume that the connected pore networks
re always completely filled with fluid and blood. Introducing the true density of the fluid26 𝜌𝑓 and

{

𝜌𝑖
}𝑛
1 the true density of species

𝑖27 and the corresponding quantities for the blood 𝜌𝑎𝑓 and
{

𝜌𝑎𝑖
}𝑛
1 yields the following saturation conditions (Coussy, 2004)

𝑀𝑓 = 𝛷𝜌𝑓 , 𝑀𝑎
𝑓 = 𝛷𝑎𝜌𝑎𝑓 , 𝑀𝑖 = 𝛷𝜌𝑖, 𝑀𝑎

𝑖 = 𝛷𝑎𝜌𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑛. (5.3)

The Lagrangian free energy 𝛹 can be alternatively written as 𝛹 (𝑀𝑠, 𝛷, 𝜌𝑓 ,
{

𝜌𝑖
}𝑛
1 , 𝛷

𝑎,
{

𝜌𝑎𝑖
}𝑛
1 , 𝜃,(𝐂)).

28 Taking the partial
derivative of 𝛹 with respect to 𝜌𝑓 and 𝜌𝑖 gives for the chemical potentials

𝜇𝑓 = 1
𝛷
𝜕𝛹
𝜕𝜌𝑓

, 𝜇𝑖 =
1
𝛷
𝜕𝛹
𝜕𝜌𝑖

, 1 ≤ 𝑖 ≤ 𝑛. (5.4)

By introducing the porosity 𝛷, we added an extra variable to the problem, thus needing a supplementary equation to solve the
boundary value problem. This additional equation naturally comes by taking the partial derivative of the reference free energy 𝛹
with respect to 𝛷29

𝜌𝑓𝜇𝑓 +
𝑛
∑

𝑖=1
𝜌𝑖𝜇𝑖 =

𝜕𝛹
𝜕𝛷

. (5.5)

25 Since the invariants of the left and right Cauchy–Green tensors coincide, (𝐂) = (𝐁), for the more general case of an anisotropic skeleton 𝝈𝑒 =
2∕𝐽 )𝐅⋅(𝜕𝛹∕𝜕𝐂)⋅𝐅⊺.
26 Mass of fluid per unit current volume of fluid.
27 Mass of species 𝑖 per unit current volume of fluid.
28 For simplicity, we keep the same symbol 𝛹 for the free energy expressed in terms of the true densities.
29 The Eq. (5.5) is nothing else but a general form of the well known thermodynamic identity for a mixture of 𝑛 + 1 chemical species that usually takes the

orm 𝜓 + 𝑝 =
∑𝑛 𝜌 𝜇 where 𝜌 ∶= 𝜌 −

∑𝑛 𝜌 .
12
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In the poro-mechanics theory, the relation (5.5) is usually postulated for the fluid (Coussy, 2004; Chapelle and Moireau, 2014), and
directly used to simplify the algebra. In this work, the thermodynamic assumption arises naturally in a way that is similar to the
results of Gurtin and Vargas (1971) in their remark (4.3).

By analogy to (5.4) the blood chemical potentials are

𝜇𝑎𝑓 = 1
𝛷𝑎

𝜕𝛹
𝜕𝜌𝑎𝑓

, 𝜇𝑎𝑖 =
1
𝛷𝑎

𝜕𝛹
𝜕𝜌𝑎𝑖

, 1 ≤ 𝑖 ≤ 𝑛. (5.6)

nd the blood equation corresponding to (5.5)

𝜌𝑎𝑓𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝜌𝑎𝑖 𝜇

𝑎
𝑖 =

𝜕𝛹
𝜕𝛷𝑎 . (5.7)

5.3. Heat equation

Following the same procedure as in Chester and Anand (2011) for deriving the heat equation, one can substitute the definition
of 𝛹 of (5.1) and (3.23) into the energy balance (3.19) and, applying the chain rule of time derivation, one can write the heat
equation

𝑐
J

.
𝜃 + 𝜃𝛁 ⋅

(𝐪
𝜃

)

−𝐷 − 𝑞 − 𝜃
J

[

𝜕2𝛹
𝜕𝜃𝜕𝐂

∶
.
𝐂 + 𝜕2𝛹

𝜕𝜃𝜕𝑀𝑓

.
𝑀𝑓

+ 𝜕2𝛹
𝜕𝜃𝜕𝑀𝑎

𝑓

.
𝑀

𝑎

𝑓 +
𝑛
∑

𝑖=1

{

𝜕2𝛹
𝜕𝜃𝜕𝑀𝑖

.
𝑀 𝑖 +

𝜕2𝛹
𝜕𝜃𝜕𝑀𝑎

𝑖

.
𝑀

𝑎

𝑖

}

]

= 0, (5.8)

here we defined the specific heat

𝑐 ∶= −𝜃 𝜕
2𝛹
𝜕𝜃2

. (5.9)

5.4. Free energy decomposition

We adopt an additive decomposition of the free energy according to the different physical phenomena involved

𝛹 = 𝛹𝑚𝑒𝑐ℎ + 𝛹 𝑖𝑛𝑡 + 𝛹𝑓𝑙𝑢𝑖𝑑 + 𝛹 𝑒𝑙𝑒𝑐 + 𝛹 𝑎𝑖𝑛𝑡 + 𝛹
𝑎
𝑓𝑙𝑢𝑖𝑑 + 𝛹

𝑎
𝑒𝑙𝑒𝑐 . (5.10)

The component 𝛹𝑚𝑒𝑐ℎ is defined as the purely mechanical strain energy of the dry adipose tissue. This represents the strain
energy of tissue that would be considered ex-vivo, with no interstitial fluid and no blood. The component 𝛹𝑓𝑙𝑢𝑖𝑑 is defined as the
ree energy carried by the fluid itself when the tissue is hydrated. The energy 𝛹 𝑎𝑓𝑙𝑢𝑖𝑑 is the equivalent term for the fluid in the
bsorption system (blood). Moreover, the interstitial fluid and the blood are required to stay electrically neutral at all time. For
pplication in numerical codes, it is convenient to treat the electroneutrality constraints by adding two energies 𝛹 𝑒𝑙𝑒𝑐 and 𝛹𝑎𝑒𝑙𝑒𝑐
eflecting the energy penalty of the system due to its deviation from the neutral state. An alternative formulation with Lagrange
ultipliers could also be used (Huyghe and Janssen, 1997, 1999) and an example with Lagrange multiplier is treated in Section 7.

Since the energy 𝛹𝑚𝑒𝑐ℎcorresponds to the macroscopic mechanical deformation of the dry adipose tissue, one must still account
or the energetic cost of the addition of a given mass of fluid, due to the fluid-induced mechanical dilation of pores. Hence one
ust add an interaction energy 𝛹 𝑖𝑛𝑡 that represents the energy cost that the solid tissue must undertake so that the fluid volume

its within the pores. By analogy, the corresponding term for the absorption system is also defined as 𝛹 𝑎𝑖𝑛𝑡.
The physical mechanisms associated with the different energy components in (5.10), allow us to assume the functional

ependence of each component of the free energy as follows

𝛹 = 𝛹𝑚𝑒𝑐ℎ(𝜃,(𝐂)) + 𝛹 𝑖𝑛𝑡(𝛷,𝛷𝑎, J, 𝜃) + 𝛷𝜓𝑓 (𝜌𝑓 ,
{

𝜌𝑖
}𝑛
1 , 𝜃) + 𝛹 𝑒𝑙𝑒𝑐 (𝛷, 𝜌𝑓 ,

{

𝜌𝑖
}𝑛
1) +

𝛹 𝑎𝑖𝑛𝑡(𝛷,𝛷
𝑎, J, 𝜃) + 𝛷𝑎𝜓𝑎𝑓 (𝜌

𝑎
𝑓 ,
{

𝜌𝑎𝑖
}𝑛
1 , 𝜃) + 𝛹 𝑎𝑒𝑙𝑒𝑐 (𝛷

𝑎, 𝜌𝑎𝑓 ,
{

𝜌𝑎𝑖
}𝑛
1),

(5.11)

where 𝜓𝑓 is defined as the free energy of the fluid per unit volume of interstitial fluid.30 Similarly, the term 𝜓𝑎𝑓 is the free energy
of the blood per unit volume of blood.

30 This allows us to define 𝜓 from physical considerations of the fluid in its pure state (outside of the porous material).
13
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Given the assumption about the different components of the free energy in (5.11), on can rewrite (5.2), (5.4), (5.5), (5.6) and
5.7)

J𝜂 = −
𝜕(𝛹𝑚𝑒𝑐ℎ + 𝛹 𝑖𝑛𝑡 + 𝛹𝑎𝑖𝑛𝑡)

𝜕𝜃
−𝛷

𝜕𝜓𝑓
𝜕𝜃

−𝛷𝑎
𝜕𝜓𝑎𝑓
𝜕𝜃

, 𝝈 = 2
J
𝐁⋅
𝜕𝛹𝑚𝑒𝑐ℎ
𝜕𝐁

+
𝜕(𝛹 𝑖𝑛𝑡 + 𝛹𝑎𝑖𝑛𝑡)

𝜕J
𝐈 −

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯,

𝜇𝑓 =
𝜕𝜓𝑓
𝜕𝜌𝑓

+ 1
𝛷
𝜕𝛹 𝑒𝑙𝑒𝑐
𝜕𝜌𝑓

, 𝜇𝑖 =
𝜕𝜓𝑓
𝜕𝜌𝑖

+ 1
𝛷
𝜕𝛹 𝑒𝑙𝑒𝑐
𝜕𝜌𝑖

, 1 ≤ 𝑖 ≤ 𝑛,

𝜇𝑎𝑓 =
𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑓

+ 1
𝛷𝑎

𝜕𝛹 𝑎𝑒𝑙𝑒𝑐
𝜕𝜌𝑎𝑓

, 𝜇𝑎𝑖 =
𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑖

+ 1
𝛷𝑎

𝜕𝛹 𝑎𝑒𝑙𝑒𝑐
𝜕𝜌𝑎𝑖

, 1 ≤ 𝑖 ≤ 𝑛,

𝜌𝑓𝜇𝑓 +
𝑛
∑

𝑖=1
𝜌𝑖𝜇𝑖 = 𝜓𝑓 +

𝜕(𝛹 𝑖𝑛𝑡 + 𝛹 𝑎𝑖𝑛𝑡 + 𝛹 𝑒𝑙𝑒𝑐 )
𝜕𝛷

, 𝜌𝑎𝑓𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝜌𝑎𝑖 𝜇

𝑎
𝑖 = 𝜓𝑎𝑓 +

𝜕(𝛹 𝑖𝑛𝑡 + 𝛹𝑎𝑖𝑛𝑡 + 𝛹
𝑎
𝑒𝑙𝑒𝑐 )

𝜕𝛷𝑎 .

(5.12)

It is interesting to note that we retrieve in (5.12) the usual definitions of the chemical potentials, without introducing them as
rimitive fields. Also note that the supplementary equations (5.12)7,8 are a mathematical consequence of the split (5.3) and do not
eed to be postulated as thermodynamic identities of the fluids (Gibbs relation).

.5. Electroneutrality constraint

The interstitial fluid stays electrically neutral at all time, accounting for the presence of fixed charges attached to the collagen
esh. The electroneutrality constraint in the interstitial space takes the macroscopic form

𝑄𝐹
𝐹

+𝛷
𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑖 = 0, (5.13)

here 𝑄𝐹 is the density of charges attached to the skeleton (it is a charge per unit reference volume; we neglect here its dependence
n the temperature), 𝐹 is the Faraday constant, 𝑧𝑖 is an integer representing the number of charges carried by one molecule of
pecies 𝑖, 𝑀mol

𝑖 is the molar mass of species 𝑖. In (5.13) we have also assumed that the solvent 0 is neutral (𝑧0 = 0) and used the
saturation condition (5.3). The associated penalty energy is then defined as

𝛹 𝑒𝑙𝑒𝑐 (𝛷, 𝜌𝑓 ,
{

𝜌𝑖
}𝑛
1) =

1
2𝜁

(

𝑄𝐹
𝐹

+𝛷
𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑖

)2

, (5.14)

here 0 < 𝜁 ≪ 1 is the penalty parameter.
In a similar fashion, the electroneutrality constraint in blood vessels, accounting for the absence of fixed charges in the absorption

ystem (𝑄𝛼𝐹 = 0), takes the form

𝛷𝑎
𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑎𝑖 = 0, (5.15)

nd the corresponding penalty energy is

𝛹 𝑎𝑒𝑙𝑒𝑐 (𝛷
𝑎, 𝜌𝑎𝑓 ,

{

𝜌𝑎𝑖
}𝑛
1) =

1
2𝜁𝑎

(

𝛷𝑎
𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑎𝑖

)2

, (5.16)

where 0 < 𝜁𝑎 ≪ 1 is the associated penalty parameter. Also note that we did not drop the dependence on 𝛷𝑎 in the constraint (5.15)
in order to stay consistent with the dimensions of the energies.

Substituting (5.14) and (5.16) into (5.12)3,4,5,6,7,8 yields

𝜇𝑓 =
𝜕𝜓𝑓
𝜕𝜌𝑓

, 𝜇𝑖 =
𝜕𝜓𝑓
𝜕𝜌𝑖

+
𝑧𝑖

𝑀mol
𝑖 𝜁

(

𝑄𝐹
𝐹

+𝛷
𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑖

)

, 1 ≤ 𝑖 ≤ 𝑛,

𝜇𝑎𝑓 =
𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑓

, 𝜇𝑎𝑖 =
𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑖

+
𝑧𝑖𝛷𝑎

𝑀mol
𝑖 𝜁𝑎

𝑛
∑

𝑖=1

𝑧𝑖
𝑀mol

𝑖

𝜌𝑎𝑖 , 1 ≤ 𝑖 ≤ 𝑛,

𝜌𝑓
𝜕𝜓𝑓
𝜕𝜌𝑓

+
𝑛
∑

𝑖=1
𝜌𝑖
𝜕𝜓𝑓
𝜕𝜌𝑖

= 𝜓𝑓 +
𝜕(𝛹 𝑖𝑛𝑡 + 𝛹𝑎𝑖𝑛𝑡)

𝜕𝛷
, 𝜌𝑎𝑓

𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑓

+
𝑛
∑

𝑖=1
𝜌𝑎𝑖
𝜕𝜓𝑎𝑓
𝜕𝜌𝑎𝑖

= 𝜓𝑎𝑓 +
𝜕(𝛹 𝑖𝑛𝑡 + 𝛹 𝑎𝑖𝑛𝑡)

𝜕𝛷𝑎 .

(5.17)

ote that the approach with penalty energies (5.14) and (5.16) is particularly suited to numerical solving involving a framework of
nergy minimization (e.g. variational principles and finite elements). In the case of an analytical solving in simplified frameworks
see e.g. Section 7), an alternative formulation involving Lagrange multipliers can be more tractable. Following the same approach
s in Huyghe and Janssen (1997, 1999), the equations of (5.17) remain unchanged expect for the following

𝜇𝑖 =
𝜕𝜓𝑓 +

𝑧𝑖𝐹
mol 𝜆, 𝜇𝑎𝑖 =

𝜕𝜓𝑎𝑓
𝑎 +

𝑧𝑖𝐹
mol 𝜆

𝑎, 1 ≤ 𝑖 ≤ 𝑛, (5.18)
14

𝜕𝜌𝑖 𝑀𝑖
𝜕𝜌𝑖 𝑀𝑖
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where the Lagrange multipliers 𝜆 and 𝜆𝑎 are two unknown fields to solve for, together with the algebraic equations (5.13) and
(5.15).

