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A B S T R A C T

The development of a new generation of more efficient electric motors leads to designs with higher stresses,
currents and electromagnetic fields. To improve on the prevailing existing methodology for the concurrent
calculation of electromagnetic and mechanical fields in electric motors, the authors recently presented in
Hanappier et al. (2021a) a multiphysics formulation of the problem using the direct (current configuration)
approach of continuum mechanics together with analytical solutions of idealized motor problems.

However, due to the complex geometry of a typical electric motor and the nonlinearity of the cou-
pled (magneto-mechanical) constitutive laws, numerical solutions of the governing equations are required.
To this end, a Lagrangian (reference configuration) variational principle is proposed for the eddy cur-
rent approximation that properly retrieves the Maxwell stresses and is consistent with its direct approach
counterpart.

Based on this variational principle, a numerical (FEM) approach is proposed. It is next applied to an
idealized (cylindrical) stator, where an analytical solution can be found for the linear magnetization regime,
thus providing firstly an independent code verification and then an assessment of the influence of the stator’s
nonlinear magnetic response. The approach is subsequently used to tackle a realistic geometry stator with two
pole pairs under a three-phase current for two different cases: loosely or tightly packed conducting wires to
calculate the corresponding magnetic, stress and strain fields.
1. Introduction

The increasing importance of environmental constraints in the
transportation industry and the quest to reduce its carbon footprint,
leads the electric motor industry to develop higher performance prod-
ucts with reduced manufacturing costs. New goals are set by various en-
tities (López et al., 2019) in terms of efficiency, reliability, power losses,
power density, higher rotation velocity and reduced weight and novel
electric motor designs are needed to overcome these technological
challenges and meet these goals.

Modeling of electric motors has in the past been studied predom-
inantly by the electrical engineering community. The focus has been
on the calculation of the magnetic field and resulting torque and
iron losses for different motor designs using both analytical, (e.g. see:
Boules, 1984; Zhu et al., 1993; Lubin et al., 2011; Devillers et al.,
2016) and numerical (e.g. see: Chari and Silvester, 1971; Silvester
et al., 1973; Abdel-Razek et al., 1982; Arkkio, 1987; Huppunen, 2004)
methods. By the late 90’s, stress calculations in electric motors started
appearing as a result of noise and vibrations concerns. The first FEM
computations for stresses in electric motors used a stepwise, uncoupled,
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approach: electric currents and magnetic fields where calculated using
a purely electromagnetic model; the electromagnetic body force vector
– a source of confusion, due to the many different expressions adopted
in the corresponding literature — was then introduced as the external
body force in a purely mechanical model to calculate the resulting stress
state (e.g. see: Reyne et al., 1988; Javadi et al., 1995; Vandevelde et al.,
2004).

The above-described approximate methods are inadequate to deal
with the true multiphysics nature of the electric motor problem. In
particular these materials exhibit a strongly coupled magnetic and
mechanical behavior, with the material magnetization influencing the
stress state via the ‘‘magnetostriction’’ phenomenon and the stress state
of the material also impacting its magnetization via ‘‘inverse magne-
tostriction (Daniel et al., 2020). Recognizing these issues, recent work
by Fonteyn et al. (2010a,b) takes into account magnetoelastic coupling
effects for the numerical stress calculation in electric motors. However
several approximations are used: i.e. a small strain approximation
involving non frame-indifferent invariants and the angular momentum
balance principle is not imposed.
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To overcome the above-mentioned difficulties in the correct mod-
eling of stresses in electrical motors, the authors recently proposed
in Hanappier et al. (2021) a multiphysics setting for the equations
governing electric motors. Using the direct approach of continuum
mechanics, a general framework that couples the electromagnetic,
thermal and mechanical fields is derived using the basic principles
of thermodynamics. Particular attention is paid to the derivation of
the coupled constitutive equations for isotropic materials under small
strain but arbitrary magnetization, which is relevant for typical electric
motors. As an application, analytical solutions of idealized rotor and
stator problems are presented, respectively in Hanappier et al. (2021,
2022).

For more realistic motor problems, numerical solutions of the gov-
erning equations are in order to account for the complex geometry of a
typical electric motor and the coupled magneto-mechanical non-linear
material behavior. To this end, a Lagrangian1 (reference configuration)
variational approach is proposed for the eddy current approximation
that properly retrieves the Maxwell stresses and is consistent with its
direct approach counterpart. Based on this variational principle, a nu-
merical (FEM) discretization algorithm is proposed in the present work
and subsequently applied to the solution of different stator boundary
value problems.

