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Abstract
Of interest here is the stability and associated deformation localization of structures when
inertial effects are considered. Concerned primarily with the study of necking failure pat-
terns, the prevailing approach in the relevant literature uses the “modal analysis” method
to find the wavelength of the structure’s fastest growing eigenmode, an approach that often
uses a rate-dependent material response. However, the experimental studies of (Zhang and
Ravi-Chandar in Int. J. Fracture 142: 183–217, 2006; Zhang and Ravi-Chandar in Int. J.
Fracture 163: 41–65, 2010) on the high strain-rate expansion of thin rings and tubes, show
no evidence of a dominant wavelength in their failure mode and no influence of strain-rate
sensitivity on the necking strains. Moreover, modal analysis assumes that at all times the
entire structure sees the applied eigenmode perturbation in spite of the physical limitation of
a finite wave propagation speed. In addition, the closely related problem of stability in dy-
namically loaded structures, i.e., the time evolution of perturbations introduced at different
times during loading, does not seem to have attracted attention.

Based on the above-mentioned experimental and theoretical observations, (Ravi-Chandar
and Triantafyllidis in Int. J. Solids Struct. 58: 301–308, 2015) proposed a “localized pertur-
bation” approach to study the dynamic stability of an incompressible, nonlinearly elastic bar
at different strain-rates by following the evolution of spatially localized small perturbations
introduced at different times. The goal of the present work is to study the dynamic stabil-
ity – linear and nonlinear – of rate-independent biaxially strained thin plates by following
the evolution of spatially localized perturbations introduced at different times, to understand
the initiation of the corresponding failure mechanisms. Our 2D linearized analysis of a thin
plate under plane stress state, shows that these plates are stable until τL, the dimensionless
limit time corresponding to the loss of the uniformly strained plate’s stability. This result is
supported by fully nonlinear calculations.

Our nonlinear numerical calculations also show an imperfection amplitude-dependent
and biaxiality-dependent delay in the appearance of localization patterns in dynamically
loaded plates for dimensionless times well beyond τm, corresponding to the onset of loss
of ellipticity in the constitutive law. Moreover, the failure patterns of these plates are stud-
ied numerically by following the time evolution of randomly distributed imperfections of
different amplitudes.
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Fig. 1 Unfolded conical mirror image for an electromagnetically expanding Al 6061-O tube test (from [34]),
showing the necks and fractures in the thin cylindrical sheet under high strain rate loading; notice the absence
of a dominant wavelength in the failure pattern
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1 Introduction

The stability of structures when inertial effects are considered is an important engineering
problem and as such has drawn considerable attention. The first investigation in this area
appears to be the work of [14] on the influence of inertia in a simply supported imperfect
column subjected to a sudden axial load. A substantial amount of work followed that studied
the response of, mainly elastic, structures to impulse or time-dependent loads. Due to the
many possible definitions for the stability of time-dependent systems, the term “dynamic
stability” encompasses many classes of problems and different physical phenomena and has
numerous interpretations, with inertia being the common denominator.

In the absence of inertia, the processes of failure by a bifurcation instability mode in elas-
tic solids and structures is well understood (e.g., textbook by [3]) and a general asymptotic
analysis, termed “Lyapunov-Schmidt-Koiter” (LSK), has been developed for their study, in-
dependently introduced for structures in the celebrated thesis of W. T. Koiter [13]. The first
effort to use the LSK analysis for the dynamic stability problem of an elastic structure ap-
pears to be [4], where the authors proposed an asymptotic analysis of the time-dependent
problem using the eigenmodes of the static problem.

Motivated primarily by the study of necking failure patterns, an idea popular in fluid
mechanics has been adopted for the dynamic linear stability analysis of solids and structures
with more general constitutive laws under high rates of loading. It is termed the “modal
analysis” method and consists of seeking the solid’s fastest growing eigenmode and the
associated wavelength to determine the strain at onset of necking. This method has been
repeatedly applied to the study of dynamic stability of various rate-dependent (elasto-visco-
plastic) structures (bars, rings, plates, shells etc.) under rapid loading rates where the failure
pattern and size of fragments is of interest. Although there is a vast literature on this topic
(for a review see [7]), a short account is provided here to place the present work in the proper
context.

Starting in the early 1980’s, the dynamic localization of deformation problem – called
a “band” for shearing, and “necking” for uniaxial tension – was investigated in a series of
papers: [5, 8, 9, 17], using the frozen coefficient linearized stability approach; this work
showed that inertia, triaxiality and viscosity play a significant role in the development of
dynamic localization phenomena. Specifically, it was demonstrated that inertia decreased the
growth rate of long wavelength perturbations while triaxiality and viscosity inhibited growth
rate of short wavelength perturbations. Several other studies have also followed along these
lines: [10, 11, 23, 30, 35], examining axisymmetric rods and 2D plane strain conditions, with
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similar conclusions. Necking under biaxial strain states (2D) has also been examined (e.g.,
[12, 16]) using the same linearized stability analysis framework concluding, once again, that
inertia restricts growth of long wavelength modes while multidimensionality is sufficient to
limit short wavelengths. While the modal analysis approach identifies – with the help of
viscous effects – the fastest growing eigenmode, it lacks predictive capability in identifying
the strain at onset of necking; [10] suggested choosing a critical value of the ratio of the
perturbation growth rate to the background strain rate to fit the experimental data on neck
spacing, but there appears to be no guiding principle for this selection.

The linear perturbation modal analyses have been augmented with various features
through analytical models and numerical simulations that incorporated defects through dif-
ferent idealizations. For example, [35] performed detailed numerical simulations of frag-
mentation in a uranium-6%-niobium (U6N) ring introducing numerous defects in the initial
cross sectional area to trigger localization; the resulting simulated fragment distribution was
shown to agree well with experimental observations. [6] considered fragmentation of a uni-
formly stretching rod using a modified Mott approach. In this approach, the fastest growing
perturbation modes were first identified through a linearized stability analysis; then statistics
of fragmentation was investigated by considering a distribution of potential failure sites gov-
erned by the mode derived from the linear stability analysis. Both single mode perturbation
with a random strain to failure and a multimode perturbation with a constant strain to failure
were considered. Subsequent work by [21, 22, 27, 28, 31] augmented perturbation analy-
ses with detailed finite element simulations to provide an evaluation of the necking patterns
formed, influenced by defects, inertia, constitutive model and other aspects. Although the
interest of the present work focuses on the initiation of necking failure patterns, it should
also be mentioned here that fracture plays an important role in understanding the dynamic
failure patterns (e.g., see [18] and references quoted therein).

The overall outcome of the modal approach for the study of failure patterns in rapidly
loaded solids and structures may be summarized as follows: for the rate-independent case,
modes become unstable beyond a critical strain level, with all wavelengths indicating such
instability and therefore not selecting a wavelength as is typical of linearized stability analy-
sis in the static loading of structures case. Consequently, constitutive rate effects (viscoelas-
ticity) are indispensable for determining the eigenmodes’ growth rate, which is dependent
on the wavelength. The wavelength corresponding to the maximum growth rate for per-
turbations is then selected as the wavelength of necking, but this identification depends on
imposing a criterion of critical growth rate; given such a selection criterion, the strain at
onset of necking shows an increase from the corresponding static necking strain, the Con-
sidère strain in 1D or the loss of ellipticity strain in 2D and 3D; this has been called the
“dynamic delay”. These observations apply generally to problems of axisymmetric, plane-
strain and 3D conditions. Still there exist open questions related to the critical strain at onset
of necking/localization, spacing and pattern formation, role of defects and statistical aspects,
etc.

However, experiments from rapidly expanding, electromagnetically loaded metallic rings
and tubes by [32–34] show no dominant wavelength of the necked pattern, as seen in the
onset of failure of an electromagnetically loaded, dynamically expanding tube depicted in
Fig. 1, where one can observe a rather random failure mode. Moreover, they find no evidence
of viscoplastic response, i.e., no influence of strain rate on the necking strains,1 results in
agreement to the maximum force criterion of a rate-independent constitutive law (Considère
criterion). As explained by these authors, using the fastest growing eigenmode to predict

1Strain rates investigated were of order up to 104 sec−1.
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the onset of failure is physically meaningful provided that some characteristic velocity of
the principal solution – e.g., ring/tube expansion rate – is much slower than the speed of
propagation of perturbations in the solid or structure at hand. In addition, the closely related
problem of stability in dynamically loaded structures, i.e., the time evolution of perturbations
introduced at different times during loading, does not seem to have attracted attention.

Motivated by the above observations, [20] studied the dynamic stability of an incom-
pressible, nonlinearly elastic bar at different strain rates using a novel approach, termed “lo-
calized perturbation” approach, which involves the study of evolution of spatially localized
perturbations introduced at different times. The same approach is adopted here for the dy-
namic stability of biaxially strained thin plates, following the work of [29], who defined the
concept of influence discs and followed, using numerical (FEM) calculations, the dynamic
evolution of initial imperfections in the context of rate-independent elastoplastic constitutive
laws. The goal of the present work is to apply the spatially localized perturbation approach to
study the dynamic stability and associated localization of deformation (necking) delay of a
biaxially loaded thin plate under plane stress conditions, both theoretically using a linearized
method and full numerical calculations.

