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Abstract
Solenoids, ubiquitous in electrical engineering applications, are devices formed from a coil
of wire that use electric current to produce a magnetic field. In contrast to typical electrical
engineering applications that pertain to their magnetic field, of interest here is their use as
actuators by studying their mechanical deformation. An analytically tractable model of par-
allel, coaxial circular rings is used to find the solenoid’s axial deformation when subjected to
a combined electrical (current) and mechanical (axial force) loading. Both finite and infinite
solenoids are considered and their equilibrium configurations as well as their stability are
investigated as functions of their geometry and applied current intensity.

Keywords Deformable electric solenoid · Actuator · Stability

Mathematics Subject Classification 70H03 · 70H14 · 74F15 · 74K10 · 74M05

1 Introduction

A solenoid is a device that converts electrical to mechanical energy, using an electromag-
net formed from a coil of wire. Typically, it consists of a multiturn coil of a low resistivity
conducting (metallic) wire surrounded by a frame, which is also a magnetic flux carrier to
enhance its efficiency. The device produces a magnetic field from electric current and in elec-
trical engineering applications uses the magnetic field to create linear motion through a mov-
ing part, termed “plunger” (magnet or another coil). In mechanics applications, solenoids
are used to study ductility of metals by the expansion of a thin ring-shaped specimen (see
[2, 10, 11]) or in Electromagnetic Forming (EMF) (see [8, 12]). To avoid electric shorts
between turns of the coil, as well as mechanical deformation, the solenoid – particularly in
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the case of the large currents in EMF applications – is encased in a rigid isolating and mag-
netically inert material, usually epoxy (e.g., see [9, 11]). Henceforth in this work the terms
“solenoid” and “coil” are used interchangeably.

In contrast to the electrical engineering applications that ignore (and are conceived to
prevent) mechanical deformations, of interest here is the use of electric current induced me-
chanical deformations for designing actuators. To the best of the authors’ knowledge, no
study of the mechanical deformation of a coil induced by electric current is readily accessi-
ble, in contrast to an abundance of long-established, classical work on the magnetic fields in
rigid solenoids (e.g., see [3, 4]) as well as on the deformation of helicoidal springs subjected
to purely mechanical loads (e.g., see [6]). To fulfill our goal of finding the mechanical re-
sponse of a coil subjected to an electric current, we hereby propose an analytically tractable
model of parallel, coaxial rings to investigate the solenoid’s axial deformation when sub-
jected to a combined electrical (current) and mechanical (axial force) loading.

The problem’s general formulation is presented in Sect. 2. More specifically, both finite
and infinite solenoids are considered, based on the well known (e.g., see [5]) analytical result
of the mutual magnetic inductance of two coaxial rings subjected to an electric current. The
finite extent solenoids are investigated in Sect. 2.1 while the infinite ones in Sect. 2.2. The
equilibrium configurations of these coils and their stability are also investigated. It is worth
mentioning that in the infinite solenoid case it will be shown that the most critical unstable
mode (i.e., the one corresponding to the minimum eigenvalue of the stability operator) is a
long wavelength one. We consider both naked coils as well as coils encased in a hyperelastic
tube. The tube can protect against electric shorts but must be soft enough as to not adversely
influence the coil’s mechanical straining.

Results are presented in Sect. 3 using dimensionless quantities. In particular the influence
of geometry and encasing tube’s stiffness on the force–strain curves of an infinite coil are
studied in Sect. 3.1. It is found that the spacing between turns as well as the encasing tube
stiffness play a major role in the coil’s mechanical response. Moreover, the coil’s stability
– determined by the sign of the force–strain curve’s slope in view of the long wavelength
critical mode – can change depending on the magnitude of the applied current. Analogous
results for the finite solenoid case are presented in Sect. 3.2, where we study the strain
distribution as a function of reference position and in particular the inevitable boundary
layer.

