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Abstract
We revisit the general theory of finite-strain deformations in fluid-saturated porous media
via the thermodynamics of nonequilibrium processes. Our aim is the thermodynamically
consistent derivation of governing equations that satisfy the principle of material frame in-
difference, starting with the minimal number of assumptions. In the first part, we treat the
relative fluid velocity as a constitutive variable, and hence fully determined by the macro-
scopic thermodynamic state of the continuum. However, this hypothesis is not rich enough
to account for the tortuosity effect in poroacoustics, second-gradient effects, or Brinkman’s
correction to Darcy’s law, thus motivating its relaxation in the second part, where we con-
sider the relative fluid velocity as an independent kinematic variable. This approach yields
an additional balance equation reflecting, in an average sense, the micromechanics of the
fluid flow, which is derived from the principle of virtual power. Finally, we show that the
resulting general model is consistent with Biot’s linear theory of acousto-poro-elasticity.

Keywords Finite-strain poromechanics · Nonequilibrium thermodynamics · Material frame
indifference · Principle of virtual power · Tortuosity

Mathematics Subject Classification 74A15 · 74F10

1 Introduction

The continuum modeling of fluid flow through deformable porous media started in the
1920’s with the work of Karl von Terzaghi [67], motivated by problems in soil mechan-
ics. Terzaghi’s work was based on elasticity theory combined with a phenomenological law
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relating the fluid flow rate to the pressure, introduced in 1856 by Henry Darcy [26]. In
the 1940’s and 1950’s, the biphasic models of porous media were introduced, consisting
of balance laws for each of the solid and fluid phases related by macroscopic interaction
laws based on micromechanical considerations. These models started with the work of Biot
[9–12] on poroelasticity and formed the basis for many subsequent studies in this area un-
der quasistatic and dynamic conditions. In the late 1960’s and early 1970’s the theories
of rational thermodynamics [20, 68] were first applied to the macroscopic modeling of fluid
mixtures, e.g., see [27, 42, 45, 59]. It is only in the 1980’s that extensive research was done to
apply the continuum thermodynamics principles to model the macroscopic behavior of de-
formable, saturated porous continua (e.g., see [14, 21, 30, 47–49]) using the aforementioned
fluid mixtures theories, where the porous continuum is seen as a mixture of a solid and a
fluid. Using the tools of nonequilibrium thermodynamics, considerable research followed to
extend the linearized Biot’s theory to finite strains [13] and later to introduce additional phys-
ical mechanisms, such as plasticity, creep, chemical aging, phase changes, second-gradient
effects, etc. A detailed accounting of these works is beyond the scope of this article, the
reader is referred to [22, 23, 29] and the references therein. In parallel to continuum mod-
els, the rise of homogenization theories resulted in an additional body of research aiming
to establish the links between physical mechanisms at the microscale and the macroscopic
behavior of fluid-saturated deformable porous media, e.g., see [1–3, 5–7, 16, 24, 25, 29] and
the book by Bear [8].

Most of the models derived at the continuum scale were shown to be consistent with
Biot’s theory upon linearization. However, when derived in the linear regime, these models
can show inconsistencies with the principles of rational thermodynamics principles upon
their extension to nonlinear regimes, as explained for instance by [71, 73, 75], who points
out that most biphasic models are not always consistent with the principle of material frame
indifference. Moreover, most of poroelasticity models are, at some point of their derivation,
based on the phenomenological split of the stress tensor into two macroscopic stress tensors:
one for the solid and another for the fluid, two (or more) corresponding linear-momentum
balances are introduced, energies and interaction terms are defined for each phase, and the
resulting set of constitutive restrictions can be in contradiction with thermodynamic princi-
ples as discussed in Sect. 4.3.

Our goal is to propose a general continuum theory for finite-strain poroelasticity that cir-
cumvents the use of mixture theories and, using the least number of assumptions, to provide
a thermodynamically consistent derivation of the governing equations that satisfy the prin-
ciple of material frame indifference. We show that the introduction of interaction terms and
splits between fluid and solid physics as performed in mixture theories, are not necessary to
derive a continuum poromechanics model. In this work, we adopt a unique linear momen-
tum balance, an approach that is used in the recent continuum multiphysics literature such as
in electromagnetic couplings [52], electronic couplings in semi-conductors [41], atomic dif-
fusion in solids [34], hydrogels [18, 19], ionic polymers [76]. We describe a porous medium
as a solid skeleton that contains a connected network of holes (usually called pores) that
are filled with a fluid flowing through this network. We consider that the pores are always
saturated by a single fluid. We are interested in the macroscopic response of the continuous
porous medium and not in the details of the processes that take place at the microscale, the
goal being to macroscopically couple the mechanics of the deformable solid skeleton with
the motion of the fluid flowing trough.

The remainder of this paper is organized as follows. The notations employed and def-
initions of the fundamental fields are presented in Sect. 2 and in Sect. 3, respectively. In
Sect. 4, we treat the relative velocity of the fluid as a constitutive variable. We derive, using



The Role of the Relative Fluid Velocity. . . 153

the direct approach of continuum mechanics, the unique thermodynamically admissible field
equations and compare them with the existing literature. However, this hypothesis is not rich
enough to capture the tortuosity effect in elasto-poro-acoustics, second-gradient effects, or
Brinkman’s correction. In Sect. 5, we treat the relative velocity of the fluid as a kinematic
descriptor of the continuum. This additional kinematic descriptor requires a supplementary
balance equation derived from the principle of virtual power and reflecting, in an average
sense, the micromechanics of the fluid flow. The resulting model is shown to be consistent
with Biot’s linear theory of acousto-poro-elasticity. The presentation is concluded by a dis-
cussion in Sect. 6. Some additional details are given in the appendices: key definitions and
results on material frame indifference in Appendix A, details of the derivation of the energy
flux vector h in Appendix B, and the justification for the final expressions of the generalized
Fourier and Darcy laws in Appendix C.

2 Notations

Dyadic notation convention is followed here; since several variations exist in the literature,
a brief overview of the version used in this paper is presented below.1

– Scalars are denoted by script Latin or Greek letters (e.g., a, b, c, m, α, β , γ , ψ , M , � ,
etc).

– Vectors are denoted by bold small case Latin or Greek letters, e.g., a, b, c, α, β , γ , etc.
Their components are denoted using the script version of the same symbols ai , αi , etc.

– Second-order tensors are denoted by BOLD UPPER CASE Latin or Greek letters, e.g.,
A, �. Their components are denoted using the script versions of the corresponding sym-
bol Aij , �ij .

– Third-order tensors are denoted by the bold uppercase FONT, e.g., U and their com-
ponents by Uijk .

– Fourth-order tensors are denoted by the bold uppercase FONT, e.g., A and their com-
ponents by Aijkl .

– Sets of variables are denoted by script uppercase calligraphic FONT , e.g., L, S , V .

There are two notable exceptions to the aforementioned convention. To stay consistent with
usual notations in solid mechanics, we denote the spatial position of a point in the current
configuration by the vector x and reference coordinate vector of the corresponding material
point by X. Moreover, the Cauchy stress (second order tensor) is denoted by the bold small
case letter σ.

Spatial differentiation is indicated by two nabla operators: the small nabla operator ∇ for
the current configuration and the corresponding large nabla operator ∇ for the reference
configuration

∇ := ∂

∂x
, ∇ := ∂

∂X
.

Dyadic notation uses a dot · for the single contraction operation. Examples of contraction
operations between tensors of various ranks, spatial gradients and derivatives of a tensor field

1It is tacitly assumed that all boundary value problems here are set in the three-dimensional Euclidean space
R3. A Cartesian basis is used for all field quantities, although the proposed dyadic notation allows for a
straightforward conversion to curvilinear coordinates.
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quantity with respect to another tensor field quantity using the proposed notation are given
below in Cartesian coordinates
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∇a)i = ∂a

∂xi

= a,i , (∇a)ij = aj,i , (∇A)ijk = Ajk,i , (∇A)ijkl = Ajkl,i ,

∇ ·a = ai,i , (∇ ·A)i = Aj i,j , (∇ ·A)ij =Akij,k, (∇ ·A)ijk =Alijk,l ,

a ·b = aibi , A:B = Aij Bij , A

... B= AijkBijk, A

.... B=AijklBijkl ,

(A ·b)i = Aij bj , (A ·B)ij = AikBkj , (A:B)ij =AkliBklj , (A

... B)i =AjkliBjkl,
(

∂a

∂b

)

i

= ∂a

∂bi

,

(
∂a
∂b

)

ij

= ∂ai

∂bj

,

(
∂A
∂b

)

ijk

= ∂Aij

∂bk

,

(
∂A
∂B

)

ijkl

= ∂Aij

∂Bkl

,

where the use of Einstein’s convention of summation over repeated indices is adopted. The
standard dyadic notation for the tensor product between vectors is also used as well as the
transposition operation for second-order and third-order tensors

(a⊗b)ij = aibj , (a⊗b⊗c)ijk = aibj ck, (a⊗b)� = b⊗a, (a⊗b⊗c)� = c⊗b⊗a.

Finally we introduce the wedge product (∧) of two vectors a and b as the rank two antisym-
metric tensor

a ∧ b = a ⊗ −b ⊗ a.

3 Kinematics and transport identities

We define the saturated porous material as a continuum and to each material point we assign
an apparent density of skeleton ms (x, t) and an apparent density of fluid mf (x, t) defined as
the masses of skeleton and fluid per unit current volume of the continuum as opposed to true
density, the mass per unit volume of each material. We denote by 	 and ω the reference and
current configurations, respectively. A material point of the skeleton is defined by its position
X in the reference configuration and is mapped at time t to the spatial point x = χ (X, t). As
fluid flows through the solid, we adopt the following Eulerian description of mass transfer
in the continuum:

(i) The apparent mass density ms is associated with the velocity vs (x, t) = .
x, where the

superposed dot represents the material time derivative (at X fixed).
(ii) The apparent mass density mf flows with the absolute macroscopic velocity vf (x, t).

In deriving the governing equations, we write the balance laws in Sect. 4 in the current
configuration on an arbitrary material control volume v ⊂ ω which follows the motion of the
solid skeleton material points (Fig. 1). We allow the volume v to be crossed by a material
discontinuity surface s. We further assume there is no sliding or debonding of the contin-
uum at the discontinuity surface, i.e., s deforms with the continuum following the mapping
χ (X, t) and the skeleton displacement and velocity are continuous across s so that

�x� = 0, �vs� = 0, (3.1)

where �.� denotes the jump of a field value across the interface s.
An important role in the theory is played by the relative fluid velocity vr defined by:

vr := vf − vs . (3.2)
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Fig. 1 Schematic of the material
control volume v with boundary
∂v and discontinuity surface s

Following the introduction of the primitive variables ms and mf , we define the total mass
density of the continuum mt , its average velocity v, and the mass ratios cs and cf as

mt := ms + mf , mtv := msvs + mf vf , cs := ms

mt

, cf := mf

mt

. (3.3)

It follows that

cf + cs = 1, v = csvs + cf vf = vs + cf vr . (3.4)

It is also useful to introduce the definition of the material time derivative, denoted by a
superposed dot for scalars and vectors defined in an Eulerian description (x, t) (derivation
at X fixed)

.
a(x, t) := ∂a

∂t
+ vs · ∇a,

.
a(x, t) := ∂a

∂t
+ vs · ∇a. (3.5)

In this work we repeatedly make use of the localization procedure of continuum me-
chanics2 that allows us to convert the integral form of a balance law on an arbitrary control
volume v into a differential equation and a boundary/interface condition, due to the arbitrari-
ness of the control volume selected. To this end we need two ingredients: first the Reynolds
transport theorem applied to a material control volume in the current configuration v moving
with the skeleton at speed vs ; for any tensorial field f(x, t) we have

d

dt

∫

v

f dv =
∫

v

[.

f + (∇ ·vs) f
]

dv, (3.6)

and second the divergence theorem that applies to an arbitrary control volume v with bound-
ary ∂v containing a material discontinuity surface s moving with the skeleton at speed vs ,
where n the outward unit normal vector; the divergence theorem states

∫

∂v

n · f da =
∫

v

∇ · f dv +
∫

s
⋂

v

n · �f� da. (3.7)

2For a detailed explanation of the localization procedure see any standard textbook in continuum mechanics,
e.g., [58].
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4 The relative fluid velocity vr as a constitutive field

In this section, we place ourselves in the constitutive macroscopic regime for the fluid rela-
tive velocity. The goal is to use the principles of thermodynamics to derive the macroscopic
field equations pertaining to the modeling of porous media.

In the macroscopic modeling of porous media, it is common to consider the fluid and the
solid as two superimposed continua, and apply to each the conservation laws of mass, mo-
mentum, and energy, as well as the Clausius-Duhem inequality. This is the mixture-theory
approach [13, 14, 21], also named biphasic-theory approach, in reference to the original
work of [9, 13]. The mixture-theory for porous materials has proved its efficiency in the
modeling of physical experiments (see, e.g., [22] for an extensive list of models and applica-
tions). However, from the point of view of thermodynamics of nonequilibrium processes, we
identified some inconsistencies in this approach, such as the non-objectivity of Darcy’s law
(see (4.69) and (4.70)), the ad-hoc choices for the definitions of kinetic energy (see (4.58))
and the assumed splitting of the stress tensor into skeleton and fluid parts (see (4.59)). These
points are discussed in detail in Sect. 4.3.

In the mixture and biphasic theories, the continuum is split such that each constituent
(fluid and solid) is treated as a single continuum at the macroscopic scale with its own mo-
mentum and energy balances, and entropy imbalance. By construction of these theories, the
relative velocity vr is defined as a kinematic variable. This requires the introduction of terms
that account for interactions between distinct phases and the definition of stress, energy den-
sity, entropy density, for every constituent. For example, the mechanical power expenditures
and kinetic energies are usually defined at the macroscopic scale by analogy with the expres-
sions of such terms at the microscale. The introduction of such phenomenology can lead to
inconsistencies, as mentioned above. Various phenomenological hypotheses are introduced
depending on the physical problem under consideration (rocks, clay, bones, living tissue,
sand, etc) leading to different models in the literature.