The presentation is organized as follows: after the introduction in Sect. 1, the linearized
and nonlinear perturbation problems are presented in Sect. 2. A dimensionless form of the
governing equations is introduced together with the “loading rate parameter” η that relates
the mechanical loading rate (transverse strain-rate) to the axial wave propagation speed at
zero strain. Our general frozen-coefficient linearized stability analysis shows that the plate is
stable for perturbations at times below τL, the dimensionless time limit corresponding to the
loss of the uniformly strained plate’s linearized stability (which is independent of η). We es-
tablish that τL ≤ τm, the latter defined as the dimensionless time for onset of loss of ellipticity
in the constitutive law. We also find that the plate has always the possibility to experience
an immediate growth of some perturbation.2 Results are given in Sect. 3, starting with the
fully nonlinear (numerical) stability analysis – for mechanical loading rates commensurate
to the wave propagation speed (η = 1) – that confirms the findings of its linearized counter-
part and clearly show an imperfection amplitude-dependent and biaxiality-dependent delay
in the localization of deformation of the rapidly strained, locally perturbed, plate as opposed
to its statically loaded counterpart. We proceed next with the time evolution of an initial
defect and continue by studying the effect of unloading, which becomes important well af-
ter the critical time τm. We end with the nonlinear time evolution of randomly distributed
localized initial imperfections of different amplitudes, in order to explain the deformation
pattern mechanism for the rapidly strained plate, elastic as well as elastoplastic (both with
the same uniaxial response). Conclusions are presented in Sect. 4. Details on the different
constitutive laws and their incremental moduli used in the linearized analyses are presented
in Appendix A, the corresponding influence discs are presented in Appendix B and the di-
mensionless “critical time” (τm) and “stability limit” time (τL) used for the calculations of
Sect. 3 are recorded in Appendix C.

2 Stability Analysis

This section starts with the presentation of the 2D model for the dynamic loading a biaxially
strained, rate-independent, flat plate of infinite extent and provides the problem’s dimen-
sionless critical time τm. The frozen coefficient linearized stability of a spatially localized

2Plate is unstable under the “transient growth criterion” used in fluid mechanics, e.g., see [25].
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Fig. 2 A schematic diagram of a
biaxially strained plate subjected
to stretch ratios λ1, λ2

perturbation is considered next, showing that if the plate is perturbed at a (dimensionless)
time inferior to the stability limit time τL, then this perturbation’s amplitude will decay. The
concept of the initial response of the perturbation (transient growth) is also investigated fol-
lowed by a brief description of the numerical (FEM) solution for the corresponding fully
nonlinear problem.

2.1 Problem Setting

Although a detailed version of the problem setting and the introduction of the dimensionless
critical time τm and critical length δ− has been presented in [29], a brief description is
given here in the interest of completeness. We consider a two-dimensional thin, flat plate
(idealized as a membrane) of infinite extent and uniform initial thickness H subjected to a
biaxial straining as shown in Fig. 2. To avoid in-plane acceleration terms in the unperturbed
solution of the perfect plate, a uniform deformation with stretch ratios3 λα and straining rate
c is imposed at time t

λ1 = 1 + ct cosψ , λ2 = 1 + ct sinψ . (2.1)

In the absence of body forces, the equations of motion for the thin plate can be put in the
form

∂Nαβ

∂Xβ

= ρ0
∂vα

∂t
, (2.2)

where Nαβ are the components of the nominal (force/reference thickness) membrane stress
resultant N, ρ0 the reference mass density,4 Xα the reference geometric coordinates and
vα(X, t) the components of the velocity v of a material point initially at X. A Lagrangian
formulation is adopted here and the reference configuration is identified with the stress-free
configuration of the plate.

From kinematics, we have a compatibility relation between the rate5 of deformation gra-
dient Ḟ and the gradient of material point velocity v

∂Fαβ

∂t
= ∂vα

∂Xβ

. (2.3)

3Henceforth, Greek indexes range from 1 to 2 while Latin indexes range from 1 to 3.
4The reference mass density ρ0 is per unit reference area.
5Henceforth a superimposed dot denotes time differentiation at a fixed material point initially at X, i.e.,
ḟ ≡ ∂f (X, t)/∂t .
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To complete the nonlinear system of (2.2) and (2.3), a constitutive law for the plate
is needed, relating N to F. For a hyperelastic solid, the membrane stress components are
derivable from a potential

Nαβ = ∂W

∂Fαβ

, (2.4)

where W(F) is the two-dimensional strain energy density of the plate. For the more general
case of a rate-independent material, the constitutive law can be expressed by the following
relation between the time derivative of the stress measure Ṅ and its work-conjugate rate of
deformation gradient Ḟ, namely

Ṅαβ = Lαβγ δḞγ δ , (2.5)

where Lαβγ δ are the plane stress incremental moduli of the plate. These moduli depend
in general on the current state of stress and the deformation history, typically represented
by a set of internal variables. They are obtained from the three-dimensional version of the
constitutive law �̇ij = LijklḞkl (relating the rate of the nominal stress tensor �̇ to its work-
conjugate quantity Ḟ) plus the plane stress condition �̇i3 = 0 and the orthotropy of the
plate with respect to the thickness direction (see Appendix A). For the case of a hyperelastic
material, the components of the plane stress incremental moduli tensor are obtained from
(2.4) and (2.5) by

Lαβγ δ = ∂2W

∂Fαβ∂Fγ δ

. (2.6)

It can be shown, e.g., [29], that the square of wave propagation speed V along a direction
n (polarization vector) is one of the two eigenvalues of the acoustic tensor A(n)

[
Aαγ (n) − ρ0(V )2δαγ

]
Cγ = 0 , Aαγ (n) ≡ Lαβγ δnβnδ . (2.7)

To deal with dimensionless quantities we define a dimensionless space variable (χ ), a
dimensionless time (τ ) and a dimensionless energy density (W)

χ ≡ X/H , τ ≡ ct , W ≡ W/EH . (2.8)

We also introduce the dimensionless “loading rate parameter” (η) that relates the
mechanical loading rate (transverse strain-rate) cH to the speed of wave propagation√

[EH/ρ0], the one-dimensional wave propagation speed in a stress-free bar made of the
same material as the plate (E being the corresponding Young’s modulus of the solid). For
η � 1 we approach static loading rates while for η = 1 (the value taken for all subsequent
numerical calculations) the mechanical loading rate is commensurate to the axial wave prop-
agation speed.

η ≡ cH [EH/ρ0]−1/2 . (2.9)

Some additional dimensionless characteristic lengths, δ− and δ+, play an important role
for this problem and are defined as follows. We consider the lowest dimensionless wave
propagation speed ν− which is the lowest eigenvalue of the acoustic tensor defined in (2.7)
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appropriately non-dimensionalized with the help of (2.8). The perturbation can no longer
propagate along a direction φ once its lowest speed reaches ν− = 0, occurring at time τe(φ)

ν− (φ, τe(φ)) = 0 ; (ν−(φ, τ ) > 0 for 0 ≤ τ < τe(φ)) . (2.10)

The problem’s dimensionless “critical time” τm, is the lowest value of τe(φ), for φ ∈ [0,π)6

occurring at angle φm

τm = min
φ∈[0,π)

τe(φ) = τe(φm) . (2.11)

At time τm the plate reaches for the first time conditions of loss of ellipticity of its incre-
mental equilibrium equations. The corresponding characteristic dimensionless length δ− is
the radius of the maximum disc entirely influenced by the perturbation at χ = 0 at the onset
of loss of ellipticity7

δ− ≡ min
φ∈[0,π)

∫ τm

0
ν− (φ, τ )dτ . (2.12)

In a similar way we are interested in the maximum size disc, centered at χ = 0, beyond
which the plate remains entirely unperturbed at time τm, and in analogy to δ−, we can define
δ+ by

δ+ ≡ max
φ∈[0,π)

∫ τm

0
ν+ (φ, τ )dτ , (2.13)

where ν+ is the larger dimensionless eigenvalue of the acoustic tensor.
It should be noted here that δ− and δ+ exist as long as the model loses ellipticity for some

loading. These quantities are useful when selecting domain sizes in the ensuing numerical
calculations, where the chosen domain contains a disc larger than a disc of radius δ+ to
ensure that no perturbation reaches the boundary at least up to the time of interest.

2.2 Linearized Stability

In order to obtain an analytically tractable way to investigate the stability of the plate’s
uniform strain solution (2.1), we study the response of the system (2.2)–(2.5) to follow
the evolution of a spatially localized perturbation, using the non-dimensionalization8 of the
problem introduced in (2.8). Defining the displacement and particle velocity perturbations9

δuα(χ , τ ) ≡ uα(χ , τ ) − u0
α(χ , τ ) ; u0

1(χ , τ ) = τχ1 cos(ψ) , u0
2(χ , τ ) = τχ2 sin(ψ) ,

δvα(χ , τ ) ≡ vα(χ , τ ) − v0
α(χ) ; v0

1(χ) = χ1 cos(ψ) , v0
2(χ) = χ2 sin(ψ) ,

(2.14)

6From symmetry considerations Aαγ (n) = Aαγ (−n).
7In the problem investigated here we also have δ− = ∫ τm

0 ν− (φm, τ)dτ .
8Hereinafter, for simplicity the same symbols, u and v, are used for the dimensionless quantities as for their
dimensioned counterparts while a superimposed dot denotes differentiation with respect to τ .
9Hereinafter a superscript (0) or subscript (0) denotes evaluation of a quantity on the uniform strain principal
solution.
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and considering the rate of the equation of motion (2.2) in dimensionless form, one obtains
upon linearization about the uniform strain solution

∂Lαβεζ

∂Fγ δ

∣∣
∣∣
0

Ḟ 0
εζ

∂2δuγ

∂χδ∂χβ

+L0
αβγ δ

∂2δvγ

∂χδ∂χβ

= η2δv̈α . (2.15)

From the perturbation in the constitutive relation in (2.5) evaluated on the principal solution
one has

L0
αβγ δ

∂2δuγ

∂χδ∂χβ

= η2δv̇α . (2.16)