6. Summary of governing equations and interface conditions

It is helpful at this point to recapitulate all governing equations, i.e. linear momentum, all mass balances and the heat equation,
plus their associated interface conditions, below in (6.1)

𝐱 ∈ 𝑣 𝐱 ∈ 𝗌̂

𝑚𝑡
.
𝐯 − 𝛁 ⋅

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯 − 𝛁 ⋅ 𝝈 − 𝑚𝑡𝐛 = 𝟎, 𝐧⋅ [[𝝈]] + 𝛁𝗌̂⋅𝝈 𝗌̂ = 𝟎 and [[𝐮]] = 𝟎,

.
𝑚𝑠 + 𝑚𝑠𝛁 ⋅ 𝐯𝑠 = 0, N/A,

.
𝑚𝑓 + 𝑚𝑓𝛁 ⋅ 𝐯𝑠 + 𝛁 ⋅

(

𝑚𝑓 𝐯𝑟
)

=
𝑛
∑

𝑖=0
𝑟𝑖, 𝐧⋅

[[

𝑚𝑓 𝐯𝑟
]]

= 0 and
[[

𝜇𝑓 +
(

𝑐𝑓 𝐯𝑟
)2

2

]]

= 0,

.
𝑚
𝑎
𝑓 + 𝑚𝑎𝑓𝛁 ⋅ 𝐯𝑠 + 𝛁 ⋅

(

𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

= −
𝑛
∑

𝑖=0
𝑟𝑖, 𝐧⋅

[[

𝑚𝑎𝑓 𝐯
𝑎
𝑟

]]

= 0 and
[[

𝜇𝑎𝑓 +

(

𝑐𝑎𝑓 𝐯
𝑎
𝑟

)2

2

]]

= 0,

.
𝑚𝑖 + 𝑚𝑖𝛁 ⋅ 𝐯𝑠 + 𝛁 ⋅

(

𝐣𝑖 + 𝑚𝑖𝐯𝑟
)

= 𝑟𝑖, 𝐧⋅
[[

𝐣𝑖 + 𝑚𝑖𝐯𝑟
]]

= 0 and
[[

𝜇𝑖
]]

= 0,

.
𝑚
𝑎
𝑖 + 𝑚

𝑎
𝑖𝛁 ⋅ 𝐯𝑠 + 𝛁 ⋅

(

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
)

= −𝑟𝑖, 𝐧⋅
[[

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
]]

= 0 and
[[

𝜇𝑎𝑖
]]

= 0,

𝑐
J
𝜃̇ + 𝜃𝛁 ⋅

(𝐪
𝜃

)

−𝐷 − 𝑞

− 𝜃
J

(

𝜕2𝛹
𝜕𝜃𝜕𝐁

∶𝐁̇ + 𝜕2𝛹
𝜕𝜃𝜕𝑀𝑓

.
𝑀𝑓 + 𝜕2𝛹

𝜕𝜃𝜕𝑀𝑎
𝑓

.
𝑀

𝑎

𝑓 𝐧⋅
[[

𝐪
]]

= 0 and [[𝜃]] = 0.

+
𝑛
∑

𝑖=1

{

𝜕2𝛹
𝜕𝜃𝜕𝑀𝑖

.
𝑀 𝑖 +

𝜕2𝛹
𝜕𝜃𝜕𝑀𝑎

𝑖

.
𝑀

𝑎

𝑖

}

)

= 0,

(6.1)

here the relationships between the current and reference mass densities – respectively 𝑚𝑠, 𝑚𝑓 , 𝑚𝑎𝑓 , 𝑚𝑖, 𝑚𝑎𝑖 and 𝑀𝑠, 𝑀𝑓 , 𝑀𝑎
𝑓 , 𝑀𝑖,

𝑎
𝑖 – and the arguments of the reference energy density 𝛹 are given in (5.1). We also recall from (4.10) the sufficient restrictions for

, 𝐯𝑟, 𝐯𝑎𝑟 , 𝐣𝑖, 𝐣
𝑎
𝑖 and 𝑟𝑖, and the definition of the dissipation 𝐷 from (4.9). Moreover, accounting for the saturation conditions (5.3) and

he energy decomposition hypothesis (5.11), the constitutive relations for the entropy, stress tensor and various chemical potentials
re given by (5.12) for 𝐱 ∈ 𝑣 and (4.16) for 𝐱 ∈ 𝗌̂.

. Illustrating the interplay between mechanics, chemistry and electroneutrality

Although necessary for the study of subcutaneous injections, the non-linear finite-strain effects require numerical solution of
he relevant boundary value problems and will thus be the object of a subsequent study using the proposed theory. To illustrate
he contribution of the different physical mechanisms introduced in the multiphysics finite strain model derived above we hereby
ropose an analytically tractable study of the injection process for the small strain, time independent case.

.1. Modeling assumptions

(L-1) We restrict the study to an isothermal and stationary boundary value problem, an assumption justified when the injected fluid
is close to the body temperature.

(L-2) We do not consider any surface tension.
(L-3) We only consider two chemical species in a solvent. The subscript 𝑐 is used for the chemical species carrying a positive charge

(cation), the subscript 𝑛 is used for the chemical species carrying a negative charge (anion).
(L-4) All material constants involved are time and space independent.
(L-5) The absorption system is considered as a reservoir whose composition is not changed by the contribution of the interstitial

fluid. Consequently, the equations pertaining to the absorption system are omitted in the boundary value problem definition.
We consider the blood vessels to be part of the skeleton so that their mechanical contribution is included in the mechanical
response of the skeleton. We also assume that the volume of blood in the tissue is constant and unaffected by the deformation
of the tissue. This assumption yields that we consider 𝛹𝑎𝑖𝑛𝑡 contribution to be included in 𝛹𝑚𝑒𝑐ℎ in the energy decomposition
15
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Fig. 3. Spherical cavity in an infinite medium injection boundary value problem.

(L-6) There are no external body forces.
(L-7) The linear regime of governing equations is considered with small strain kinematics and small perturbations from an

equilibrium state (denoted with the superscript 𝑒) to be specified later. As a consequence, the quadratic terms in 𝐯𝑟, 𝐯𝑎𝑟 , 𝐯
are neglected in the considered regime.

(L-8) The equilibrium state is assumed to be stress-free and the skeleton is assumed to be at its reference configuration.
(L-9) For this closed-form analytical solving, the Lagrange multiplier formulation is used in place of the penalty energy approach,

as discussed around Eqs. (5.17) and (5.18).

7.2. Dimensionless, perturbed variables

Consider a spherical cavity of initial radius rsph within an infinite medium, as depicted in Fig. 3. The cavity is filled with a fluid
whose pressure and chemical potentials are known injection parameters and denoted with a superscript inj. A spherically symmetric
solution of the problem is considered and consequently all field variables are functions of the radial coordinate r.

Denote by 𝜺 the linearized strain tensor and by 𝜺′ = 𝜺−(tr𝜺∕3)𝐈 its deviatoric part. In the regime of small deformation, the initial
equilibrium is represented by the superscript 𝑒. Following the assumption (L-8), the equilibrium state is such that the skeleton is in
its reference unstressed configuration, represented by the superscript 0:

𝛷𝑒 = 𝛷0, 𝐮𝑒 = 𝟎, 𝜺𝑒 = 𝟎, 𝝈𝑒 = 𝟎, 𝑝𝑒𝑓 = 0, (7.1)

where the hydrostatic pressure of the fluid 𝑝𝑓 has been introduced in (B.10) and 𝜌0𝑓 stands for the density of the fluid at the
atmospheric reference pressure.

Only two chemical species are assumed to be present, with densities 𝜌𝑐 (positively charged) and 𝜌𝑛 (negatively charged). Taking
into account (7.1), we define the following dimensionless perturbation quantities away from equilibrium

𝛿𝐮 ∶= 𝐮
rsph

, 𝛿𝜺 ∶= 𝜺, 𝛿𝛷 ∶= 𝛷 −𝛷0

𝛷0
, 𝛿𝜌𝑐 ∶=

𝜌𝑐 − 𝜌𝑒𝑐
𝜌𝑒𝑐

, 𝛿𝜌𝑛 ∶=
𝜌𝑛 − 𝜌𝑒𝑛
𝜌𝑒𝑛

, 𝛿𝜌𝑓 ∶=
𝜌𝑓 − 𝜌𝑒𝑓
𝜌𝑒𝑓

,

𝛿𝜇𝑓 ∶=
𝜇𝑓 − 𝜇𝑒𝑓

𝑅𝜃∕𝜌𝑒0

(

𝜌𝑒𝑐
𝑀mol

𝑐
+

𝜌𝑒𝑛
𝑀mol

𝑛

) , 𝛿𝜇𝑐 ∶=
𝜇𝑐 − 𝜇𝑒𝑐
𝑅𝜃∕𝑀mol

𝑐
, 𝛿𝜇𝑛 ∶=

𝜇𝑛 − 𝜇𝑒𝑛
𝑅𝜃∕𝑀mol

𝑛
,

𝛿𝝈 ∶= 𝝈
𝐺
, 𝛿𝑝𝑓 ∶=

𝑝𝑓
𝐺
, 𝛿𝜆 ∶= 𝜆 − 𝜆𝑒

𝑅𝜃∕𝐹
,

(7.2)

where 𝑅 is the universal gas constant, 𝜌𝑒0 = 𝜌𝑒𝑓 − 𝜌
𝑒
𝑐 − 𝜌

𝑒
𝑛 is the equilibrium density of the solvent and the fluid pressure 𝑝𝑓 is defined

in (B.10).

7.3. Linearized boundary value problem

We introduce the dimensionless radius variable r and the corresponding dimensionless nabla operator 𝛁

r ∶= r
rsph

, 𝛁 ∶= rsph𝛁, (7.3)

where rsph is the inner radius of the spherical cavity (see Fig. 3). Due to its length, the linearization procedure of (6.1) is presented
in detail in Appendix B and results in a system of four linear O.D.E.s.
16
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The corresponding linear momentum equation (6.1)1 yields
𝜕
𝜕r

[( 4
3
+ 𝐾
𝐺

− 𝑏𝐵𝑖𝑜𝑡G−1
𝑝𝜀

)

tr𝛿𝜺 − 𝑏𝐵𝑖𝑜𝑡
(

G−1
𝑝𝑓 𝛿𝜇𝑓 + G−1

𝑝𝑐 𝛿𝜇𝑐 + G−1
𝑝𝑛 𝛿𝜇𝑛

)]

= 0, (7.4)

here 𝐾 and 𝐺 are the bulk and shear modulus of the skeleton continuum, 𝑏𝐵𝑖𝑜𝑡 is the Biot coefficient of the skeleton porous material
s defined in (B.6) and (B.11). The scalars G−1

𝑝𝜀 , G−1
𝑝𝑓 , G−1

𝑝𝑐 and G−1
𝑝𝑛 are coefficients of the inverse of the matrix 𝐆 defined in (B.16).

The linearized equations for mass balances of the fluid (6.1)2, the species 𝑐 (6.1)3 and 𝑛 (6.1)4 are in matrix notation

𝛁 ⋅
(

𝛁𝐀𝛿𝝁
)

− 𝐁𝛿𝝁 = 𝟎, 𝛿𝝁 =
⎡

⎢

⎢

⎣

𝛿𝜇𝑓
𝛿𝜇𝑐
𝛿𝜇𝑛

⎤

⎥

⎥

⎦

, (7.5)

where the effective mobility matrix 𝐀 and the effective absorption matrix 𝐁 are defined in (B.21) and (B.23).
The four differential equations (7.4) and (7.5) are solved for the four unknown fields 𝛿ur (r), 𝛿𝜇𝑓 (r), 𝛿𝜇𝑐 (r) and 𝛿𝜇𝑛(r) using the

ollowing boundary conditions at r = 1 and r → ∞

𝛿𝜎rr ||r=1 = −𝛿𝑝inj
𝑓 , 𝛿𝜇𝑓

|

|

|r=1
= 𝛿𝜇inj

𝑓 , 𝛿𝜇𝑐 ||r=1 = 𝛿𝜇inj
𝑐 , 𝛿𝜇𝑛||r=1 = 𝛿𝜇inj

𝑛 ,

𝛿𝜎rr ||r→∞ = 0, 𝛿𝜇𝑓
|

|

|r→∞
= 0, 𝛿𝜇𝑐 ||r→∞ = 0, 𝛿𝜇𝑛||r→∞ = 0.

(7.6)

The values of the chemical potential perturbations at the surface of the spherical cavity r = 1 are obtained from the hydrostatic
pressure 𝛿𝑝inj

𝑓 and the chemical species densities 𝛿𝜌inj
𝑐 and 𝛿𝜌inj

𝑛 as described in (B.24).
The system of mass balances (7.5) only involves the perturbation chemical potentials 𝛿𝝁. To solve this system, we bring it to a

diagonal form by introducing an auxiliary variable 𝛿𝝃 using the matrix 𝐐 that diagonalizes 𝐀−1𝐁

𝛿𝝃 = 𝐐−1𝛿𝝁, 𝐐−1 (𝐀−1𝐁
)

𝐐 = 𝐃 = diag[𝐷𝑖], ⟹ 𝛁 ⋅
(

𝛁𝐀𝛿𝝁
)

− 𝐁𝛿𝝁 = 𝐀𝐐[𝛁 ⋅
(

𝛁𝛿𝝃
)

− 𝐃𝛿𝝃] = 𝟎. (7.7)

he above system (7.7) can be written in the uncoupled form with respect to the auxiliary variable 𝛿𝝃 and accounting for the
oundary conditions of (7.6) has the following solution in 𝛿𝝃(r) and hence for the perturbation chemical potentials 𝛿𝝁(r)

𝛁 ⋅
(

𝛁𝛿𝜉𝑖(r)
)

− D𝑖𝛿𝜉𝑖(r) = 0, ⟹ 𝛿𝜉𝑖(r) = 𝛿𝜉inj
𝑖 [exp(−

√

D𝑖(r − 1))]∕r; 𝑖 = 1,… , 3, ⟹ 𝛿𝝁(r) = 𝐐𝛿𝝃(r). (7.8)

These results are obtained considering that the coefficients D𝑖 > 0 are positive real numbers, an assumption that holds true in all
subsequent numerical calculations.