In contrast, the goal of this work is to provide a general framework with the minimum
number of assumptions and let thermodynamics provide all the unknown constitutive equa-
tions for the energy and heat fluxes as well as the total stress measure. We show that the
aforementioned phenomenological split into solid and fluid fields is not necessary to derive
a consistent macroscopic model when the fluid relative velocity is treated as a constitu-
tive field. We use the principles of thermodynamics [20, 62, 63, 68] to derive the admissi-
ble forms of the field equations, without any phenomenological assumptions or split. The
derivation of the model is based on the following modeling choices:

(C-1) For Sect. 4, we treat the fluid relative velocity vr as a constitutively prescribed vari-
able. We shall show that this choice is not rich enough to capture some physical
phenomena such as Brinkman’s correction of Darcy’s law, the tortuosity correction in
acoustics, etc. The results of changing this assumption to consider the fluid relative
velocity vr as a kinematic descriptor, will be presented in Sect. 5.

(C-2) There is no mass exchange between the solid and the fluid.
(C-3) Following Noll [63], we make a type-I constitutive assumption for the expression of

the linear momentum density. A type-I assumption aims to model the interactions
of the continuum with the universe (e.g., we postulate the standard inertial form of
the linear momentum). The type-II assumptions characterize the interactions between
different parts of the system. Both these assumptions are required to be objective.

(C-4) We work in an inertial reference frame.
(C-5) The generalized traction introduced in the linear momentum balance only depends on

the outward unit normal vector of a surface n so that the Cauchy tetrahedron theorem
applies and there exists a generalized second-order tensor σ such that t = n ·σ.
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(C-6) There are no internal sources of momentum or energy.
(C-7) We do not distinguish between a solid and a fluid temperatures (thermal equilibrium

at the miscroscale).
(C-8) The thermodynamic state does not depend on high-order gradients (equal or greater

than 2), in order to simplify the algebra. There are no difficulties in generalizing
the present framework to account for higher-order gradients. The reader can refer to
Sect. 5 for an example of this extension.

4.1 Balance Laws

4.1.1 Mass conservation

When writing the mass balances, we assume (C-2) that there is no loss or creation of mass
and no mass exchange between the skeleton and the fluid. Hence any change of mass in the
control volume v enters through the boundary ∂v.

Solid skeleton The integral form of mass conservation for the solid skeleton is

d

dt

∫

v

ms dv = 0. (4.1)

Applying the Reynolds transport theorem (3.6) yields the local form

.
ms + ms (∇ ·vs) = 0, (4.2)

and the corresponding jump condition on surface s is automatically satisfied in view of
assumption (3.1).

Fluid content The control volume moves with the skeleton velocity vs and the fluid flows
with an absolute velocity vf , hence by definition of mf and vf , the fluid mass balance is

d

dt

∫

v

mf dv = −
∫

∂v

mf (vr ·n) da, (4.3)

resulting in the following local form

.
mf + mf (∇ ·vs) + ∇ · (mf vr

)= 0, (4.4)

and the associated interface condition on the surface s

n ·�mf vr

� = 0. (4.5)

4.1.2 Linear momentum balance

In continuum mechanics, the linear momentum is associated to mass in motion and defined
as the product of a mass with its velocity. As obvious as it may seem, this is actually an
assumption, more specifically a constitutive assumption of type-I [63], modeling the inter-
actions of the continuum with the universe. In other fields of physics, the linear momentum
can take different forms; e.g., in the continuum modeling of solid mechanics coupled to
electromagnetism, a generalized linear momentum density is introduced [52].
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In the present continuum model, in accordance with (C-3), we use the approach of [63]
and postulate an explicit form of the linear momentum of a control volume v, where the two
masses are moving at two different velocities (see definitions of mt and v in (3.3))

∫

v

(
msvs + mf vf

)
dv =

∫

v

mtv dv. (4.6)

Even if we do not use any homogenization argument in this work, note that the expression
(4.6) of the linear momentum could be seen as the homogenized form of the linear momenta
of the solid and fluid materials at the microstructure [25].

We assume b to be the external body force per unit mass acting on the continuum with
no consideration of body forces on each constituent, since according to (C-6), there is no
internal source of momentum. We introduce a generalized traction vector t (x, t) modeling
the linear momentum variation occurring through the boundary of the control volume ∂v.
In accordance with (C-5), we further assume that the Cauchy tetrahedron postulate holds,
relating the generalized traction t to a generalized Cauchy stress tensor σ (x, t). Ignoring
external forces on the discontinuity surface s, the integral form of the linear momentum
balance has the simplest possible form

d

dt

∫

v

mtv dv =
∫

v

mtb dv +
∫

∂v

t da, t := n ·σ. (4.7)

In writing (4.7) we deviate from Biot’s classical biphasic-theory of poromechanics [13,
22] where one usually adds a linear momentum flux brought across the boundary ∂v by the
fluid mass in motion of the form − ∫

v
mf vf (vr · n) da. The contribution of these missing

surface flux terms is accounted for by the generalized stress tensor σ whose expression will
be determined via thermodynamics principles. Applying the Reynolds transport theorem
in (3.6) and the divergence theorem in (3.7) and substituting the mass balances (4.2) and
(4.4) into the integral form of linear momentum balance (4.7) we obtain in view of the
arbitrariness of the volume v and surface ∂v the local form

mt

.
v − ∇ · (mf vr

)
v − ∇ ·σ− mtb = 0, (4.8)

and the associated interface condition on the surface s

n · �σ� = 0. (4.9)

4.1.3 Angular momentum balance

The balance of angular momentum follows the simple form of the linear momentum equa-
tion (4.7). Recalling the definition of the wedge product ∧ of two vectors in Sect. 2, the
balance of angular momentum of a control volume v (taken with respect to the origin O of
the inertial frame) is stated as

d

dt

∫

v

x ∧ (mtv) dv =
∫

v

x ∧ (mtb) dv +
∫

∂v

x ∧ (n ·σ) da. (4.10)

The local form is obtained by substituting (4.2) and (4.4) and (4.8), resulting in the following
relation3

σ−σ� − mtvs ∧ v = 0. (4.11)

3No further restriction is obtained from the jump relations.
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Using vs ∧ vs = 0, from (4.11) we obtain

σ+ mf vr ⊗ vs = (σ+ mf vr ⊗ vs)
�, (4.12)

where the symmetry condition applies to the combination σ+ mf vr ⊗ vs , a direct result of
our choice of the simple form of the linear momentum balance in (4.7).

4.1.4 Energy balance

It is usual in mechanics to split the total energy of the control volume v into the sum of its
internal energy and its kinetic energy.4 In this work, we do not postulate any such split in
order to avoid any phenomenological bias in the thermodynamic derivations of the consti-
tutive restrictions. It is also common in the literature to see a split of the internal energy of
the continuum into the solid internal energy and the fluid internal energy, an approach that
misses the coupling energy between the two phases. Different approaches of this split can
be found.

In [70, 72], the internal energies of the fluid and the solid are introduced separately. The
coupling is achieved by the introduction of a porosity balance, and in [71] it is shown that
higher-order gradients of this porosity are necessary to retrieve the coupling terms described
in Biot’s theory. In [17, 22], the authors split the internal energy into an internal energy for
the solid and the fluid and sum them into a total energy for the derivation of thermodynamic
restrictions. When giving an explicit expression to the free energy, they split it again into the
sum of a skeleton energy, a fluid and a coupling energy. Several versions of this approach
exist that account for the interaction energy in the framework of mixtures, see, e.g., the
interface energy introduced in Equation (18) of [65].

To avoid the difficulties associated with the phenomenological split, we consider an en-
ergy density ε, resulting in a total energy

∫

v
ε dv of the control volume. The time variation

of this total energy is decomposed into a volume integral term on v and a boundary inte-
gral term on ∂v. The volume integral consists of two terms: the contribution by the external
body force b which expends mechanical power on the continuum, in accordance with the
definition in the linear momentum balance (4.7). Since b is assumed uniform and identi-
cal for all continua (e.g., gravity), we write its power expenditure on the control volume as
∫

v
mtv ·b dv, and the contribution by the external energy source density q (often called the

radiative flux) as
∫

v
q dv.

By (C-6), we assume there is no internal source of energy in the continuum. Therefore,
the energy variations of the control volume v caused by the interactions with the surrounding
material only occur through the boundary ∂v. We deviate again from the usual biphasic
mixture theories and we do not postulate any stress decomposition or any power expenditure
associated to the fluid or to the solid. Instead, we use the formalism of an unspecified energy
flux (e.g., see the work of [45, 59] on fluid mixture thermodynamics). By (C-5), we postulate
that this surface contribution is associated to a directional flux vector h and takes the form

4It is common, e.g., [22], to write the kinetic energy density of the continuum as the sum of the macroscopic
energy of the skeleton and the fluid msv2

s /2 + mf v2
f
/2. In order to account for the inhomogeneity of the

fluid velocity at the microscopic scale (due to the viscosity of the fluid and to the geometrical tortuosity of
the pores channels), a tortuosity correction av2

r can also be introduced [21, 22]. However, as discussed in the
sequel, this assumption leads to objectivity inconsistencies in the Darcy’s law (Sect. 4.3.4).
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− ∫
∂v

h ·n da. Consequently, the integral form of the energy balance is5

d

dt

∫

v

ε dv = −
∫

∂v

h ·n da +
∫

v

mtv ·b dv +
∫

v

q dv. (4.13)

One can appreciate the generality of the formulation (4.13) where the energy density is
not split into internal and kinetic energy or into solid and fluid energy. In the boundary term,
all the physics is hidden in the generic flux h. We do not write explicit energy fluxes or
mechanical power expenditures associated to mechanical traction .6 The local form of the
energy balance is

.
ε + ε∇ ·vs − mtv ·b + ∇ ·h − q = 0, (4.14)

with the associated interface condition on the surface s

n · �h� = 0. (4.15)

Using (4.8) to substitute the external body force b in (4.14), one obtains a more explicit form
of the local form of the energy balance

.
ε − mtv · .

v + ε∇ ·vs + ∇ · (mf vr

)
v2 + (∇ ·σ) ·v − q + ∇ ·h = 0. (4.16)

This completes the writing of the mass, linear and angular momenta and energy balances
in their most general form, without any introduction of phenomenological terms. The next
step is to explore the second principle of thermodynamics.

4.1.5 Entropy imbalance

Let η be the entropy density of the continuum, where once again we do not differentiate
between the solid and the fluid entropies. Recalling the modeling choice (C-7), according to
which we do not differentiate between the temperature of the skeleton and one of the fluid,
and denoting by θ the absolute temperature of the continuum, the second law of thermody-
namics is stated by the inequality

d

dt

∫

v

η dv ≥ −
∫

∂v

q
θ

·n da +
∫

v

q

θ
dv, (4.17)

where no entropy is associated to the discontinuity surface. In (4.17), we follow again the
formalism of [45] and [59] since we do not give any physical interpretation to flux vector q,
which is not defined as a heat flux (and hence takes no part in the energy balance (4.13)).
The term q/θ is the flux of entropy at the boundary of the control volume ∂v. However, we
follow the discussion of equation (3.2) in [59] according to which the entropy source density
is defined as q/θ with the energy source density q introduced in the energy balance (4.13).

5In this part, we assume that no energy is carried by the discontinuity surface, i.e., no surface tension phe-
nomena.
6For comparison with existing theories, the reader can for instance refer to [17, 22], where the total stress
is decomposed into a solid and a fluid component, such that the power expenditure is

∫

∂v[(σs · n) · vs +
(σf ·n) ·vf ] da with a flux of fluid internal and kinetic energy −∫∂v[(εf + (1/2)mf v2

f
)(vr ·n)] da, which

requires the use of supplementary fields σs , σf , εf . To close the problem, the addition of supplementary
fields requires supplementary equations and constitutive restrictions, and most of the times supplementary
phenomenological assumptions.



The Role of the Relative Fluid Velocity. . . 161

In local form, the entropy inequality is

.
η + η (∇ ·vs) + ∇ ·q

θ
− q · ∇θ

θ2
− q

θ
≥ 0, (4.18)

and the associated interface condition on the surface s is

n ·
�

q
θ

�

≥ 0. (4.19)

Combining the local forms (4.16) and (4.18) to eliminate the external energy source q we
obtain

θ
.
η − .

ε + mtv · .
v + (θη − ε)∇ ·vs − ∇ · (mf vr

)
v2 − (∇ ·σ) ·v − ∇ · (h − q) − q

θ
· ∇θ ≥ 0.

(4.20)
Instead of working with the energy density ε, it is more convenient to introduce the free

energy ψ by

ψ := ε − mt

2
v2 − θη, (4.21)

which allows us to rewrite (4.20) as follows

− .

ψ − η
.

θ − ψ∇ ·vs − ∇ · (mf vr

) v2

2
− (∇ ·σ) ·v − ∇ · (h − q) − q

θ
· ∇θ ≥ 0. (4.22)

4.2 Constitutive restrictions

4.2.1 Framework of the Coleman-Noll procedure

To complete the set of governing equations derived from the general principles, we need to
specify the expressions of η, q, vr , ψ , σ and h. At this point, we do not yet require consti-
tutive restrictions for these fields since this would imply their material frame indifference.7

The free energy ψ is used here as the most convenient alternative to the total energy
density ε. The unknowns σ, h and q were also introduced to represent any general surface
contribution to the linear momentum balance, the energy balance and the entropy imbalance,
respectively. Therefore, these terms can (and actually will) depend on inertial terms and other
non-objective terms. This is why, at this stage of the derivation they are not required to be
material frame indifferent.

Guided8 by [20], the inequality (4.20) must be used to derive thermodynamic restrictions
on these quantities. To do so, we must define a set of thermodynamic variables. The primi-
tive kinematic descriptors of the system are the deformation mapping χ , the mass densities
ms and mf , and the temperature θ . Therefore, we expect the thermodynamic state to be

7This principle states that the intrinsic response of the continuum must be independent of the frame of refer-
ence used to describe the system in the current configuration. See Appendix A for a detailed explanation of
the principle.
8This is the approach chosen in our work. However other procedures do exist to deal with constitutive re-
strictions. For instance the modeling work of [70, 72] is based on a thermodynamic approach using Lagrange
multipliers. The interested reader is referred to the work of [54] for details on this alternative.
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fully described by their values as well as their successive gradients and time derivatives.
Consequently, we postulate here the following set of thermodynamic variables:

L :=

⎧
⎪⎨

⎪⎩

S
︷ ︸︸ ︷
ms,mf , θ,

G
︷ ︸︸ ︷
∇ms,∇mf ,∇θ,F,∇F

︸ ︷︷ ︸
LO

⎫
⎪⎬

⎪⎭
∪ {vs} , (4.23)

where F = (∇χ)� is the deformation gradient of the continuum, S is the set of scalar ther-
modynamic variables and G the set of the first spatial gradients of S . We henceforth make
a distinction between the set LO and the skeleton velocity field vs . It can be shown (see
Appendix A) that an objective quantity cannot depend on vs and hence only the set LO can
be used to describe objective fields.