The above system (2.15) and (2.16) together with the initial conditions δuα(χ , τ0) and
δvα(χ , τ0), i.e., the initial displacement and velocity perturbations, gives the evolution of a
perturbation introduced at time τ0 into the perfect plate deforming in a state of uniform, bi-
axial strain as described by (2.1). This system of partial differential equations has spatially
constant but time-dependent coefficients, which render the finding of a general solution a
formidable task. Of interest here is the establishment of the “frozen-coefficient linearized
stability” of such a perturbation – hereinafter for simplicity referred to as “linearized stabil-
ity” – that requires investigation of this system for time-independent coefficients, evaluated
at τ0. The resulting system is solved with the help of the Fourier transform, in view of the
infinite spatial domain of the plate, i.e., χ ∈R

2.
Since spatially localized perturbations (of adequate regularity) are of interest, they have

a compact support and hence they admit a Fourier transform, where χ −→ ω. Denoting the
Fourier transform of δu(χ , τ ) and δv(χ , τ ) by �u(ω, τ ) and �v(ω, τ ) respectively, one
obtains from the Fourier transform of (2.15) and (2.16)

−ωδωβ

(
∂Lαβεζ

∂Fγ δ

∣∣
∣∣
0

Ḟ 0
εζ

)
�uγ − ωδωβL0

αβγ δ �vγ = η2�v̈α , (2.17)

−ωδωβL0
αβγ δ �uγ = η2�v̇α . (2.18)

Substituting the �u terms in (2.17) from (2.18), one obtains an equation expressed only in
terms of �v

η2 ∂Lαβεζ

∂Fγ δ

∣∣∣
∣
0

Ḟ 0
εζ ωδωβ

[
L0

γ ηξθ ωηωθ

]−1
�v̇ξ − ωβωδL0

αβγ δ �vγ = η2�v̈α . (2.19)

Denoting the magnitude of the Fourier transform variable ω by ω ≡
√

ω2
1 + ω2

2 and its
orientation by n (n1 = cosφ, n2 = sinφ), allows us to rewrite (2.19) as

−Mαγ (φ)�v̇γ + (ω/η)2Aαγ (φ)�vγ + �v̈α = 0 , (2.20)

with the φ-dependent acoustic tensor A(φ) defined in (2.7) and the damping tensor M(φ)

defined by

Mαξ (φ) ≡ ∂Lαβεζ

∂Fγ δ

∣∣
∣∣
0

Ḟ 0
εζ nβnδ A−1

γ ξ (φ) . (2.21)
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For a hyperelastic solid,10 we can express M(φ) in terms of A(φ). In this special case, the
plane-stress incremental moduli tensor is derived from the energy density W by (2.6), and
thus one has from (2.21)

Mαξ = ∂3W

∂Fαβ∂Fεζ ∂Fγ δ

∣∣
∣∣
0

Ḟ 0
εζ nβnδ A−1

γ ξ = d

dτ

(
Lαβγ δ nβnδ

)
A−1

γ ξ = Ȧαγ A−1
γ ξ . (2.22)

Next we “freeze” the coefficients to their values at τ0 and introduce δy ≡ (δv, δv̇) to
rewrite the system in (2.20) (using also (2.22)) as a first order constant coefficient system

C δy = δẏ ; C ≡
[

0 I

−(ω/η)2A ȦA−1

]

, δy ≡
[

δv

δv̇

]

=⇒ δy(τ ) = exp[C(τ − τ0)]δy(τ0) . (2.23)

Sufficient conditions for the stability of the linearized perturbation problem in Fourier space
ω in (2.23) at the neighborhood of τ0 are met when all eigenvalues sI of the matrix C have
negative real parts,11 i.e., 	[sI ] < 0. It will be shown that this requirement also results in
sufficient stability conditions in the original χ space.

The system (2.23) has a solution of the form

�v(ω, τ ) =
4∑

I=1

ξI (ω) exp [sI (ω)(τ − τ0)] VI (ω) , (2.24)

where sI are the four eigenvalues of C and VI the corresponding eigenvectors satisfying

Det
[−sI ȦA−1 + (ω/η)2A + s2

I I
] = 0 ,

[−sI ȦA−1 + (ω/η)2A + s2
I I

]
VI = 0 . (2.25)

The amplitudes ξI (ω) appearing in (2.24) are computed with the help of initial conditions

�v(ω, τ0) =
4∑

I=1

ξI (ω)VI (ω) , �v̇(ω, τ0) =
4∑

I=1

ξI (ω)sI (ω)VI (ω) , (2.26)

where �v̇(ω, τ0) is given in terms of �u(ω, τ0) from (2.18).
The sought solution of the perturbed plate in the original χ space is obtained by Fourier

inversion of (2.24)

δv (χ , τ ) = 1

2π

∫

R2

4∑

I=1

{
ξI (ω) exp [sI (ω)(τ − τ0) − iω · χ ] VI (ω)

}
dω . (2.27)

The stability of the system (2.23) follows from (2.27) when 	[sI ] < 0.
A sufficient condition for the matrix −ȦA−1 + (ω/η)2A to be positive definite for τ < τm

and for all (ω/η), is when −Ȧ is positive definite, since by construction A(τ,φ) is positive
definite for 0 ≤ τ < τm. Since from (2.10) as the dimensionless time τ increases A(τ,φ)

10Linearized stability is studied here only for a hyperelastic material; for the other constitutive laws only
numerical calculations are available, which nevertheless confirm our findings for the hyperelastic case.
11The matrix C has all eigenvalues with negative real part iff (ω/η)2A − ȦA−1 is positive definite (e.g., see
[2]).
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loses its positive definiteness at τe(φ) for each direction φ, for the constitutive laws adopted
in this work −Ȧ(τ,φ) is positive definite for 0 ≤ τ < τL where τL ≤ τm

12 is the dimension-
less “stability limit” time.

Recall that linearized stability analysis predicts that – in the absence of loading rate
or viscoplastic effects – all perturbations at τ0 < τm are stable, regardless of wavelength
(e.g., [29]). Our result establishes that localized perturbations are linearly stable as long as
0 ≤ τ0 < τL, where the stability limit time τL can be lower than the critical time τm. Notice
that if we do not require linearized stability for all (ω/η), the stability limit time τL can get
closer to the critical time τm.

2.3 Initial Stability (Transient Growth)

The linearized stability investigated in the previous section pertains to the evolution (assum-
ing constant coefficients) of perturbations for large times after their onset, i.e., for τ 
 τ0.
More relevant to the physical system is the initial response of the plate to perturbations, i.e.,
the initial growth rate at τ = τ0. This is the concept of “transient growth” used frequently in
fluid mechanics, e.g., see [25], where a Lyapunov stable flow can exhibit a significant initial
amplification of the perturbation.

It is possible for the case of a Lyapunov stable matrix C, certain values of an initial
perturbation δy(τ0) will encounter a significant initial amplification of the ‖δy(τ )‖ before
its eventual decay. Unfortunately there is no formula for the maximum of ‖δy(τ )‖ but it is
possible to calculate the very short time behavior of the linearized system in (2.23).

The maximum possible growth rate at short times is given by the initial derivative of the
norm ‖ exp[C(τ − τ0)]‖. Using the definition of the norm of a matrix and the approximation
near τ0 of exp[C(τ − τ0)] ≈ I + C(τ − τ0) + O(τ − τ0)

2

‖ exp[C(τ − τ0)]‖2 ≡ max
‖x‖=1

‖ exp[C(τ − τ0)]x‖2

‖x‖2
≈ 1 + max

‖x‖=1

xT (CT + C)x
xT x

(τ − τ0) =⇒

=⇒ d‖ exp[C(τ − τ0)]‖2

dτ

∣∣
∣∣
τ0

=
[

max
‖x‖=1

xT [(CT + C)]x
xT x

]
= max eigenvalue of (CT + C) .

(2.28)
The maximum possible growth rate at short times, is thus given by μ, the largest (real)

eigenvalue of the symmetric matrix (C + CT ). From the definition for C in (2.23) one has
the following characteristic equation for μ

det[−μ(ȦA−1 + A−T ȦT ) − [(I − (ω/η)2A)]2 + μ2I] = 0

=⇒ c4μ
4 + c3μ

3 + c2μ
2 + c1μ + c0 = 0 . (2.29)

A perturbation is termed “initially stable” if μ < 0. According to the Routh-Hurwitz theo-
rem a necessary condition for μ < 0 is that the fourth order polynomial (2.29) has all positive
coefficients ci . However, unlike the roots sI of (2.25)1 it can be shown for the current prob-
lem that the coefficient c1 < 0. Thus we conclude that the plate is initial unstable for at least
some initial perturbations at any time τ . For a more reliable picture on the dynamic stability
of the plate one has to perform numerical calculations for the fully nonlinear problem.

12This inequality is verified by the numerical calculations in Appendix C.
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Fig. 3 In a) is depicted the domain D (reference configuration) used for the FEM calculations of the evolution
of a spatially localized perturbation at χ = 0, introduced at different dimensionless times τ . From symmetry,
only the quadrant χ1 > 0, χ2 > 0 is used. The mesh consists of rectangular quads with aspect ratio tan(φm).
Also plotted are the influence zones (in solid blue line for the slower ν− and in solid red line for the faster
ν+ wave speeds) at time τm, corresponding to the first loss of ellipticity, as well as the corresponding δ− (in
dashed blue line) and δ+ (in dashed red line) influence discs at τm. The domain of calculation is considerably
larger than the influence disc δ+ , thus ensuring no influence of boundary conditions for times exceeding
1.5τm even for perturbations introduced at τ = 0. The insert b) shows the undistorted mesh near the origin
used for a velocity perturbation while the insert c) shows the corresponding (exaggerated) locally distorted
mesh at the onset of a displacement perturbation

2.4 Nonlinear Stability

Having established the linearized stability analysis of the frozen-coefficient problem, the
next step is to investigate the nonlinear stability of a single spatially localized perturbation
at χ = 0 – in either displacement or velocity – triggered at different times τ . The analysis
is done using the simplest constitutive law, namely the hyperelastic, finite (logarithmic)
strain model with a uniaxial power law, given in Appendix A. The use of this model for
elastoplastic materials is justified by the initially small deviations from proportional loading
and the absence of unloading in these calculations which, as it will be subsequently verified,
occurs well after the onset of loss of ellipticity at τm. Since no analytical solution is possible,
a numerical FEM-based algorithm is used, described in [29].