Results for the infinite solenoid are given in dimensionless form while for finite solids
some realistic values of electrical currents and geometry are used in the calculations. More-
over, the issues of what is a realistic range of stiffness ratios for the hyperelastic tubes and
what is a maximum allowable electric current for different coil geometries and conducting
materials are addressed respectively in Appendix A and Appendix B.

2 Problem Formulation

In this section we formulate the electromechanical deformation problem for a solenoid sub-
jected to an electric current I and a mechanical force fext along its axis. A finite as well
as an infinite case are considered and we seek the corresponding equilibrium solutions and
their stability.

2.1 Finite Solenoids

A schematic representation of the coil of length L is given in Fig. 1, which consists of n

turns spaced at a distance � = L/n between them. To improve electrical insulation, the coil



Mechanical Response of Metal Solenoids Subjected to Electric Currents 409

Fig. 1 Schematic of the
solenoid’s reference
configuration; the turn i with
initial position Xi in the
reference configuration
(I = 0, fext = 0) moves to
position xi in the current
configuration (I �= 0, fext �= 0)

can be encased in a hyperelastic tube of thickness h. To avoid the complicated numerical cal-
culations required for an helicoidal geometry, the solenoid is assumed to consist of identical,
parallel thin rings1 each of radius a and circular cross-section.

Assuming that the rings remain parallel and coaxial, to find the equilibrium configuration
of the coil subjected to a current I and an external mechanical force fext one has to determine
the current positions xi of the rings, initially at Xi as indicated in Fig. 1. To this end we
minimize the system’s potential energy P , which consists of a mechanical part Wmec, an
electrical part Welec and an external contribution Wext due to the applied (and opposite)
mechanical forces ±fext at the two ends of the solenoid along its axial direction.

P ≡ Wmec +Welec +Wext . (2.1)

The mechanical energy consists of the energy stored in the coil2 plus the energy of the
hyperelastic encasing tube (assumed neo-Hookean).

Wmec =
∑

1≤i≤n

{
ks

2
(xi+1 − xi − �)2 + AtGt�

2
[(λi)

2 + 2(λi)
−1 − 3]

}
, λi ≡ (xi+1 − xi)/� .

(2.2)
In the above expression the first (quadratic) term represents the elastic energy of the (naked)
coil associated with the change of spacing between two adjacent turns and ks denotes the
corresponding stiffness. The second term is the elastic energy associated with the change of
length of a section of the encasing tube3 of initial (at zero stress) shear modulus Gt , initial
length � and cross sectional area At = 2πah, (h � a) while λi is the corresponding stretch
ratio for that section of the tube.

The electric energy is due to the interaction of all rings and given by (see [5])

Welec = −
∑

1≤i,j≤n+1

{
I 2

2
μ0 Lij

}
; Lij =

{
2aF(zij ), for i �= j,

ci, for i = j,
(2.3)

where F(z) ≡ [(1 − z2/2)K(z) − E(z)]/z, and zij ≡ [1 + ((xi − xj )/2a)2]−1/2 for i �= j .
The functions K(z) and E(z) entering the expression for the mutual inductance Lij are,

1It should be noted here that a coil with parallel rings can also be realized experimentally (see [7]).
2Due to the small pitch angle of the solenoid coils considered here, even for relatively large relative dis-
placements ei between turns (ei ≡ λi − 1) — in Sect. 2.2 we consider up to |ei | = |e| = 0.5 — the force-
displacement relation for the coil is assumed to remain linear. Large strain nonlinear effects are taken into
account in the hyperelastic encasing tube which provides a stiffening response with increasing e.
3The tube is assumed incompressible neo-Hookean and in a uniaxial stress state; different constitutive laws
could easily be considered.
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respectively, the complete elliptic integrals of the first and second kind. Notice that only the
mutual inductance terms i �= j need to be considered in the electric energy, as the energy
stored due to the self-inductance Lii = ci is independent of the coil deformation.4

It is useful for the subsequent derivations to give the definitions for the complete elliptic
integrals of the first and second kind and their derivatives (e.g. see [1]).