We make the assumption that the thermodynamic state of the system can be fully de-
scribed by the set of independent fields (4.23). The additional assumption of homogeneity
of the material allows us to drop the dependence on χ . Recall that according to assumption
(C-1), the relative fluid velocity vr is treated as a constitutive variable and we postpone for
Sect. 5 the study of vr as an independent kinematic descriptor.

The inequality (4.22) must hold for any admissible thermodynamic process described by
the set L defined in (4.23). Applying the principle of equipresence [68], the thermodynamic
state is then defined by

η(L), q(L), vr (L), ψ(L), σ(L), h(L). (4.24)

As explained at the beginning of this subsection, some of the quantities in (4.24) can
still be linked to inertial effects, hence the accounting for the dependence on vs . In the
forthcoming algebra, when a term of (4.24) is required to be objective, it will depend on the
objective restriction of L, denoted in (4.23) by LO .

The presence of time derivatives and spatial gradients in the entropy inequality (4.20) –
or equivalently in (4.22) – requires the consideration of time derivatives and higher-order
spatial gradients of L. With this observation in mind, the Coleman-Noll procedure can be
decomposed in two steps:

1. Identify the time derivatives and spatial gradients of (4.23) that can take arbitrary values
for any given thermodynamic set L. The requirement that (4.22) holds for any arbitrary
value of these quantities will give necessary restrictions, leading to equalities on the fields
of (4.24).

2. The remaining terms of (4.22) represent the dissipation of the system. This will give suf-
ficient conditions, leading to inequalities that the fields that appear in (4.24) must satisfy.

4.2.2 Necessary restrictions in volume

Consider the set of time derivatives and higher order spatial gradients of L. Because of the
mass balances (4.2) and (4.4), the time rates of mass densities and their second gradients

are related. Moreover, ∇vs and
.

F are also related. Following the same procedure as [45], it

is straightforward to show that
.

∇ms and
.

∇mf can also be assigned arbitrarily. Also note that
second gradients are arbitrary symmetric second order tensors. Thus we define the set L� of
arbitrarily assignable fields

L� :=

⎧
⎪⎨

⎪⎩

.

θ,
.

∇ms,
.

∇mf ,
.

∇θ,
.
vs ,

.

F,

.

∇F
︸ ︷︷ ︸

time rates

,∇2ms,∇2mf ,∇2θ,∇2F
︸ ︷︷ ︸

second-order gradients

⎫
⎪⎬

⎪⎭
. (4.25)
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Applying the chain rule of time derivation to
.

ψ in (4.22) and after substitution of the
mass balances (4.2) and (4.4), the local form of the entropy imbalance is found to be

−
(

∂ψ

∂θ
+ η

)
.

θ − ∂ψ

∂∇ms

· .

∇ms − ∂ψ

∂∇mf

· .

∇mf − ∂ψ

∂∇θ
·

.

∇θ − ∂ψ

∂∇F

...

.

∇F − ∂ψ

∂vs

· .
vs

+
[

σ+ mf vr ⊗ v −
{(

∂ψ

∂F
·F�

)�
+
(

ψ − ms

∂ψ

∂ms

− mf

∂ψ

∂mf

)

I

}]

:∇vs

+ (σ+ mf vr ⊗ v
):∇

(
cf vr

)− ∇ ·
(

h − q +σ ·v + mf

2
v2vr

) ∂ψ

∂mf

∇ · (mf vr

)− q

θ
· ∇θ ≥ 0.

(4.26)
For simplicity, we introduce the following notations for the solid μs and fluid μf chemi-

cal potentials

μs := ∂ψ

∂ms

, μf := ∂ψ

∂mf

. (4.27)

The chemical potentials are introduced as a renaming of variables. This is a different status
than in theories in which that are introduced as primitive variables in the energy balance and
the relation (4.27) are found to be constitutive restrictions (see, e.g., [19, 34, 37, 46, 50, 56]).

In order to extract all the necessary constitutive restrictions from (4.26) we will first
consider the arbitrary variations of the time-rates of (4.25) and then the variations of the
second order spatial gradients.

Results using arbitrary time rates
Given any admissible thermodynamic state L, the time-rate quantities of L� in (4.25) can

be assigned arbitrarily and only appear linearly in (4.26), yielding the following necessary
restrictions

η = −∂ψ

∂θ
,

∂ψ

∂∇ms

= 0,
∂ψ

∂∇mf

= 0,
∂ψ

∂∇θ
= 0,

∂ψ

∂∇F
= 0,

∂ψ

∂vs

= 0, (4.28)

implying that the free energy ψ is independent of ∇ms , ∇mf , ∇θ , ∇F and vs . We further as-
sume here that the material is isotropic and hence ψ and all the other fields are a function of
B := F ·F�, the left Cauchy-Green tensor, instead of F. Moreover, requiring the Helmholtz9

free energy ψ to be objective, it must depend on the invariants I(B) (see Appendix A)

ψ = ψ(S,B) = ψ
(
ms,mf , θ,I(B)

)
. (4.29)

Note that (4.29) implies from (4.27) the same dependence for the chemical potentials

μs = μs(ms,mf , θ,I(B)), μf = μf (ms,mf , θ,I(B)), (4.30)

and (4.26) can now be simplified to10

[

σ+ mf vr ⊗ v − 2B · ∂ψ

∂B
− (ψ − msμs − mf μf

)
I
]

:∇vs + (σ+ mf vr ⊗ v
):∇

(
cf vr

)

−∇ ·
(

h − q − mf μf vr +σ ·v + mf

2
v2vr

)
− mf vr · ∇μf − q

θ
· ∇θ ≥ 0.

(4.31)

9We can now use this terminology since ψ is independent of velocities
10For the isotropic material, note the identity B · (∂ψ/∂B) = (∂ψ/∂B) · B = F · (∂ψ/∂C) · F� where C :=
F� ·F is the right Cauchy-Green tensor.
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To simplify the ensuing calculations, we introduce the symmetrized stress σ� and the elastic
stress σe

σ� :=σ+ mf vr ⊗ v, σe := 2B · ∂ψ

∂B
+ (ψ − msμs − mf μf

)
I. (4.32)

We also introduce an inertially modified energy flux vector k̃, related to the energy flux
vector h by

k̃ := h − q − mf μf vr +σ ·v + mf

2
v2vr . (4.33)

To proceed we need to study the term σ∗ −σe multiplying ∇vs in (4.31). By definition,
the relative fluid velocity vr is objective (see Appendix A). Hence, vr is independent of vs .
The dependence on ∇vs in the inequality (4.31) can only come from the divergence of k̃(L).

According to the angular momentum balance (4.12), σ� is symmetric and by construc-
tion, σe is symmetric as well. Hence we can rewrite (4.31) using the definitions in (4.32)
and (4.33) as

(
σ� −σe

):sym (∇vs) +σ� :∇
(
cf vr

)− ∇ · k̃ − mf vr · ∇μf − q
θ

· ∇θ ≥ 0. (4.34)

At this point we require that σ� and k̃ to be objective fields and hence to not depend on
vs . As shown in [40], this choice does not imply any loss of generality in the derivation of
the constitutive restrictions. The term ∇vs therefore appears linearly in (4.31) and, making it
vary arbitrarily, we obtain

σ� = σe = 2B · ∂ψ

∂B
+ (ψ − msμs − mf μf

)
I. (4.35)

Moreover, all the remaining terms of (4.31) are now constitutive and hence required to be
objective, giving

∇ ·k − vr · (cf ∇ ·σe + mf ∇μf

)− q
θ

· ∇θ ≥ 0, where k := k̃ − cfσ
e ·vr . (4.36)

Results using arbitrary second order gradients
In order to advance further in the exploitation of (4.36), we need to recall the material

frame indifference principle and the hypothesis of isotropy11 made in (4.29). In Appendix B,
we show that the constitutive vector k(LO) defined in (4.36) vanishes identically

k(LO) = 0, (4.37)

thus providing the expression for the objective, constitutive energy flux vector h(LO) from
(4.33) and (4.36)2

h = q + mf

2
v2vr + mf μf vr −σe ·vs , (4.38)

with the stress tensor σe given by (4.32). To prove that k = 0, we assumed that the ma-
terial is isotropic, in which case the only possible choice for the energy flux is given by

11Although a restrictive hypothesis, it allows us to find a unique energy flux h using the principle of material
frame indifference and thermodynamics.
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(4.38). In case of anisotropy, we cannot prove that (4.38) is the only valid choice, although
it remains thermodynamically admissible since the entropy production inequality is still sat-
isfied. Therefore, the expression of the unknown energy flux (4.38) can also be used for
anisotropic material.

This completes the first step of the Coleman-Noll procedure providing the necessary
conditions, constitutive equalities for the entropy η, free energy ψ , stress σ and flux vec-
tors h and q in x ∈ v. The remaining terms in the entropy imbalance (4.36) represent the
dissipation D of the system

D(LO) := −q
θ

· ∇θ − vr · (cf ∇ ·σe + mf ∇μf

)≥ 0. (4.39)

4.2.3 Necessary restrictions on surface

As seen in Sect. 4.1, there are four interface conditions on the surface s

n ·�mf vr

� = 0, n · �σ� = 0, n · �h� = 0, n · �q� ≥ 0, (4.40)

associated respectively with the mass balance (4.4), linear momentum balance (4.8), energy
balance (4.14) and entropy imbalance (4.18), where the last inequality is modified from its
original version by additionally assuming a continuous temperature field across the surface
s (�θ� = 0). Using (4.38) into the last two equations of (4.40), one obtains with the help
of the first two equations in (4.40) and the relations in (3.1), (4.32), (4.33) and (4.35) the
following surface inequality

n · (mf vr

)
�

μf +
(
cf vr

)2

2

	

≤ 0. (4.41)

Assuming no dissipation at the discontinuity surface (called ideal surface), the inequality
(4.41) yields an equality at the surface s since vr and μf are thermodynamically independent
(see [51, 53, 55, 66])

�

μf +
(
cf vr

)2

2

	

= 0. (4.42)

Notice that the above interface continuity applies to a dynamic-like chemical potential
of the fluid. In case of an incompressible fluid, the chemical potential is usually equivalent
to pressure divided by its mass density. Hence (4.42) looks like a continuity of a Bernoulli-
like quantity. Additionally, if one neglects the kinetic terms in (4.42) for the case of an
incompressible fluid, then the condition is equivalent to the continuity of the fluid pressure,
the usual Dirichlet condition used in poromechanics.

4.2.4 Sufficient restrictions

We proceed with the second step of the Coleman-Noll procedure, described in Sect. 4.2.1,
starting from the dissipation inequality (4.39) and seeking restrictions on the admissible
expressions for q and vr . Requiring q and vr to be objective vector fields (cf. Appendix A),
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for any Q ∈ O(3)12

Q ·q(S,G,B,∇B) = q(S,Q ·G,Q ·B ·Q�,Q · (Q · ∇B ·Q�)),

Q ·vr (S,G,B,∇B) = vr (S,Q ·G,Q ·B ·Q�,Q · (Q · ∇B ·Q�)).

(4.43)

Taking the particular case of Q = −I (see the discussion around equation (3.16) of [20]), we
obtain

−q(S,G,B,∇B) = q(S,−G,B,−∇B), −vr (S,G,B,∇B) = vr (S,−G,B,−∇B). (4.44)

Defining as homogeneous the state where the gradients of state variables vanish, i.e.,
Lh

O ⊂ LO (see definition in (4.23)), where Lh
O := {S,0,B,0}, (4.44) leads to the following

conditions

q|Lh
O

= 0,
∂q
∂ms

∣
∣
∣
∣
Lh

O

= 0,
∂q

∂mf

∣
∣
∣
∣
Lh

O

= 0,
∂q
∂θ

∣
∣
∣
∣
Lh

O

= 0,
∂q
∂B

∣
∣
∣
∣
Lh

O

= 0,

vr|Lh
O

= 0,
∂vr

∂ms

∣
∣
∣
∣
Lh

O

= 0,
∂vr

∂mf

∣
∣
∣
∣
Lh

O

= 0,
∂vr

∂θ

∣
∣
∣
∣
Lh

O

= 0,
∂vr

∂B

∣
∣
∣
∣
Lh

O

= 0.

(4.45)

From (4.45) and following the formalism of [45], we can write the following Taylor expan-
sions for q and vr near an homogeneous state

q(LO) = −Kθ · ∇θ − Ks · ∇ms − Kf · ∇mf −KB

... ∇B + O(δ2),

vr (LO) = −Dθ · ∇θ − Ds · ∇ms − Df · ∇mf −DB

... ∇B + O(δ2),

(4.46)

where the following tensors are introduced13

Kθ := − ∂q
∂∇θ

∣
∣
∣
∣
Lh

O

, Ks := − ∂q
∂∇ms

∣
∣
∣
∣
Lh

O

, Kf := − ∂q
∂∇mf

∣
∣
∣
∣
Lh

O

,KB := − ∂q
∂∇B

∣
∣
∣
∣
Lh

O

,

Dθ := − ∂vr

∂∇θ

∣
∣
∣
∣
Lh

O

, Ds := − ∂vr

∂∇ms

∣
∣
∣
∣
Lh

O

, Df := − ∂vr

∂∇mf

∣
∣
∣
∣
Lh

O

, DB := − ∂vr

∂∇B

∣
∣
∣
∣
Lh

O

,

(4.47)

and where δ := ‖LO − Lh
O‖ denotes – by abuse of notation – the norm of the difference

between the values of thermodynamic variables in the sets LO and Lh
O . Here Kθ , Ks , Kf ,

Dθ , Ds , Df are objective rank two tensors and KB, DB are objective rank three tensors.
As shown in Appendix C, the above expressions for q and vr can be re-written as

q = −Kθ · ∇θ − Kp · ∇p + O(δ2), vr = −Dθ · ∇θ − Dp · ∇p + O(δ2), (4.48)

where the pressure gradient-like term

∇p := cf ∇ ·σe + mf ∇μf , (4.49)

12Where O(3) is the set of all orthogonal rank two tensors Q, i.e., Q ·Q� = 1, where det Q = ±1.
13The minus signs introduced in order to end with positive definite thermal conductivity and dissipation
tensors, according to standard literature conventions.
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was introduced – by abuse of notation since no pressure is defined here – to allow com-
parison with poromechanics literature.14 The second-order tensors Kθ , Kp , Dθ , Dp are ob-
jective functions of (ms,mf , θ,B). The direct application of representation theorems (see
Appendix A or [68]) implies that they must have the following form:

K··· = k0I + k1B + k2B2, D··· = d0I + d1B + d2B2, (4.50)

where k0, k1, k2, d0, d1 and d2 are scalar functions of (ms,mf , θ,I(B)), where I(B) is the
set of the scalar invariants of B. Finally, from (4.48), the positivity of the dissipation (4.39)
also implies that the matrix

⎡

⎣
Kθ Kp

Dθ Dp

⎤

⎦ is positive semi-definite. (4.51)

We have thus obtained, as sufficient conditions, the coupled thermo-mechanical ver-
sion for Fourier’s law for q and Darcy’s law for vr , thus concluding the second part of
the Coleman-Noll procedure.