From symmetry considerations only the positive quadrant χ1 > 0, χ2 > 0 of the domain
D is used in the calculations for a spatially localized perturbation or imperfection, while
the entire domain D is used for calculating the interaction of imperfections. The spatial
discretization of the plate employs standard two-dimensional isoparametric quadrilateral el-
ements with aspect ratio tan(φm). The boundary conditions imposed at any time are the
displacements and velocities of the principal (perfect) solution given in (2.1) at the sides
χ1 > 0, χ2 > 0 and the zero normal displacements and velocities at the sides χ1 = 0, χ2 = 0
or the displacements and velocities of the principal (perfect) solution at all sides, for calcu-
lating the interaction of imperfections. The rectangular, reference configuration domain used
in the calculations largely exceeds a disc of radius δ+, as seen in Fig. 3, thus ensuring that
no perturbation wave ever reaches any boundary for times exceeding 1.5τm. The mesh used
consists of 800 × 800 elements. The initial conditions are the displacements and velocities
of the principal solution (2.1).
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For the case of a single, spatially localized displacement (or velocity) perturbation with
an amplitude parameter ξ , we use the following expression in polar coordinates

δur = ξr exp (−r/R) , δuθ = 0 ; ( δvr = ξr exp (−r/R) , δvθ = 0 ) . (2.30)

An (exaggerated) depiction of the perturbed mesh near the origin, for both velocity and
displacement cases, is shown in Fig. 3. At onset time τ0, the radial component of the per-
turbation is maximized at r = R and decays exponentially for r > R. We can thus refer to
R as the “size” of the spatially localized perturbation, which is the same in all the follow-
ing calculations and has a value: R = 10−2. To avoid mesh inversion one must ensure that
d(r + u0

r + δur)/dr > 0, which implies from (2.30) that ξ < (1 + τ0)e2).
Details of the perturbations used and the special element – incorporating the constitutive

law and time solution algorithm – introduced in the commercial FEM code (ABAQUS) to
calculate the results are given in [29].

3 Results

This section starts by presenting the nonlinear stability analysis of the plate through the time
evolution of a spatially localized perturbation of various amplitudes introduced at different
times τ0. The investigation of a spatially localized imperfection, introduced at the onset of
loading (i.e., at τ0 = 0) is presented next, showing the dynamic delay of localization (de-
formation patterns for times τ > τm), followed by the influence of unloading and ending
with the study of interaction of several such imperfections of random location and strength.
All calculations are performed for a loading rate parameter η = 1 – defined in (2.9) – cor-
responding to a mechanical (transverse) loading rate equal to the (axial) wave propagation
speed.

3.1 Time Evolution of Spatially Localized Perturbations

Following the linearized stability analysis for a perturbation in Sect. 2.2, we present next
in Fig. 4 to Fig. 6 the numerical results for the nonlinear stability problem by following
the evolution of a single, spatially localized perturbation – in velocity or displacement –
triggered at different times τ0.

Starting in Fig. 4, we show the amplitude evolution of a spatially localized (about χ = 0)
velocity perturbation introduced at different (dimensionless) times τ0, before or after τm

(indicated by a dotted vertical line). The measure of the perturbation amplitude ‖δv‖ is the
L2 norm (squared) of the difference in velocities, between the perturbed and unperturbed
(spatially uniform) solutions, defined in (2.14)

‖δv‖ ≡
∫

D
{[v1(χ , τ ) − v0

1(χ)]2 + [v2(χ , τ ) − v0
2(χ)]2}dA . (3.1)

The perturbation amplitude is calculated numerically, over the entire domain D, using one
Gauss point per element. Calculations are presented for a hyperelastic material with a power-
law uniaxial response (n = 0.22 and εy = 0.002) for three different loading angles: ψ =
−π/12,13 (left column), ψ = 0, (central column) and ψ = π/4, (right column) and for

13Best approximation of uniaxial stress under strain control, corresponding to an initial uniaxial stress
σ1 = 0, σ2 = 0. From (A.16) one has ε2 = −ε1/2; for small strain εi ≈ λi − 1, resulting in ψ = −π/12
according to (2.1).
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Fig. 4 Amplitude evolution of a spatially localized (about χ = 0) velocity perturbation for a mechanical
loading rate commensurate with the wave propagation speed (η = 1), introduced at different (dimensionless)
times τ0. Calculations are presented for a hyperelastic material with a power-law uniaxial response (n = 0.22)
for three different loading angles and for two different perturbation amplitude parameters, as indicated. The
dotted vertical line marks the critical and stability limit times (τm = τL)

two different perturbation amplitude parameters, defined in (2.30): ξ = 0.1 (top row) and
ξ = 0.01 (bottom row). From the calculations in Appendix C, and according to (C.5) for the
hyperelastic material with a hardening exponent n = 0.22, the stability limit time coincides
with the critical time, i.e., τL = τm for all the loading angles considered in Fig. 4.

As expected from the linearized analysis in Sect. 2.2, the amplitude of a perturbation
introduced at τ0 < τm starts by decreasing monotonically. As time progresses, it reaches a
plateau and does not increase again until after some time τ > τm, depending on load orien-
tation ψ and amplitude parameter ξ . This is somewhat analogous to the delay in necking
strain observed in modal analyses (e.g., [8, 10, 22]), where the delay in the onset of a rapid
growth of the perturbation decreases with increasing perturbation amplitude, as seen here in
Fig. 5. Unfortunately a direct comparison with our results is not possible, since their work –
unlike ours – is based on rate-dependent constitutive laws.

Perturbations introduced at times τ0 > τm show a very steep growth with an almost ver-
tical take-off. For the smaller perturbation amplitude parameter ξ = 0.01, the very small
initial decay before the explosive growth of perturbations initiated at τ0 > τm is due to the
norm choice adopted14 and essentially disappears for ξ = 0.1. A perturbation introduced
at τ0 < τm remains “dormant” under dynamic straining until the macroscopic strains of
the plate exceed those corresponding to the onset of the first loss of ellipticity under static
loading conditions. Notice that for a load orientation ψ = −π/12 and the smaller initial
perturbation amplitude parameter ξ = 0.01, this delay can be quite remarkable. Another
interesting feature of the nonlinear perturbation analysis is that the retarded (occurring for
τ > τm) explosive growth of a perturbation initiated at τ0 < τm, is independent of the time
of its initiation, but starts closer to τm as the perturbation amplitude parameter increases.

The amplitude evolution of a spatially localized (about χ = 0) displacement perturbation
introduced at different (dimensionless) times τ0, before or after τm (indicated by a dotted

14A norm choice involving both displacements and velocities could be used but the choice made here is
judged more physically appropriate.
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Fig. 5 Amplitude evolution of a spatially localized (about χ = 0) displacement perturbation for a mechanical
loading rate commensurate with the wave propagation speed (η = 1), introduced at different (dimensionless)
times τ0. Calculations are presented for a hyperelastic material with a power-law uniaxial response for three
different loading angles and for two different perturbation amplitude parameters, as indicated. The dotted
vertical line marks the critical and stability limit times (τm = τL)

vertical line) is depicted in Fig. 5. In this case, the measure of the perturbation amplitude
‖δεe‖ is the L2 norm (squared) of the difference in the equivalent logarithmic strain εe , given
in (A.14)3, between the perturbed and unperturbed (spatially uniform) solutions:

‖δεe‖ ≡
∫

D
[εe(χ , τ ) − ε0

e (τ )]2dA . (3.2)

The perturbation amplitude is again calculated numerically as discussed for (3.1). Calcu-
lations are presented for a hyperelastic material with the same power-law uniaxial response,
loading angles and initial perturbation amplitude parameters as in Fig. 5, giving similar re-
sults: perturbations initiated at τ0 < τm exhibit an initial decay in amplitude, while perturba-
tions initiated at τ0 > τm show a steep growth in amplitude with an almost vertical take-off.

Some differences are also observed. For τ0 < τm, the initial decay of the perturbation’s
amplitude eventually terminates and is followed by a slow growth (no plateau found as in
Fig. 4) until the macroscopic strains of the plate exceed those corresponding to the onset
of the first loss of ellipticity; an unbounded growth of the perturbation amplitude follows,
either near τm or well past it, as seen in Fig. 5 for the case of a loading angle ψ = −π/12 and
in particular for the smaller perturbation amplitude parameter ξ = 0.01. The same remark
as before can also be made for the displacement perturbation: a small perturbation remains
inconsequential in a dynamic loading until the macroscopic strains of the plate are well past
those corresponding to the loss of ellipticity under static loading conditions.