K(z) ≡
∫ π/2

0
[1 − z2 sin2 x]−1/2dx , E(z) ≡

∫ π/2

0
[1 − z2 sin2 x]1/2dx ,

dK(z)

dz
= [E(z)/(1 − z2) − K(z)]/z ,

dE(z)

dz
= [E(z) − K(z)]/z .

(2.4)

Finally the external contribution Wext from the mechanical forces ±fext at the ends of the
solenoid is

Wext = −(xn+1 − x1 − L)fext . (2.5)

For given values of I and fext, the system’s equilibrium equations are obtained by extrem-
izing P(xi; I, fext)

∂P
∂xi

= 0 , 1 ≤ i ≤ n + 1 . (2.6)

Note that if xi(I, fext) is a solution to (2.6), then xi(I, fext) + c, ∀c ∈R is also a solution
to the same equilibrium equations since a rigid body translation of the system leaves its
energy invariant, as verified by inspection of the expressions for the energies in (2.2), (2.3),
and (2.5). This translation invariance of (2.6) is eliminated by adding a penalty term to the
potential energy, i.e., taking P + (1/2)(

∑
xi)

2.
Solutions to the above equations are obtained numerically by an incremental Newton–

Raphson method for the applied current I and force fext. The initial guess for xi is obtained
by using the fact that in the absence of electric current (I = 0), all turns of the solenoid are
equally spaced5 xi+1 −xi = �(1+ e) and e = ksfext/�, where e is the corresponding uniform
strain.

The stability of the thus obtained equilibrium solution is established by investigating the
positive definiteness of the second derivative of the penalized potential energy ∂2P/∂xi∂xj

evaluated on the equilibrium solution of interest, i.e., whether the minimum eigenvalue of
this matrix is positive. This stability criterion assumes the dynamics of electric currents
are not important and, thus, that P serves as a potential energy for which the Principle of
Minimum Potential Energy is applicable.

2.2 Infinite Solenoids

Analytical results can be obtained by considering an infinite solenoid. In addition to the
interest of this problem for its own merit, it provides an independent verification of the nu-
merical calculations for the finite solenoids when the number of turns n → ∞ by comparing
the infinite solenoid results to those of the middle section (i.e., away from the boundaries)
of a finite solenoid with the same coil geometry and subjected to the same electric current.

4The self-inductance of a circular ring of radius a is a constant Lii = ci that depends only on the coil wire’s
cross-sectional geometry; ci = a[ln(8a/ρ) − 7/4] for a circular section of radius ρ (e.g., see [5, 10]).
5For simplicity the naked coil ring spacing is given but the uniform strain solution e in the presence of an
encasing hyperelastic tube is a straightforward solution of (2.6).
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In the fundamental solution of the infinite solenoid all coils displace by the same relative
amount �e, where e is the coil’s uniform strain, and thus the deformed spacing between two
rings is

xi+q − xi = q�(1 + e) ; q ∈ Z . (2.7)

For the infinite solenoid we need the potential energy per unit cell, calculated by ap-
propriately adapting, with the help of (2.7), the expressions for the mechanical and electric
energies in (2.2) and (2.3), respectively. One obtains the following expression for the poten-
tial energy per unit cell (also denoted by P for simplicity), i.e., one ring and the surrounding
elastic tube segment of initial (reference configuration) length �

P = ks

2�
(�e)2 + AtGt

2
[(1 + e)2 + 2(1 + e)−1 − 3] − I 2μ0(

2a

�
)

q=Q∑

q=1

F(zq(e)) − fexte ,

zq(e) ≡ [1 + (q�(1 + e)/2a)2]−1/2 , (2.8)

with Q ∈ N the maximum number of rings influencing the stored electric energy in either
direction of the cell and hereinafter referred to as the “range number”.