4.3 Discussion

The stage is now set to interpret the results obtained thus far and compare them with ex-
isting theories in finite-strain poromechanics. In expressing the integral laws for linear and
angular momenta, energy, and entropy, we used their simplest possible form. The unknown
quantities introduced are i) a generalized traction t and the associated Cauchy stress σ for
the interaction with the surrounding material, ii) the total energy density ε, the total energy
flux h, and the entropy flux q vectors. We determined their expressions via the principles of
thermodynamics without any phenomenological bias.

In this section we substitute the obtained expressions into the initial balances in order to
identify and discuss the physics and put the resulting equations in perspective with existing
literature. To avoid confusion, the equations cited from other works in the literature are
preceded by � � �.

Before proceeding with the interpretation of these expressions, it may be useful to record
some alternative expressions of the above results in the reference configuration of the skele-
ton. Define the solid and fluid mass densities per unit reference volume of skeleton Ms and
Mf and the corresponding free energy �

Ms := Jms, Mf := Jmf , �(Ms,Mf , θ,I(C)) := Jψ(ms,mf , θ,I(B)), (4.52)

where J = det F is the determinant of the deformation gradient. Using (4.52) into (4.27) and
(4.35), one obtains the following relations for the chemical potentials μs , μf and σe

μs = ∂�

∂Ms

, μf = ∂�

∂Mf

, σ� = σe = 2

J
F · ∂�

∂C
·F�. (4.53)

The skeleton mass conservation (4.2) can then be written as
.

Ms = 0, so that, the dependence
on Ms is equivalent to a dependence on a reference mass density M0

s . Therefore, if we further
assume that the continuum is uniform, then solid mass density dependence can be dropped,
i.e., � = �(Mf , θ,I(C)).

14In the dissipation equation (4.39) the term cf ∇ ·σe + mf ∇μf appears as the conjugate of vr .
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4.3.1 Linear momentum balance

Substituting the expression of the generalized stress tensor (4.32) and (4.53) into (4.7), we
obtain the following integral form of the linear momentum balance

d

dt

∫

v

(
msvs + mf vf

)

︸ ︷︷ ︸
1©

dv =
∫

v

(
ms + mf

)
b

︸ ︷︷ ︸
2©

dv +
∫

∂v

σe ·n︸ ︷︷ ︸
3©

da −
∫

∂v

mf v (vr ·n)
︸ ︷︷ ︸

4©
da,

(4.54)
where σe is given by (4.53)3.

Recall that 1© is the expression of the linear momentum that we postulated to describe the
inertia of the whole continuum, a type-I constitutive assumption. This choice is consistent
with mixture theories as well as with the homogenization studies (see, e.g., [25]). We also
defined a unique body force which is applied to all constituents, hence the expression 2©.

The main assumption of this approach is that vr is defined constitutively, as assumed
in (C-1). We have just mathematically proved that, under these modeling choices, the only
thermodynamically admissible choice of the generalized traction yields expression 3© and
4©. The expression of the stress tensor in 3© and given in (4.53), is standard in continuum

poromechanics. However, the flux of linear momentum across the boundary 4© is different
from the one adopted in the poromechanics literature, see, e.g., [13, 22], where the linear
momentum brought by vr at the boundary is due solely to the fluid motion mf vf . This
difference is even more evident if we write the pointwise form of the linear momentum
balance (4.8) as

ms

( .
vs − b

)+ mf (γf − b) − ∇ · (msmf

mt

vr ⊗ vr

︸ ︷︷ ︸
5©

+2

J
F · ∂�

∂C
·F�) = 0, (4.55)

where the expression for the fluid acceleration γf := ∂vf /∂t + vf · ∇vf has been intro-
duced, while in the biphasic continuum models of poromechanics (see, e.g., [21, 22]) the
momentum equation typically reads

� � � ms

( .
vs − b

)+ mf

(
γf − b

)− ∇ ·
(

2

J
F · ∂�

∂C
·F�

)

= 0. (4.56)

Moreover, we compare 5© to the work of [25] where the authors compared the bipha-
sic macroscopic approach to an homogenization result. Interestingly, the homogenization
process brings a correction term that is included in the definition of the macroscopic par-
tial stress tensors, a correction that takes the form (see Eq. (25) of [25]) < ρ(α)v′

(α) ⊗ v′
(α) >

where ρ(α) is the mass density of phase α at the microscale, v′
(α) is the difference between

the microscale velocity of phase α and its average velocity at the macroscale and < . > de-
notes the averaging operator over the representative volume element of the homogenization
process. It is interesting to note the similarity between this averaging correction and 5©.

To summarize, the first expression of the linear momentum balance (4.55) is similar to
the fluid mixture theories, while the second expression (4.56) is the usually adopted model
in biphasic poromechanics. The direct application of thermodynamic principles performed
in Sect. 4, where vr is a constitutive field and the linear momentum density is given by (4.6),
results in (4.55). Finding the governing equations for the non-diffusive regime, i.e., releasing
of assumption (C-1) and letting vr be a kinematic variable, requires a different method using
the virtual power approach, as presented in Sect. 5.
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4.3.2 Energy balance

Recall that in the energy balance introduced in (4.13), we use a total energy per unit volume
ε without partitioning it into an internal and kinetic part. To compare and contrast our result
with those found in the existing literature, by recalling (4.21), we obtain with the help of
(4.38) the following integral form of the energy balance

d

dt

∫

v

(ψ + θη + 1

2
mtv2

︸ ︷︷ ︸
6©

) dv = −
∫

∂v

1

2
mf v2 (vr ·n)

︸ ︷︷ ︸
7©

da +
∫

v

(
msvs + mf vf

) ·b
︸ ︷︷ ︸

8©
dv

+
∫

∂v

(σe ·n) ·vs︸ ︷︷ ︸
9©

da −
∫

∂v

μf

(
mf vr

) ·n
︸ ︷︷ ︸

10©
da −

∫

∂v

q ·n
︸︷︷︸
11©

da +
∫

v

q dv.

(4.57)

The kinetic terms 6© and 7© are consistent with our discussion in Sect. 4.3.1 but different
from the biphasic approach where one would have expected a kinetic energy of the form

� � �

∫

v

(
1

2
msv2

s + 1

2
mf v2

f

)

dv, (4.58)

and a corresponding flux across the boundary

� � � −
∫

∂v

1

2
mf v2

f (vr ·n) da.

These differences are explained by the same argument as in Sect. 4.3.1, namely, the current
theory is consistent with the fluid mixture approach.

It is equally interesting to look at the mechanical power expenditure at the boundary 9©
and 10©. In biphasic theories for poromechanics, the mechanical power expenditure is a priori
divided into two contributions [22]

� � �

∫

∂v

[
(σs ·n) ·vs + (σf ·n

) ·vf

]
da, (4.59)

such that σs is introduced as the Cauchy stress tensor applying to the solid material and σf

on the fluid and the assumption that σf = −φpf I, where φ is the porosity and pf is the
hydrostatic pressure in the fluid. In Sect. 4, we do not postulate any partitioning of the total
stress tensor σ into a solid and fluid part. In order to compare the above expression against
our terms 9© and 10©, further manipulation of the these terms is needed as discussed next.

4.3.3 Relating the chemical potential of the fluid to its pressure

We introduce the Lagrangian porosity �,15 and relate it to the fluid density ρf by the satu-
ration condition

Mf = �ρf . (4.60)

15Volume of pores per unit reference volume of skeleton; related to the Eulerian porosity φ by � = Jφ.
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Considering �(Mf , θ,I(C)) = �̂(�,ρf , θ,I(C)) and taking its partial derivatives with
respect to ρf and �

�μf = ∂�̂

∂ρf

, ρf μf = ∂�̂

∂�
. (4.61)

We can postulate an additive decomposition of the free-energy, as is usual in large strain
poromechanics16

�̂ = �mech(I(C)) + �ψf (ρf , θ) + �int (�, J), (4.62)

where �mech is the strain energy of the dry porous medium (empty pores), ψf is the free-
energy of the pure fluid and �int is defined as the interaction energy resulting from the fluid
filling of the pores. Equations (4.61) and (4.53) now become

μf = ∂ψf

∂ρf

,
∂�int

∂�
+ ψf = ρf μf , σe = 2

J
F · ∂�mech

∂C
·F� + ∂�int

∂J
I. (4.63)

Pushing the comparison to the poromechanics literature further, we adopt the standard
expression for the fluid energy (see [40])

ψf (ρf , θ) = ρf μ0
f (θ) − 1

χθ

(

1 − ρf

ρ0
f

+ ln
ρf

ρ0
f

)

, (4.64)

where μ0
f (θ) is the reference energy at temperature θ and atmospheric pressure, ρ0

f is the
reference density of the fluid at atmospheric pressure and χθ is the isothermal compressibil-
ity coefficient.

Given specific choices of �int , it can be shown that the following approximation holds
for small deformations (see [17, 40])

∂�int

∂J
� −bBiot

∂�int

∂�
, (4.65)

where bBiot is a constant coefficient, called Biot’s coefficient in linearized poroelasticity. It
represents the contribution of the microscopic compressibility of the solid on the macro-
scopic stress. From (4.63) to (4.65)

μf = μ0
f (θ)− 1

χθ

(
1

ρf

− 1

ρ0
f

)

,
∂�int

∂�
= 1

χθ

ln
ρf

ρ0
f

︸ ︷︷ ︸
Fluid pressure pf

, σe = 2

J
F · ∂�mech

∂C
·F� −bBiotpf I.

(4.66)
In equation (4.66)3 we recognize the well-known Terzaghi’s effective stress, used in soil me-
chanics (consolidation theory), corrected by the Biot’s coefficient to account for the micro-
scopic compressibility (in the limit of an incompressible solid material, bBiot → 1). More-
over, the saturation condition (4.60) gives equation (4.63)2 that generalizes Euler’s identity
for the Gibbs’ free energy in thermodynamics of fluids.

Note also that (4.66)2 represents an equilibrium of pressure: the pressure of the fluid
filling the pores is equal to ∂�int/∂� that can be interpreted as the pressure in the solid

16See, e.g., the work of [17, 35, 36] or [40] for application to subcutaneous injections.
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at the microscopic scale. We have thus shown that our formalism allows us to retrieve the
expected phenomenology and that the thermodynamic identity (4.63)2 is mathematically
derived, instead of postulated as a general principle.

Finally, using (4.66), the contributions of 9© and 10© in the energy balance (4.57) are now
∫

∂v

9© + 10© da =
∫

∂v

n · [σe + φpf I
] ·vs

︸ ︷︷ ︸
(σs · n) · vs in (4.59)

da

+
∫

∂v

(−φpf n
) ·vf

︸ ︷︷ ︸
(
σf · n

) · vf in (4.59)

da −
∫

∂v

mf ψf vr ·n da
︸ ︷︷ ︸
Flux of fluid energy

, (4.67)

in agreement with the biphasic theory (4.59): in the first term, the stress working against vs

is the solid stress component and in the second the stress working against vf is the fluid
stress component while the third term retrieves the phenomenological flux of fluid energy
associated to the relative motion vr .

4.3.4 Darcy’s law

We now turn our attention to Darcy’s law, which models the fluid flow through the porous
medium, derived in Sect. 4.2.4. For the sake of simplicity we neglect the thermal couplings
and consider an isothermal process. Substituting (4.66) into the linear momentum balance
(4.55) and (4.48)2 one obtains

φvr = − D
ρf ν

·
[

ρf

∇ ·σe

mt

+ ρf ∇μf

]

= − D
ρf ν

·
[

ρf

(

cs

( .
vs − b

)+ cf

(
γf − b

)− 1

mt

∇ ·
(

msmf

mt

vr ⊗ vr

))

+ ∇pf

]

,

(4.68)

where ν is the kinematic viscosity of fluid, and D the permeability tensor of the porous
material. One can see from the first part of (4.68) that vr , as a combination of objective
terms, is objective.

In the poromechanics literature [25] one finds the following form of Darcy’s law

� � � φvr = − D
ρf ν

· [ρf

(
γf − b

)+ ∇pf

]
, (4.69)

or denoting by a = (a − 1)
(
γf − .

vs − vr · ∇vs

)
the tortuosity vector (a > 1), with a correc-

tion [22],

� � � φvr = − D
ρf ν

· [ρf

(
γf − b + a

)+ ∇pf

]
. (4.70)

It is not possible to retrieve either (4.69) or (4.70) from (4.68) in a thermodynamically
consistent continuum approach under the assumption of a constitutive field vr .

The tortuosity correction is defined by [10] in the linear regime of acoustics in porous
media to account for added mass effects at the microscale. In fluid-structure interaction the-
ory, the concept of added mass is used to model the change of the apparent inertia of a solid
oscillating in a fluid. At the macroscale, the tortuosity term appears as a coupling inertial
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mass between the solid and the fluid. In [22], the tortuosity is introduced as a correction to
the kinetic energy with a multiscale argument: due to the fluid viscosity and the tortuous
geometry of pores, the homogenized kinetic energy must be greater that the kinetic energy
defined from macroscopic velocities in (4.58).

To better understand why we cannot retrieve (4.69) or (4.70) within the hypothesis (C-1)
of Sect. 4, we note that Darcy’s law in the form (4.69) is derived from a dissipation of the
form (see, e.g., [22])

� � � −vr · [ρf

(
γf − b + a

)+ ∇pf

]≥ 0. (4.71)

A sufficient condition for (4.71) to hold is

� � � φvr = − D
ρf ν

[
ρf

(
γf − b + a

)+ ∇pf

]
, (4.72)

with D positive definite. There are several reasons why this conclusion is inconsistent with
thermodynamics:

– The purpose of the Coleman-Noll procedure is to find constitutive restrictions. By defini-
tion, the constitutive laws are specific to the material under consideration and describe the
interactions between the particles of the body [63]. Therefore, no external load b should
appear in the dissipation when we apply the Coleman-Noll procedure.