Having investigated the influence of load orientation ψ and amplitude parameter ξ on the
nonlinear stability of a spatially localized perturbation, of interest is next the influence of the
(hyperelastic) constitutive law, as measured by the equivalent uniaxial response’s power law
exponent n defined in (A.13). We show in Fig. 6 the time evolution of amplitude ‖δεe‖ of a
spatially localized (about χ = 0) displacement perturbation introduced at different (dimen-
sionless) times τ0, before or after τL. Calculations are presented for two different exponents
of the power law uniaxial response, (n = 0.22 left and n = 0.40 right), a loading angle
ψ = −π/12 and initial perturbation amplitude parameter ξ = 0.01.
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Fig. 6 Influence of constitutive law (hyperelastic), as measured by the hardening exponent n of the power-law
uniaxial response, on the amplitude evolution of a spatially localized (about χ = 0) displacement perturbation
for a mechanical loading rate commensurate with the wave propagation speed (η = 1), introduced at different
(dimensionless) times τ0 for a loading angle ψ = −π/12. The dotted vertical line marks the corresponding
critical time τm. For n = 0.22, τm = τL = 0.352 while for n = 0.4, τm = 0.715 > τL = 0.475

Apart from the fact that the stiffer plate (n = 0.40) has a larger stability limit time τL

than its softer counterpart (n = 0.22), the stability results are conforming to the expectations
from the linearized analysis: perturbations initiated at τ0 < τL exhibit an initial decay in
amplitude, noticeably sharper for the stiffer plate (n = 0.40), while perturbations initiated at
τ0 > τm show a steep growth in amplitude with an almost vertical take-off. Moreover, con-
sistent with our previous findings in Fig. 4 and Fig. 5, we note that a perturbation introduced
at τ0 < τL remains “dormant” under dynamic straining until the macroscopic strains of the
plate are well past those corresponding to the onset of the first loss of ellipticity under static
loading conditions at τm; the time at which the explosive growth occurs is independent of
the time at which these perturbations were introduced.

The numerical calculations for the nonlinear stability problem confirm the prediction of
the linearized analysis, i.e., that perturbations initiated at τ0 < τL show an initial decay and
are thus stable near the time of perturbation onset. An even more interesting trend is found:
a small perturbation remains inconsequential under dynamic loading conditions until the
macroscopic strains of the plate well exceed those corresponding to the onset of the first
loss of ellipticity under static loading conditions at τm; the smaller the initial perturbation or
the closer the load orientation is to uniaxial tension, the larger is this delay.

3.2 Dynamic Delay in the Evolution of Spatially Localized Imperfections

Following the study of spatially localized perturbations introduced at different times τ0, at-
tention is turned next to the evolution of spatially localized “imperfections”, i.e., defects in
the material properties of the plate introduced at τ0 = 0. The information provided in Fig. 7
to Fig. 12 shows the propagation of the localized deformation “tongues” at different dimen-
sionless times. This is an alternative way to visualize the delay between static localization,
where the statically loaded uniformly strained perfect plate will show the development of
a strongly localized necking pattern as τm is approached (see [1]), while its dynamically
loaded counterpart continues to deform uniformly for τ > τm, i.e., for strains above those
corresponding to the loss of ellipticity, outside the region of localized deformation.

To simulate an imperfection, we use an element (the one containing the origin) with
a slightly different shear modulus, i.e., G(1 + ζ ), where ζ is the imperfection amplitude
parameter. The influence of what is essentially a point defect at the origin, will be studied
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Fig. 7 Equivalent strain change contours δεe(χ , τ ) due to a spatially localized (about χ = 0) imperfection
with an amplitude parameter ζ = 0.01 introduced at τ = 0 are plotted in the reference configuration (top
row) and in the current configuration (bottom row) at three dimensionless times, calculated for a mechanical
loading rate commensurate with the wave propagation speed (η = 1). The graphs at τ = 1.5τm clearly indicate
the dynamic delay in the localized deformation pattern. The extent of the influence zones corresponding to
the slower ν− and faster ν+ wave speeds at these three times are also recorded. Results calculated for a
hyperelastic material with a piecewise power law, a uniaxial curve hardening exponent n = 0.22 and a loading
angle ψ = −π/12. The same scale is used in both directions in each plot

by following the evolution with respect to time of the spatial change of the difference in
equivalent strain between the imperfect and perfect plates:

δεe(χ , τ ) ≡ εe(χ , τ ) − ε0
e (τ ) , (3.3)

where the equivalent logarithmic strain εe is defined in (A.14)3. The results are presented
in Fig. 7 to Fig. 12, where the same scale is used in both spatial directions of each plot.

The influence of spatially localized (about χ = 0) imperfection on the development of a
localized deformation zone in a rapidly strained plate is presented in Fig. 7. The equivalent
strain change contours δεe(χ , τ ) are plotted in the reference configuration (top row) and in
the current configuration (bottom row) at three dimensionless times: τ = 0.5τm, left column,
τ = τm, center column and τ = 1.5τm, right column, where only regions of |δεe| ≥ 10−4 are
shown in color. The extent of influence zones for the slower and faster wave speeds ν−
and ν+ respectively, are also shown. Results are calculated for an imperfection amplitude
parameter ζ = 0.01 and correspond to a hyperelastic constitutive law with a piecewise power
law uniaxial curve (n = 0.22, εy = 0.002) and a loading angle ψ = −π/12.

For the lowest dimensionless time τ = 0.5τm, only a small region near the origin is af-
fected, while at the time of onset of loss of ellipticity τ = τm, the localized deformation
band is clearly visible at an angle π/2 − φm with respect to the χ1-direction, since the nor-
mal to the band forms an angle φm with respect to the χ1-direction, as defined in (2.11).
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Notice that the localized deformation appears to propagate in three “tongues”, as seen in
the middle graphs of Fig. 7. This phenomenon can be explained by the rectangular shape
of the initial imperfection domain, where each corner acts as a source of perturbation sig-
nals. A static analogue of this phenomenon has been found in [1]. Moreover due to wave
propagation, the width of the localized deformation zone, obtained from fully nonlinear cal-
culations, is considerably larger than the width of the initial imperfection, but also a fraction
of the linearized estimate δ− (influence disc for the slower wave) for the same time, a phe-
nomenon also observed in the growth of a localized imperfection in the nonlinear bar model
of [20].

At time τ = 1.5τm the number of localized deformation “tongues” increases as does the
corresponding maximum strain, which now reaches |δεe| ≈ 1. It is worth noting that the
width of these localized deformation “tongues” remains unchanged; the localized deforma-
tion zone remains well within the influence zone corresponding to the fastest wave speed
ν+; recall that the domain used for the numerical calculations is large enough as to preclude
any signal reaching its boundary up to the maximum time considered.

The evolution of the imperfection’s localized deformation zones in the current configu-
ration is presented in the bottom row of Fig. 7. Due to the applied macroscopic loading (see
(2.1)), the load orientation angle of ψ = −π/12 corresponds to a straining of the plate in
the χ1-direction and a shortening along the χ2-direction, thus explaining the tilting of the
plate’s localized deformation “tongues” in clockwise direction. It should also be mentioned
here that the entire specimen is not shown for the plots in the current configuration for better
visual representation of the results.

The influence of the imperfection amplitude parameter ζ is examined next in Fig. 8,
which shows the evolution of equivalent strain change contours δεe(χ , τ ) in a rapidly
strained plate due to a spatially localized (about χ = 0) imperfection. The equivalent strain
change contours δεe(χ , τ ), resulting from the presence of what amounts to a point defect at
the origin, are plotted in reference configuration for two different values of the imperfection
amplitude parameter: ζ = 0.1 (top row) and ζ = 0.01 (bottom row) at three dimensionless
times: τ = 0.5τm, left column, τ = τm, center column and τ = 1.5τm, right column, where
only regions of |δεe| ≥ 10−4 are shown in color. The extent of the influence zones for the
slowest and fastest wave speeds ν− and ν+ respectively, are also shown at these three differ-
ent times. Results are calculated for a hyperelastic constitutive law with a piecewise power
law uniaxial curve (n = 0.22, εy = 0.002) and a loading angle ψ = −π/12.

In comparing top and bottom graphs in Fig. 8 at the same dimensionless time, we ob-
serve as expected that the larger imperfection amplitude parameter results in a larger region
influenced by the imperfection (the lowest threshold of |δεe| ≥ 10−4 used in recording the
equivalent strain perturbations remains unchanged for the top and bottom row plots). The
shape of the imperfection being the same between top and bottom row figures, the number of
localized deformation “tongues” remains unchanged. Once again, the localized deformation
zone for ζ = 0.1 remains well within the influence zone corresponding to the fastest wave
speed ν+.

3.3 The Influence of Unloading

Since in our calculations we use a deformation theory (hyperelastic) model, it is worth exam-
ining the relevance of this simplifying hypothesis for plasticity, by finding when unloading
starts and checking that it does not occur too soon. As unloading criterion we use the sign
of the rate of equivalent strain ε̇e, calculated numerically by comparing the equivalent strain
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Fig. 8 Equivalent strain change contours δεe(χ , τ ) due to a spatially localized (about χ = 0) imperfection
introduced at τ = 0 are plotted in the reference configuration for an imperfection amplitude parameter ζ = 0.1
(top row) and an imperfection amplitude parameter ζ = 0.01 (bottom row) at three dimensionless times,
calculated for a mechanical loading rate commensurate with the wave propagation speed (η = 1). The graphs
at τ = 1.5τm clearly indicate the dynamic delay in the localized deformation pattern. The extent of the
influence zones corresponding to the slower ν− and faster ν+ wave speeds at these three times are also
recorded. Results are calculated for a hyperelastic constitutive law with a piecewise power law uniaxial curve
of hardening exponent n = 0.22 and a loading angle ψ = −π/12. The same scale is used in both directions
in each plot

at the location in question between two subsequent time increments:

ε̇e(χ , τ ) ≈ [εe(χ , τ + �τ) − εe(χ , τ )]/�τ (3.4)

The reference configuration unloading zone contours ε̇e < 0 of a spatially localized
(about χ = 0) imperfection are depicted in Fig. 9 at three dimensionless times past τm:
τ = 1.25τm, left column, τ = 1.5τm, middle column and τ = 1.75τm, right column, where
only regions of ε̇e < 0 are shown in color. The influence zones corresponding to the slower
ν− and faster ν+ wave speeds at these three times are also recorded. Results are calcu-
lated for an imperfection amplitude parameter ζ = 0.01 and a hyperelastic constitutive law
with a piecewise power law uniaxial curve with hardening exponent n = 0.22 (top row) and
n = 0.40 (bottom row) for a loading angle ψ = −π/12.