The linear momentum balance differential equation (7.4) has the following solution

𝛿ur (r) =
𝑈2

r2
+ 𝑈1r −

1 + r
r

𝐕⊺𝐐

⎡

⎢

⎢

⎢

⎢

⎣

1
√

D1
𝛿𝜉1(r)

1
√

D2
𝛿𝜉2(r)

1
√

D3
𝛿𝜉3(r)

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐕 =
𝑏𝐵𝑖𝑜𝑡

4
3 + 𝐾

𝐺 − 𝑏𝐵𝑖𝑜𝑡G−1
𝑝𝜀

⎡

⎢

⎢

⎢

⎣

G−1
𝑝𝑓

G−1
𝑝𝑐

G−1
𝑝𝑛

⎤

⎥

⎥

⎥

⎦

, (7.9)

where 𝑈1 and 𝑈2 are integration constants to be determined by the stress boundary conditions. Using the normal component of the
Cauchy stress tensor perturbation 𝛿𝜎rr

𝛿𝜎rr (r) = 2𝛿𝜀rr (r) +
(𝐾
𝐺

− 2
3

)

tr𝛿𝜺(r) − 𝑏𝐵𝑖𝑜𝑡𝛿𝑝𝑓 (r) = −4
r
𝛿ur (r) + 𝑈1, (7.10)

nd applying the boundary conditions in (7.6) at r = 1 and r → ∞ we obtain the following result for 𝛿ur (r)

𝛿ur (r) =
𝛿𝑝inj

𝑓

4r2
− 1

r2
𝐕⊺𝐐

⎡

⎢

⎢

⎢

⎢

⎣

1
√

D1

(

(r + r2)𝛿𝜉1(r) − 2𝛿𝜉inj
1

)

1
√

D2

(

(r + r2)𝛿𝜉2(r) − 2𝛿𝜉inj
2

)

1
√

D3

(

(r + r2)𝛿𝜉3(r) − 2𝛿𝜉inj
3

)

⎤

⎥

⎥

⎥

⎥

⎦

, (7.11)

here 𝛿𝝃inj = 𝐐−1𝛿𝝁inj. In (7.11) and (7.8) we have thus obtained the four perturbation fields 𝛿ur (r), 𝛿𝜇𝑓 (r), 𝛿𝜇𝑐 (r) and 𝛿𝜇𝑛(r) which
constitute the solution to the system of the four differential equation (7.4) and (7.5) with boundary conditions (7.6). Other quantities
of interest, such as the perturbations of porosity 𝛿𝛷, pressure 𝛿𝑝𝑓 , fluid density 𝛿𝜌𝑓 and chemical species densities 𝛿𝜌𝑐 , 𝛿𝜌𝑛 are given
in Appendix B.

Important information to estimate the efficiency of an injection is given by the integral over the whole volume of the absorption
terms (B.5)2

4𝜋r2sph ∫

∞

1
r′ 2

⎡

⎢

⎢

⎣

𝑟𝑓∕𝑎𝑓
𝑟𝑐∕𝑎𝑐
𝑟𝑛∕𝑎𝑛

⎤

⎥

⎥

⎦

dr′ = −2𝐁𝐐

⎡

⎢

⎢

⎢

⎢

⎣

1
√

D1
𝛿𝜉inj

1
1

√

D2
𝛿𝜉inj

2
1

√

D3
𝛿𝜉inj

3

⎤

⎥

⎥

⎥

⎥

⎦

. (7.12)

f the components of (7.12)2 are negative, the corresponding species are absorbed by the poroelastic continuum, which is the desired
ehavior when injecting a fluid. In the opposite case the absorption system releases these species into the interstitial space.
17
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Fig. 4. Importance of accounting for the cross-coupling in the dissipation constitutive laws of the fluxes by just adding salt (NaCl) in the cavity (𝛿𝜌inj
𝑐 = 0.01).

hree different cases of the osmotic coefficient are considered: 𝜔 = 0 in (a), 𝜔 = 𝜔max in (b) and 𝜔 = 0.2𝜔max in (c). The vertical axis of each graph records the
different dimensionless fluid velocities (v0 , v𝑐 , v𝑛); solid green line corresponds to the solvent fluid (v0), dashed green line to the cation velocity (v𝑐 ) and dotted
reen line to the anion velocity (v𝑛). The horizontal axis gives the dimensionless distance r away from the cavity-tissue boundary (r = 1).

A final note is in order at this point. The solution in (7.8) and (7.11) is valid when 𝐷𝑖 ≠ 0, i.e. when the absorption terms
𝑓 , 𝑟𝑐 , 𝑟𝑛 ≠ 0. In the no-absorption case 𝑟𝑓 = 𝑟𝑐 = 𝑟𝑛 = 0, the solution simplifies to

𝛿una
r (r) =

𝛿𝑝inj
𝑓

4r2
+ r2 − 1

2r2
𝐕⊺𝛿𝝁inj, 𝛿𝜇na

𝑓 (r) =
𝛿𝜇inj

𝑓

r
, 𝛿𝜇na

𝑐 (r) =
𝛿𝜇inj

𝑐

r
, 𝛿𝜇na

𝑛 (r) =
𝛿𝜇inj

𝑛

r
, (7.13)

7.4. Results from the simplified injection model

The results presented below in Figs. 4, 5 and 6 show the importance of chemical species absorption and diffusion as well as
bound tissue charges on pressure, volume change and solvent, species flows using the context of the simple, linearized injection
model described in Section 7.3. Depending on the case considered, the loading consists of changing the concentration of cations
(e.g. Na+) in the cavity (𝛿𝜌𝑖𝑛𝑗𝑐 ), the bound charges in the tissue (𝑄𝐹 ) and the pressure (𝛿𝑝𝑖𝑛𝑗𝑓 ). The corresponding changes of anions
(e.g. Cl−) in the cavity (𝛿𝜌𝑖𝑛𝑗𝑛 ) are found from electroneutrality in (B.15) and the boundary conditions for each problem are calculated

ith the help of (B.24).
Dimensionless expressions are used for the solvent v0, cation v𝑐 and anion v𝑛 velocities, which are normalized by a reference

orous velocity vporous defined using a characteristic time of permeation 𝑇 𝑝𝑒 (Auton and MacMinn, 2017, 2018)

v0,𝑐,𝑛 =
v0,𝑐,𝑛
vporous , vporous ∶=

r𝑠𝑝ℎ
𝑇 𝑝𝑒

, 𝑇 𝑝𝑒 =
𝜇𝑣r2𝑠𝑝ℎ

𝑘ℎ (𝐾 + 4𝐺∕3)
, (7.14)

where 𝐺 and 𝐾 are the shear and bulk moduli of the skeleton, introduced in (B.6) and 𝜇𝑣 and 𝑘ℎ are the viscosity of the fluid and
the hydraulic permeability of the porous medium, introduced in (B.17).

Similarly, we define the dimensionless absorption rates

𝑟0,𝑐,𝑛 =
𝑟0,𝑐,𝑛𝜏0
𝛷0𝜌𝑒𝑓

, (7.15)

here 𝜏0 is the absorption time of the solvent, introduced in (B.19).
(i) 𝑇ℎ𝑒 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑚𝑜𝑡𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝜔
The first objective is to show the importance of accounting for the cross-coupling in the dissipation constitutive laws in the

elocities of the solvent (v0) and the two chemical species (v𝑐 , v𝑛). This coupling is modeled through the osmotic efficiency coefficient
defined in (B.17) (see details in Loret et al. (2004)). Positive definiteness of the diffusion coefficients matrix in (B.5)1 dictates a

ositive value of this coefficient with an upper bound 𝜔max defined in (B.18).
We show in Fig. 4 the role of this coefficient by treating the simple problem of just adding salt (NaCl) in the cavity31 (𝛿𝜌inj

𝑐 = 0.01),
ithout applying fluid pressure (𝛿𝑝inj

𝑓 = 0), ignoring bound charges in the tissue (𝑄𝐹 = 0) and absorption (R00 = R𝑐𝑐 = R𝑛𝑛 = 0 ⟹

𝑟0 = 𝑟𝑐 = 𝑟𝑛 = 0). We investigate three different cases: 𝜔 = 0 in Fig. 4(a), 𝜔 = 𝜔max in Fig. 4(b) and 𝜔 = 0.2𝜔max in Fig. 4(c). In each
raph we plot the dimensionless different velocities (v0, v𝑐 , v𝑛); solid line corresponds to the solvent fluid (v0), dashed line to the
ation velocity (v𝑐) and dotted line to the anion velocity (v𝑛) as function of the dimensionless distance r away from the cavity-tissue

boundary (r = 1).
Note from Fig. 4(a) that in the absence of the osmotic efficiency coefficient (𝜔 = 0) the solvent and the salt move from the cavity

nto the tissue and the corresponding positive velocities decay to practically zero at a distance at about r = 10. The exact opposite
happens in Fig. 4(b) when we consider the maximum value for the osmotic coefficient (𝜔 = 𝜔max) as the solvent and the salt move
from the tissue into the cavity and the corresponding negative velocities decay to practically zero at the same distance as before.
Both results seem rather unphysical, as one expects the solvent to move into the cavity and the salt into the tissue in an attempt to

31 We only need to prescribe the Na+ concentration (𝛿𝜌inj
𝑐 ). The corresponding Cl− concentration (𝛿𝜌inj

𝑛 ) is determined from the electroneutrality constraint in
18
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balance chemical potentials in both regions. This is exactly what happens in Fig. 4(c) where an intermediate value of the osmotic
efficiency coefficient is chosen (𝜔 = 0.2𝜔max): the salt velocities are positive – from the cavity into the tissue – while the solvent
velocity is negative from the tissue into the cavity, the expected behavior of the system. Henceforth, all numerical calculations are
based on this osmotic efficiency coefficient (𝜔 = 0.2𝜔max). Note that in all results of Fig. 4 the cation (v𝑐) and anion (v𝑛) velocities
re the same to ensure electroneutrality.

(ii) The importance of fixed charges and absorption under a diffusive regime (no injection pressure)
For subcutaneous injection modeling the importance of accounting for the fixed charges in the tissue and the resulting impact of

he electroneutrality balance must be established, as well as the influence of absorption of the chemical species into the blood. To
ighlight the role of these two mechanisms, the next simulations do not have an hydrostatic pressure applied in the cavity — we
ust introduce salt NaCl there. Since 𝑄𝐹 ≠ 0 electroneutrality dictates a change in the cation and anion concentrations in the tissue
(depending on the sign of 𝑄𝐹 ) and hence a change in the corresponding concentrations in the cavity. We assume 𝛿𝜌inj

𝑐 = 0 for Na+

– 𝛿𝜌inj
𝑛 ≠ 0 for Cl− is calculated by electroneutrality and is a function of 𝑄𝐹 – and follow the salt diffusion within the tissue and

absorption by the blood. The response of the system due to the addition of salt in the cavity fixed charges in the tissue (𝑄𝐹 ≠ 0)
but in the absence of injection pressure (𝛿𝑝inj

𝑓 = 0) is presented in Fig. 5.
The response of a system with positive tissue charges (𝑄𝐹 > 0) following the introduction of salt in the cavity but in the absence

f absorption is presented in Figs. 5(a) and 5(b). Although there is no applied pressure at the cavity, the introduction of salt induces
pressure and porosity jump at the boundary according to Fig. 5(a). The solvent enters the tissue (positive velocity v0 > 0) while

he excess Cl− exists the tissue negative velocity v𝑛 < 0, as seen in Fig. 5(b). Notice also the very rapid decay of the pressure, volume
change and fluxes away from the cavity boundary in the absence of absorption (𝑟0 ⋅𝑟𝑐 ⋅𝑟𝑛 = 0 in Fig. 5(b)).

For the same loading and positive tissue charges (𝑄𝐹 > 0) as before, but allowing for absorption, the results are presented in
igs. 5(c) and 5(d). Observe in Fig. 5(c) that now the pressure at the cavity boundary is zero and increases steeply to a maximum
corresponding to the location where the fluxes change in sign – at about r = 5 before slowly decreasing. The porosity change

𝛿𝛷 and the skeleton volume change (tr𝛿𝜺) follow the evolution of the pressure and after reaching a maximum also decay slowly.
Notice from Fig. 5(d) the reversal of the solvent velocity (v0 < 0) compared to Fig. 5(b), as the interstitial fluid exits the tissue along
with the Cl−. Moreover the solvent exits the tissue for the blood (𝑟0 < 0) while the absorption rate for Cl− is positive (𝑟𝑛 > 0) as
he negatively charged chemical species is absorbed in the tissue and the absorption rate of Na+ is zero (𝑟𝑐 = 0). Moreover, these

chemical rates decay much faster than the pressure and porosity, recorded in Fig. 5(c).
The results of reversing the permanent tissue charges (𝑄𝐹 < 0), while keeping the rest of the parameters as before (Figs. 5(c) and

5(d)) are presented in Figs. 5(e) and 5(f). Similarly to Fig. 5(c) but with its sign reversed, the pressure at the cavity boundary, starting
from zero, drops rapidly to a minimum before increasing again at a much slower rate. Note in the same graph that the porosity and
the skeleton volume also decrease. The same sign reversal in pressure and porosity and volume change observed between Figs. 5(c)
and 5(e) also occurs for the fluxes and absorption rates as expected from electroneutrality, as evidenced by comparing Figs. 5(d)
and 5(f). Notice that in view of our assumption that 𝛿𝜌𝑖𝑛𝑗𝑐 = 0, the velocities and absorption rates for Na+ are again zero.

The results presented in Fig. 5 illustrate the importance of accounting for the chemical mechanisms of fixed charges and
bsorption when calculating the mechanics quantities of pressure, porosity and volume changes, as it can change the qualitative
nd quantitative response of the tissue to the modeled injection.

(iii) The importance of full chemo-mechanical coupling in the presence of injection pressure
Finally the importance of the full chemo-mechanical coupling is established in Fig. 6 that compares the response of the system

ubjected only to an injection pressure in the cavity (𝛿𝑝𝑖𝑛𝑗𝑓 = 0.01), i.e. in the absence of chemical effects (𝑄𝐹 = 𝛿𝜌𝑖𝑛𝑗𝑐 = 𝛿𝜌𝑖𝑛𝑗𝑛 = 0),
presented in Figs. 6(a) and 6(b), and under full chemo-mechanical coupling (𝑄𝐹 > 0, 𝛿𝑝𝑖𝑛𝑗𝑓 = 0.01, 𝛿𝜌𝑖𝑛𝑗𝑐 = 0.01), presented in Fig. 6(c)
and in Fig. 6(d).

For the purely mechanical response of the system under an applied pressure at the cavity (𝛿𝑝𝑖𝑛𝑗𝑓 = 0.01) but in the absence of
permanent tissue charges and chemical species (𝑄𝐹 = 0, 𝛿𝜌𝑖𝑛𝑗𝑐 = 𝛿𝜌𝑖𝑛𝑗𝑛 = 0), the only fluid that plays a role is the solvent; diffusion
as well absorption are both accounted for. The results in this case are the classical poroelasticity results for the solvent with a
rapidly decaying positive pressure (𝛿𝑝𝑓 > 0), porosity (𝛿𝛷 > 0) and skeleton volume change (tr𝛿𝜺 > 0) observed in Fig. 6(a). As
also expected from classical poroelasticity, we have a positive but rapidly decaying solvent velocity (v0 > 0) as the fluid enters the
issue by diffusion while it is also absorbed by the blood (𝑟0 < 0). Since chemical effects are not accounted for, the velocities of the
hemical species are zero (v𝑐 = v𝑛 = 0) as are the corresponding absorption rates (𝑟𝑐 = 𝑟𝑛 = 0), as seen in Fig. 6(b).