The outline of the presentation is as follows: after the motivation
in Section 1, the presentation continues with a brief description of a
typical electric motor boundary value problem in Section 2 followed
by the general variational theory of the eddy current approximation in
Section 3. The numerical implementation is given in Section 4 followed
by the applications in Section 5. Specifically, the proposed method is
first applied to a cylindrical stator, where an analytical solution can
be found for the linear magnetization regime, thus providing firstly an
independent code verification and subsequently an assessment of the
influence of the stator’s nonlinear magnetic response. The approach
is subsequently used to tackle a realistic stator geometry with two
pole pairs under a three-phase current for two different cases: loosely
or tightly packed conducting wires, to calculate the corresponding
magnetic and stress fields. Conclusion is presented in Section 6. The
analytical solution of the cylindrical stator problem with a linear elastic
and magnetic responses is given in Appendix A with the derivation of
the force vector and stiffness matrix for the FEM discretization of the
variational principle following in Appendix B.

2. Brief description of the electric motor problem

To set the stage we start by showing the cross-section of a typical
motor, consisting of a turning part, termed ‘‘rotor ’’ and a fixed part,
termed ‘‘stator ’’ separated by an ‘‘airgap’’, as seen in Fig. 1 that shows
a typical electric motor’s complex geometry.

Stator windings or coils are supplied by phase-shifted, alternating
currents to create a rotating magnetic field. The rotor can have per-
manent magnets or conducting bars (cage rotor). It can also be made
of a plain ferromagnetic material in the case of high speed machines.
When the rotor has magnets, the motor is called ‘‘synchronous’’ since the
rotor spins at the same frequency as the stator magnetic field. Motors
having rotors with conducting bars or plain ferromagnetic (but without
magnets) rely on induction: the rotating stator field induces currents at
the rotor, which in turn trigger Lorentz forces creating the rotor motion.
An angular velocity differential, called ‘‘slip’’, between the rotor and the
stator results and the motor is called ‘‘asynchronous’’. The dark region
at the center of the rotor indicates the motor shaft, which transmits the
mechanical load (torque). The bulk of the rotor and stator are usually
made of ferromagnetic materials with high magnetic susceptibility to

1 For a details on the equivalence between the Lagrangian variational
approach and the Eulerian direct approach in the most general setting, the
reader is directed to Hanappier (2021).
2

Fig. 1. Cross-section of a typical asynchronous motor, showing rotor, airgap and stator,
with current supply coil domains.

enhance and channel the magnetic flux. The ferromagnetic materials
used to strongly enhance the magnetic field, exhibit a non-linear (in
particular magnetic) material behavior as well as magneto-mechanical
coupling.

3. Theory: variational formulation for the eddy current approxi-
mation

We start with the general variational formulation of the coupled
electro-magneto-mechanical problem using the eddy current approxi-
mation, after Thomas and Triantafyllidis (2009). Following the intro-
duction of the appropriate Lagrangian and Hamilton’s functionals in
Section 3.1, we show how the stationarity of the latter imposes the
vanishing of its variations with respect to the magnetic potential 𝑨 and
the displacement 𝒖, in Sections 3.2 and 3.3. We thus obtain respectively
the field equations and boundary/interface conditions for the magnetic
and mechanical response of the solid as well as the magnetic field in
the airgap.

A comment on notation is in order at this point: coordinate-free
(dyadic) continuum mechanics notation is used with bold symbols
referring to tensors and script ones to scalars. The FEM calculations
are performed in a Lagrangian setting using the unloaded configuration
as reference. Unless stated otherwise, all field quantities are functions
of the reference position 𝑿 and time 𝑡. Lagrangian field quantities
are denoted by capital letters, e.g. magnetic potential 𝑨, magnetic
flux 𝑩, ℎ-field 𝑯 , current density 𝑱 , first Piola–Kirchhoff stress 𝜫 ,
while their corresponding Eulerian counterparts are denoted by script
letters, e.g. 𝒂, magnetic flux 𝒃, ℎ-field 𝒉, current density 𝒋, Cauchy
stress 𝝈. For the case of small strains, i.e. 𝑭 ≈ 𝑰 ,2 these fields tend
to coincide allowing for the comparison between the analytical results
in Hanappier et al. (2022) and the numerical ones presented here.