– In order to apply the Coleman-Noll procedure, we must ensure that the dissipation is
positive for any admissible process. This gives restrictions on the admissible form of vr

by means of Taylor expansions, as detailed in Sect. 4.2.4. It is not consistent to go straight
to the conclusion that the first term of (4.71) is minus the second one, especially since the
term γf involves vs and vr .

– Since the main assumption of this model is to consider vr as a constitutive variable, it must
be objective (see Appendix A). The formulation with the inertial terms γf − b in (4.69)
or the one with the inertial term γf − b + a in (4.70) do not guarantee the objectivity of
vr .

– Regarding the tortuosity coefficient in (4.70), it corresponds to a correction in the macro-
scopic kinetic energy due to an effect of added mass and inhomogeneity of fluid velocity
at the microscale [22]. However, under the assumptions of this approach, we showed that
adding such a term in the kinetic energy would not change the energy balance (4.13) as
we do not specify the form of the kinetic energy. In fact, we have established that the only
admissible form of the kinetic energy was 6© in (4.57).

By assuming vr to be a kinematic descriptor in the next Sect. 5, we prove that it its
possible to obtain expressions similar to (4.70) that accounts for tortuosity.

5 The relative fluid velocity vr as a kinematic descriptor

In Sect. 4, we have considered the fluid relative velocity vr as a constitutive variable. In
spite of its advantages – objectivity of the governing equations, simplest possible form of
conservation laws, consistently derived expressions for the total stress and energy flux – the
model is not rich enough to capture such phenomena as Brinkman’s correction of Darcy’s
law [15], the tortuosity correction in acoustics [10, 11], etc.

To capture these phenomena, we relax the fundamental assumption of Sect. 4 and con-
sider the fluid relative velocity vr as an independent kinematic descriptor. Associated with
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this additional kinematic descriptor is an additional balance law, which is derived using the
principle of virtual power. This has been widely used in solid mechanics [31, 38, 39] and in
poromechanics [28, 57, 64]. Note that the use of a supplementary equation to model physical
phenomena at the microscale is similar to the concept of microforces in phase transforma-
tion theories [32, 33, 43] and chemical diffusion in solids [4]. Following the statement of
the corresponding balance laws, we use the thermodynamics of nonequilibrium processes to
obtain the constitutive restrictions.

5.1 Kinematics

To write the power expenditures needed for the variational derivation of the balance laws, we
follow the method proposed by [44] as stated in [4]: “the power expended by each ‘rate-like’
kinematic descriptor is expressible in terms of an associated force system consistent with
its own balance”. We use a Lagrangian formalism: principles are written in the reference
configuration of the skeleton.

Recall the definition of the skeleton mapping introduced in Sect. 2: x = χ(X, t) where
X is the position of a skeleton material point in the reference configuration of the skeleton.
The mapping χ is considered as the kinematic descriptor of the skeleton deformation. We
also need a kinematic descriptor for the fluid motion. We use the formalism of Wilmański
[69, 72] and define the fluid inverse mapping χ−1

f

Xf := χ−1
f (x, t) = χ−1

f (χ(X, t), t) =⇒ x = χ(X, t) = χf (Xf (x, t), t), (5.1)

where Xf (x, t) is defined as the position in the skeleton reference configuration of the fluid
particle that coincides at time t with the skeleton at x. As introduced in [69], the motion of a
fluid particle vf dt during a time interval dt is due to the motion of the skeleton vs dt plus

the change of the reference position of the fluid
.

Xf dt , thus giving the following expression

for
.

Xf , defined as the reference relative velocity Vr

vf dt = vs dt + F · .

Xf dt =⇒ .

Xf = F−1 ·vr := Vr . (5.2)

Appealing to (4.52)1, the localization of the skeleton mass balance (4.1) yields the counter-
part of (4.2)

.

Ms = 0. (5.3)

Therefore, if we assume the continuum to be uniform in the reference configuration, there
is no need to account for Ms as a kinematic descriptor.

Also from (4.52)2, the mass balance (4.3) yields

.

Mf + ∇ · (Mf F−1 ·vr

)= 0 =⇒ .

Mf = − .

Xf ·∇Mf − Mf I:∇ .

Xf , (5.4)

where ∇ is the referential gradient (not be confused with its current counterpart ∇) defined

in Sect. 2. From (5.4) it follows that the time rates
.

Mf cannot be assigned independently of
its spatial gradient ∇Mf .
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5.2 Quasistatic regime

5.2.1 Power expenditures

Let P i
V be the internal power expenditure in any Lagrangian control volume V , and P e

V the
external power expenditure and choose the following set of kinematic descriptors

K = {χ ,Xf ,Mf , (∇χ)�, (∇Xf )�,∇Mf , (∇2χ)�} . (5.5)

The choice of (5.5) is made from the kinematic fields
{
χ ,Xf ,Mf

}
presented in Sect. 5.1

and their spatial gradients. The first-order gradients are considered for all fields while the
second-order gradient is only considered for the skeleton deformation in order to retrieve
the second-order gradient poromechanics features [64]. One could have considered higher-
order gradients, but our choice is made to limit the complexity of the derivation; there are
no conceptual difficulties to extending the model to higher gradients.

Following the approach of [4, 44], the time rates of (5.5) must expend power against
associated conjugate forces. Hence one can define the following general expression for the
internal power expenditure P i

V in a material control volume in the reference configuration

P i
V :=

∫

V

(
π

.

Mf + β · .

Xf + t · .
χ −S : (∇ .

χ)�

−� : (∇ .

Xf )� − ξ ·∇ .

Mf −C

... (∇2 .
χ)�

)
dV, (5.6)

where π is the scalar power conjugate of
.

Mf , and β (resp. t, and −ξ ) is the vector field

conjugate of
.

Xf (resp.
.
χ and ∇ .

Mf ). Also, −S� (resp. −��) is the second-order tensor

conjugate of ∇ .
χ (resp. ∇ .

Xf ). Finally −C
� is the third-order tensor conjugate of ∇2 .

χ .
The adopted minus signs and transpositions are introduced for convenience as they allow to
retrieve familiar expressions of continuum mechanics.

Similarly to (5.6), the external power expenditure P e
V for a control volume V is defined

P e
V :=

∫

∂V

[
πA

.

Mf + βA · .

Xf + tA · .
χ + SA : (∇ .

χ)�

−�A : (∇ .

Xf )� − ξA ·∇ .

Mf +CA

... (∇2 .
χ)�

]
dA

+
∫

V

[
πV

.

Mf + βV · .

Xf + tV · .
χ − SV : (∇ .

χ)�

−�V : (∇ .

Xf )� − ξV ·∇ .

Mf −CV

... ∇2 .
χ)�

]
dV. (5.7)

Some confusion may arise about the current notations compared to similar ones in
Sect. 4. Given the high number of fields that are manipulated here in Sect. 5, we chose
to associate a single letter subscript to the external power conjugate of each kinematic de-
scriptor: we denote with the subscript ( )A (resp. ( )V ) the conjugate field quantity associated
to the external power expenditure on the surface (resp. in the volume). No subscript is used
for the fields involved in the internal power expenditure.
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We consider that, for any arbitrary time, all the kinematic fields of K in (5.5) are known
and fixed and define independently from them, the set of virtual velocities17

K∗ :=
{

.
χ

∗
,

.

X
∗
f ,

.

M
∗
f

}
, (5.8)

such that (5.4) is verified. In analogy to (5.6) we define the internal virtual power P i
V(K∗)

P i
V(K∗) :=

∫

V

[
π

.

M
∗
f + β · .

X
∗
f + t · .

χ
∗ − S : (∇ .

χ
∗
)�

−� : (∇ .

X
∗
f )� − ξ ·∇ .

M
∗
f −C

... (∇2 .
χ

∗
)�
]

dV, (5.9)

and in analogy to (5.7) we define the external virtual power P e
V(K∗) by

P e
V(K∗) :=

∫

∂V

[
πA

.

M
∗
f + βA · .

X
∗
f + tA · .

χ
∗ + SA : (∇ .

χ
∗
)�

−�A : (∇ .

X
∗
f )� − ξA ·∇ .

M
∗
f +CA

... (∇2 .
χ

∗
)�
]

dA

+
∫

V

[
πV

.

M
∗
f + βV · .

X
∗
f + tV · .

χ
∗ − SV : (∇ .

χ
∗
)�

−�V : (∇ .

X
∗
f )� − ξV ·∇ .

M
∗
f −CV

... (∇2 .
χ

∗
)�
]

dV. (5.10)

5.2.2 Material frame indifference principle

The principle of material frame indifference states that, for any change of current frame, any
Lagrangian control volume V (unchanged by any change of current frame) and any virtual
velocities set K∗

P i′
V (K∗′) = P i

V(K∗), (5.11)

where the prime ( )′ denotes the image in the new frame.
A change of current frame can be described by a proper orthogonal tensor Q(t) and a

translation vector a(t) such that the skeleton mapping is transformed as

χ ′ = Q(t) ·χ + a(t),
.
χ

′ = Q · .
χ + .

Q ·χ + .
a. (5.12)

By definition of the scalar Mf , it is unchanged by the change of current frame. Also, since ∇
is the gradient in the reference frame, it is invariant by change of current frame. Following
[4], we assume that the virtual velocity field of skeleton is transformed as the actual one,
i.e.,

.
χ

∗′ = Q · .
χ

∗ + .

Q ·χ + .
a, (∇ .

χ
∗
)�′ = Q · (∇ .

χ
∗
)� + .

Q · (∇χ)�. (5.13)

Finally, by (5.2), the Lagrangian relative velocity
.

Xf is also invariant by any change of
current frame. A direct substitution in (5.11), accounting for (5.4), gives for any Lagrangian

17We use the upper asterisk ( )∗ to distinguish the virtual velocities from the corresponding actual fields.
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volume V
∫

V

{
(β ′ − π ′∇Mf ) · .

X
∗
f + t′ · (Q · .

χ
∗ + .

Q ·χ + .
a) − S′ :

[
Q · (∇ .

χ
∗
)� + .

Q · (∇χ)�
]

−(�′ + π ′I):(∇ .

X
∗
f )� − ξ ′ ·∇ .

M
∗
f −C

′ ...

[
Q · (∇2 .

χ
∗
)� + .

Q · (∇2χ)�
]}

dV

=
∫

V

[
(β − π∇Mf ) · .

X
∗
f + t · .

χ
∗ − S : (∇ .

χ
∗
)�

−(� + πI) : (∇ .

X
∗
f )� − ξ ·∇ .

M
∗
f −C

... (∇2 .
χ

∗
)�
]

dV. (5.14)

The pointwise form of (5.14) must hold for any virtual velocity field
.

X
∗
f , which yields the

condition

β ′ − π ′∇Mf = β − π∇Mf . (5.15)

Assigning arbitrary values to the vector
.
a and the virtual velocity

.
χ

∗
gives the following

condition

t = t′ = 0, (5.16)

which can be seen as the invariance by translation of the internal power expenditure. Varying

(∇ .
χ

∗
)� and (∇2 .

χ
∗
)� arbitrarily and setting

.

Q = 0, yields the following transformation

S′ = Q ·S, C
′ = Q ·C. (5.17)

Varying ∇ .

M
∗
f and (∇ .

X
∗
f )� arbitrarily yields

ξ ′ = ξ , �′ + Mf π ′I = � + Mf πI. (5.18)

Finally, note that the second-order tensor
.

Q is a skew tensor. Making it vary arbitrarily with
Q = I gives the symmetry condition18

S · (∇χ) +C
� :(∇2χ) = [S · (∇χ) +C

� : (∇2χ)
]�

, (5.19)

which corresponds to the local form of the angular momentum balance.
In the relations (5.15) and (5.18)2, one can see that because of the mass conservation

(5.4), the scalar π does not contribute by itself and can enter in the definition of β and �.
Henceforth, we will then omit the contribution of π and work with the following renaming
of the fields β and �

β ← β − π∇Mf , � ← � + Mf πI, (5.20)

and the same renaming is valid for βA, βV , �A and �V . This renaming is not applicable to

the work conjugate of ∇Mf . By taking the gradient of (5.4), one can see that ∇ .

Mf can be

expressed as a function of ∇(∇ · .

Xf ) and can take any arbitrary values, independently of
the other rates, thus explaining (5.18)1.

18Recall that C

... (∇2χ)� = Cijk∇2
jk

χi and C� :∇2χ = Cijk∇2
jk

χleiel .
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5.2.3 Principle of virtual power

The principle of virtual power states that following equality must hold for any virtual veloc-
ities (5.8) and any volume V

P e
V(K∗) + P i

V(K∗) = 0. (5.21)

Introducing the fields

t̃V := tV + ∇ · (S�
V − ∇ ·C�

V

)
, β̃V := βV + ∇ ·��

V + Mf ∇ (∇ · ξV

)
,

t̃A := tA − N · (S�
V − ∇ ·C�

V

)
, β̃A := βA − N ·��

V − (N · ξV

)∇Mf − Mf

(∇ · ξV

)
N,

S̃A := SA −CV ·N, �̃A := �A − Mf

(
N · ξV

)
I,

(5.22)
where N is the outward unit normal vector to the boundary ∂V , and performing successive
integrations by parts in (5.21) yields the following form of the principle of virtual power, for
any control volume V and for any virtual velocities

∫

V

{[
t̃V + ∇ · (S� − ∇ ·C�)

] · .
χ

∗ +
[
β̃V + β + ∇ ·�� + Mf ∇(∇ · ξ)

]
· .

X
∗
f

}
dV

+
∫

∂V

{[
t̃A − N ·S� + N · (∇ ·C�)

] · .
χ

∗ +
[
S̃A −C ·N

]
:(∇ .

χ
∗
)� −CA

... (∇2 .
χ

∗
)�
}

dA

+
∫

∂V

[
β̃A − N ·�� − (N · ξ)∇Mf − Mf (∇ · ξ)N + ∇2Mf · ξA

]
· .

X
∗
f dA

+
∫

∂V

{[
−�̃A + Mf (N · ξ)I + ∇Mf ⊗ ξA + ∇Mf · ξAI

]
:(∇ .

X
∗
f )�

+Mf ξA ·∇(∇ · .

X
∗
f )
}

dA = 0. (5.23)

The balance law (5.23) must hold for any
.
χ

∗
and

.