A radically different picture emerges when a full chemo-mechanical coupling is considered (𝑄𝐹 > 0, 𝛿𝑝𝑖𝑛𝑗𝑓 = 0.01, 𝛿𝜌𝑖𝑛𝑗𝑐 = 0.01).
Even though a positive hydrostatic pressure is applied, a contraction in the tissue is observed since the hydrostatic pressure applied
is low. Notice in Fig. 6(c) the sign reversal of the pressure (𝛿𝑝𝑓 < 0), porosity (𝛿𝛷 < 0) and skeleton volume change (tr𝛿𝜺 < 0)
ompared to the purely mechanical response in Fig. 6(a). These quantities all start from zero at the boundary, decrease rapidly to
each a minimum at about r = 5 and subsequently increase slowly but at a much slower rate than in the purely mechanical case. A

different from the purely mechanical case picture in Fig. 6(b) also emerges for the velocities and absorption rates when chemical
effects are accounted for in Fig. 6(d). Although the solvent velocity is initially positive as the fluid enters the tissue, it changes sign
at about 𝑟 = 5. Moreover solvent is absorbed by the tissue (𝑟0 > 0) while Cl− exits and is absorbed by the blood 𝑟𝑛 < 0.

From the above results in Fig. 6 we establish the importance of the full chemo-mechanical coupling for correctly modeling the
fluxes in the tissue as well as the swelling behavior. Omitting the chemical and electroneutrality contribution in the modeling could
lead to predicting the wrong swelling/shrinking behavior of the tissue, the wrong injection behavior – since the value one could
predict a fluid injection whereas the injection pressure is not enough to counterbalance the osmotic contribution – and the wrong
absorption equilibrium, since it is directly impacted by these conditions and the tissue does not necessarily absorb the injected fluid,
19
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Fig. 5. Importance of accounting for electroneutrality and absorption by adding salt in the cavity (𝛿𝜌𝑖𝑛𝑗𝑐 = 0, 𝛿𝜌𝑖𝑛𝑗𝑛 ≠ 0) but not imposing an injection pressure
𝛿𝑝𝑖𝑛𝑗𝑓 = 0). Three different cases are considered: 𝑄𝐹 > 0 without absorption (𝑟0 = 𝑟𝑐 = 𝑟𝑛 = 0) in (a) and (b), 𝑄𝐹 > 0 with absorption (𝑟0 ⋅ 𝑟𝑐 ⋅ 𝑟𝑛 ≠ 0) in (c)
nd (d) and 𝑄𝐹 < 0 with absorption (𝑟0 ⋅ 𝑟𝑐 ⋅ 𝑟𝑛 ≠ 0) in (e) and (f). The left vertical axes of graphs (a), (c) and (e) record in solid green line the dimensionless

pressure (𝛿𝑝𝑓 ) and their right vertical axes record in dashed blue line the porosity change (𝛿𝛷) and in dotted blue line the skeleton’s volume change (tr𝛿𝜺).
The left vertical axes of graphs (b), (d) and (f) record the different dimensionless fluid velocities (v0 , v𝑛 , v𝑐 ); solid green line corresponds to the solvent fluid
v0), dashed green line to the cation velocity (v𝑐 ) and dotted green line to the anion velocity (v𝑛) and their right vertical axes record in blue lines the different
bsorption rates (𝑟0 in solid lines, 𝑟𝑐 in dashed lines and 𝑟𝑛 in dotted lines). The horizontal axis gives the dimensionless distance r away from the cavity-tissue

boundary (r = 1).

. Conclusion

The goal, as well as the novelty of this work, is the introduction of a thermodynamically consistent, objective and fully coupled
ontinuum chemo-mechanical general theory for subcutaneous injections that considers the interaction of all the important physical
echanisms involved in this procedure. The proposed model, derived via the direct approach of continuum mechanics, using

he Coleman–Noll procedure and employing the minimum set of hypotheses, accounts for finite strain poro-mechanics, where an
nterstitial fluid, carrying different charged species, is diffusing in a flexible porous matrix and absorbed by blood and/or lymph
essels. Electrochemistry is an integral part of the theory, as it generates an osmotic pressure, due to electrical charges attached to
he tissue.

Inevitably, such a general nonlinear theory is rather difficult to use and meant for numerical calculations, due to the multitude
f physical phenomena at work and the plethora of material parameters involved. It is impossible to obtain analytical results, an
ssential tool in understanding the influence of the different parameters in such a complex problem. To establish the importance
f the full coupling (i.e. electro-chemical and poro-mechanical) in the modeling of a subcutaneous injection, we solve a simplified,
20
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Fig. 6. The importance of chemo-mechanical coupling in the presence of injection pressure (𝛿𝑝𝑖𝑛𝑗𝑓 = 0.01). Results for the purely mechanical response (𝑄𝐹 = 0,
𝛿𝜌𝑖𝑛𝑗𝑐 = 0) in the presence of absorption (𝑟0 ⋅ 𝑟𝑐 ⋅ 𝑟𝑛 ≠ 0) are presented in (a) and (b). Results for the fully coupled chemo-mechanical response with a positively
charged tissue and added Na+ in the cavity (𝑄𝐹 > 0, 𝛿𝜌𝑖𝑛𝑗𝑐 = 0.01) in (c) and (d). The left vertical axes of graphs (a) and (c) record in solid green line the
dimensionless pressure (𝛿𝑝𝑓 ) and their right vertical axes record in dashed blue line the porosity change (𝛿𝛷) and in dotted blue line the skeleton’s volume
change (tr𝛿𝜺). The left vertical axes of graphs (b) and (d) record the different dimensionless fluid velocities (v0 , v𝑛 , v𝑐 ); solid green line corresponds to the
olvent fluid (v0), dashed green line to the cation velocity (v𝑐 ) and dotted green line to the anion velocity (v𝑛) and their right vertical axes record in blue lines
he different absorption rates (𝑟0 in solid lines, 𝑟𝑐 in dashed lines and 𝑟𝑛 in dotted lines). The horizontal axis gives the dimensionless distance r away from the

cavity-tissue boundary (r = 1).

inearized model problem that shows the importance of the osmotic efficiency coefficient, the fixed tissue-bound charges in finding
he pressure, volume changes, interstitial fluid and chemical species velocities and absorption rates.

The power of the proposed fully coupled, nonlinear theory lies in the thermodynamically consistent inclusion of all the physical
echanisms of subcutaneous injections. Accounting for these couplings is shown to be of high importance for the prediction of

ubcutaneous injections key performance indicators, as illustrated by the linearized use-case as a proof of principle. By its nature,
he model is intended for numerical analysis and the required calculations impose important challenges that constitute the next
rontier for future work in this area (e.g. see Barré et al. (2023) for issues related to time-dependent problems in the linear regime.)
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Appendix A. Derivation details for constitutive restrictions

In this section, we apply the methodology introduced in Gil et al. (2022) to the current framework with the multiple-porosity
etworks and chemical species. The derivation of reversible restrictions in volume and on the surface are given respectively in
ppendices A.1 and A.3, while the non-reversible restrictions are presented in Appendix A.2.

.1. Constitutive restrictions in volume

The pointwise free-energy imbalance (3.24) for 𝐱 ∈ 𝑣 can then be written as

−
(

𝜕𝜓
𝜕𝜃

+ 𝜂
) .
𝜃 −

𝜕𝜓
𝜕𝛁𝑚𝑠

⋅

.
⏞⏞
𝛁𝑚𝑠 −

𝜕𝜓
𝜕𝛁𝑚𝑓

⋅

.
⏞⏞
𝛁𝑚𝑓 −

𝜕𝜓
𝜕𝛁𝑚𝑎𝑓

⋅

.
⏞⏞
𝛁𝑚𝑎𝑓

−

[

(

𝜕𝜓
𝜕𝐅

⋅𝐅⊺
)⊺

+

(

𝜓 − 𝑚𝑠
𝜕𝜓
𝜕𝑚𝑠

− 𝑚𝑓
𝜕𝜓
𝜕𝑚𝑓

− 𝑚𝑎𝑓
𝜕𝜓
𝜕𝑚𝑎𝑓

−
𝑛
∑

𝑖=1

{

𝑚𝑖
𝜕𝜓
𝜕𝑚𝑖

+ 𝑚𝑎𝑖
𝜕𝜓
𝜕𝑚𝑎𝑖

}

)

𝐈
]

∶𝛁𝐯𝑠

−
𝜕𝜓
𝜕𝛁𝜃

⋅

.
⏞⏞
𝛁𝜃 −

𝜕𝜓
𝜕𝛁𝐅

...

.
⏞⏞
𝛁𝐅 −

𝜕𝜓
𝜕𝐯𝑠

⋅
.
𝐯𝑠 +

𝜕𝜓
𝜕𝑚𝑓

𝛁 ⋅
(

𝑚𝑓 𝐯𝑟
)

+
𝜕𝜓
𝜕𝑚𝑎𝑓

𝛁 ⋅
(

𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

−
𝑛
∑

𝑖=1

⎡

⎢

⎢

⎣

𝜕𝜓
𝜕𝛁𝑚𝑖

⋅

.
⏞⏞
𝛁𝑚𝑖 +

𝜕𝜓
𝜕𝛁𝑚𝑎𝑖

⋅

.
⏞⏞
𝛁𝑚𝑎𝑖 −

𝜕𝜓
𝜕𝑚𝑖

𝛁 ⋅
(

𝐣𝑖 + 𝑚𝑖𝐯𝑟
)

−
𝜕𝜓
𝜕𝑚𝑎𝑖

𝛁 ⋅
(

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
)

⎤

⎥

⎥

⎦

−𝛁 ⋅
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

) 𝐯2
2

− (𝛁 ⋅ 𝝈) ⋅𝐯 − 𝛁 ⋅ (𝐡 − 𝐪) −
𝐪
𝜃
⋅𝛁𝜃

−𝑟𝑓

(

𝜕𝜓
𝜕𝑚𝑓

−
𝜕𝜓
𝜕𝑚𝑎𝑓

)

−
𝑛
∑

𝑖=1
𝑟𝑖

(

𝜕𝜓
𝜕𝑚𝑖

−
𝜕𝜓
𝜕𝑚𝑎𝑖

)

≥ 0.

(A.1)

For the sake of simplicity in the subsequent derivations, we define the relative chemical potentials as

𝜇𝑠() ∶=
𝜕𝜓
𝜕𝑚𝑠

, 𝜇𝑓 () ∶=
𝜕𝜓
𝜕𝑚𝑓

, 𝜇𝑎𝑓 () ∶=
𝜕𝜓
𝜕𝑚𝑎𝑓

, 𝜇𝑖() ∶=
𝜕𝜓
𝜕𝑚𝑖

, 𝜇𝑎𝑖 () ∶=
𝜕𝜓
𝜕𝑚𝑎𝑖

, 1 ≤ 𝑖 ≤ 𝑛, (A.2)

and also the absolute chemical potentials as32

𝜇0() ∶= 𝜇𝑓 , 𝜇̃
𝑎
0() ∶= 𝜇𝑎𝑓 , 𝜇𝑖() ∶= 𝜇𝑖 + 𝜇𝑓 , 𝜇̃𝑎𝑖 () ∶= 𝜇𝑎𝑖 + 𝜇

𝑎
𝑓 , 1 ≤ 𝑖 ≤ 𝑛. (A.3)

Note that in this work, the chemical potentials are introduced as a renaming of variables as also proposed by Gurtin (1971) and Gurtin
and Vargas (1971).

Results using arbitrary time rates
In order to extract all the reversible constitutive restrictions from (A.1), we will first consider the arbitrary variations of the

ime-rates in the set ⋆ defined in (4.3). Given any admissible set , the quantities
.
𝜃,

.
⏞⏞
𝛁𝑚𝑠,

.
⏞⏞
𝛁𝑚𝑓 ,

.
⏞⏞
𝛁𝑚𝑓 ,

.
⏞⏞
𝛁𝑚𝑖,

.
⏞⏞
𝛁𝑚𝑎𝑖 ,

.
⏞⏞
𝛁𝜃 ,

.
⏞⏞
𝛁𝐅 and

.
𝐯𝑠

an be assigned arbitrarily and only appear linearly in (A.1), obtaining the following necessary (equality) restrictions
𝜕𝜓
𝜕𝛁𝑚𝑠

=
𝜕𝜓
𝜕𝛁𝑚𝑓

=
𝜕𝜓
𝜕𝛁𝑚𝑎𝑓

= 𝟎, 𝜕𝜓
𝜕𝛁𝑚𝑖

=
𝜕𝜓
𝜕𝛁𝑚𝑎𝑖

= 𝟎, 1 ≤ 𝑖 ≤ 𝑛,

𝜂 = −
𝜕𝜓
𝜕𝜃
,

𝜕𝜓
𝜕𝛁𝜃

= 𝟎, 𝜕𝜓
𝜕𝛁𝐅

= 𝟎, 𝜕𝜓
𝜕𝐯𝑠

= 𝟎,

(A.4)

implying that the free energy 𝜓 is independent of 𝛁𝑚𝑠, 𝛁𝑚𝑓 , 𝛁𝑚𝑎𝑓 , 𝛁𝑚𝑖, 𝛁𝑚𝑎𝑖 , 𝛁𝜃, 𝛁𝐅 and 𝐯𝑠. We further assume here that the
aterial is isotropic and hence 𝜓 and all the other fields are a function of 𝐁 ∶= 𝐅⋅𝐅⊺, the left Cauchy–Green tensor, instead of 𝐅.
oreover, requiring the Helmholtz33 free energy 𝜓 to be objective, it must depend on the invariants (𝐁)

𝜓 = 𝜓( ,𝐁) = 𝜓
(

𝑚𝑠, 𝑚𝑓 , 𝑚
𝑎
𝑓 ,
{

𝑚𝑖
}𝑛
1 ,

{

𝑚𝑎𝑖
}𝑛
1 , 𝜃,(𝐁)

)

. (A.5)

32 Here, we follow the terminology used by Gurtin and Vargas (1971) and Fried and Gurtin (1999). Indeed, our expression of 𝜇𝑖 corresponds to the definition
of the relative chemical potential in their work.

33 We can now use this terminology since 𝜓 is independent of velocities.
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Note that (A.5) implies from (A.2) the same dependence for the chemical potentials

𝜇𝑠 = 𝜇𝑠( ,(𝐁)), 𝜇𝑓 = 𝜇𝑓 ( ,(𝐁)), 𝜇𝑎𝑓 = 𝜇𝑎𝑓 ( ,(𝐁)),

𝜇𝑖 = 𝜇𝑖( ,(𝐁)), 𝜇𝑎𝑖 = 𝜇𝑎𝑖 ( ,(𝐁)), 1 ≤ 𝑖 ≤ 𝑛,
(A.6)

and (A.1) can now be simplified to

(

𝝈⋆ − 𝝈𝑒
)

∶𝛁𝐯𝑠 + 𝝈⋆ ∶𝛁
(

𝑐𝑓 𝐯𝑟 + 𝑐𝑎𝑓 𝐯
𝑎
𝑟

)

− 𝛁 ⋅ 𝐤̃ −
𝑛
∑

𝑖=1

(

𝐣𝑖⋅𝛁𝜇𝑖 + 𝐣𝑎𝑖 ⋅𝛁𝜇
𝑎
𝑖
)

−𝑚𝑓 𝐯𝑟⋅𝛁𝜇𝑓 − 𝑚𝑎𝑓 𝐯
𝑎
𝑟 ⋅𝛁𝜇

𝑎
𝑓 −

𝐪
𝜃
⋅𝛁𝜃 −

𝑛
∑

𝑖=0
𝑟𝑖
(

𝜇𝑖 − 𝜇𝑖𝑎
)

≥ 0,

(A.7)

where, the following grouping of terms have been identified: an elastic stress tensor 𝝈𝑒 and a symmetrized stress tensor 𝝈⋆34

𝝈𝑒 ∶= 2𝐁⋅ 𝜕𝜓
𝜕𝐁

+

(

𝜓 − 𝑚𝑠𝜇𝑠 − 𝑚𝑓𝜇𝑓 − 𝑚𝑎𝑓𝜇
𝑎
𝑓 −

𝑛
∑

𝑖=1

{

𝑚𝑖𝜇𝑖 + 𝑚𝑎𝑖 𝜇
𝑎
𝑖
}

)

𝐈 = (𝝈𝑒)⊺,

𝝈⋆ ∶= 𝝈 +
(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

𝐯 = (𝝈⋆)⊺,

(A.8)

and we have also introduced an inertially modified energy flux vector 𝐤̃, related to the energy flux vector 𝐡

𝐤̃ ∶= 𝐡 − 𝐪 −

(

𝑚𝑓𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝜇𝑖

)

𝐯𝑟 −
(

𝑚𝑎𝑓𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑖𝜇𝑖

)

𝐯𝑎𝑟

−
𝑛
∑

𝑖=1

(

𝜇𝑖𝐣𝑖 + 𝜇𝑎𝑖 𝐣
𝑎
𝑖
)

+ 𝝈⋆⋅𝐯 − 𝐯2
2

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

.