3.1. Lagrangian and Hamilton functionals

The schematics of the general boundary value problem are given in
Fig. 2. The solid occupies a volume 𝛺 in the reference configuration
with boundary 𝜕𝛺. The solid is subjected to an externally applied
reference current density 𝑱 and an externally applied mechanical body
force (per unit mass) 𝒇 . On the boundary we apply a mechanical
traction 𝑻 (per unit reference surface area) and an electric current sheet
𝑲 (per unit reference surface area). In general surface tractions and
current sheet are applied on different parts of the boundary 𝜕𝛺𝑇 and

2 The capital-script letter rule is not applicable to field quantities relating
the two configurations, where no ambiguity is possible and hence the usual
standard notation is adopted, i.e. 𝑭 for the deformation gradient or 𝒖 for the
displacement field.
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Fig. 2. Schematics of the boundary value problem for an electric motor component
(reference configuration).

𝜕𝛺𝐾 ; displacement 𝒖 and magnetic potential 𝑨3 can also be applied on
different parts of the boundary 𝜕𝛺𝑢 and 𝜕𝛺𝐴 respectively.

Neglecting the electric charge and the electric field energy contri-
butions, the reference configuration ‘‘Lagrangian density ’’ l (per unit
reference volume) for the eddy current approximation (see Thomas and
Triantafyllidis, 2009) is given by

l≡ − 1
2𝜇0𝐽

𝑩⋅𝑪⋅𝑩 + 𝑱 ⋅𝑨 − 𝜌0𝜓 + 1
2
𝜌0(

.
𝒖⋅

.
𝒖) + 𝜌0𝒇 ⋅𝒖 ;

𝑩 ≡ 𝛁×𝑨 , 𝑪 ≡ 𝑭 𝑇 ⋅𝑭 ,
(3.1)

where 𝑩 the reference magnetic field, 𝑨 the reference magnetic poten-
tial,4 𝜓(𝑪 ,𝑩)5 the specific (per unit mass) Helmholtz free energy and 𝑪
the right Cauchy–Green tensor, expressed in terms of the deformation
gradient 𝑭 . Following standard notation, 𝜌0 is the reference mass
density of the solid and

.
𝒖 denotes the time-derivative (velocity) of the

displacement 𝒖. Moreover, 𝜇0 is the magnetic permeability of vacuum
and 𝐽 = det(𝑭 ) denotes the deformation-induced volume change.

Based on (3.1), the reference configuration ‘‘total Lagrangian’’ L of
the system becomes6

L≡ ∫R3
l d𝑉 + ∫𝜕𝛺

(𝑻 ⋅𝒖 +𝑲⋅𝑨) d𝑆 . (3.2)

We also generalize the reference mass density 𝜌0 in the definition of
the Lagrangian density l in (3.1) over the entire space R3 as follows:
𝜌0(𝑿) ≠ 0 for 𝑿 ∈ 𝛺 and 𝜌0(𝑿) = 0 for 𝑿 ∈ R3∖𝛺. Integration over R3

is necessary to account for the electromagnetic field in both the body
𝛺 and its surrounding space R3∖𝛺.

We proceed with the definition of the ‘‘action integral’’ F(𝑨, 𝒖),
obtained by integration of the Lagrangian L in (3.2) between arbitrary
times 𝑡1 and 𝑡2. By Hamilton’s principle it is stationary

F(𝑨, 𝒖) ≡ ∫

𝑡2

𝑡1
L d𝑡 , 𝛿F= 0 ; 𝛿𝑨(𝑡𝑖) = 𝛿𝒖(𝑡𝑖) = 𝟎 , 𝑖 = 1, 2

⟹ F,𝑨[𝛿𝑨] = F,𝒖[𝛿𝒖] = 0 .

(3.3)

3 The Dirichlet condition in magnetics consists of prescribing 𝑵×𝑨.
4 An additional condition is needed for a unique 𝑨, termed ‘‘gauge

condition’’; Coulomb gauge 𝛁⋅𝑨 = 0 is a typical choice.
5 Dissipative phenomena (e.g. magnetic hysteresis or plasticity) are ignored

and thus no internal variables are needed in 𝜓 . Temperature dependence is
ignored as well. The specific free energy used here depends on (𝑪 ,𝑩 = 𝐽𝑭 −1⋅𝒃),
as opposed to (𝑪 , 𝒃⋅𝑭 ) in Kovetz (2000), Hanappier et al. (2021, 2022). Our
choice, motivated by the fact that 𝑩 is the Lagrangian counterpart of Eulerian
𝒃, still complies with the angular momentum balance argument made in Kovetz
(2000). For a detailed explanation of this point, see Hanappier (2021).