Switching from the force-control formulation of (2.8) to a strain (e control) formulation,
the internal force–strain relation of the infinite solenoid6 is given by:

f ≡ dP
de

= ks�e + AtGt [(1 + e) − (1 + e)−2]

− I 2μ0(
�

2a
)

q=Q∑

q=1

zq(e)

[
K(zq(e)) − E(zq(e))

1 − z2
q(e)/2

1 − z2
q(e)

]
q2 . (2.9)

The stability of the fundamental solution is found by examining the sign of the mini-
mum eigenvalue βmin(e) of the second derivative of the potential energy for a given e.
Using the Bloch–Floquet theory for representing all possible bounded perturbations of the
translationally-invariant infinite system, the corresponding eigenvalue β(ω; e) is found to
satisfy

β(ω; e)δxi =
q=+Q∑

q=−Q

∂2P
∂xi∂xi+q

∣∣∣∣
e

δxi+q , δxi+q = δxi exp[2π iωq] ,

ω ∈ (0,1] , q ∈ Z , Q ∈N , (2.10)

where i = √−1 denotes the imaginary unit, ωq represents the perturbation’s frequency, and
P refers to the potential energy of an infinite solenoid. Note that the long (much larger than
the unit cell) wavelength (1/ωq) perturbations correspond to ω −→ 0. Taking advantage of
the existence of a potential energy and its translational invariance in the x-direction (i.e.,
∂2P/∂xi∂xi+q = ∂2P/∂xi∂xi−q ), using the properties of the elliptic integrals in (2.4), one

6An externally applied reaction force fext = f is needed for maintaining the applied strain e.
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obtains from (2.8) and (2.10) the following expression for the eigenvalue β(ω; e)

β(ω; e) = [1 − cos(2πω)]
⎧
⎨

⎩M(e) −
q=Q∑

q=1

Cq(e)

[
1 − cos(2πωq)

1 − cos(2πω)

]⎫
⎬

⎭ ,

M(e) ≡ ks + AtGt

�
[1 + 2(1 + e)−3] ,

Cq(e) ≡ I 2μ0

z3
q(e)

2a

[
K(zq(e))

2
+ E(zq(e))

z2
q(e) − 1/2

1 − z2
q(e)

]
,

(2.11)

where zq(e) is defined in (2.8).
One can verify that M(e) > 0 and Cq(e) > 0 ,∀q ∈ N. The ratio (1 − cos(2πωq))/(1 −

cos(2πω)) > 0 is positive for all ω and is maximized as ω −→ 0, where its leading asymp-
totic term becomes q2. Thus, the minimum eigenvalue always occurs near ω = 0, and in this
neighborhood we have7

β(ω; e) = 2(πω)2B(e) , B(e) ≡ M(e) −
q=Q∑

q=1

Cq(e)q
2 . (2.12)

Consequently the principal solution of the infinite solenoid is stable when the curvature
of the β(ω; e) curve is positive, i.e., when B(e) > 0. The first instability occurs for a long
wavelength mode (ω −→ 0) immediately after B(e) = 0 (when B(e) < 0). The stability
criterion for the long wavelength mode can be independently obtained by taking the second
e-derivative of the unit cell potential energy, defined in (2.8)

d2P(e)

de2
= �B(e) , (2.13)

where B(e) is defined by (2.12). An important conclusion from (2.9) is that the stabil-
ity of the infinite solenoid is given by the slope of the force–strain curve since df/de =
d2P(e)/de2 = �B(e).

3 Results and Discussion

All results in this section are presented in non-dimensional form using the following vari-
ables for geometry R, current J , tube stiffness S, and force F

R ≡ a/� , J ≡ I (ks�/μ0)
−1/2 , S ≡ (AtGt/ks�) , F ≡ f/(ks�) . (3.1)

3.1 Infinite Solenoid

Using the above-defined dimensionless quantities, we solve the strain-control infinite
solenoid equilibrium equation in (2.9) to obtain the corresponding force–strain response for
different geometries and applied currents and the results are presented in Fig. 2 and Fig. 3.
More specifically in Fig. 2 we investigate the influence of geometry for 10 ≤ R ≤ 100 and