(A.9)

At this point we require that 𝝈⋆ and 𝐤̃ to be objective fields and hence to not depend on 𝐯𝑠. It is shown in Gil et al. (2022) that
here is no loss of generality in making such a hypothesis at this point of the derivation. Consequently, the term 𝛁𝐯𝑠 appears now
inearly in (A.7) and, making it vary arbitrarily,35 we obtain

𝝈⋆ = 𝝈𝑒. (A.10)

oreover, all the remaining terms of (A.7) are now constitutive and hence required to be objective, giving

−𝛁 ⋅ 𝐤 −
𝐪
𝜃
⋅𝛁𝜃 −

𝑛
∑

𝑖=1
𝐣𝑖⋅𝛁𝜇𝑖 − 𝐯𝑟⋅

[

𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝛁𝜇𝑖

]

−
𝑛
∑

𝑖=1
𝐣𝑎𝑖 ⋅𝛁𝜇

𝑎
𝑖 − 𝐯𝑎𝑟 ⋅

[

𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖𝛁𝜇

𝑎
𝑖

]

−
𝑛
∑

𝑖=0
𝑟𝑖
(

𝜇𝑖 − 𝜇𝑖𝑎
)

≥ 0,

(A.11)

where we have defined

𝐤 ∶= 𝐤̃ − 𝝈𝑒⋅
(

𝑐𝑓 𝐯𝑟 + 𝑐𝑎𝑓 𝐯
𝑎
𝑟

)

. (A.12)

The first step of the procedure is not complete yet since we have not exploited all the arbitrary quantities.
Results using arbitrary second order gradients
In order to advance further in the exploitation of (A.11), we recall the material frame indifference principle and the hypothesis

f isotropy36 made in (A.5). Following a rather lengthy manipulation, with details provided in the Appendix of Gil et al. (2022), we
how that the constitutive vector 𝐤(𝑂) defined in (A.12) vanishes identically

𝐤(𝑂) = 𝟎, (A.13)

thus providing the expression for the sought objective energy flux vector 𝐡(𝑂) introduced in (3.18)

𝐡 = 𝐪 + 𝐯2
2

(

𝑚𝑓 𝐯𝑟 + 𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

− 𝝈𝑒⋅𝐯𝑠

+
𝑛
∑

𝑖=1
𝜇𝑖𝐣𝑖 +

(

𝑚𝑓𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝜇𝑖

)

𝐯𝑟 +
𝑛
∑

𝑖=1
𝜇𝑎𝑖 𝐣

𝑎
𝑖 +

(

𝑚𝑎𝑓𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖 𝜇

𝑎
𝑖

)

𝐯𝑎𝑟 .

(A.14)

34 The symmetry of 𝝈𝑒 follows by the isotropy of 𝜓 and the symmetry of 𝝈⋆ follows from angular momentum in (3.17) and the definition of 𝐯 in (2.6).
35 See footnote 21 on the equivalence between the independently assigned time rate quantities 𝛁𝐯𝑠 and

.
𝐅 of ⋆.

36
23

Although a restrictive hypothesis, it allows us to find a unique energy flux 𝐡 using the principle of material frame indifference.
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This completes the first step of the procedure providing the necessary conditions, constitutive equalities for the entropy 𝜂, free
energy 𝜓 , stress 𝝈 and flux vectors 𝐡 and 𝐪 in 𝐱 ∈ 𝑣. The remaining terms in the entropy imbalance (A.11) represent the dissipation
𝐷 of the system

𝐷(𝑂) ∶= −
𝐪
𝜃
⋅𝛁𝜃 − 𝐯𝑟⋅

[

𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝛁𝜇𝑖

]

−
𝑛
∑

𝑖=1
𝐣𝑖⋅𝛁𝜇𝑖

−𝐯𝑎𝑟 ⋅
[

𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇
𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖𝛁𝜇

𝑎
𝑖

]

−
𝑛
∑

𝑖=1
𝐣𝑎𝑖 ⋅𝛁𝜇

𝑎
𝑖 −

𝑛
∑

𝑖=0
𝑟𝑖
(

𝜇𝑖 − 𝜇𝑖𝑎
)

≥ 0.

(A.15)

he second step of the procedure extracts additional information from (A.15) and is presented in Appendix A.2.

.2. Sufficient restrictions

We proceed with the second step of the procedure, described in Gil et al. (2022), starting from the positive dissipation inequality
A.15) and seeking restrictions on the admissible expressions for the constitutive vector fields 𝐪, 𝐯𝑟, 𝐯𝑎𝑟 ,

{

𝐣𝑖
}𝑛
1 and

{

𝐣𝑎𝑖
}𝑛
1, designated

enceforth by a generic symbol 𝐯(𝑂) and the scalar absorption/release mass rates of the chemicals 𝑟𝑖. We require these fields to
e objective for any orthogonal tensor 𝐐 ∈ 𝑂(3),37 which implies

𝐐⋅𝐯( ,,𝐁,𝛁𝐁) = 𝐯( ,𝐐⋅,𝐐⋅𝐁⋅𝐐⊺,𝐐⋅(𝐐⋅𝛁𝐁⋅𝐐⊺)). (A.16)

aking the particular case of 𝐐 = −𝐈 (see discussion around equation (3.16) of Coleman and Noll (1963))

−𝐯( ,,𝐁,𝛁𝐁) = 𝐯( ,−,𝐁,−𝛁𝐁). (A.17)

efining as homogeneous the state where the gradients of state variables vanish, i.e. ℎ𝑂 ⊂ 𝑂 (see definition in (4.1)), where
ℎ
𝑂 ∶= { , 𝟎,𝐁, 𝟎}, (A.17) leads to the following conditions for 𝐯 and its derivatives 𝜕𝐯∕𝜕𝑠 evaluated at ℎ𝑂

𝐯|ℎ𝑂 = 𝟎, 𝜕𝐯
𝜕𝑠

|

|

|

|ℎ𝑂
= 𝟎, ∀𝑠 ∈  . (A.18)

Accounting for (A.18)1, the remaining dissipation inequality (A.15) yields

−
𝑛
∑

𝑖=0
𝑟𝑖||ℎ𝑂

(

𝜇𝑖||ℎ𝑂
− 𝜇̃𝑎𝑖 ||ℎ𝑂

)

≥ 0. (A.19)

Moreover, since 𝑟𝑖(𝑂) are required to be objective, the following conditions also hold:
𝜕𝑟𝑖
𝜕𝐠

|

|

|

|ℎ𝑂

= 𝟎, ∀𝐠 ∈ ,
𝜕𝑟𝑖
𝜕𝛁𝐁

|

|

|

|ℎ𝑂
= 𝟎, 1 ≤ 𝑖 ≤ 𝑛. (A.20)

Due to objectivity and isotropy, the scalars 𝑟𝑖 depend on the invariants 1(𝐁), 2(𝐁), 3(𝐁). Following Gurtin and Vargas (1971),
e define an equilibrium state ℎ,𝑒𝑂 ∶= {𝑒, 𝟎,𝐁𝑒, 𝟎} as the homogeneous state for which the absorption/release mass rates of the

hemicals vanish

𝑟𝑖||ℎ,𝑒𝑂
= 0, 0 ≤ 𝑖 ≤ 𝑛. (A.21)

Accounting for the consequences of objectivity enumerated in (A.18) and (A.20), one can write the following Taylor expansion
about the equilibrium state ℎ,𝑒𝑂

𝐯(𝑂) =
∑

𝐠∈

𝜕𝐯
𝜕𝐠

|

|

|

|ℎ,𝑒𝑂

⋅ 𝐠 + 𝜕𝐯
𝜕𝛁𝐁

|

|

|

|ℎ,𝑒𝑂

... 𝛁𝐁 + 𝑂
(

(𝛿𝑒)2
)

,

𝑟𝑖(𝑂) =
∑

𝑠∈

𝜕𝑟𝑖
𝜕𝑠

|

|

|

|ℎ,𝑒𝑂
(𝑠 − 𝑠𝑒) +

3
∑

𝑘=1

𝜕𝑟𝑖
𝜕𝑘

|

|

|

|ℎ,𝑒𝑂

(

𝑘(𝐁) − 𝑘(𝐁𝑒)
)

+ 𝑂
(

(𝛿𝑒)2
)

, 0 ≤ 𝑖 ≤ 𝑛,

(A.22)

here 𝛿𝑒 ∶= |

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

.
One can write the Taylor expansions close to an equilibrium state for the chemical potentials

𝜇 − 𝜇𝑒 =
∑

𝑠∈

𝜕𝜇
𝜕𝑠

|

|

|

|ℎ,𝑒𝑂
(𝑠 − 𝑠𝑒) +

3
∑

𝑘=1

𝜕𝜇
𝜕𝑘

|

|

|

|ℎ,𝑒𝑂

(

𝑘 − 𝑒𝑘
)

+ 𝑂
(

|

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

2
)

, (A.23)

here 𝜇 stands for either one of the chemical potentials 𝜇𝑠, 𝜇𝑓 , 𝜇𝑎𝑓 , 𝜇𝑖, 𝜇𝑎𝑖 and 𝜇𝑒 for their corresponding equilibrium counterparts,
.e. 𝜇𝑒𝑠 , 𝜇

𝑒
𝑓 , 𝜇𝑎,𝑒𝑓 , 𝜇𝑒𝑖 , 𝜇

𝑎,𝑒
𝑖 . Similarly for the gradients of the chemical potentials and the divergence of the elastic stress 𝛁 ⋅ 𝝈𝑒 one has

37 Where 𝑂(3) is the set of all orthogonal rank two tensors 𝐐, i.e. 𝐐⋅𝐐⊺ = 1, where det𝐐 = ±1.
24
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[

the expansions

𝛁𝜇 =
∑

𝑠∈

𝜕𝜇
𝜕𝑠

|

|

|

|ℎ,𝑒𝑂
𝛁𝑠 +

3
∑

𝑘=1

𝜕𝜇
𝜕𝑘

|

|

|

|ℎ,𝑒𝑂

𝛁𝑘 + 𝑂
(

|

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

2
)

,

𝛁 ⋅ 𝝈𝑒 =
∑

𝑠∈

𝜕(𝛁 ⋅ 𝝈𝑒)
𝜕𝑠

|

|

|

|ℎ,𝑒𝑂
𝛁𝑠 +

3
∑

𝑘=1

𝜕(𝛁 ⋅ 𝝈𝑒)
𝜕𝑘

|

|

|

|ℎ,𝑒𝑂

𝛁𝑘 + 𝑂
(

|

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

2
)

.

(A.24)

As in Gurtin and Vargas (1971) and Gil et al. (2022), we assume that the systems (A.23) and (A.24) are invertible such that we can
write the following Taylor expansions up to order 𝑂

(

|

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

2
)

close to the equilibrium state

𝐪 = −𝐊𝜃,𝜃 ⋅𝛁𝜃 −𝐊𝜃,𝑠⋅𝛁𝜇𝑠 −𝐊𝜃,𝑓 ⋅𝛁𝜇𝑓 −𝐊𝜃,𝑝⋅𝛁𝑝 −𝐊𝜃,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝜃,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝜃,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐯𝑟 = −𝐊𝑓,𝜃 ⋅𝛁𝜃 −𝐊𝑓,𝑠⋅𝛁𝜇𝑠 −𝐊𝑓,𝑓 ⋅𝛁𝜇𝑓 −𝐊𝑓,𝑝⋅𝛁𝑝 −𝐊𝑓,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑓,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐯𝑎𝑟 = −𝐊𝑓𝑎 ,𝜃 ⋅𝛁𝜃 −𝐊𝑓𝑎 ,𝑠⋅𝛁𝜇𝑠 −𝐊𝑓𝑎 ,𝑓 ⋅𝛁𝜇𝑓 −𝐊𝑓𝑎 ,𝑝⋅𝛁𝑝 −𝐊𝑓𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑓𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

1 ≤ 𝑖 ≤ 𝑛,

𝐣𝑖 = −𝐊𝑖,𝜃 ⋅𝛁𝜃 −𝐊𝑖,𝑠⋅𝛁𝜇𝑠 −𝐊𝑖,𝑓 ⋅𝛁𝜇𝑓 −𝐊𝑖,𝑝⋅𝛁𝑝 −𝐊𝑖,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑖,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

𝐣𝑎𝑖 = −𝐊𝑖𝑎 ,𝜃 ⋅𝛁𝜃 −𝐊𝑖𝑎 ,𝑠⋅𝛁𝜇𝑠 −𝐊𝑖𝑎 ,𝑓 ⋅𝛁𝜇𝑓 −𝐊𝑖𝑎 ,𝑝⋅𝛁𝑝 −𝐊𝑖𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎 −
𝑛
∑

𝑗=1

{

𝐊𝑖𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

,

0 ≤ 𝑖 ≤ 𝑛,

𝑟𝑖 = −𝖱𝑖,𝜃 (𝜃 − 𝜃𝑒) −
𝑛
∑

𝑗=0

{

𝖱𝑖,𝑗
[

𝜇𝑗 − 𝜇𝑗 𝑎 −
(

𝜇𝑗
𝑒 − 𝜇𝑗 𝑎,𝑒

)]

+ 𝖱𝑖,𝑗𝑎
(

𝜇𝑗
𝑎 − 𝜇𝑗 𝑎

𝑒
)}

− 𝖱𝑖,𝑠
(

𝜇𝑠 − 𝜇𝑒𝑠
)

−
3
∑

𝑘=1
𝖱𝑖,𝑘

(

𝑘 − 𝑒𝑘
)

,

(A.25)

where the following auxiliary notations have been introduced

𝛁𝑝 ∶= 𝑐𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑓𝛁𝜇𝑓 +
𝑛
∑

𝑖=1
𝑚𝑖𝛁𝜇𝑖, 𝛁𝑝𝑎 ∶= 𝑐𝑎𝑓𝛁 ⋅ 𝝈𝑒 + 𝑚𝑎𝑓𝛁𝜇

𝑎
𝑓 +

𝑛
∑

𝑖=1
𝑚𝑎𝑖𝛁𝜇

𝑎
𝑖 . (A.26)