X
∗
f , giving the following local equa-

tions19

∇ · (S� − ∇ ·C�)+ t̃V = 0,

∇ ·�� + Mf ∇ (∇ · ξ) + β̃V + β = 0.

(5.24)

19From (5.23) one can see that the introduction of SV , �V , ξV and CV was not necessary and that we could
have worked from the beginning with the body external loadings t̃V and β̃V (the first one acting in the linear
momentum balance (5.24)1 and the second one acting in the supplementary balance equation (5.24)2).
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The integrals on the boundary ∂V in (5.23) must hold for any rates and any volume V ,
yielding

CA = 0, N · (S� − ∇ ·C�)= t̃A, C ·N = S̃A,

ξA = 0, Mf (ξ ·N) I = �̃A, N ·�� + Mf (∇ · ξ)N + (ξ ·N)∇Mf = β̃A.

(5.25)
Equation (5.24)1 is the extension of the usual linear momentum balance to the frame-

work of second-gradients poromechanics [64], and we can then interpret t̃V as the usual
mechanical body force. Accordingly, the condition at the interface (5.25)2 gives a boundary
condition for the generalized stress tensor S� − ∇ ·C�. Also note that the second-gradient
framework gives a supplementary interface condition (5.25)3 on C.20

The principle of virtual power also enables us to derive a supplementary balance equation
(5.24)2. Note that this supplementary equation is derived within a fully macroscopic frame-
work, without postulating any linear momentum balance on the fluid at the microscale. This
supplementary balance law is accompanied by two interface conditions (5.25)5 and (5.25)6.

Having derived the balance laws of the system, we can now use the Coleman-Noll pro-
cedure to obtain constitutive restrictions as done in Sect. 4.

5.2.4 Energy balance and entropy imbalance

We start by writing the integral form of the energy balance in its most general form

d

dt

∫

V
εR dV = −

∫

∂V
hR ·N dA +

∫

V
qR dV + P e

V , (5.26)

where the subscript R indicates Lagrangian quantities, associated with the reference con-
figuration, as opposed to the Eulerian quantities used in Sect. 4. In analogy to (4.13), we
consider an open system and the unknown flux at the boundary is denoted by hR .

Similarly to (4.17), we write the integral form of the entropy inequality as

d

dt

∫

V
ηR dV ≥ −

∫

∂V

qR

θ
·N dA +

∫

V

qR

θ
dV, (5.27)

where, qR/θ is the entropy flux at the boundary. In the present quasistatic setting, we intro-
duce the Lagrangian free energy � and the flux difference vector kR

� := εR − θηR, kR := hR − qR. (5.28)

Combining (5.26) and (5.27) and appealing to (5.28), the local form of the dissipation
equation yields

− .

� − ηR

.

θ + S:(∇ .
χ)� + ξ ·∇ .

Mf + � :(∇ .

Xf )�

− β · .

Xf +C

... (∇2 .
χ)� − qR

θ
·∇θ − ∇ ·kR ≥ 0. (5.29)

20In the literature, C is sometimes called the hyper-stress tensor [64].
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5.2.5 Thermodynamic restrictions

To derive the set of thermodynamic restrictions, we define the following set of thermody-
namic variables21

L :=
{
χ ,Xf ,Mf , θ,∇χ ,∇Xf ,∇Mf ,∇θ,

.
χ ,

.

Xf ,∇ .
χ ,∇ .

Xf ,∇2χ ,∇2Mf

}
. (5.30)

We only consider the second gradient of the skeleton deformation mapping and not the
second gradient of the fluid mapping. This choice is motivated by the previous choice of
kinematic variables of the principle of virtual power (see (5.5)). Also note that we dropped
the trivial dependence on Ms which is constant by assuming a uniform distribution of the
reference skeleton mass density.

Applying the chain rule, (5.29) can be written as

−
(

∂�

∂θ
+ ηR

)
.

θ − ∂�

∂∇θ
·∇ .

θ − qR

θ
·∇θ

+
[

S −
(

∂�

∂∇χ

)�]

:(∇ .
χ)� +

[

C−
(

∂�

∂∇2χ

)�] ... (∇2 .
χ)�

− ∂�

∂χ
· .
χ − ∂�

∂
.
χ

· ..
χ − ∂�

∂
.

Xf

· ..

Xf − ∂�

∂∇ .
χ

:∇ ..
χ − ∂�

∂∇2Mf

:∇2
.

Mf

+
(

ξ − ∂�

∂∇Mf

)

·∇ .

Mf − ∂�

∂Mf

.

Mf

+
[

� −
(

∂�

∂∇Xf

)�]

:(∇ .

Xf )� −
(

β + ∂�

∂Xf

)

· .

Xf − ∂�

∂∇ .

Xf

:∇ ..

Xf − ∇ ·kR ≥ 0.

(5.31)

Due to the fluid mass conservation (5.4),
.

Mf cannot be assigned arbitrary values inde-

pendently from
.

Xf and ∇ .

Xf . Taking the gradient of (5.4) yields

∇ .

Mf = −(I:∇ .

Xf )∇Mf − Mf I:(∇2
.

Xf )� − ∇2Mf · .

Xf − ∇ .

Xf ·∇Mf , (5.32)

such that ∇ .

Mf cannot be assigned arbitrary values either. However, considering the second

gradient of (5.4), the rate ∇2
.

Mf can be assigned arbitrarily values, independently of the
fields of (5.30). Therefore it is not needed to substitute the mass balance in the corresponding
term in (5.31).

21One could have considered higher-order spatial gradients of Mf , however, there is no difficulty in show-
ing that the constitutive restrictions do not imply any dependency on them. We did not consider the time
derivatives of the variables Mf , ∇Mf and ∇2Mf either, since the fluid mass balance (5.4) connects their
variations to variables in (5.30).
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Substituting
.

Mf with (5.4) into (5.31) and setting ξ̃ := ξ − ∂�/∂∇Mf gives

−
(

∂�

∂θ
+ ηR

)
.

θ − ∂�

∂∇θ
·∇ .

θ − qR

θ
·∇θ

+
[

S −
(

∂�

∂∇χ

)� ]
:(∇ .

χ)� +
[

C−
(

∂�

∂∇2χ

)� ] ... (∇2 .
χ)�

−∂�

∂χ
· .
χ − ∂�

∂
.
χ

· ..
χ − ∂�

∂
.

Xf

· ..

Xf − ∂�

∂∇ .
χ

:∇ ..
χ − ∂�

∂∇2Mf

:∇2
.

Mf − ∂�

∂∇ .

Xf

:∇ ..

Xf

+
[

� −
(

∂�

∂∇Xf

)�
+ Mf

∂�

∂Mf

I − (ξ̃ ·∇Mf )I − ∇Mf ⊗ ξ̃

]

:(∇ .

Xf )�

−Mf (I ⊗ ξ̃)

... (∇2
.

Xf )� −
(

β + ∂�

∂Xf

− ∂�

∂Mf

∇Mf + ∇2Mf · ξ̃
)

· .

Xf − ∇ ·kR ≥ 0.

(5.33)
Before extracting thermodynamic restrictions from (5.33), attention must be paid to the

term involving kR . The divergence term in (5.33) can be written as

∇ ·kR = ∂kR

∂∇2χ
::∇ 3χ + ∂kR

∂∇2Mf

... ∇ 3Mf + ∂kR

∂∇Xf

... ∇2Xf + ∂kR

∂∇ .
χ

... ∇2 .
χ

+ ∂kR

∂∇ .

Xf

... ∇2
.

Xf + ∂kR

∂∇θ
:∇2θ + f (L), (5.34)

where f is only a function of the thermodynamic variables (5.30). Substituting (5.34) into
(5.33) and making ∇3χ , ∇3Mf , ∇2θ , ∇2Xf vary arbitrarily gives the following necessary
restrictions:

∂kRi

∂∇jkχl

+ ∂kRl

∂∇jkχi

= 0, 1 ≤ i, j, k, l ≤ 3,

∂kRi

∂∇jkMf

+ ∂kRj

∂∇ikMf

+ ∂kRk

∂∇ijMf

= 0, 1 ≤ i, j, k ≤ 3,

∂kRi

∂∇j θ
+ ∂kRj

∂∇iθ
= 0, 1 ≤ i, j ≤ 3,

∂kRi

∂∇j Xfk

+ ∂kRk

∂∇j Xfi

= 0, 1 ≤ i, j, k ≤ 3.

(5.35)

As opposed to the results of Sect. 4, the restrictions (5.35) do not imply a necessary value
for the unknown flux. It is possible to extract information on the admissible forms that kR

could take and the reader can refer to the extended work of [27, 31, 59] for procedures to
derive such admissible forms. The choice of the explicit expression of kR can be based on
the phenomenological behavior observed experimentally.

The standard choice kR = 0 is compatible with these restrictions. Note that this choice
is not a necessary consequence of the thermodynamic restrictions as in Sect. 4, since this
theory is general enough to allow other forms of the unknown energy flux kR .
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Consequently, from (5.33) and varying
.

θ ,
..
χ ,

..

Xf , ∇2 .
χ , ∇ .

θ , ∇ .

Mf , ∇2
.

Mf , ∇ ..
χ , ∇2

.

Xf ,

∇ ..

Xf arbitrarily, one obtains the following necessary conditions

ηR = −∂�

∂θ
, C =

(
∂�

∂∇2χ

)�
, ξ = ∂�

∂∇Mf

,

∂�

∂
.
χ

= 0,
∂�

∂χ
= 0,

∂�

∂
.

Xf

= 0,
∂�

∂∇ .
χ

= 0,
∂�

∂∇θ
= 0,

∂�

∂∇2Mf

= 0,
∂�

∂∇ .

Xf

= 0.

(5.36)

The dissipation inequality (5.33), using the above results of (5.36), simplifies to

[

S −
(

∂�

∂∇χ

)�]

:(∇ .
χ)� −

(

β + ∂�

∂Xf

− ∂�

∂Mf

∇Mf

)

· .

Xf

+
[

� −
(

∂�

∂∇Xf

)�
+ Mf

∂�

∂Mf

I

]

:(∇ .

Xf )� − qR

θ
·∇θ ≥ 0; X ∈ V.

(5.37)

From (5.37) and (5.36) one has

S =
(

∂�

∂∇χ

)�
+Sd , � =

(
∂�

∂∇Xf

)�
−Mf

∂�

∂Mf

I+�d , β = ∂�

∂Mf

∇Mf − ∂�

∂Xf

+βd ,

(5.38)

where the dissipative tensors Sd , �d and βd can depend on the rates ∇ .
χ , ∇ .

Xf and
.

Xf .
Consequently, the dissipation equation (5.37) can be restated as

D = Sd :(∇ .
χ)� + �d :(∇ .

Xf )� − βd · .

Xf − qR

θ
·∇θ ≥ 0. (5.39)

At this point, the same procedure as in Sect. 4.2.4 can be applied to write Taylor expansions
of Sd , �d , βd and qR . For the sake of simplicity, we neglect the cross couplings and consider
only linear terms

Sd =Ls :(∇ .
χ)�, �d =Lf :(∇ .

Xf )�, βd = −DR · .

Xf , qR = −KR ·∇θ, (5.40)

where DR and KR are second-order and Ls and Lf are fourth-order positive semi-definite
tensors, thus completing the derivation of the thermodynamic restrictions.

We retrieve the usual expression for the viscoelasticity of the solid skeleton through
the fourth-order tensor Ls associated to the dissipative part of the stress tensor Sd . Also,

recalling from (5.2) that Vr = .

Xf is the reference relative velocity, the fourth-order tensor
Lf can be interpreted as the macroscopic viscosity tensor associated to the motion of the
fluid.

5.2.6 Summary and discussion

By substituting the above obtained results of (5.36), (5.38) and (5.40) into the balance laws
(5.24), derived from the principle of virtual power, we obtain the final form of the two gov-
erning equations. The first, associated to

.
χ

∗
and corresponding to (5.24)1 is the quasistatic
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linear momentum balance

∇ ·
(

∂�

∂F

)�

︸ ︷︷ ︸
elasticity and

Biot’s poromechanics

+∇ ·
(
Ls : .

F
)�

︸ ︷︷ ︸
viscoelasticity

−∇ ·
[

∇ ·
(

∂�

∂∇2χ

)]

︸ ︷︷ ︸
second-gradient
poromechanics

+ t̃V︸︷︷︸
external
loading

= 0. (5.41)

The second governing equation, associated to
.

X
∗
f and corresponding to (5.24)2 states the

supplementary linear momentum balance associated to the fluid flow

Brinkman law
︷ ︸︸ ︷

−∇ · [Lf : (∇Vr )
]� + DR ·Vr + Mf ∇ ∂�

∂Mf

− ∇ · ∂�

∂∇Xf
︸ ︷︷ ︸

Darcy law

− Mf ∇
(

∇ · ∂�

∂∇Mf

)

︸ ︷︷ ︸
Cahn-Hilliard-type

contribution

− β̃V︸︷︷︸
external
loading

+ ∂�

∂Xf

= 0. (5.42)

As expected, the quasistatic linear momentum balance (5.41) reduces in the absence of
inertial effects to its counterpart (4.55) or (4.56) obtained in Sect. 4. The formalism adopted
in Sect. 5 allows for additional physics, as seen from viscoelasticity and second-gradient
effects (see also [64]). The advantage of the virtual power approach is evident in the supple-
mentary linear momentum balance law (5.42), which provides a generalized form of Darcy’s
law with Brinkman correction [15], and a Cahn-Hilliard type contribution modeling effects
of the gradients of mass densities (see also [4]).

Also note the status change of Darcy’s law, which was a constitutive law in Sect. 4
and now appears as a balance equation. If in addition we consider a uniform material, the
dependence of � on the fluid displacement Xf can be dropped so that ∂�/∂Xf = 0, thus
further simplifying (5.42).

5.3 Dynamical regime

By considering the fluid motion as a kinematic descriptor in Sect. 5.2, we succeeded in ex-
tending the model of Sect. 4 to account for viscoelasticity, second-gradient mechanics in the
linear momentum balance, and high-order corrections of Darcy’s law such that Brinkman’s
term, and a Cahn-Hilliard type contribution. However, this model is still not rich enough to
account for tortuosity, considered next.