6 Without loss of generality, we can define the applied mechanical traction
𝑻 and current sheet 𝑲 fields on the entire boundary and impose a zero value
when applicable.
3

Consequently the corresponding variations with respect to the indepen-
dent variables 𝑨 and 𝒖 yield respectively the magnetic and mechanical
governing equations and interface/boundary conditions.

3.2. Magnetics: variations with respect to 𝑨

Following (3.3), setting to zero the variation of Fwith respect to 𝑨
one obtains

F,𝑨[𝛿𝑨] =∫

𝑡2

𝑡1

{

∫R3

[

𝑱⋅𝛿𝑨 − 1
𝜇0

(𝑩⋅𝑪)⋅(𝛁×𝛿𝑨)

−𝜌0
𝜕𝜓
𝜕𝑩

⋅(𝛁×𝛿𝑨)
]

d𝑉
}

d𝑡 + ∫𝜕𝛺
(𝑲⋅𝛿𝑨) d𝑆 = 0 .

(3.4)

The domain R3 is separated into the volume 𝛺 occupied by the body
and the surrounding space R3∖𝛺. Taking into account the discontinuity
of 𝜌0 across 𝜕𝛺, integration by parts of (3.4) yields

F,𝑨[𝛿𝑨] = ∫

𝑡2

𝑡1

{

∫R3

[

(𝑱 − 𝛁×𝑯) ⋅𝛿𝑨
]

d𝑉

+∫𝜕𝛺

[

(𝑲 −𝑵×[[𝑯]])⋅𝛿𝑨
]

d𝑆
}

d𝑡 = 0 ,

𝑯 ≡ − 𝜕l
𝜕𝑩

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜌0
𝜕𝜓
𝜕𝑩

+ 1
𝜇0𝐽

𝑪⋅𝑩 ; ∀ 𝑿 ∈ 𝛺 ,

1
𝜇0𝐽

𝑪⋅𝑩 ; ∀ 𝑿 ∈ R3∖𝛺 ,

(3.5)

where 𝑯 is the reference configuration ℎ-field’’.7 The arbitrariness
of 𝛿𝑨, (3.5) implies the following differential equation and bound-
ary/interface condition

𝛁×𝑯 = 𝑱 ; ∀𝑿 ∈ R3 , 𝑵×[[𝑯]] = 𝑲 ; ∀𝑿 ∈ 𝜕𝛺 , (3.6)

where one recognizes the reference configuration Maxwell–Ampère law
in the eddy current approximation (see Hanappier, 2021).

3.3. Mechanics: variations with respect to 𝒖

Once again, from Hamilton’s principle (3.3), setting to zero the
variation of Fwith respect to 𝒖 gives

F,𝒖[𝛿𝒖] = ∫

𝑡2

𝑡1

{

∫R3

[(

1
𝜇0𝐽

( 1
2
(𝑩⋅𝑪⋅𝑩)𝑰 − 𝑩(𝑪⋅𝑩)

)

⋅𝑭 −1

−2𝜌0
𝜕𝜓
𝜕𝑪

⋅𝑭 𝑇
)

∶ (𝛁𝛿𝒖) + 𝜌0
.
𝒖⋅ d
d𝑡
(𝛿𝒖) + 𝜌0𝒇 ⋅𝛿𝒖

]

d𝑉

+ ∫𝜕𝛺
(𝑻 ⋅𝛿𝒖) d𝑆

}

d𝑡 = 0.

(3.7)

As before, the domain R3 is separated into the volume 𝛺 occupied
by the body and the surrounding space R3∖𝛺. Taking into account the
discontinuity of 𝜌0 across 𝜕𝛺, integration by parts of (3.7) in the space
and the time domains (recalling also the end conditions at 𝑡1, 𝑡2 in (3.3))

7 The reference and current configuration ℎ-fields are related by 𝑯 = 𝒉⋅𝑭
(see Hanappier, 2021).
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yields

F,𝒖[𝛿𝒖] = ∫

𝑡2

𝑡1

{

∫R3

[

(

𝛁⋅𝜫 − 𝜌0
..
𝒖 + 𝜌0𝒇

)