7As expected from translational invariance, an eigenvalue β = 0 always exists and corresponds to ω = 0 (see
also (2.11)).
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Fig. 2 Influence of dimensionless radius R ≡ a/� on the force–strain curves in an infinite solenoid for dif-
ferent stiffnesses S ≡ AtGt /ks� of the encasing hyperelastic tube. All calculations correspond to a fixed
dimensionless current J = 0.1. The stability of the infinite solenoid is given by the slope of these curves:
positive (negative) slope corresponds to a stable (unstable) solenoid

tube stiffness 0 ≤ S ≤ 1,000 on the force–strain curves under a fixed dimensionless cur-
rent J = 0.1. In all calculations for Fig. 2 a range number Q = 1,600 is used to ensure a
convergence accuracy for the equilibrium internal force f of 10−5. Recall that the stability
of the infinite solenoid is given by the slope of the force–strain curves: positive (negative)
slope corresponds to a stable (unstable) solenoid, since the long wavelength (much larger
than the unit cell) is always the critical mode, as shown in Sect. 2.2. Notice that for the
naked (S = 0) solenoid in Fig. 2a the electric current influence increases significantly with
increasing R, the dimensionless reference inverse-spacing between turns. Moreover, from
the remark made following (2.13), the naked solenoid is always unstable, for sufficiently
large electric current. A ten-fold increase in the tube stiffness (S = 10) presented in Fig. 2b
shows no significant difference from the naked coil case in Fig. 2a for large values of R ≥ 70
but an important impact for the lower values R ≤ 20 that leads to stable equilibria of the cor-
responding solenoids.

The situation changes considerably for the case of a much stiffer encasing tube that sta-
bilizes the infinite coil with the larger spacings – positive slopes of the force–strain curves
for 10 ≤ R ≤ 80 – as recorded in Fig. 2c for S = 100. Finally the solenoid with the stiffest
encasing tube S = 1,000 is always stable independently of the spacing between turns, as
observed in Fig. 2d.
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Fig. 3 Influence of the dimensionless current J on the force–strain curves in an infinite solenoid for different
stiffnesses S ≡ AtGt /ks� of the encasing hyperelastic tube and different dimensionless radii R ≡ a/�. The
stability of the infinite solenoid is given by the slope of these curves: positive (negative) slope corresponds to
a stable (unstable) solenoid

In Fig. 3 we investigate the influence of the dimensionless current J on the force–
strain curves for different coil geometries (R = 1,10,100) and tube stiffnesses (S =
0,10,100,1000). In these calculations, and depending on the coil dimensionless radius R,
a range number Q = 1,600 is necessary for the coil with the largest spacing between turns
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(R = 1), a range number Q = 12,800 is necessary for the coil with the intermediate spacing
between turns (R = 10) and a much higher range number Q = 102,400 is needed for the
coil with the closest spacing between turns (R = 100) to ensure a convergence accuracy for
the equilibrium force f of 10−5.

By comparing the coils with the largest spacing between turns (R = 1), one sees from
Fig. 3a that in the naked case (S = 0) the coil is unstable for applied currents J > 0.2 and
strains lower than e < 0.4. Upon increasing the current one requires higher strains to stabi-
lize the coil. The addition of a relatively soft encasing tube (S = 10) has a strong stabilizing
effect on the solenoid, as seen in Fig. 3b, where all force–strain curves essentially coincide
with the response of the hyperelastic encasing tube and are practically unaffected by the
electric currents.

For solenoids with an intermediate turn spacing (R = 10) one sees for the naked case in
Fig. 3c that the solenoid is unstable for all applied currents, while the addition of a hypere-
lastic tube with S = 100 reverses the situation by stabilizing the coil for all currents, as seen
in Fig. 3d. For the coils with the smallest spacing between turns (R = 100), the naked ones
are always unstable according to Fig. 3e, while it takes an encasing hyperelastic tube with
considerably higher stiffness (S = 1,000) to stabilize it for lower current values of J ≤ 0.25,
as seen in Fig. 3f.