5.3.1 The power of acceleration

To include inertial effects, we need to augment the quasistatic principle of virtual power
(5.21) by introducing the virtual power of acceleration P a

V(K∗) such that

P e
V(K∗) + P i

V(K∗) = P a
V(K∗). (5.43)

We have to provide an explicit expression for P a
V(K∗) and thus we define the macroscopic

Eulerian acceleration of the skeleton γ s , of the fluid γ f and of the average continuum γ v
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by

γ s := ..
χ = ∂vs

∂t

∣
∣
∣
∣
x
+ vs · ∇vs , γ f := ∂vf

∂t

∣
∣
∣
∣
x
+ vf · ∇vf , γ v := ∂v

∂t

∣
∣
∣
∣
x
+ v · ∇v, (5.44)

where vf (x, t) is the fluid velocity, defined in Sect. 4 and linked to χ and Xf by (5.2), and
v is the average velocity of the continuum defined in (3.4)2.

To define the power of acceleration we consider two alternatives. The first follows the
approach of biphasic theories [28, 33, 38, 39], by summing the inertia of each continuum

P a
V(K∗) :=

∫

v

(
msγ s ·v∗

s + mf γ f ·v∗
f

)
dv

=
∫

V

[(
Msγ s + Mf γ f

) · .
χ

∗ + Mf γ f

(
F · .

X
∗
f

)]
dV, (5.45)

where, in the current configuration, the power of acceleration is macroscopically expended
by the skeleton velocity (resp. fluid velocity) against the skeleton acceleration (resp. fluid
acceleration).

The second alternative, of an averaged continuum, has a unique acceleration γ v and takes
the form

P̃ a
V(K∗) :=

∫

v

γ v · (msv∗
s + mf v∗

f

)
dv

=
∫

V

[
Mt

(
.
v + .

Xf ·∇v
)

· .
χ

∗ + Mf

(
.
v + .

Xf ·∇v
)

·
(

F · .

X
∗
f

)]
dV. (5.46)

In the next subsections, we explore the different outcomes of these two choices.

5.3.2 Reconciliation with the biphasic theory

In this section, we use the definition of the virtual power of acceleration given in (5.45).
By applying again the procedure followed in Sect. 5.2.4 and Sect. 5.2.5 one obtains the
following, counterpart to (5.28), definitions of the free-energy � and the vector kR

� := εR − θηR − Ms

2
.
χ

2 − Mf

2

(
.
χ + F · .

Xf

)2
, kR := hR − qR − Mf

2
v2

f

.

Xf . (5.47)

For the reasons given in Sect. 5.2.5, we take kR = 0, leading to the linear momentum balance

∇ ·
[(

∂�

∂F
+Ls : .

F
)�

− ∇ ·
(

∂�

∂∇2χ

)]

+ t̃V = Msγ s + Mf γ f , (5.48)

and, using the reference relative velocity Vr in (5.2), to the supplementary balance law for
the fluid

∇ · [Lf : (∇Vr )
]� − DR ·Vr = Mf ∇ ∂�

∂Mf

− ∇ · ∂�

∂∇Xf
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− Mf ∇
(

∇ · ∂�

∂∇Mf

)

− β̃V + Mf F� ·γ f
︸ ︷︷ ︸

inertial
correction

. (5.49)

In the linear momentum balance (5.48), we retrieve the form of inertia that usually ap-
pears in the biphasic approach of poromechanics (see (4.69)). More importantly, in the ex-
tended Darcy’s law (5.49), we retrieve the inertial correction Mf F� · γ f that is present in
the work of [21, 22, 25] and was discussed in Sect. 4.3.4. However, it is important to note the
difference between these works and the current result, since in their approach, the Darcy’s
law was derived constitutively and we have shown in Sect. 4 that this approach cannot give
the current expression (5.49).

The fundamental difference in our approach is the fact that in (5.49), the external body
force β̃V is thermodynamically distinct22 from the external body force of the linear momen-
tum balance t̃V , thus resolving the problem of objectivity associated to Darcy’s law in the
biphasic theory, as discussed in Sect. 4.3.4. Indeed, the external load β̃V can transform so
that (5.49) stays objective while in (4.69), the body force b cannot transform to ensure the
objectivity of both the linear momentum balance (4.56) and Darcy’s law (4.69).

5.3.3 Reconciliation with the mixture approach

Consider the second choice of virtual power of acceleration (5.46). By applying again the
procedure followed in Sect. 5.2.4 and Sect. 5.2.5 one obtains the following, counterpart to
(5.28), definitions of the free-energy � and the vector kR

� := εR − θηR − Mt

2
v2, kR := hR − qR − Mt

2
v2

.

Xf . (5.50)

Once again, taking kR = 0, and using (5.2) leads to the following linear momentum balance

∇ ·
[(

∂�

∂F
+Ls : .

F
)�

− ∇ ·
(

∂�

∂∇2χ

)]

+ t̃V = Mt

( .
v + Vr ·∇v

)
, (5.51)

and the supplementary balance law for the fluid

∇ · [Lf : (∇Vr )
]� − DR ·Vr =Mf ∇ ∂�

∂Mf

− ∇ · ∂�

∂∇Xf

− Mf ∇
(

∇ · ∂�

∂∇Mf

)

− β̃V + Mf F� · ( .
v + Vr ·∇v

)

︸ ︷︷ ︸
compare to (4.68)

. (5.52)

This result is hardly surprising, since the direct approach of Sect. 4 is based on a constitutive
assumption of type-I, defining the linear momentum balance as msvs +mf vf , which means
that we adopted the framework of the average medium theory (see discussion pertaining to
equation (4.6)).

5.3.4 Tortuosity correction

The definitions (5.45) and (5.46) for the virtual power of acceleration enabled us to retrieve
respectively the biphasic and the mixture theories from a unified macroscopic framework

22When solving boundary value problems, we can still choose to take them both equal to gravity.
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that is consistent with thermodynamics and the principle of material frame indifference.
However, these models still cannot account for the dynamic tortuosity correction that has
been described in [10, 12] as an added mass effect at the microscale.

From a macroscopic point of view (e.g., in [22]), the tortuosity correction is also asso-
ciated to the difference between the average of the fluid kinetic energy at the microscale,
and the macroscopic kinetic energy computed from the macroscopic velocity vf . Indeed,
the nonuniformity of the fluid velocity at the microscopic scale (due to viscosity and/or the
tortuous geometry of the pores), implies that the average of the local kinetic energy should
be greater that the macroscopically computed kinetic energy. Note that this interpretation
of the tortuosity correction from a kinetic energy point of view could be also reinterpreted
from the added mass effect of [10, 12]. Indeed, in fluid-structure interactions, it is a common
result to find that the inertial mass involved in the added mass effect is computed from the
kinetic energy of the fluid that is put in motion by the solid oscillations.

In order to retrieve the tortuosity correction, we add a term in the definition of the virtual
power of acceleration, in the spirit of a modified inertia due to the relative motion of the
fluid with respect to the solid. The simplest correction would be to modify (5.45) as follows

P̂ a
V(K∗) := P a

V(K∗) +
∫

V
ca

..

Xf · .

X
∗
f dV, (5.53)

where ca is a constant scalar coefficient. In this case, the free energy � takes the form

� = εR − θηR − Ms

2
.
χ

2 − Mf

2

(
.
χ + F · .

Xf

)2 − ca

2

.

X
2

f , (5.54)

while the unknown vector kR remains the same as in (5.47). The linear momentum balance
is identical to the biphasic linear momentum balance (5.51) but Darcy’s law changes to

∇ · [Lf : (∇Vr )
]� − DR ·Vr =Mf ∇ ∂�

∂Mf

− Mf ∇
(

∇ · ∂�

∂∇Mf

)

+ ca

..

Xf
︸ ︷︷ ︸

tortuosity
correction

+ Mf F� ·γ f − β̃V − ∇ · ∂�

∂∇Xf

. (5.55)

We have developed a methodology to derive a poromechanical model in finite strain, con-
sistent the principle of material frame indifference. Our approach is different from the work
of [74], since this author introduces an objective relative acceleration as a thermodynamic
variable, in order to proceed to the Coleman-Noll procedure.

5.4 Comparison to Biot’s linear acousto-poro-elasticity theory

It is of interest to compare the linearized version of the general governing equation of porous
media (5.48) and (5.55) to the linearized Biot’s theory of acousto-poro-elasticity [10, 11, 75].
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The latter can be described by the following coupled system23

� � � m0
s

∂vs

∂t
+ m0

f

∂vf

∂t
= ∇ · (σs − pf I

)
,

� � � m0
f

∂vf

∂t
+ m0

f (a − 1)
∂vr

∂t
+ πvr = −∇pf ,

(5.56)

where m0
s , m0

f are respectively the initial apparent mass density of the skeleton and the fluid,
a (named tortuosity coefficient, see, e.g., [10, 74]) and π are constant scalars. In addition, σs

and pf respectively represent the stress of the solid and the pressure of the fluid; assuming
the initial state is not preconstrained, these quantities can be written as follows

� � � σs = A(∇ ·u) I + 2Nsym (∇u) + Q(∇ ·U) I,

� � � pf = −Q(∇ ·u) − R (∇ ·U) ,

(5.57)

with A, N , Q, R material constants. In the above equations u := x − X is the skeleton
displacement of a solid particle initially at X and U is the fluid displacement of a fluid
particle initially at Xf , related by

� � � U := Xf + u; vs = ∂u/∂t, vf = ∂U/∂t, (5.58)

which for small strains (Lagrangian and Eulerian descriptions coincide, F = I) (5.58) agrees
with (5.2).

Note that in Biot’s linear acoustics theory for poroelastic saturated materials, neither
the porosity nor the fluid density are independent fields. The coupled system of equations
is written as functions of the two displacements, the one of the skeleton u and the one
of the fluid particle U (see [75]). Equation (5.56)1 represents the total linear momentum
balance, while equation (5.56)2 is the linear momentum balance of the fluid that can be also
interpreted as Darcy’s law, depending on the macroscopic approach adopted.

Upon linearization of (5.48) and (5.55) about the initial state of the system, neglecting
body forces and high-order gradient terms and introducing the standard notation for the
small strain ε := sym (∇u) gives to the first order

m0
s

∂vs

∂t
+ m0

f

∂vf

∂t
= ∇ ·

(
∂ψ

∂ε

)

,

m0
f

∂vf

∂t
+ ca

∂vr

∂t
+ πvr = −m0

f ∇
(

∂ψ

∂mf

)

+ ∇ · ∂ψ

∂∇Xf

,

(5.59)

where at small strains and for an isotropic material, we have defined the Darcy tensor in
(5.55) as DR := πI. A direct comparison of the left-hand side of (5.59)2 to its counterpart in
(5.56) gives ca = m0

f (a − 1).
In (5.59)2, one can see a dependence of ψ on ∇Xf , which represents the macroscopic

deformation gradient of the fluid particle. Recalling the isotropy of the porous medium, we
further assume that in the linear kinematics regime, the Helmholtz free-energy ψ only de-
pends on the volumetric change ∇ ·Xf and hence for small strains and for isotropic material,

23Many different formulations of this model exist in the literature, with notation depending on the application.
Biot himself varies in his notations from one article to another. In this article, we choose the more convenient
notation of [75] who follows Biot’s original work [10, 11].
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we define the small strain, isotropic, Helmholtz free energy as the sum of ψf , associated to
the fluid filling the pores and its interaction with the skeleton, plus the elastic energy of the
skeleton ψs

ψ(mf ,∇ ·Xf ,ε) := ψf (mf ,∇ ·Xf ) + ψs(ε), ψs(ε) := λ

2
(trε)2 + G(ε : ε) , (5.60)

where λ and G are respectively the Lamé constants of the linearly elastic skeleton. By
comparing the right-hand sides of (5.56) and (5.59), one can rewrite the quantities σs and
pf in (5.57)

σs − pf I = ∂ψ

∂ε
=
(

− ∂ψf

∂∇ ·Xf

+ λtrε

)

I + 2Gε, pf = m0
f

∂ψf

∂mf

− ∂ψf

∂∇ ·Xf

. (5.61)

To compare (5.61) with (5.57), we must relate the apparent fluid mass density change
mf − m0

f to the volumetric change ∇ · Xf . This result is obtained by linearizing the fluid
mass balance (5.4) and assuming

∣
∣(mf − m0

f )/m0
f

∣
∣� 1 and

∣
∣∇
(
mf /m0

f

)∣
∣� 1 yielding the

following linear equation for small strains

∂mf

∂t
+ m0

f (∇ ·vf ) = 0 =⇒ mf − m0
f � −m0

f (∇ ·U). (5.62)

We are now in a position to establish that for the linearized, small-strain case, the system
(5.56), (5.57) can be retrieved from (5.48) and (5.55). A substitution of (5.60) into (5.61),
gives upon linearization about m0

f , ∇ · U = 0, ε = 0 and in view of (5.62) the following
expressions for the constants in (5.57)

N = G, A = λ + ∂2ψf

∂(∇ ·Xf )2

∣
∣
∣
∣
0

, Q = m0
f

∂2ψf

∂mf ∂∇ ·Xf

∣
∣
∣
∣
0

− ∂2ψf

∂(∇ ·Xf )2

∣
∣
∣
∣
0

,

R = (m0
f )2 ∂2ψf

∂m2
f

∣
∣
∣
∣
∣
0

− 2m0
f

∂2ψf

∂mf ∂∇ ·Xf

∣
∣
∣
∣
0

+ ∂2ψf

∂(∇ ·Xf )2

∣
∣
∣
∣
0

.

(5.63)

By assuming the decomposition (5.60) of the free energy in the small strain regime,
we have thus recovered upon linearization of the general model presented in Sect. 5, the
linearized Biot’s theory of acousto-poro-elasticity [10, 11, 75].

6 Conclusion

Poromechanics is a vital research field in mechanics with a long history, starting with the
pioneering works of Terzaghi and Biot and continues vigorously to date with applications
ranging from soil mechanics to gels and tissue engineering. As presented in Sect. 1, the goal
of this paper is to derive a thermodynamically consistent continuum theory of large-strain
poroelasticity satisfying the principle of material frame indifference, without recourse to
mixture theory and by making the minimal number of assumptions. In doing so, we are able
to clarify the modeling assumptions underlying different models found in the literature.

Specifically, we treat the porous medium as a single continuum, whose fluid content
changes with the motion of the fluid relative to the skeleton. In Sect. 4, we consider the rela-
tive velocity of the fluid vr as a constitutive field. In this case and for an isotropic skeleton we
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show, using the direct approach of continuum mechanics and the Coleman-Noll procedure,
that there is a unique thermodynamically consistent set of field equations and constitutive
relations, which we subsequently compare to existing models. These equations are simi-
lar to those of fluid-mixture theories in which a quadratic fluid relative velocity appears in
the linear-momentum balance [42, 45, 59], but they differ from those of biphasic models
[21, 22]. Interestingly, the resulting quadratic velocity correction is similar to a term that
arises during the homogenization of the biphasic model but cannot be explicitly calculated
[25]. Nonetheless, the quadratic corrective term is negligible compared with the orders of
magnitude generally considered in boundary-value problems of poromechanics.