⋅𝛿𝒖
]

d𝑉

+∫𝜕𝛺

[

(𝑻 −𝑵 ⋅ [[𝜫]])⋅𝛿𝒖
]

d𝑆
}

d𝑡 = 0 ,

𝜫 ≡ −
( 𝜕l
𝜕𝑭

)𝑇

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜌0
𝜕𝜓
𝜕𝑪

⋅𝑭 𝑇 + 1
𝜇0𝐽

𝑩(𝑭 ⋅𝑩)− 1
2𝜇0𝐽

(𝑩⋅𝑪⋅𝑩)𝑭 −1 ; ∀ 𝑿 ∈ 𝛺 ,

1
𝜇0𝐽

𝑩(𝑭 ⋅𝑩) − 1
2𝜇0𝐽

(𝑩⋅𝑪⋅𝑩)𝑭 −1 ; ∀ 𝑿 ∈ R3∖𝛺 ,

(3.8)

where 𝜫 is the ‘‘total first Piola–Kirchhoff ’’ stress tensor.8 The arbi-
trariness of 𝛿𝒖, (3.8) yields the following differential equation and
boundary/interface condition

𝛁⋅𝜫 + 𝜌0𝒇 = 𝜌0
..
𝒖 ; ∀𝑿 ∈ R3 , 𝑵×[[𝜫]] = 𝑻 ; ∀𝑿 ∈ 𝜕𝛺 , (3.9)

where one recognizes the reference configuration linear momentum
balance of continuum mechanics.

It should be noted here that the present Lagrangian approach en-
ables one to automatically calculate the Maxwell stress in the airgap
regions9 R3∖𝛺, as seen from (3.8)3.

4. Numerical (FEM) implementation

We apply here the general theory developed in Section 3 to the
boundary value problem of a stator. The numerical solution is based on
a FEM discretization of a 2D, quasistatic problem and solved by extrem-
ization of a simplified version of the Lagrangian (3.2). In Section 4.1
we present the potential energy of the problem and the corresponding
field variables. In Section 4.2 we give the specific free energies used
in the calculations and in Section 4.3 we present some important
implementation details.

4.1. Potential energy and field variables

This stator analysis is based on a 2D model (plane strain assumed,
see cross-section in Fig. 1), where all field quantities are assumed
independent of 𝑋3. It involves no external body forces and mechanical
tractions and has negligible induced currents and acceleration terms,
thus requiring only a spatial discretization of the corresponding qua-
sistatic problem. The Lagrangian of the system (kinetic minus potential
energy: L= K−P), in the absence of the kinetic energy (K= 0) equals
minus the potential energy (L= −P), which for the case of no external
body forces and mechanical surface tractions becomes

P = ∫R2p d𝑆 − ∫𝛺(𝑱 ⋅𝑨) d𝑆 − ∫𝜕𝛺(𝑲⋅𝑨) d𝑙 ;

p ≡ 𝜌0𝜓 + 1
2𝜇0𝐽

𝑩⋅𝑪⋅𝑩 ,
(4.1)

where p is the system’s energy density.
Since a plane strain boundary value problem is considered, integra-

tion over the entire domain involves R2 and the cross-section of the
tator domain has boundary 𝜕𝛺. Moreover, the in-plane magnetic field
𝑩 = 𝛁×𝑨, see (3.1)) is derived from the magnetic vector potential
= 𝐴(𝑋1, 𝑋2)𝒆3, requiring only one scalar field variable for its deter-
ination i.e. 𝑩 = 𝐴,2𝒆1 − 𝐴,1𝒆2.10 Consequently the Coulomb gauge

8 The total first Piola–Kirchhoff and Cauchy stress tensors are related by
= 𝐽𝑭 −1⋅𝝈 (see Hanappier, 2021).
9 This is a more straightforward approach, compared to other methodolo-

ies that require adding the Maxwell stress contribution at the interfaces with
irgap regions; e.g. Fonteyn et al. (2010b).
10
4

The standard partial derivative notation is used 𝐴,𝑖 ≡ 𝜕𝐴∕𝜕𝑋𝑖 ; 𝑖 = 1, 2.
condition 𝛁⋅𝑨 (see footnote 4) is automatically satisfied. As a result
of Ampère’s law (3.6) and the in-plane ℎ-field, the externally applied
currents can only be of the form 𝑱 = 𝐽3(𝑋1, 𝑋2)𝒆3, thus automatically
atisfying the charge conservation principle 𝛁⋅𝑱 = 0.