Note that when writing the Taylor expansions (A.25), we have already grouped some terms in order to simplify the subsequent
algebra. There is no loss of generality in using these expressions modulo a redefinition of the expansion coefficients. In particular,
the reader can notice that there is no explicit term in 𝛁𝜇𝑎𝑓 in (A.25) since it is embedded in the definition of 𝛁𝑝𝑎 while there is an
explicit dependence of 𝛁𝜇𝑓 as it is necessary to be able to account for the variations of 𝛁 ⋅ 𝝈 in 𝛁𝑝. Substituting (A.25) into the
dissipation (A.15) gives

𝜃−1
[

𝐊𝜃,𝜃 ⋅𝛁𝜃 +𝐊𝜃,𝑠⋅𝛁𝜇𝑠 +𝐊𝜃,𝑓 ⋅𝛁𝜇𝑓 +𝐊𝜃,𝑝⋅𝛁𝑝 +𝐊𝜃,𝑝𝑎 ⋅𝛁𝑝𝑎 +
𝑛
∑

𝑗=1

{

𝐊𝜃,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝜃,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

]

⋅𝛁𝜃

+

[

𝐊𝑓,𝜃 ⋅𝛁𝜃 +𝐊𝑓,𝑠⋅𝛁𝜇𝑠 +𝐊𝑓,𝑓 ⋅𝛁𝜇𝑓 +𝐊𝑓,𝑝⋅𝛁𝑝 +𝐊𝑓,𝑝𝑎 ⋅𝛁𝑝𝑎 +
𝑛
∑

𝑗=1

{

𝐊𝑓,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

]

⋅𝛁𝑝

+
𝑛
∑

𝑖=1

[

𝐊𝑖,𝜃 ⋅𝛁𝜃 +𝐊𝑖,𝑠⋅𝛁𝜇𝑠 +𝐊𝑖,𝑓 ⋅𝛁𝜇𝑓 +𝐊𝑖,𝑝⋅𝛁𝑝 +𝐊𝑖,𝑝𝑎 ⋅𝛁𝑝𝑎 +
𝑛
∑

𝑗=1

{

𝐊𝑖,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

]

⋅𝛁𝜇𝑖

+

[

𝐊𝑓𝑎 ,𝜃 ⋅𝛁𝜃 +𝐊𝑓𝑎 ,𝑠⋅𝛁𝜇𝑠 +𝐊𝑓𝑎 ,𝑓 ⋅𝛁𝜇𝑓 +𝐊𝑓𝑎 ,𝑝⋅𝛁𝑝 +𝐊𝑓𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎 +
𝑛
∑

𝑗=1

{

𝐊𝑓𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑓𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

]

⋅𝛁𝑝𝑎

+
𝑛
∑

𝑖=1

[

𝐊𝑖𝑎 ,𝜃 ⋅𝛁𝜃 +𝐊𝑖𝑎 ,𝑠⋅𝛁𝜇𝑠 +𝐊𝑖𝑎 ,𝑓 ⋅𝛁𝜇𝑓 +𝐊𝑖𝑎 ,𝑝⋅𝛁𝑝 +𝐊𝑖𝑎 ,𝑝𝑎 ⋅𝛁𝑝𝑎 +
𝑛
∑

𝑗=1

{

𝐊𝑖𝑎 ,𝑗 ⋅𝛁𝜇𝑗 +𝐊𝑖𝑎 ,𝑗𝑎 ⋅𝛁𝜇𝑎𝑗
}

]

⋅𝛁𝜇𝑎𝑖

+
𝑛
∑

𝑖=0

[

𝖱𝑖,𝜃 (𝜃 − 𝜃𝑒) +
𝑛
∑

𝑗=0

{

𝖱𝑖,𝑗
[

𝜇𝑗 − 𝜇𝑗 𝑎 −
(

𝜇𝑗
𝑒 − 𝜇𝑗 𝑎,𝑒

)]

+ 𝖱𝑖,𝑗𝑎
(

𝜇𝑗
𝑎 − 𝜇𝑗 𝑎

𝑒
)}

+𝖱𝑖,𝑠
(

𝜇𝑠 − 𝜇𝑒𝑠
)

+
3
∑

𝑘=1
𝖱𝑖,𝑘

(

𝑘 − 𝑒𝑘
)

]

(

𝜇𝑖 − 𝜇𝑖𝑎
)

≥ 0.

(A.27)

Requiring the inequality (A.27) to hold for any arbitrarily small values of 𝛁𝜃, 𝛁𝜇𝑠, 𝛁𝜇𝑓 , 𝛁𝑝, 𝛁𝜇𝑖, 𝛁𝑝𝑎, 𝛁𝜇𝑎𝑖 , 𝜃 − 𝜃𝑒,
𝜇𝑗 − 𝜇𝑗 𝑎 −

(

𝜇𝑗 𝑒 − 𝜇𝑗 𝑎,𝑒
)]

, 𝜇𝑗 𝑎 − 𝜇𝑗 𝑎
𝑒 , 𝜇𝑠 − 𝜇𝑒𝑠 and 𝑘 − 𝑒𝑘, we obtain the conditions

𝐊𝜃,𝑠 = 𝐊𝜃,𝑓 = 𝟎, 𝐊𝑓,𝑠 = 𝐊𝑓𝑎 ,𝑠 = 𝐊𝑓,𝑓 = 𝐊𝑓𝑎 ,𝑓 = 𝟎, 𝐊𝑖,𝑠 = 𝐊𝑖𝑎 ,𝑠 = 𝐊𝑖,𝑓 = 𝐊𝑖𝑎 ,𝑓 = 𝟎, 1 ≤ 𝑖 ≤ 𝑛,
(A.28)
25

𝖱𝑖,𝜃 = 0, 𝖱𝑖,𝑗𝑎 = 𝖱𝑖,𝑠 = 0, 𝖱𝑖,𝑘 = 0, 0 ≤ 𝑖 ≤ 𝑛, 0 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑘 ≤ 3,
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which yields the expression (4.10). Moreover, by (A.23), we have

𝜇𝑖 − 𝜇𝑖𝑎 = 𝜇𝑖
𝑒 − 𝜇𝑖𝑎,𝑒 + 𝑂

(

|

|

|

𝑂 − ℎ,𝑒𝑂
|

|

|

)

, 0 ≤ 𝑖 ≤ 𝑛. (A.29)

Substituting (A.25)6 and (A.29) into (A.19) in an homogeneous state and accounting for (A.28)4, (A.28)5, (A.28)6 give
𝑛
∑

𝑖,𝑗=0
𝖱𝑖,𝑗

[

𝜇𝑗 − 𝜇𝑗 𝑎 −
(

𝜇𝑗
𝑒 − 𝜇𝑗 𝑎,𝑒

)] (

𝜇𝑖
𝑒 − 𝜇𝑖𝑎,𝑒

)

+ 𝑂
(

|

|

|

ℎ𝑂 − ℎ,𝑒𝑂
|

|

|

2
)

≥ 0. (A.30)

Since (A.30) must hold for any
[

𝜇𝑗 − 𝜇𝑗 𝑎 −
(

𝜇𝑗 𝑒 − 𝜇𝑗 𝑎,𝑒
)]

, the following restriction holds
𝑛
∑

𝑖=0
𝖱𝑖,𝑗

(

𝜇𝑖
𝑒 − 𝜇𝑖𝑎,𝑒

)

= 0, 0 ≤ 𝑗 ≤ 𝑛, (A.31)

thus proving the restriction (4.14).

A.3. Constitutive restrictions on surface

As seen in Section 3, there are interface conditions associated respectively with the mass balances, linear momentum balance,
energy balance and entropy imbalance. Substituting the expression (A.14) in (3.24), and making use of (2.4), (A.10), (3.4)2, (3.10)2,
(3.6)2, (3.12)2 and (3.15)2, the pointwise free-energy imbalance (3.24) for 𝐱 ∈ 𝗌̂ yields

.
𝜓𝗌̂ + 𝜂 𝗌̂

.
𝜃 − 𝝈 𝗌̂ ∶

(

𝛁𝗌̂𝐯𝑠
)

+
𝑛
∑

𝑖=1

{

𝐧⋅
(

𝐣𝑖 + 𝑚𝑖𝐯𝑟
) [[

𝜇𝑖
]]

+ 𝐧⋅
(

𝐣𝑎𝑖 + 𝑚
𝑎
𝑖 𝐯
𝑎
𝑟
) [[

𝜇𝑎𝑖
]]}

+𝐧⋅
(

𝑚𝑓 𝐯𝑟
)

[[

𝜇𝑓 +
(

𝑐𝑓 𝐯𝑟
)2∕2

]]

+ 𝐧⋅
(

𝑚𝑎𝑓 𝐯
𝑎
𝑟

)

[[

𝜇𝑎𝑓 +
(

𝑐𝑎𝑓 𝐯
𝑎
𝑟

)2
∕2

]]

≤ 0.

(A.32)

The inequality (A.32) must hold for any admissible thermodynamic process. Following the framework of Gurtin and Jabbour
2002) for moving interface and assuming without loss of generality, an elastic membrane on the surface 𝑠 with 𝜓𝗌̂(𝐅𝗌, 𝜃), one obtains
he constitutive equalities for the surface entropy 𝜂 𝗌̂ and stress tensor 𝝈 𝗌̂

𝜂 𝗌̂ = −
𝜕𝜓𝗌̂

𝜕𝜃
, 𝝈 𝗌̂ =

(

𝜕𝜓𝗌̂

𝜕𝐅𝗌̂
⋅𝐅⊺

𝗌̂

)⊺

. (A.33)

Assuming no dissipation at the discontinuity surface (called ideal surface), the inequality (A.32) yields an equality at the interface
𝐱 ∈ 𝗌̂ since 𝐯𝑟, 𝐯𝑎𝑟 , 𝜇𝑓 , 𝜇𝑎𝑓 , 𝜇𝑖 and 𝜇𝑎𝑖 are thermodynamically independent (Hou et al., 1989; Lai et al., 1991; Sun et al., 1999; Liu,
2014). The resulting jump/continuity conditions for the chemical potentials are

[[

𝜇𝑓 +
(

𝑐𝑓 𝐯𝑟
)2 ∕2

]]

= 0,
[[

𝜇𝑎𝑓 +
(

𝑐𝑎𝑓 𝐯
𝑎
𝑟

)2
∕2

]]

= 0,
[[

𝜇𝑖
]]

= 0,
[[

𝜇𝑎𝑖
]]

= 0, 1 ≤ 𝑖 ≤ 𝑛. (A.34)

Appendix B. Linearized boundary value problem

In Appendix B.1, the assumptions in Section 7.1 are used to simplify the system of field equations and interface conditions as well
as the saturation condition, electroneutrality constraint and the constitutive relations. Explicit, general (nonlinear) expressions for the
free-energy are given in Appendix B.2. In Appendix B.3 we present the linearization procedure of the various constitutive relations.
Finally in Appendix B.4 we introduce auxiliary variables for the linearized mass balance equations and present the corresponding
boundary value problem.

B.1. Simplified governing equations

Accounting for the assumptions (L-1) to (L-7) of Section 7.1, the system of field equations and interface conditions simplifies
into

𝛁 ⋅ 𝝈 = 𝟎, 𝐧⋅ [[𝝈]] = 𝟎 and [[𝐮]] = 𝟎,

𝛁 ⋅
(

𝑚𝑓 𝐯𝑟
)

= 𝑟𝑐 + 𝑟𝑛 + 𝑟0, 𝐧⋅
[[

𝑚𝑓 𝐯𝑟
]]

= 0 and
[[

𝜇𝑓
]]

= 0,

𝛁 ⋅
(

𝐣𝑐 + 𝑚𝑐𝐯𝑟
)

= 𝑟𝑐 , 𝐧⋅
[[

𝐣𝑐 + 𝑚𝑐𝐯𝑟
]]

= 0 and
[[

𝜇𝑐
]]

= 0,

𝛁 ⋅
(

𝐣𝑛 + 𝑚𝑛𝐯𝑟
)

= 𝑟𝑛, 𝐧⋅
[[

𝐣𝑛 + 𝑚𝑛𝐯𝑟
]]

= 0 and
[[

𝜇𝑛
]]

= 0.

(B.1)

rom the assumptions (L-1), (L-3), (L-4) and (L-5), the free-energy of the isotropic continuum (5.11) gives
26

𝛹 = 𝛹𝑚𝑒𝑐ℎ((𝐁)) + 𝛹 𝑖𝑛𝑡(𝛷, J) + 𝛷𝜓𝑓 (𝜌𝑓 , 𝜌𝑐 , 𝜌𝑛), (B.2)
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(

and the constitutive relations (5.12) become

𝝈 = 2
J
𝐁⋅
𝜕𝛹𝑚𝑒𝑐ℎ
𝜕𝐁

+
𝜕𝛹𝑖𝑛𝑡
𝜕J

𝐈, 𝜇𝑓 =
𝜕𝜓𝑓
𝜕𝜌𝑓

, 𝜇𝑐 =
𝜕𝜓𝑓
𝜕𝜌𝑐

+
𝑧𝑐𝐹
𝑀mol

𝑐
𝜆, 𝜇𝑛 =

𝜕𝜓𝑓
𝜕𝜌𝑛

+
𝑧𝑛𝐹
𝑀mol

𝑛
𝜆, (B.3)

here a Lagrange multiplier is used, following assumption (L-9). The electroneutrality constraint (5.13) and the consequence of the
aturation condition (5.12) yield

𝑄𝐹
𝐹

+𝛷

(

𝑧𝑐
𝑀mol

𝑐
𝜌𝑐 +

𝑧𝑛
𝑀mol

𝑛
𝜌𝑛

)

= 0, 𝜌𝑓
𝜕𝜓𝑓
𝜕𝜌𝑓

+ 𝜌𝑐
𝜕𝜓𝑓
𝜕𝜌𝑐

+ 𝜌𝑛
𝜕𝜓𝑓
𝜕𝜌𝑛

= 𝜓𝑓 + 𝜆𝐹

(

𝑧𝑐𝜌𝑐
𝑀mol

𝑐
+

𝑧𝑛𝜌𝑛
𝑀mol

𝑛

)

+
𝜕𝛹 𝑖𝑛𝑡
𝜕𝛷

. (B.4)

he constitutive relations (4.10) become

⎡

⎢

⎢

⎣

𝑚𝑓 𝐯𝑟
𝐣𝑐
𝐣𝑛

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

K𝑤𝑤 K𝑤𝑐 K𝑤𝑛
K𝑐𝑤 K𝑐𝑐 K𝑐𝑛
K𝑛𝑤 K𝑛𝑐 K𝑛𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝛁𝜇𝑓 +
𝜌𝑐
𝜌𝑓

𝛁𝜇𝑐 +
𝜌𝑛
𝜌𝑓

𝛁𝜇𝑛

𝛁𝜇𝑐
𝛁𝜇𝑛

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎣

𝑟0
𝑟𝑐
𝑟𝑛

⎤

⎥

⎥

⎦

= −
⎡

⎢

⎢

⎣

R00 R0𝑐 R0𝑛
R𝑐0 R𝑐𝑐 R𝑐𝑛
R𝑛0 R𝑛𝑐 R𝑛𝑛

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜇𝑓 − 𝜇𝑎𝑓
𝜇𝑐 + 𝜇𝑓 − 𝜇𝑎𝑐 − 𝜇

𝑎
𝑓

𝜇𝑛 + 𝜇𝑓 − 𝜇𝑎𝑛 − 𝜇
𝑎
𝑓

⎤

⎥

⎥

⎥

⎦

,

(B.5)

where 𝜇𝑎𝑓 , 𝜇𝑎𝑐 and 𝜇𝑎𝑛 are constant scalars, as implied by (L-5).