Notice that no perceptible unloading appears in the imperfect plate at least up to
τ = 1.25τm. For τ = 1.5τm the unloading zones follow the localized deformation “tongues”
shown in Fig. 7 and Fig. 8, while still remaining within the corresponding ν− influence zone.
The propagating tongues pattern breaks down at τ = 1.75τm as a wide zone of the imper-
fect plate unloads. The results of these calculations show that at least up to τ = 1.25τm, the
imperfect plate experiences no unloading and hence the equivalent strain change contours
δεe(χ , τ ), resulting from the presence of what amounts to a point defect at the origin, are a
reasonable approximation for an elastoplastic plate with the same uniaxial response, given
the small deviations of the imperfect plate from proportional loading.
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Fig. 9 Reference configuration unloading zone contours ε̇e < 0 of a spatially localized (about χ = 0) im-
perfection depicted at three dimensionless times past τm, where only regions of ε̇e < 0 are shown in color,
calculated for a mechanical loading rate commensurate with the wave propagation speed (η = 1). The extent
of the influence zones corresponding to the slower ν− and faster ν+ wave speeds at these three times are also
recorded. Results are calculated for a hyperelastic constitutive law with a piecewise power law uniaxial curve
with hardening exponent n = 0.22 (top row) and n = 0.40 (bottom row) for a loading angle ψ = −π/12. The
same scale is used in both directions in each plot

The question arising next is how the hyperelastic model results would compare with a
more realistic plasticity model with the same uniaxial response. The calculations for this
case are presented in Fig. 10, which shows the equivalent strain change contours δεe(χ , τ ),
resulting from the presence of what amounts to a point defect at the origin, plotted in the
reference configuration (top row) and the current configuration (bottom row) at three di-
mensionless times: τ = 0.25τm, left column, τ = τm, center column and τ = 1.75τm, right
column, where only regions of |δεe| ≥ 10−4 are shown in color. The extent of the influence
zones for the slowest and fastest wave speeds ν− and ν+ respectively, are also shown at
different times in these figures. Results are calculated with an imperfection amplitude pa-
rameter ζ = 0.01 for a J2 flow theory elastoplastic constitutive law with a piecewise power
law uniaxial curve (n = 0.22, εy = 0.002) and a loading angle ψ = −π/12.

As expected from the much stiffer response of the J2 flow theory (moduli given in (A.16)
and (A.17)), the influence zones corresponding to ν− and ν+ are considerably larger com-
pared to their hyperelastic theory counterparts; notice that ν+ zone does not even appear in
the graphs at τm. The main difference between Fig. 7 and Fig. 10 is the consistency of the
localized deformation “tongues” pattern that propagates along the characteristic direction
but does not multiply the number of “tongues”, thus producing a much narrower zone of
localized deformation. Plasticity stabilizes the deformation pattern by concentrating defor-
mation in a narrower zone (compared to its hyperelastic counterpart with the same uniaxial
response) while relieving strains through unloading of the surrounding area.

The faster growth of the localized necking pattern in the hyperelastic material, compared
to its elastoplastic counterpart with the same uniaxial response has also been observed in
the work on ring fragmentation by [27]. The unloading feature of the elastoplastic model
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Fig. 10 Equivalent strain change contours δεe(χ , τ ) due to a spatially localized (about χ = 0) imperfection
are plotted in the reference configuration (top row) and in the current configuration (bottom row) at three
dimensionless times, calculated for a mechanical loading rate commensurate with the wave propagation speed
(η = 1). The influence zones corresponding to the slower ν− and faster ν+ wave speeds are also shown in
these figures. Results are calculated for an imperfection amplitude parameter ζ = 0.01 and correspond to a J2
flow theory elastoplastic constitutive law with a piecewise power law uniaxial curve (n = 0.22, εy = 0.002)
and a loading angle ψ = −π/12. The same scale is used in both directions in each plot

determines the later development of the localized pattern, as discussed in the following
subsection.

3.4 Failure Pattern: Interaction of Imperfections

Since the ultimate failure pattern in rapidly strained solids depends on the interaction of
(inevitable) defects, we calculate next the response of a plate under rapid biaxial straining
with imperfections whose locations and strengths are distributed statistically; each imper-
fection consists of one element chosen randomly with an imperfection amplitude parameter
ζ that varies with equal probability between 0% and 2%. Using the same imperfect plate,
we present results for the hyperelastic model in Fig. 11 and for a J2 flow theory elastoplas-
tic model in Fig. 12, both sharing the same piecewise power law uniaxial curve (n = 0.22,
εy = 0.002). In each figure we plot, in the reference configuration, the equivalent strain
change contours δεe(χ , τ ), resulting from the presence of the randomly distributed imper-
fections; only regions of |δεe| ≥ 10−4 are shown in color.

Starting with the hyperelastic plate, observe that at τ = 0.5τm, prior to the onset of loss
of ellipticity, there is no interaction between imperfections and only a small zone about them
is influenced, as seen in the left graph of Fig. 11. At τ = τm the deformation pattern shows
a larger deviation from the perfect solution with neighboring imperfections linked by zones
of localized deformation, but still no global localized deformation band appears. Only at
τ = 1.5τm a pattern of localized deformation bands appears that covers rather uniformly the
entire domain.



Stability and Localization of Deformation Delay in Finitely Strained. . . 413

Fig. 11 Reference configuration deformation pattern evolution in a biaxially strained hyperelastic plate with
a random distribution of spatially localized imperfections shown at three times, calculated for a mechanical
loading rate commensurate with the wave propagation speed (η = 1). Results correspond to piecewise power
law uniaxial curve (n = 0.22, εy = 0.002) and a loading angle tanψ = −1/2. The same scale is used in both
directions in each plot

Fig. 12 Reference configuration deformation pattern evolution in a biaxially strained J2 flow theory elasto-
plastic plate with a random distribution of spatially localized imperfections shown at three times, calculated
for a mechanical loading rate commensurate with the wave propagation speed (η = 1). Results correspond to
piecewise power law uniaxial curve (n = 0.22, εy = 0.002) and a loading angle tanψ = −1/2. Notice also
the unloaded zones, depicted in green, that have appeared at time τ = 1.25τm . The same scale is used in both
directions in each plot

Studying next the elastoplastic plate, we observe that at τ = 0.25τm, prior to the onset of
loss of ellipticity, there is no interaction between imperfections and only a small zone about
them is influenced as seen in the left graph of Fig. 12. At τ = τm a deformation pattern
appears with localized zones along the direction of loss of ellipticity that covers the entire
plate. No unloading has yet appeared at this time. Finally at τ = 1.25τm a smaller number of
localized deformation bands with even higher strains appear that run across the entire plate
and have |δεe| ≈ 1. Moreover a large part of the plate between these dominant bands expe-
riences unloading conditions, thus explaining the strain concentration in a smaller number
of such bands, compared to the case at τ = τm. We note that [34] performed a similar anal-
ysis on a quarter-symmetry elastoplastic tube model, with about 0.1% of randomly selected
elements with a defect in the yield strength triggering localization.

By comparing the results in Fig. 11 and Fig. 12, one sees that although for some time
prior to τm, a deformation theory model is adequate to describe the initial evolution of ran-
domly distributed defects, in order to understand the ultimate failure by localization it is
important to use an elastoplastic constitutive law that properly accounts for elastic unload-
ing. However, the deformation theory model shows clearly the delay in the development of
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the localized deformation pattern for macroscopic strain states well past the dimensionless
critical time τm corresponding to the onset of loss of ellipticity in the underlying constitutive
model.

4 Conclusion

The issue of dynamic stability of structures and the associated failure patterns is an impor-
tant engineering problem and as such has drawn considerable attention over the years. The
commonly used approach to study localization phenomena (necking) in problems where
inertia plays a dominant role, is the method of modal analysis which determines the struc-
ture’s fastest growing eigenmode. This method, frequently combined with the assumption of
a strain-rate-dependent material response, tacitly assumes that all points in the structure can
be perturbed simultaneously, an assumption that is inappropriate for cases when the velocity
of material points in the structure is comparable to the associated wave propagation speeds
and leads to conclusions contradicted by experiments. In addition, the closely related prob-
lem of stability in dynamically loaded structures, i.e., the time evolution of perturbations
introduced at different times during loading, does not seem to have attracted attention.

Motivated by the experimental studies of [32, 34] on the high strain-rate expansion of thin
rings and tubes, that show no evidence of a dominant wavelength in their failure mode and
no influence of strain-rate sensitivity on the necking strains, [20] addressed first the dynamic
stability of an incompressible, nonlinearly elastic bar at different strain rates by following
the evolution of spatially localized small perturbations introduced at different times. The
same approach is adopted here for the dynamic stability of biaxially strained thin plates,
following the work of [29], who defined the concept of influence discs and studied numer-
ically the dynamic evolution of initial imperfections using rate-independent elasto-plastic
constitutive laws. A dimensionless form of the governing equations is introduced together
with the “loading rate parameter” η that relates the transverse strain-rate to the axial wave
propagation speed at zero strain.