3.2 Finite Solenoid

In order to give a practical view8 for the deformation of a solenoid subjected to an electric
current I , we present in this section results for three naked (At = 0), helicoidal solenoids,
all of radius a = 5 × 10−2 m, made of copper (Es = 160 × 109 Pa, νs = 1/3) wire of radius
ρ = 10−3 m with lengths L = a, 10a, 40a. No end forces are applied (fext = 0) resulting
in contraction (strains e < 0). For each coil we consider two different number of turns n =
50, 100 and the spacing between two turns is � = L/n.

The stiffness ks for a helicoidal spring of pitch angle α = arctan(�/2πa) is given by (e.g.,
see [6])

helicoidal solenoid stiffness: ks = ρ4

(2a)3

Es cosα

1 + νs cos2 α
. (3.2)

The influence of the applied current I on the deformed shape for the above-described fi-
nite solenoids is presented in Fig. 4 which depicts the strain distribution along each solenoid,
defined as the change of spacing between two rings divided by the initial ring spacing, i.e.,
(xi+1 − xi − �)/�. All cases presented here pertain to stable solutions, as the minimum
eigenvalue of the stability matrix is positive (see discussion following (2.6) at the end of
Sect. 2.1).

More specifically, we compare the deformed shapes of same length L solenoids subjected
to the same current I but with a different number of turns n and hence with different coil
densities. In Fig. 4a and Fig. 4b we compare two solenoids of n = 50 and n = 100 turns,
respectively, both with the same total length L = 40a and subjected to a current I = 150 A.
In Fig. 4c and Fig. 4d we compare two solenoids of n = 50 and n = 100 turns, respectively,
both with the same total length L = 10a and subjected to a current I = 20 A. Finally, in
Fig. 4e and Fig. 4f we compare two solenoids of n = 50 and n = 100 turns, respectively,
both with the same total length L = a and subjected to a current I = 1 A. To relate results

8Standard MKSA system of units is used in this subsection.
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Fig. 4 Influence of number of coils n on the strain profile in naked, unconstrained (i.e., no end forces)
helicoidal solenoids, all of radius a = 5 cm and made of copper wire of radius ρ = 1 mm. The subfigures in
each row correspond to coils that have the same length and current. Note the different strain scales between
the two columns. The figures in each column correspond to coils that have the same number of turns. All
equilibrium solutions are found to be stable

to the previous subsection, the corresponding dimensionless radius R and current J are also
given in parentheses at the caption below each subfigure.
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It should be noted at this point that the maximum pitch angle of these helicoidal solenoids
is rather small (α ≈ 7◦, which corresponds to the longest solenoid: L/a = 40 with the
smaller number of turns: n = 50), thus justifying the parallel ring assumption made in
Sect. 2.

Notice that as the spacing between turns decreases (going from top to bottom rows) the
large uniform strain zone at the middle of the coil progressively disappears since a larger
number of rings strongly interact due to the shorter distance between them for the denser
coils. On the contrary obtaining the same maximum strain requires a lower current for the
higher density solenoid, as one can observe by comparing the three different rows (from
top to bottom) in Fig. 4. Additionally, as expected, for the same current the strains are
considerably lower (about an order of magnitude) for the coils with the lower number of
turns, as a comparison of the subfigures on the left and right rows of Fig. 4. The maximum
strain in each case can be adequately approximated by the infinite solenoid calculations
in Sect. 2.2 with the best approximation corresponding to the longest coil L/a = 40 (e ≈
0.0115 for n = 50 turns and e ≈ 0.137 for n = 100 turns).

A remark is also in order at this point, pertaining to the influence of an externally applied
force fext. Not surprisingly, our calculations show that the presence of external forces leads
to the addition of a uniform strain e, resulting in a simple shift (up or down along the y-axis
depending on the sign of the applied external force) of the curves in Fig. 4, thus justifying
the absence of corresponding additional plots.