B.2. Free-energy choices

We start by stating explicit, nonlinear forms for the free energy terms in (B.2). The term 𝛹𝑚𝑒𝑐ℎ pertaining to the strain energy
of the skeleton matrix is taken to follow a Neo-Hookean,38 hyperelastic model

𝛹𝑚𝑒𝑐ℎ(𝐁) =
𝐺
2

[

(𝐼1(𝐁) − 3 − ln 𝐼3(𝐁)) +
(𝐾
𝐺

− 2
3

)

(𝐼3(𝐁)1∕2 − 1)2
]

, (B.6)

where 𝐺 and 𝐾 are respectively the shear and bulk moduli of the porous skeleton’s initial (as 𝐁 → 𝐈), linearly elastic response and
𝐼𝑖(𝐁), 𝑖 = 1,… , 3 are the invariants of the right Green strain tensor 𝐁. Substituting (B.6) into (B.3)1, the Cauchy stress-tensor takes
the form

𝝈 = 𝐺
J

[

(𝐁 − 𝐈) +
(𝐾
𝐺

− 2
3

)

(𝐼3 − 𝐼
1∕2
3 )𝐈

]

+
𝜕𝛹 𝑖𝑛𝑡
𝜕J

𝐈. (B.7)

Different expressions for the large strain definition of the interaction energy 𝛹 𝑖𝑛𝑡 can be found in the literature (Gil, 2020;
Chapelle and Moireau, 2014). For simplicity we do not give any of the explicit nonlinear forms for 𝛹 𝑖𝑛𝑡 but will record in (B.11) its
small strain limit properties required for the linearization process.

Following Gil (2020), we adopt the following free energy for the fluid

𝜓𝑓 = 𝜌0𝜇
0
0 + 𝜌𝑐𝜇

0
𝑐 + 𝜌𝑛𝜇

0
𝑛 −

1
𝜒𝜃

(

1 −
𝜌𝑓
𝜌0𝑓

+ ln
𝜌𝑓
𝜌0𝑓

)

−𝑅𝜃

[

𝜌𝑐
𝑀mol

𝑐

(

1 − ln

(

𝜌𝑐∕𝑀mol
𝑐

𝜌0∕𝑀mol
0

𝛾𝑐

))

+
𝜌𝑛

𝑀mol
𝑛

(

1 − ln

(

𝜌𝑛∕𝑀mol
𝑛

𝜌0∕𝑀mol
0

𝛾𝑛

))]

,

(B.8)

where 𝜇00 , 𝜇0𝑐 and 𝜇0𝑛 are the reference potentials of the solvent and species 𝑐 and 𝑛 in an ideal solution, 𝜒𝜃 is the isothermal com-
pressibility coefficient of the fluid mixture, 𝜌0𝑓 is the reference fluid density at the reference hydrostatic pressure (e.g. atmospheric
pressure assumed equal to zero as reference here), 𝜌0 = 𝜌𝑓 − 𝜌𝑐 − 𝜌𝑛 is the density of the solvent, 𝑅 is the universal gas constant, 𝛾𝑐
and 𝛾𝑛 are the activity coefficients of species 𝑐 and 𝑛 accounting for the non-ideal mixture of the fluid.

Note that 𝜒𝜃 and 𝜌0𝑓 should depend on the composition of the fluid mixture and therefore on the concentrations of the species 𝑐
and 𝑛 in the solvent. In the case of high dilution of the species in the solvent, based on the experimental data of Perman and Urry

38 This is the simplest and most popular soft matter energy density model that satisfies polyconvexity (and is hence rank-one convex) and goes to infinity
27

𝛹𝑚𝑒𝑐ℎ → ∞) as its volume change tends to zero (𝐼3 → 0).
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(1929), one can assume that both 𝜒𝜃 and 𝜌0𝑓 only depend on the mass ratio of solvent 𝑐0 = 1 − (𝜌𝑐 + 𝜌𝑛)∕𝜌𝑓 . Substituting (B.8) into
(B.3)2,3,4, the chemical potentials are

𝜇𝑓 = 𝜇00 −
𝑅𝜃
𝜌0

(

𝜌𝑐
𝑀mol

𝑐
+

𝜌𝑛
𝑀mol

𝑛

)

+
𝜌𝑓 − 𝜌0𝑓
𝜒𝜃𝜌0𝑓 𝜌𝑓

(

1 −
𝜌𝑐 + 𝜌𝑛
𝜌0𝑓 𝜌𝑓

𝜕𝜌0𝑓
𝜕𝑐0

)

+
𝜌𝑐 + 𝜌𝑛
(𝜒𝜃𝜌𝑓 )2

(

1 −
𝜌𝑓
𝜌0𝑓

+ ln
𝜌𝑓
𝜌0𝑓

)

𝜕𝜒𝜃
𝜕𝑐0

,

𝜇𝑐 = 𝜇0𝑐 − 𝜇
0
0 +

𝑅𝜃
𝑀mol

𝑐
ln

(

𝜌𝑐𝛾𝑐𝑀mol
0

𝜌0𝑀mol
𝑐

)

+ 𝑅𝜃
𝜌0

(

𝜌𝑐
𝑀mol

𝑐
+

𝜌𝑛
𝑀mol

𝑛

)

+
𝑧𝑐𝐹
𝑀mol

𝑐
𝜆

− 1
(𝜒𝜃)2𝜌𝑓

𝜕𝜒𝜃
𝜕𝑐0

(

1 −
𝜌𝑓
𝜌0𝑓

+ ln
𝜌𝑓
𝜌0𝑓

)

+
𝜌𝑓 − 𝜌0𝑓
𝜒𝜃(𝜌0𝑓 )

2𝜌𝑓

𝜕𝜌0𝑓
𝜕𝑐0

,

𝜇𝑛 = 𝜇0𝑛 − 𝜇
0
0 +

𝑅𝜃
𝑀mol

𝑛
ln

(

𝜌𝑛𝛾𝑛𝑀mol
0

𝜌0𝑀mol
𝑛

)

+ 𝑅𝜃
𝜌0

(

𝜌𝑐
𝑀mol

𝑐
+

𝜌𝑛
𝑀mol

𝑛

)

+
𝑧𝑛𝐹
𝑀mol

𝑛
𝜆

− 1
(𝜒𝜃)2𝜌𝑓

𝜕𝜒𝜃
𝜕𝑐0

(

1 −
𝜌𝑓
𝜌0𝑓

+ ln
𝜌𝑓
𝜌0𝑓

)

+
𝜌𝑓 − 𝜌0𝑓
𝜒𝜃(𝜌0𝑓 )

2𝜌𝑓

𝜕𝜌0𝑓
𝜕𝑐0

,

(B.9)

and the saturation condition (B.4)2 yields with the help of (B.9)

𝑝𝑓 ∶= 1
𝜒𝜃

ln
𝜌𝑓
𝜌0𝑓

=
𝜕𝛹𝑖𝑛𝑡
𝜕𝛷

, (B.10)

here for an easier interpretation of the results, we define the left-hand side of (B.10) as the hydrostatic pressure of the fluid

𝑓 .

.3. Linearization of the constitutive relations

We proceed with the linearization of the constitutive relations (B.3), (B.4), (B.5) given in Appendix B.1 using the energy densities
n Appendix B.2 and recall the definitions of the non-dimensional perturbations introduced in (7.2).

The small strain limit of the derivatives of the interaction energy density 𝛹 𝑖𝑛𝑡 (Gil, 2020; Chapelle and Moireau, 2014) are

𝜕𝛹 𝑖𝑛𝑡
𝜕J

= −𝑏𝐵𝑖𝑜𝑡
𝜕𝛹 𝑖𝑛𝑡
𝜕𝛷

,
𝜕𝛹 𝑖𝑛𝑡
𝜕𝛷

=
𝐾𝑚

𝑏𝐵𝑖𝑜𝑡 −𝛷0

(

𝛷 −𝛷0 − 𝑏𝐵𝑖𝑜𝑡tr𝜺
)

; 𝑏𝐵𝑖𝑜𝑡 = 1 − 𝐾
𝐾𝑚

, (B.11)

here 𝑏𝐵𝑖𝑜𝑡 is Biot’s coefficient and 𝐾𝑚 is the bulk modulus of the solid material making the porous medium (Coussy, 2004). For the
ase of subcutaneous tissue, the bulk of the solid material 𝐾𝑚 is close to the one of a lipid cell whereas the linearized skeleton bulk

is expected to be closer to the subcutaneous injection pressure (Thomsen et al., 2014).39 Therefore, the Biot coefficient is expected
o be close to 1 in the linearized case, as illustrated by the values considered in Appendix B.5. For large deformations, the tissue
ulk compressibility is expected to be asymmetric with a compression bulk close to the one of the lipid cell (almost incompressible
ells tessellation) and a swelling bulk of the order of the injection pressures of Thomsen et al. (2014), representing the swelling
f the pores.40 The non-dimensional perturbations of the Cauchy stress and of the chemical potentials can be written at order 1 in
erm of the perturbation variables in view of (B.3)1, (B.11)1 and (B.10)

𝛿𝝈 = 2𝛿𝜺′ +
(𝐾
𝐺

tr𝛿𝜺 − 𝑏𝐵𝑖𝑜𝑡𝛿𝑝𝑓
)

𝐈. (B.12)

39 One could also estimate it with expressions similar to Hashin–Shtrikman’s bounds (Gil, 2020).
40 One can refer to the work of Gil (2020) for a proposal of an explicit expression of the asymmetric strain energy of tissue.
28
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The linearization of the expressions for the chemical potential (B.9) and fluid pressure (B.10) yields the following relations between
the chemical potential perturbations and 𝛿𝑝𝑓 , 𝛿𝜌𝑐 , 𝛿𝜌𝑛, 𝛿𝜆 and 𝛿𝜌𝑓

⎡

⎢

⎢

⎣

𝛿𝜇𝑓
𝛿𝜇𝑐
𝛿𝜇𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

C𝑓𝑝 C𝑓𝑐 C𝑓𝑛 0 C𝑓𝑓
C𝑐𝑝 C𝑐𝑐 C𝑐𝑛 𝑧𝑐 C𝑐𝑓
C𝑛𝑝 C𝑛𝑐 C𝑛𝑛 𝑧𝑛 C𝑛𝑓

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝑝𝑓
𝛿𝜌𝑐
𝛿𝜌𝑛
𝛿𝜆
𝛿𝜌𝑓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

C𝑓𝑝 =
𝐺𝑀mol

𝑐 𝑀mol
𝑛 𝜌𝑒0

𝜌𝑒𝑓𝑅𝜃
(

𝜌𝑒𝑐𝑀mol
𝑛 + 𝜌𝑒𝑛𝑀mol

𝑐
)

⎛

⎜

⎜

⎝

1 −
𝜌𝑒𝑐 + 𝜌

𝑒
𝑛

𝜌𝑒2𝑓

𝜕𝜌0𝑓
𝜕𝑐0

|

|

|

|

|

|𝑒

⎞

⎟

⎟

⎠

, C𝑓𝑓 =
𝜌𝑒𝑓
𝜌𝑒0
,

C𝑓𝑐 = −
𝜌𝑒𝑐
𝜌𝑒0

−
𝜌𝑒𝑐𝑀

mol
𝑛

𝜌𝑒𝑐𝑀mol
𝑛 + 𝜌𝑒𝑛𝑀mol

𝑐
, C𝑓𝑛 = −

𝜌𝑒𝑛
𝜌𝑒0

−
𝜌𝑒𝑛𝑀

mol
𝑐

𝜌𝑒𝑐𝑀mol
𝑛 + 𝜌𝑒𝑛𝑀mol

𝑐
,

C𝑐𝑝 =
𝑀mol

𝑐 𝐺

𝑅𝜃𝜌𝑒2𝑓

𝜕𝜌0𝑓
𝜕𝑐0

|

|

|

|

|

|𝑒

, C𝑐𝑓 = −
𝜌𝑒𝑓
𝜌𝑒0

(

1 +
𝜌𝑒𝑐𝑀

mol
𝑛 + 𝜌𝑒𝑛𝑀

mol
𝑐

𝜌𝑒0𝑀
mol
𝑛

)

,

C𝑛𝑝 =
𝑀mol

𝑛 𝐺

𝑅𝜃𝜌𝑒2𝑓

𝜕𝜌0𝑓
𝜕𝑐0

|

|

|

|

|

|𝑒

, C𝑛𝑓 = −
𝜌𝑒𝑓
𝜌𝑒0

(

1 +
𝜌𝑒𝑐𝑀

mol
𝑛 + 𝜌𝑒𝑛𝑀

mol
𝑐

𝜌𝑒0𝑀
mol
𝑐

)

,

C𝑐𝑐 =

(

𝜌𝑒𝑓 − 𝜌𝑒𝑛
)2

+ 𝜌𝑒𝑐𝜌
𝑒
𝑛𝑀

mol
𝑐 ∕𝑀mol

𝑛
(

𝜌𝑒0
)2

, C𝑐𝑛 =
𝜌𝑒𝑛

(

𝜌𝑒0
)2

[

𝜌𝑒𝑐 + 𝜌
𝑒
𝑛

(

1 + 2
𝑀mol

𝑐

𝑀mol
𝑛

)]

,

C𝑛𝑛 =

(

𝜌𝑒𝑓 − 𝜌𝑒𝑐
)2

+ 𝜌𝑒𝑐𝜌
𝑒
𝑛𝑀

mol
𝑛 ∕𝑀mol

𝑐
(

𝜌𝑒0
)2

, C𝑛𝑐 =
𝜌𝑒𝑐

(

𝜌𝑒0
)2

[

𝜌𝑒𝑛 + 𝜌
𝑒
𝑐

(

1 + 2
𝑀mol

𝑛

𝑀mol
𝑐

)]

.

(B.13)

Taking into account that the fluid density at reference hydrostatic pressure 𝜌0𝑓 is a function of the mass ratio of solvent 𝑐0 (see
omment before (B.9)) the linearization of the hydrostatic pressure (B.10) gives the following relation between the perturbation of
luid density in terms of the perturbations of the pressure and species concentrations

𝛿𝜌𝑓 = P𝑝𝛿𝑝𝑓 + P𝑐𝛿𝜌𝑐 + P𝑛𝛿𝜌𝑛,

[

P𝑝, P𝑐 , P𝑛
]

∶=
[

𝜒𝑒𝜃𝐺(𝜌
𝑒
𝑓 )

2,−𝜌𝑒𝑐 (𝜕𝜌
0
𝑓∕𝜕𝑐0)𝑒,−𝜌

𝑒
𝑛(𝜕𝜌

0
𝑓∕𝜕𝑐0)𝑒

]

∕
[

(𝜌𝑒𝑓 )
2 −

(

𝜌𝑒𝑐 + 𝜌
𝑒
𝑛
)

(𝜕𝜌0𝑓∕𝜕𝑐0)𝑒
]

.
(B.14)

The linearization of the electroneutrality constraint (B.4)1 and the saturation condition (B.10) gives

𝛿𝜌𝑐 = E𝑛𝛿𝜌𝑛 + E𝛷𝛿𝛷, tr𝛿𝜺 = S𝛷𝛿𝛷 + S𝑝𝛿𝑝𝑓 ,

E𝑛 = −
𝜌𝑒𝑛𝑧𝑛𝑀

mol
𝑐

𝜌𝑒𝑐𝑧𝑐𝑀mol
𝑛

, E𝛷 =
𝑄𝐹𝑀mol

𝑐

𝐹𝛷0𝜌𝑒𝑐𝑧𝑐
, S𝛷 = 𝛷0

𝑏𝐵𝑖𝑜𝑡
, S𝑝 = − 𝐺

𝑁𝑏𝐵𝑖𝑜𝑡
.