An analytical method, based on linearization with frozen coefficients, is used to predict
the initial stability of a spatially localized imperfection. We find that a perturbation is al-
ways stable if introduced at a time τ0 prior to the “stability limit time” τL, the η-independent
dimensionless time corresponding to the linear system’s stability. This time is smaller than
– or frequently coincides with – the “critical time” τm, the also η-independent dimension-
less time corresponding to the loss of ellipticity of the plate’s constitutive law under static
loading. It is worth noting that the concept of a stability limit time different than the critical
time is novel and due to the two dimensionality of the plate problem, in contrast to the one
dimensional bar problem studied in [20] when these two values coincide. Another interest-
ing outcome of this investigation is that the plate is always initially unstable since an initial
amplification of some perturbation is always possible.

Using a finite strain hyperelastic model,15 we also calculate numerically – based on FEM
and for mechanical loading rates commensurate to the wave propagation speed (η = 1) – the
fully nonlinear time evolution problem of spatially localized perturbations, initiated at dif-
ferent times. The numerically obtained results are in agreement with the linearized analysis,
which predicts that the plate is stable when perturbed at 0 < τ0 ≤ τL. Moreover, we are able
to calculate the dimensionless time delay, i.e., the dimensionless time τ > τm required for

15A deformation theory type of plasticity based on logarithmic strain in the absence of unloading.
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the unbounded growth of a spatially localized perturbation. It is found that this delay – im-
portant for the explanation of increased ductility in certain dynamically loaded structures, as
in the case of electromagnetically expanded tubes in [34] – is almost insensitive to the time
of introduction of the perturbation but very sensitive to its amplitude, the loading orientation
and the constitutive law.

While the observed delay in the growth of the localized bands that might appear, at first
sight, to be similar to the results in the literature based on modal analysis (e.g., see [8, 10]),
the present work reveals that the delay occurs even when spatially localized perturbations are
considered in the fully nonlinear problem with an evolving background state, and further-
more that inertia alone is sufficient to generate such delays in the growth of these localized
perturbations.

The use of a finite strain hyperelastic theory of plasticity model to study the evolution of
spatially localized perturbations and imperfections is found to be appropriate, since unload-
ing is detected only well past the time corresponding to the loss of ellipticity in the perfect
plate. Since the ultimate failure pattern depends on the interaction of statistically distributed
defects, as argued in [34], cases of plates with statistically distributed initial imperfections
are also presented. These calculations use a hyperelastic as well as an elastoplastic model
with unloading (J2 flow theory) both with the same uniaxial response). It is found that
plasticity plays an important role as we approach τm, since elastic unloading leads to con-
centration of deformation in a few narrow bands that link-up to cover the entire domain.

The above approach is useful for the stability analysis of different types of structures
under rapid strain rates. As one such example we cite the work by [19] on the stability of
a pressurized thin ring at high rates, where it is shown that for small values of the applied
loading rate, the structure fails through a global (ellipsoidal) mode, while for large values of
the applied loading rate the structure fails by a localized mode of deformation, as also found
experimentally by [15].

Appendix A: Constitutive Laws Adopted and Their Plane Stress
Incremental Moduli

Although the expressions for the 2D plane stress incremental moduli are stated in [29], their
derivation from 3D considerations is interesting and hence, for the sake of completeness of
the presentation, the details of the corresponding derivations are given in this Appendix.

The analysis presented in Sect. 2 is general; any rate-independent constitutive law16

which can be put in the form of (2.5), can be accommodated. Results presented here corre-
spond to the three such models: a hyperelastic deformation theory model of plasticity, the J2

deformation theory model of [24] and a finite strain generalization of the J2 flow theory. All
models are fitted to the same power law uniaxial stress-strain curve and thus share the same
principal solution. For further details on this construction, the interested reader is referred to
[26]. For the small perturbations considered here, deviations from proportional loading are
initially small and no unloading occurs in the perturbed plate until well after τm (the time
corresponding to the loss of ellipticity onset in the unperturbed – uniform strain – solution),
thus justifying their use for analyzing the plate’s stability.

Assuming material incompressibility, the [24] J2 deformation and the J2 flow theory
models that can be put in the following 3D rate form

�
σ = C : D − ṗI , (A.1)

16Localization of deformation requires that the constitutive law looses ellipticity at some strain level.
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where
�

( ) denotes the Jaumann rate of the Cauchy stress tensor (
�
σ = σ̇ − � · σ + σ · �

with � the spin tensor), D is the strain rate tensor and ṗ the hydrostatic pressure rate.
For the case of finite strains, the above 3D current configuration relation can be trans-

formed into its reference configuration counterpart

Ṡij = LijklĖkl − ṗC−1
ij ; Eij = 1

2

(
Cij − δij

)
, (A.2)

where S is the second Piola-Kirchhoff stress, E its work-conjugate Green-Lagrange strain
and the reference configuration components of the incremental moduli tensor L are

Lijkl ≡ 2

3
E∗

[1

2

(
C−1

ik C−1
jl + C−1

il C−1
jk

) − 3

2

(
1 − Et

E∗
)S ′

ijS
′
kl

σ 2
e

]

− 1

2

[
C−1

ik Sjl + C−1
jk Sil + C−1

il Sjk + C−1
jl Sik

]
, (A.3)

where S ′ is the deviatoric part of the stress tensor S and σe the von Mises equivalent stress,
namely

S ′
ij = Sij − 1

3
C−1

ij CklSkl, σ 2
e = 3

2
CikCjlS

′
ijS

′
kl. (A.4)

In the above expressions E∗ = E for the J2 flow theory while for the J2 deformation theory
of [24] E∗ = Es ≡ σe/εe is the secant modulus of the uniaxial stress-strain curve. In both
models Et is the tangent modulus of the uniaxial stress-strain curve Et ≡ dσe/dεe . For the
J2 hyperelastic model the general expression for E∗ is more complicated and will be given
below for the special case of the biaxially stretched membrane.

The principal axes expressions in three dimensions for the (von Mises) equivalent stress
σe and the equivalent strain εe , required for the calculation of Es and Et are

σe = (
σ 2

1 +σ 2
2 +σ 2

3 −σ1σ2 −σ2σ3 −σ3σ1
)1/2

, εe = 2

3

(
ε2

1 +ε2
2 +ε2

3 −ε1ε2 −ε2ε3 −ε3ε1
)1/2

.

(A.5)
Due to plane stress loading conditions

Ṡ3i = 0, Ėα3 = 0, Ė33 = −C33C
−1
γ δ Ėγ δ, (A.6)

which substituted in (A.2) give the following relation between Ṡαβ and its work conjugate
Ėαβ

Ṡαβ = Mαβγ δĖγ δ; Mαβγ δ = Lαβγ δ − C33

(
Lαβ33C

−1
γ δ + C−1

αβ L33γ δ

) + C−1
αβ C−1

γ δ C2
33L3333.

(A.7)
The above result, combined with (A.3) gives the following expression for Mαβγ δ

Mαβγ δ = 2

3
E∗

[1

2

(
C−1

αγ C−1
βδ + C−1

αδ C−1
βγ

) + C−1
αβ C−1

γ δ − 3

2

(
1 − Et

E∗
)S ′

αβS ′
γ δ

σ 2
e

]

− 1

2

[
C−1

αγ Sβδ + C−1
βγ Sαδ + C−1

αδ Sβγ + C−1
βδ Sαγ

]
. (A.8)

Recalling the relations between S & N and E & F , the plane stress incremental moduli
L in (2.5) are found to be

Lαβγ δ = MεβζδFαεFγ ζ + Sδβδαγ . (A.9)
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For the case of biaxial loading of interest here Fαβ = diag
(
λγ

)
and thus

C11 = λ2
1, C22 = λ2

2, C12 = 0; S11 = σ1/λ
2
1, S22 = σ2/λ

2
2, S12 = 0, (A.10)

which upon substitution into (A.8), (A.9) gives the incremental moduli expressions in
(A.16), (A.17) for J2 flow and J2 deformation theories.

Calculations of the moduli for the hyperelastic model use (A.9), (A.10) and M is derived
from the strain energy potential W

Mαβγ δ = ∂2W

∂Eαβ∂Eγδ

= 4
∂2W

∂Cαβ∂Cγδ

, (A.11)

obtained by successive application of chain rule of differentiation using W(εe) where the
equivalent strain εe = εe(I1, I2) is expressed in terms of the invariants of C, which in turn
depend on the principal stretch ratios λα through

I1 = trC = λ2
1 + λ2

2, I2 = detC = (
λ1λ2

)2
. (A.12)

The 3D strain energy density W used here is a function of the equivalent strain εe; the
isotropic model is fitted to a piecewise power law uniaxial stress-strain curve17 resulting in
the following expressions for W

σe

σy

=
( εe

εy

)m ; W = E
(
εy

)2
[

1

1 + m

( εe

εy

)m+1 + 1

2

(m − 1

m + 1

)]
,

{
m = 1 for εe ≤ εy,

m = n for εe > εy,

(A.13)
where the equivalent strain εe is given in terms of the principal logarithmic strain compo-
nents εα by (A.5). Accounting for the incompressibility constraint ε1 + ε2 + ε3 = 0 (A.5)
one obtains

σe = (
σ 2

1 + σ 2
2 − σ1σ2

)1/2
, εe = 2√

3

[
ε2

1 + ε2
2 + ε1ε2

]1/2
, (A.14)

where the equivalent stress σe expression accounts for the plane stress condition σ3 = 0 and
the equivalent strain accounts for incompressibility ε1 +ε2 +ε3 = 0. Since the principal solu-
tion is biaxial straining, the principal Cauchy stresses σα are related to their work-conjugate
the principal logarithmic strains εα by:

σα = ∂W

∂εα

, σ1 = 2

3
Es

(
2ε1 + ε2

)
, σ2 = 2

3
Es

(
ε1 + 2ε2

) ; εα = lnλα , (A.15)

where the secant Es and tangent Et moduli of the uniaxial stress-strain curve that appear in
(A.3).