4 Conclusion

In contrast to the electrical engineering applications, we are interested here in solenoids
as actuators by exploiting their mechanical deformation resulting from an electric current.
Since – to the best of the authors’ knowledge – the mechanical deformation of a coil induced
by current have not been the object of previous investigations in the engineering literature,
we present an analytically tractable model of parallel, coaxial rings to find the solenoid’s
axial deformation when subjected to a combined electrical (currents) and mechanical (axial
forces) loading. We consider both naked coils as well as coils encased in hyperelastic tubes,
as the latter case can protect against electric shorts but be soft enough to not significantly
influence the coil’s mechanical straining.

We study the equilibrium configurations and stability of both finite and infinite solenoids
and find that in the latter case the critical unstable mode, i.e., the one minimizing the lowest
eigenvalue of the stability operator for a given geometry and current, is a long wavelength
one; consequently the stability of the infinite solenoid is determined by the slope of the
force–strain curves: positive (negative) slope corresponds to a stable (unstable) solenoid. It
should be noted that in the case of finite solenoids we account for the interaction of all rings
while for the case of infinite solenoids we account for the necessary number of rings needed
to find the equilibrium force with a prescribed accuracy.

It is found that the spacing between turns as well as the encasing tube stiffness play a
major role in the coil’s mechanical response. Moreover, the coil’s stability can change de-
pending on the magnitude of the applied current. Analogous results for the finite solenoid
case are obtained by studying the strain distribution as a function of position, where we
find that the size of the strain boundary layer increases as the spacing between turns de-
creases.
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Appendix A: Naked and Tube-Encased Coil Stiffnesses

The stiffness of the naked solenoid depends on its geometry. For the helicoidal coil the stiff-
ness ks is given by (3.2). For the parallel ring naked solenoid, the stiffness of the separating
ligament is

parallel ring solenoid stiffness: ks = Esπρ2

�
. (A.1)

Assuming a minimum encasing tube thickness of h = 2ρ, we conclude from the defini-
tions in (3.1) of the dimensionless tube stiffness parameter S and the aspect ratio R that

helicoidal solenoid: S = 8πR

(
2a

ρ

)3
Gt

Gs

; parallel rings: S = 2a

ρ
(1 + νs)

Gt

Gs

.

(A.2)
For soft polymeric tubes and metallic solenoids (typically copper) the ratio is of the order
Gt/Gs ≈ 10−3 while a typical value9 of the ratio ρ/2a ≈ 10−2, thus justifying the range of
values for S used in the calculations of Sect. 3.

Appendix B: Electric Current Limitations

Finally, an interesting question can be raised on the subject of any physically imposed limits
to the magnitude of the applied currents. Two physical mechanisms are here at play: the
dielectric resistance of the medium in which the solenoid is encased and the ohmic heat-
ing of the solenoid wire. We bypass the first issue under the hypothesis of good electrical
isolating properties of the encasing tube and address here the limitations due to the second
mechanism.

Assuming a complete conversion of ohmic losses to heat in a circular section of radius
ρ wire of conductivity γ , mass density m and specific heat cp we have that the maximum
current Imax allowed by an increase of temperature rate θ̇max

Imax = πρ2(γmcpθ̇max)
1/2 . (B.1)

For a coil made of copper wire (in MKSA units: m = 8.94 × 103, γ = 5.96 × 107, cp =
0.385 × 103) of radius ρ = 10−3 (the dimensions considered in Sect. 3.2) we have the fol-
lowing maximum current

Imax ≈ 45(θ̇max)
1/2 A . (B.2)

Consequently assuming θ̇max = 1◦/sec the maximum current can be Imax ≈ 45 A while for
θ̇max = (10−2)◦/sec the corresponding Imax ≈ 4.5 A, thus giving an estimate of how fast the
three different solenoids of Sect. 3.2 are heating.
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