(B.15)

The system of four partial differential equations (B.1) shall be solved as a function of the continuous variables at the interface,
amely 𝛿𝐮, 𝛿𝜇𝑓 , 𝛿𝜇𝑐 and 𝛿𝜇𝑛. Once these fields are found, we invert the linearized constitutive laws to access the values of pressures,
ensities, porosity and Lagrange multiplier. Combining (B.13) and (B.15)2 and substituting (B.15)1 and (B.14) yield the following

(invertible) linear system

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝜇𝑓
𝛿𝜇𝑐
𝛿𝜇𝑛
tr𝛿𝜺

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

C𝑓𝑝 + C𝑓𝑓P𝑝 C𝑓𝑛 + C𝑓𝑓P𝑛 +
(

C𝑓𝑐 + C𝑓𝑓P𝑐
)

E𝑛 0
(

C𝑓𝑐 + C𝑓𝑓P𝑐
)

E𝛷
C𝑐𝑝 + C𝑐𝑓P𝑝 C𝑐𝑛 + C𝑐𝑓P𝑛 +

(

C𝑐𝑐 + C𝑐𝑓P𝑐
)

E𝑛 𝑧𝑐
(

C𝑐𝑐 + C𝑐𝑓P𝑐
)

E𝛷
C𝑛𝑝 + C𝑛𝑓P𝑝 C𝑛𝑛 + C𝑛𝑓P𝑛 +

(

C𝑛𝑐 + C𝑛𝑓P𝑐
)

E𝑛 𝑧𝑛
(

C𝑛𝑐 + C𝑛𝑓P𝑐
)

E𝛷
S𝑝 0 0 S𝛷

⎤

⎥

⎥

⎥

⎥

⎦

⏟ ⏞⏞ ⏟
𝐆

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝑝𝑓
𝛿𝜌𝑛
𝛿𝜆
𝛿𝛷

⎤

⎥

⎥

⎥

⎥

⎦

, (B.16)

which is complemented by the electroneutrality constraint (B.15)1 and pressure definition (B.14) to access the values of 𝛿𝜌𝑐 and
29

𝛿𝜌𝑓 .
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Following Loret et al. (2004), we write the following general form of the coefficients of (B.5)1 relating the relative velocity and
the chemical species fluxes to the corresponding chemical potential gradients

K𝑤𝑤 = (𝜌𝑒𝑓 )
2 𝑘ℎ
𝜇𝑣
, K𝑐𝑐 = 𝛷0𝜌𝑒𝑐

𝑀mol
𝑐 𝐷⋆

𝑐
𝑅𝜃

, K𝑛𝑛 = 𝛷0𝜌𝑒𝑛
𝑀mol

𝑛 𝐷⋆
𝑛

𝑅𝜃
,

K𝑤𝑐 = K𝑐𝑤 = −𝜔
𝜌𝑒𝑐
𝜌𝑒𝑓

K𝑤𝑤, K𝑤𝑛 = K𝑛𝑤 = −𝜔
𝜌𝑒𝑛
𝜌𝑒𝑓

K𝑤𝑤, K𝑐𝑛 = K𝑛𝑐 = 0,

(B.17)

where 𝑘ℎ is the linear intrinsic permeability of the tissue, 𝜇𝑣 the dynamic viscosity of the fluid, 𝜔 is the osmotic coefficient, 𝐷⋆
𝑐 and

𝐷⋆
𝑛 are the effective diffusivity coefficients of species 𝑐 and 𝑛 in the tissue and the following inequalities must hold to ensure that

the 3 × 3 matrix is positive semi-definite

𝑘ℎ ≥ 0, 𝜇𝑣 ≥ 0, 0 ≤ 𝜔 ≤ 𝜔𝑚𝑎𝑥 ∶=
⎡

⎢

⎢

⎣

𝛷0𝜇𝑣
𝑅𝜃𝑘ℎ

(

𝜌𝑒𝑐
𝑀mol

𝑐 𝐷⋆
𝑐
+

𝜌𝑒𝑛
𝑀mol

𝑛 𝐷⋆
𝑛

)−1
⎤

⎥

⎥

⎦

1∕2

. (B.18)

Similarly, following Gil (2020), we postulate the following form of the coefficients in the relation between absorption and
hemical potentials of the different species (B.5)2

R00 =
𝜌𝑒0𝑀

mol
0

𝑅𝜃𝜏0
, R𝑐𝑐 =

𝜌𝑒𝑐𝑀
mol
𝑐

𝑅𝜃𝜏𝑐
, R𝑛𝑛 =

𝜌𝑒𝑛𝑀
mol
𝑛

𝑅𝜃𝜏𝑛
,

R0𝑐 = R0𝑛 = R𝑐0 = R𝑐𝑛 = R𝑛0 = R𝑛𝑐 = 0,

(B.19)

here 𝜏0, 𝜏𝑐 and 𝜏𝑛 are respectively the characteristic times of absorption of the solvent and the species 𝑐 and 𝑛.

.4. Linearized mass balance equations

Having linearized the constitutive relations of the problem, we can now proceed with the mass balance equations. For the
ivergence terms of the (B.1)2,3,4, we define the following auxiliary variables 𝛿𝜶 in terms of 𝛿𝝁

⎡

⎢

⎢

⎣

𝛿𝛼𝑓
𝛿𝛼𝑐
𝛿𝛼𝑛

⎤

⎥

⎥

⎦

⏟⏞⏞⏟
𝛿𝜶

∶=
⎡

⎢

⎢

⎣

A𝑓𝑓 A𝑓𝑐 A𝑓𝑛
A𝑐𝑓 A𝑐𝑐 A𝑐𝑛
A𝑛𝑓 A𝑛𝑐 A𝑛𝑛

⎤

⎥

⎥

⎦

⏟ ⏞⏞ ⏟
𝐀

⎡

⎢

⎢

⎣

𝛿𝜇𝑓
𝛿𝜇𝑐
𝛿𝜇𝑛

⎤

⎥

⎥

⎦

⏟⏞⏞⏟
𝛿𝝁

,

A𝑓𝑓 = 1, A𝑐𝑓 = A𝑛𝑓 = 1 − 𝜔, A𝑓𝑐 =
(1 − 𝜔) 𝜌𝑒𝑐𝑀

mol
𝑛

𝜌𝑒𝑐𝑀mol
𝑛 + 𝜌𝑒𝑛𝑀mol

𝑐
, A𝑓𝑛 =

(1 − 𝜔) 𝜌𝑒𝑛𝑀
mol
𝑐

𝜌𝑒𝑐𝑀mol
𝑛 + 𝜌𝑒𝑛𝑀mol

𝑐
,

A𝑐𝑐 =

(

1 − 𝜔 +
𝛷0𝐷⋆

𝑐 𝜇𝑣𝑀
mol
𝑐 𝜌𝑒0

𝑅𝜃𝑘ℎ𝜌𝑒𝑐𝜌
𝑒
𝑓

)

A𝑓𝑐
A𝑐𝑓

, A𝑐𝑛 =

(

1 − 𝜔
𝜌𝑒𝑓 + 𝜌𝑒0
𝜌𝑒𝑓

)

A𝑓𝑛
A𝑛𝑓

,

A𝑛𝑐 =

(

1 − 𝜔
𝜌𝑒𝑓 + 𝜌𝑒0
𝜌𝑒𝑓

)

A𝑓𝑐
A𝑐𝑓

, A𝑛𝑛 =

(

1 − 𝜔 +
𝛷0𝐷⋆

𝑛 𝜇𝑣𝑀
mol
𝑛 𝜌𝑒0

𝑅𝜃𝑘ℎ𝜌𝑒𝑛𝜌
𝑒
𝑓

)

A𝑓𝑛
A𝑛𝑓

.

(B.20)

The fluxes in the divergence terms of (B.1)2,3,4 can then be written as

⎡

⎢

⎢

⎣

𝑚𝑒𝑓 𝐯𝑟
𝐣𝑐 + 𝑚𝑒𝑐𝐯𝑟
𝐣𝑛 + 𝑚𝑒𝑛𝐯𝑟

⎤

⎥

⎥

⎦

= − 1
rsph

⎡

⎢

⎢

⎢

⎣

𝑎𝑓𝛁𝛿𝛼𝑓
𝑎𝑐𝛁𝛿𝛼𝑐
𝑎𝑛𝛁𝛿𝛼𝑛

⎤

⎥

⎥

⎥

⎦

,

𝑎𝑓 = 𝑅𝜃
(𝜌𝑒𝑓 )

2

𝜌𝑒0

(

𝜌𝑒𝑐𝑀
mol
𝑛 + 𝜌𝑒𝑛𝑀

mol
𝑐

𝑀mol
𝑐 𝑀mol

𝑛

)

𝑘ℎ
𝜇𝑣
, 𝑎𝑐 =

𝜌𝑒𝑐
𝜌𝑒𝑓
𝑎𝑓 , 𝑎𝑛 =

𝜌𝑒𝑛
𝜌𝑒𝑓
𝑎𝑓 .

(B.21)

Consequently, the mass balances (B.1)2,3,4 can be written in the following dimensionless form

r2sph

𝑎𝑓
𝑟𝑓

⏟⏞⏞⏟

+𝛁 ⋅
(

𝛁𝛿𝛼𝑓
)

= 0,
r2sph

𝑎𝑐
𝑟𝑐

⏟⏞⏞⏟

+𝛁 ⋅
(

𝛁𝛿𝛼𝑐
)

= 0,
r2sph

𝑎𝑛
𝑟𝑛

⏟⏞⏞⏟

+𝛁 ⋅
(

𝛁𝛿𝛼𝑛
)

= 0,
(B.22)
30
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where we have introduced the auxiliary variable 𝛿𝜷 in terms of 𝛿𝝁

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛿𝛽𝑓

𝛿𝛽𝑐

𝛿𝛽𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏟
𝛿𝜷

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

𝜌𝑒0𝑀
mol
0

𝜏0
+
𝜌𝑒𝑐𝑀

mol
𝑐

𝜏𝑐
+
𝜌𝑒𝑛𝑀

mol
𝑛

𝜏𝑛

) r2sph
(

𝜌𝑒𝑐𝑀
mol
𝑛 + 𝜌𝑒𝑛𝑀

mol
𝑐

)

𝑎𝑓𝑀mol
𝑐 𝑀mol

𝑛 𝜌𝑒0

r2sph𝜌
𝑒
𝑐

𝑎𝑓 𝜏𝑐

r2sph𝜌
𝑒
𝑛

𝑎𝑓 𝜏𝑛
r2sph𝜌

𝑒
𝑐𝑀

mol
𝑐

𝑎𝑐𝜏𝑐𝜌𝑒0

(

𝜌𝑒𝑐
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Combining the above relations (B.20) to (B.23), we arrive in the compact form of the linearized mass balance equations, namely:
𝛁 ⋅

(

𝛁𝐀𝛿𝝁
)

− 𝐁𝛿𝝁 = 𝟎, which is reported in (7.5). The corresponding boundary conditions in terms of 𝛿𝝁 are recorded in (7.6).
Note that the chemical potentials are not the fields that one can naturally control and measure in an experiment. One must

instead work with a hydrostatic pressure 𝛿𝑝inj
𝑓 and concentrations of chemical species 𝛿𝜌inj

𝑐 and 𝛿𝜌inj
𝑛 respecting the electroneutrality

constraint in the injection fluid cavity (where 𝑄𝐹 = 0). Using (B.13), the set of chemical potentials at r = 1 are thus found to be

⎡

⎢

⎢

⎢

⎢

⎣

𝛿𝜇inj
𝑓

𝛿𝜇inj
𝑐

𝛿𝜇inj
𝑛

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

C𝑓𝑝 + C𝑓𝑓P𝑝 C𝑓𝑐 + C𝑓𝑓P𝑐 C𝑓𝑛 + C𝑓𝑓P𝑛
C𝑐𝑝 + C𝑐𝑓P𝑝 C𝑐𝑐 + C𝑐𝑓P𝑐 C𝑐𝑛 + C𝑐𝑓P𝑛
C𝑛𝑝 + C𝑛𝑓P𝑝 C𝑛𝑐 + C𝑛𝑓P𝑐 C𝑛𝑛 + C𝑛𝑓P𝑛
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.5. Parameters used in the linear model

The values of the parameters used in Section 7 are gathered in (B.25). Their orders of magnitude have been estimated based
n existing work and estimations in the literature (e.g. Thomsen et al. (2014), Comley and Fleck (2011), Zheng et al. (2021), Leng
t al. (2021a), de Lucio et al. (2023) and Swartz and Fleury (2007)) as well as some hypothesis for the simplicity of the analytical
ork.

Symbol Value Unit Description
𝑄𝐹 ±1𝑒3 C m−3 Density of charges attached to tissue
𝐹 96485 C mol−1 Faraday constant
𝜃 300 K Temperature
𝑅 8.314 J K−1 mol−1 Universal gas constant
rsph 1𝑒−4 m Spherical inclusion radius
𝐾 1𝑒5 Pa Skeleton bulk modulus
𝐺 1𝑒3 Pa Skeleton shear modulus
𝛷0 0.05 – Porosity
𝐾𝑚 1𝑒7 Pa Bulk modulus of material making the porous structure
𝑘ℎ 1𝑒−13 m2 Linear intrinsic permeability of the tissue
𝜇𝑣 3.5𝑒−3 Pa s Dynamic viscosity of the fluid
𝜒𝜃 4.6𝑒−10 Pa−1 Fluid compressibility coefficient
𝜌𝑒𝑓 1𝑒3 kg m−3 Equilibrium fluid density
𝜌𝑒𝑐 3 kg m−3 Equilibrium cation density
𝜕𝜌0𝑓
𝜕𝑐0

|

|

|

|

|

|𝑒

1 kg m−3 Mixture fluid density evolution

𝑀mol
𝑐 22.98𝑒−3 kg mol−1 Molar mass of cation (Na+)

𝑀mol
𝑛 35.45𝑒−3 kg mol−1 Molar mass of anion (Cl−)

𝑀mol
0 22𝑒−3 kg mol−1 Molar mass of solvent (water)
𝑧𝑐 +1 – Number of charge of cation (Na+)
𝑧𝑛 −1 – Number of charge of anion (Cl−)

𝐷⋆
𝑐 ; 𝐷⋆

𝑛 1𝑒−10 m2 s−1 Effective diffusivity coefficients of species in tissue
𝜏0 ; 𝜏𝑐 ; 𝜏𝑛 1𝑒3 s Absorption timescale of species and solvent

(B.25)
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