After some lengthy algebra we end in the following expressions for the non-zero com-
ponents of the plane stress moduli in (2.6), given below in two groups; the normal moduli

17Note: for a uniaxial stress state ε2 = −ε1/2 and εe = ε; Moreover εy and σy = Eεy are the yield strain
and stress respectively in a uniaxial loading path.
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components are:

L1111 = 1

λ2
1

[4

3
E∗ + (

Et − E∗)
(σ1

σe

)2 − σ1

]
,

L1122 = L2211 = 1

λ1λ2

[2

3
E∗ + (

Et − E∗)σ1σ2

σ 2
e

]
,

L2222 = 1

λ2
2

[4

3
E∗ + (

Et − E∗)
(σ2

σe

)2 − σ2

]
,

(A.16)

and the shear moduli components are given by:

L1212 = 1

λ2
2

[E∗

3
+ σ2 − σ1

2

]
,

L2121 = 1

λ2
1

[E∗

3
+ σ1 − σ2

2

]
,

L1221 = L2112 = 1

λ1λ2

[E∗

3
− σ1 + σ2

2

]
,

(A.17)

where for the J2 flow theory E∗ = E, the J2 deformation theory E∗ = Es and the hyperelas-
tic model E∗ = Es[(λ2

1 + λ2
2)/(λ

2
1 − λ2

2)](lnλ1 − lnλ2) where these quantities were defined
immediately after (A.4). Derivation details for the hyperelastic model can be found in [26].
The principal stresses σα for all three models are identical and given by (A.15).

In the above expressions the material energy density W is the 3D version. We use here
in Appendix A the same symbol as for its 2D counterpart in Sect. 2 to avoid extra symbols.
In the same spirit, the dimensionless version of the stresses σα and moduli Lαβγ δ in (A.15),
(A.16) and (A.17), are found by taking in all the above expressions the initial Young modulus
to be E = 1.

Appendix B: Influence Discs as Functions of Constitutive Law and Load
Orientation

The minimum and maximum influence disc sizes δ−, defined in (2.12), and δ+,defined in
(2.13), at the onset of loss of ellipticity τm, have been presented in [29]. However, for the
sake of completeness of the presentation and also in view of a different definition of δ+
adopted in this paper, these results are presented again here in Fig. 13 with the disc sizes
given as functions of the load orientation angle ψ for the three different constitutive models
considered in Appendix A and for two different power-law hardening exponents, n = 0.22
(typical of Al alloys, plotted in solid lines) and n = 0.40 (typical of steel alloys, plotted in
dotted lines). Curves in the ψ < 0 range are terminated at ψ = tan−1(−0.5) below which one
stress becomes compressive. Moreover, J2 flow theory curves are only plotted for ψ ≤ 0, in
view of their well-known – see [24] – unrealistic predictions for ψ > 0.

As expected, for a given material and load orientation ψ , both δ− and δ+ are increasing
functions of the hardening exponent n. For the lower hardening exponent n = 0.22, there
is practically no difference for either the minimum or maximum influence disc sizes, δ−
and δ− respectively, between the J2 deformation and hyperelastic theory models over the
entire range of load orientations considered. For the higher hardening exponent n = 0.4,
the δ− predictions of the J2 deformation and hyperelastic theory models are practically the
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Fig. 13 Minimum δ− and
maximum δ+ influence disc sizes
at the onset of loss of ellipticity
τm, as functions of the load
orientation angle ψ for the three
different constitutive models
considered: hyperelastic,
J2-deformation theory and
J2-flow theory, all sharing the
same uniaxial stress-strain law
with εy = 0.002 and n = 0.22
(solid line) and n = 0.40 (dotted
line)

same over the entire range of loading angles, while the maximum influence disc size δ+
predictions for these two constitutive models start diverging at about ψ < −π/12.

Setting aside the fact that δ− and δ+ exist for a significantly smaller range of load ori-
entations for the much stiffer J2 flow theory, one can observe that for n = 0.22 there is no
noticeable increase in the J2 flow theory value of δ− compared to its hyperelastic and defor-
mation theory counterparts, but there is a large increase in the corresponding value of δ+, as
compared to the other two constitutive models with the same uniaxial curve. The same trend
holds true for n = 0.40, but the differences between constitutive models, especially for δ+,
are considerably larger. Moreover, the J2 flow theory gives unrealistically high values for
δ+, save for a small range near ψ = 0.

The small difference of the minimum δ− and maximum δ+ influence disc sizes predicted
by the hyperelastic and J2 deformation theory constitutive models is the reason for using the
simpler to implement hyperelastic model in most of our numerical calculations.

Appendix C: Critical (τm) and Stability Limit (τL) Dimensionless Times

Having established the incremental moduli tensor L in Appendix A for the constitutive laws
adopted in this work, we calculate next the dimensionless critical time τm for the onset
of loss of ellipticity, the corresponding localization angle φm introduced in (2.11) and the
dimensionless Lyapunov stability time τL in order to establish the range of validity of the
plate’s linearized stability, as presented in Sect. 2.2.

From the definition of A in (2.7) we have

A(τ,φ) =
[
L1111(τ )(n1)

2 +L1212(τ )(n2)
2 (L1122(τ ) +L1221(τ ))(n1n2)

(L2211(τ ) +L2112(τ ))(n1n2) L2121(τ )(n1)
2 +L2222(τ )(n2)

2

]

;

n1 = cos(φ), n2 = sin(φ), (C.1)

and from the definitions in (2.11) and (2.10), τm is the lowest positive τ root of the charac-
teristic equation of A(τ,φ),∀φ ∈ [0,π/2]

L1111(τ )L2121(τ )(n1)
4 + [L1111(τ )L2222(τ ) +L1212(τ )L2121(τ )

− (L1122(τ )L1221(τ ))2](n1n2)
2 +L1212(τ )L2222(τ )(n2)

4. (C.2)
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For the loading angles ψ considered in Sect. 3, we find

ψ = − π

12
: [L1111(τm)L2222(τm)]1/2 + [L1212(τm)L2121(τm)]1/2

− [L1122(τm) +L1221(τm)] = 0,

ψ = 0 : L1111(τm) = 0 =⇒ τm = exp(n) − 1,

ψ = π

4
: L1111(τm) = 0 =⇒ τm = [

exp((1 + 3n)/6) − 1
]√

2,

(C.3)

where the corresponding angles in the interval [0,π/2] are

ψ = − π

12
: φm = tan−1

[
L1111(τm)L2121(τm)

L1212(τm)L2222(τm)

]1/4

, ψ = 0 : φm = 0,

ψ = π

4
: ∀φm ∈

[
0,

π

2

]
. (C.4)

Notice that for loading angles ψ = 0,π/4, the critical time is independent of the particular
version of the model used (hyperelastic, J2 deformation or J2 flow theory) and depends
solely on the exponent n18 of the power law-type uniaxial stress-strain curve in (A.14).

The Lyapunov (linearized) stability of the system, as discussed in Sect. 2.2, is guaranteed
by the positive definiteness of A(τ,φ) and −Ȧ(τ,φ). By construction A(τ,φ) is positive
definite for ∀τ ∈ [0, τm), ∀φ ∈ [0,π/2]. Finding the value of τL ≤ τm that guarantees the
positive definiteness of −Ȧ(τ,φ) for ∀τ ∈ [0, τL), ∀φ ∈ [0,π/2] is based on numerical
calculations using a symbolic manipulator.

For the cases investigated in Sect. 3 the following values are found for the dimensionless
critical time τm and the corresponding linearized (Lyapunov) stability time τL

hyperelastic ; n = 0.22

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ = tan−1

(
−1

2

)
, τm = 0.508, τL = 0.38

ψ = − π

12
, τm = 0.352, τL = τm

ψ = 0, τm = 0.246, τL = τm

ψ = π

4
, τm = 0.451, τL = τm

n = 0.40

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ = tan−1

(
−1

2

)
, τm = 0.900, τL = 0.33

ψ = − π

12
, τm = 0.715, τL = 0.475

ψ = 0, τm = 0.492, τL = τm

ψ = π

4
, τm = 0.626, τL = τm

J2 deformation ; n = 0.22

⎧
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⎪⎪⎪⎪⎪⎪⎩

ψ = tan−1

(
−1

2

)
, τm = 0.482, τL = 0.44

ψ = − π

12
, τm = 0.351, τL = τm

ψ = 0, τm = 0.246, τL = τm

ψ = π

4
, τm = 0.451, τL = τm

18For the value of εy = 0.002 used in the calculations of Sect. 3, the equivalent strain verifies εe(τm) > εy .
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n = 0.40

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ = tan−1

(
−1

2

)
, τm = 0.723, τL = 0.38

ψ = − π

12
, τm = 0.689, τL = 0.620

ψ = 0, τm = 0.492, τL = τm

ψ = π

4
, τm = 0.626, τL = τm

J2 flow ; n = 0.22

⎧
⎪⎪⎪⎨
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ψ = tan−1

(
−1

2

)
, τm = 0.756, τL = 0

ψ = − π

12
, τm = 0.405, τL = 0

ψ = 0, τm = 0.246, τL = 0

n = 0.40

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ = tan−1

(
−1

2

)
, τm = 0.924, τL = 0

ψ = − π

12
, τm = 1.131, τL = 0

ψ = 0, τm = 0.492, τL = 0

(C.5)

It is worth noticing in (C.5) that – for the same hardening exponent n – the results for
the hyperelastic and J2 deformation theory models are either very close (or coincident for
ψ = 0,π/4), while the much stiffer J2 flow theory is not linearly stable since −Ȧ(τ,φ)

looses positive definiteness for certain values of φ at all dimensionless times τ (and hence
τL = 0).
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