The governing equations derived under the assumption that vr is a constitutive field are
not rich enough to account for such features as tortuosity and Brinkman’s correction. In
Sect. 5, we relax this assumption by treating the relative fluid velocity as an independent
kinematic variable. Using the principle of virtual power we derive a set of equations appro-
priate for large strains and consistent with thermodynamics and material frame indifference.
Depending on the definition of the power of acceleration, we can retrieve in a thermody-
namically consistent way to obtain the corresponding governing equations with and without
the quadratic velocity term.

Importantly, the use of the principle of virtual power circumvents the need to postulate
a-priori the linear-momentum balance for the fluid, as is done on a phenomenological basis
in mixture theory. Moreover, since we do not postulate separate momentum balances for
the solid and fluid phases, we do not need to introduce terms to account for the interactions
between these phases, as is done in mixture theory, a task that would have required further
phenomenological assumptions. We can thus obtain from such a balance Darcy’s law in its
most general form, see (5.42), which contains Brinkman’s correction, a term of the Cahn-
Hilliard type and an additional contribution due to the dilation of the fluid, as given by
∂�/∂∇Xf .

We also note the importance of having an external body loading β̃V in Darcy’s law that is
thermodynamically independent from the external load of the linear momentum balance t̃V .
This enables us to ensure the objectivity of Darcy’s law. Depending on the explicit choice
for the power of acceleration, we show that we can retrieve the dynamic formalism of Sect. 4
(similar to fluid mixture, where inertia is that of the averaged continuum), and the formalism
of the biphasic theories. Finally, we show that our method also allows for formulations with
tortuosity corrections that are consistent with the laws of thermodynamics at finite strains as
well as with the linear acousto-poro-elasticity theories of Biot (see Sect. 5.4).

In conclusion, the two different but complementary approaches proposed in Sect. 4 and
Sect. 5 clarify the bases of various nonlinear theories of poromechanics, while keeping the
number of modeling assumptions to a minimum and ensuring the compliance of the gov-
erning equations with the principle of material frame indifference. We finally add that the
proposed methodology should be helpful in obtaining homogenization models that aim to
relate micromechanical mechanisms to macroscopic behavior and in guiding the selection
of the energy densities and the dissipative tensors by providing a consistent framework for
the thermodynamic restrictions of the resulting governing equations.

Appendix A: Material frame indifference

Definitions
The principle of material frame indifference (also called objectivity) states that the con-

stitutive laws of a continuous medium must be invariant under any change of the reference
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frame used for their description (see (5.12) in Sect. 5.2.2 for definition of corresponding
coordinate transformations). Denoting the variables in the new frame of reference with the
upper prime symbol ( )′ and any proper orthogonal tensor corresponding to the change of
frame by Q, objective variables must satisfy

a′ = a, v′ = Q ·v, A′ = Q ·A ·Q�, W
′ = Q · (Q ·W ·Q�),

L′ = Q · (Q ·L ·Q�) ·Q�, (A.1)

where a is a scalar, v is a vector, A is a second-order tensor, W is a third-order tensor and
L is a fourth-order tensor.

Application to the Helmholtz free energy
The isotropic scalar Helmholtz free energy ψ(S,B) is required to be objective (recall

that S are the scalar independent thermodynamic variables defined in (4.23) and B is the left
Cauchy-Green tensor), therefore for any proper orthogonal tensor Q

ψ ′(S ′,B′) = ψ(S,Q ·B ·Q�) = ψ(S,B) =⇒ ψ = ψ(S,I(B)), (A.2)

since the scalar thermodynamic variables S are objective (S ′ = S) and the invariants of B
are independent of rigid body rotations.

Application to the relative fluid velocity
The relative velocity vr = vf − vs is taken to be a constitutive variable in Sect. 4, and

hence must be objective.24 This could seem counter-intuitive, since velocities are not objec-
tive due to the time dependence of the proper orthogonal tensor Q; fortunately the relative
fluid velocity is objective. Indeed, consider two spatial points xf and xs moving respectively
at vf and vs , we have from (5.12) the following change of frame relation for the relative ve-
locity:

(vf − vs)
′ = v′

f − v′
s = Q · (vf − vs) + .

Q · (xf − xs). (A.3)

In poromechanics theories, since vf and vs are defined at the same Eulerian point x = xf =
xs , the relative velocity vr is objective25 since (A.3) reduces to a form that satisfies the
objectivity requirement for a vector in (A.1)2

(vf − vs)
′ = Q ·vr . (A.4)

Application to second-order tensors
Condition (A.1)3 must hold for all the second-order tensors of (4.50). A direct application

of the representation theorem (see, e.g., [68]) yields the general form of the second-order
permeability tensors D···

D′
···(S,Q ·B ·Q�) = Q ·D···(S,B) ·Q� =⇒

D···(S,B) = d0(S,I(B))I + d1(S,I(B))B + d2(S,I(B))B2, (A.5)

24Recall that by definition, a constitutive variable is required to be objective.
25Even if vr is not required to be objective in Sect. 5, as non-constitutive, it is still objective as proved in
(A.4).
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with similar expressions for the second-order conductivity tensors K···.

Objectivity and dependence on vs

For any field quantity (scalar, vector, tensor) f (S,G,B,vs) to be objective (recall the
definitions for the thermodynamic variables S,G in (4.23)) it must satisfy, according to
(5.12), for any vector c (and for the special case Q = I)

f (S,G,B,vs + c) = f (S,G,B,vs), ∀c ∈R3 =⇒ f (S,G,B,vs) = f (S,G,B),

(A.6)
thus establishing that any objective field quantity f should be independent of vs .

Appendix B: Derivation details for the energy flux vector h

In this appendix, we present the proof yielding the expression (4.38) for the energy flux h.
First we recall that from the principle of material frame indifference and the hypothesis of
isotropy, the term k in (4.36) has the following dependence

k = k(S,G,B,∇B). (B.1)

Applying the chain rule of differentiation to the divergence term ∇ ·k in (4.36) yields

− ∂k
∂∇ms

:∇2ms − ∂k
∂∇mf

:∇2mf − ∂k
∂∇θ

:∇2θ − ∂k
∂∇B

.... ∇2B − f (LO) ≥ 0, (B.2)

where f (LO) is a scalar function of the thermodynamic variables LO only.
We introduce for simplicity the notation gα (α = 1,2,3), for the gradients of ms , mf , θ

and W for the gradient of B

g1 := ∇ms, g2 := ∇mf , g3 := ∇θ, W := ∇B. (B.3)

Given any admissible state LO , the second gradients in (B.2) can be assigned arbitrarily,
yielding the following restrictions

∂k
∂gα

= −
(

∂k
∂gα

)�
, 1 ≤ α ≤ 3, Tijkl = −Tj ikl = −Tj ilk =Tij lk,

where Tijkl := ∂ki

∂Wjkl

, 1 ≤ i, j, k, l ≤ 3. (B.4)

Taking partial derivatives of k from (B.4) with respect to gα and W, we show the vanishing
of its following mixed derivatives

∂3k
∂gα∂gβ∂gγ

= 0,
∂3k

∂gα∂gβ∂W
= 0,

∂3k
∂gα∂W∂W

= 0,
∂3k

∂W∂W∂W
= 0,

1 ≤ α,β, γ ≤ 3. (B.5)

Considering the Taylor expansion of k around an homogeneous state Lh
O := {S,0,B,0}

(recall definition given prior to (4.45)), the expansion terms of order higher than 3 are iden-
tically null by (B.5), giving the exact expression

ki (LO) =ki (LO) + gα
j

∂ki

∂gα
j

∣
∣
∣
∣
∣
Lh

O

+ WjklTijkl

∣
∣
Lh

O

+ WjklWmno

2

∂Tijkl

∂Wmno

∣
∣
∣
∣
Lh

O
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+ gα
mWjkl

∂Tijkl

∂gα
m

∣
∣
∣
∣
Lh

O

+ gα
j gβ

k

2

∂2ki

∂gα
j ∂gβ

k

∣
∣
∣
∣
∣
Lh

O

. (B.6)

Applying the principle of material frame indifference to (B.6) gives for the particular case
of Q = −I,26 the following expression for k

ki (LO) = gα
j

∂ki

∂gα
j

(Lh
O) +WjklTijkl(Lh

O), 1 ≤ i ≤ 3. (B.7)

By (B.7) the objectivity of k implies the objectivity of the second rank tensors ∂k/∂gα and
the fourth rank tensor T

∂k
∂gα

(S,0,Q ·B ·Q�,0) = Q · ∂k
∂gα

(S,0,B,0) ·Q�,

T(S,0,Q ·B ·Q�,0) = Q · (Q ·T(S,0,B,0) ·Q�) ·Q�, ∀Q ∈ O(3). (B.8)

From (B.8)1, ∂k/∂gα(Lh
O) is an objective second-order tensor which is a function of sym-

metric variables. Using the mathematical theory of representation of objective tensors (see
proof below)

∂k
∂gα

=
(

∂k
∂gα

)�
, 1 ≤ α ≤ 3. (B.9)

Since ∂k/∂gα(Lh
O) is symmetric but also skew by (B.4)1, it follows that ∂k/∂gα(Lh

O) = 0.
Similarly, equation (B.8)2 yields that T(Lh

O) is an objective fourth-order tensor and also
a function of symmetric variables. It follows from the antisymmetry conditions (B.4)2 that
(see proof below)

T(Lh
O) = 0. (B.10)

The two remaining terms of the Taylor expansion (B.7) are null, thus completing the proof
of (4.37) stating k(LO) = 0.

Proof of (B.9)
This proof is inspired by the work of [68]. Consider an objective second order function

A(B). The principle of material frame indifference gives for any orthogonal tensor Q

Q ·A(B) = A(Q ·B ·Q�) ·Q, A(B) = ∂k/∂gα(B), 1 ≤ α ≤ 3. (B.11)

Moreover, the second-order tensor B is real and symmetric, therefore it is diagonalizable in
a real orthonormal basis with the associated eigen couples (β1,b1), (β2,b2), (β3,b3) such
that

B =
3∑

i=1

βibi ⊗ bi . (B.12)

26In the general theory of material frame indifference [60, 61], the change of frame occurs through a proper
orthogonal transformation. This enables the theory to account for polarized materials with chiral symmetries.
In the current model, following the same argument as [20] in their remark about equation (3.13), we extend the
principle to non-proper orthogonal tensors. Indeed in the present case, we assume there is no microstructural
polarization of the material, hence the possibility to take Q = −I.
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Consider the three orthogonal tensors Q1, Q2 and Q3 such that27

Qi ·bi = −bi (no sum in i), Qi ·bj = bj if i �= j. (B.13)

Using Qi in (B.11) and multiplying both sides by bi gives with the help of (B.13)

Qi ·A(B) ·bi = A(B) ·Qi ·bi = −A(B) ·bi =⇒ A(B) ·bi = αibi (no sum in i),
(B.14)

establishing that the orthonormal eigenbasis of B is also the eigenbasis for A, thus estab-
lishing its symmetry (B.9).

Proof of (B.10)
We show that if a fourth-order tensor functionTwith the antisymmetry conditions (B.4)2

is objective, then it must be null. Consider any objective second order tensor A and define
the second rank tensor T:A by

(T:A)ij =TijklAklei ⊗ ej . (B.15)

The objectivity of T and A imply the objectivity of the second order tensor T :A and,
following the same procedure as in the previous proof, one can show that it is symmetric.
Moreover, according to (B.4)2, T:A is also skew, and thus

T:A = (T:A)� = −(T:A) =⇒ T:A = 0. (B.16)

From the arbitrariness of A we conclude that the tensorT is identically null, thus completing
the proof of (B.10).

Appendix C: Fourier and Darcy laws

In this appendix, we justify the final expression of the generalized Fourier and Darcy laws
given in (4.48). Using the chain rule to take the gradient of μf , μs , σe from (4.30) and
(4.35), one obtains

∇μf = Mf

θ · ∇θ + Mf
s · ∇ms + Mf

f · ∇mf +M
f

B

... ∇B,

∇μs = Ms
θ · ∇θ + Ms

s · ∇ms + Ms
f · ∇mf +Ms

B

... ∇B,

∇ ·σe = Sθ · ∇θ + Ss · ∇ms + Sf · ∇mf +SB

... ∇B.

(C.1)

Following the work of [42, 45], consider that close to an homogeneous state Lh
O , the system

(C.1) is invertible so that

∇B = S̃θ · ∇θ + S̃s · ∇μs + S̃f · ∇μf + S̃B · (∇ ·σe),

∇mf = M̃f

θ · ∇θ + M̃f
s · ∇μs + M̃f

f · ∇μf + M̃f

B · (∇ ·σe),

∇ms = M̃s
θ · ∇θ + M̃s

s · ∇μs + M̃s
f · ∇μf + M̃s

B · (∇ ·σe).

(C.2)

27Note that their determinant is −1, these tensors represents planar symmetries.
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For an easier comparison with poromechanics literature, recall from (4.48) the definition of
the pressure gradient-like (since no pressure is defined) ∇p := cf ∇ ·σe +mf ∇μf . Substitut-
ing (C.2) into (4.46) gives

q = −Kθ · ∇θ − Ks · ∇μs − Kf · ∇μf − Kp · ∇p + O(δ2),

vr = −Dθ · ∇θ − Ds · ∇μs − Df · ∇μf − Dp · ∇p + O(δ2). (C.3)

Substituting the above expressions in (C.3) into the dissipation inequality (4.39) we obtain
the inequality

θ−1(Kθ · ∇θ + Ks · ∇μs + Kf · ∇μf + Kp · ∇p) · ∇θ

+ (Dθ · ∇θ + Ds · ∇μs + Df · ∇μf + Dp · ∇p) · ∇p + O(δ3) ≥ 0. (C.4)

Finally, requiring the inequality (C.4) to hold for any arbitrarily values of ∇θ , ∇μs , ∇μf and
∇p we obtain the vanishing of the following coupling terms

Ks = 0, Kf = 0, Ds = 0, Df = 0, (C.5)

thus yielding the expressions of q and vr obtained in (4.48).
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