Thus the solution of the stator boundary value problem requires the
ollowing three field variables 𝑢1(𝑋1, 𝑋2), 𝑢2(𝑋1, 𝑋2), 𝐴(𝑋1, 𝑋2)

𝒖 = 𝑢1(𝑋1, 𝑋2) 𝒆1 + 𝑢2(𝑋1, 𝑋2) 𝒆2 , 𝑨 = 𝐴(𝑋1, 𝑋2) 𝒆3. (4.2)

he numerical solution of the problem is based on the FEM spatial
iscretization of the above three scalar fields, and the derivation of the
lement force vector and stiffness matrix are presented in Appendix B.

.2. Constitutive choices

For isotropic materials in 2D, the most general form of their specific
ree energy11 can be expressed as a function of only 4 invariants
1, 𝐼2, 𝐽1 and 𝐽2 (out of the 6 invariants for a 3D isotropic case),

𝜓(𝑪 ,𝑩) = 𝜓(𝐼1, 𝐼2, 𝐽1, 𝐽2) ;

𝐼1 ≡ tr(𝑪) , 𝐼2 ≡ det(𝑪) = 𝐽 2 , 𝐽1 ≡ 𝑩⋅𝑩 , 𝐽2 ≡ 𝑩⋅𝑪⋅𝑩 .
(4.3)

For the e-motor applications of interest here, the specific free en-
rgy is decomposed into a purely mechanical part and a magneto-
echanical part (see Hanappier et al., 2021; Hanappier, 2021),

𝜓(𝑪 ,𝑩) = 𝜓𝑚𝑒𝑐ℎ(𝑪) + 𝜓𝑚𝑎𝑔(𝑪 ,𝑩) . (4.4)

.2.1. For ferromagnetic materials

echanical energy density For the mechanical specific free energy
𝑚𝑒𝑐ℎ(𝑪), or equivalently its reference energy density counterpart
𝑚𝑒𝑐ℎ(𝑪), a neo-Hookean behavior is chosen,

𝑊𝑚𝑒𝑐ℎ(𝐼1, 𝐼2) ≡ 𝜌0𝜓𝑚𝑒𝑐ℎ(𝐼1, 𝐼2)

= 𝐺
[ 1
2
(𝐼1 − 2 − ln 𝐼2) +

𝜈
1 − 2𝜈

(
√

𝐼2 − 1)2
]

,
(4.5)

where 𝜈 denotes the Poisson ratio (−1 < 𝜈 < 0.5) and 𝐺 the shear
modulus. More appropriate and refined choices may be relevant for
modeling metals (e.g. see Thomas and Triantafyllidis, 2009) but the
neo-Hookean model is perfectly adequate here, given the small strains
expected (Hanappier et al., 2021).

Magnetic energy density The magnetic specific free energy 𝜓𝑚𝑎𝑔 , or
equivalently its reference energy density counterpart 𝑊𝑚𝑎𝑔(𝑪 ,𝑩), per-
ains to the magnetic response of the steel stator, assuming an an-
ysteretic magnetic behavior (no dissipative phenomena considered
ere). For small magnetic fields (and small strains), the model must
apture the linear magnetization behavior of the material, i.e. predict
ts magnetic susceptibility 𝜒 .12 The model should also account for
aturation, i.e. asymptotically approach a magnetization 𝑚𝑠 at large
agnetic fields. To this effect, a model that combines a quadratic

nergy – linear magnetization – at small ‖𝒃‖ with a Langevin-type one
e.g. see Danas, 2017) to account for magnetization saturation at high

11 A user element is defined for the FEM modeling of the various motor
domains, i.e. air, copper conductors and ferromagnetic electrical steel. The
specific free energy for each material is assumed isotropic.

12 Following Hanappier et al. (2021), for small strains and magnetic fields
the magnetic response is consistently characterized by two constants: magnetic
susceptibility 𝜒 – considered here – and magnetostriction 𝛬 – set to zero by

selection of the energy density in (4.6).
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a
m

‖𝒃‖ is used,

‖𝒃‖ ≤ 𝑏𝑙𝑖𝑚 ∶ 𝑊𝑚𝑎𝑔(𝐼2, 𝐽2) = 𝜌0𝜓𝑚𝑎𝑔(𝐼2, 𝐽2) = −
𝜒
2𝜇
𝐽2
𝐼2

; 𝜇 = 𝜇0(1+𝜒) ,

‖𝒃‖ > 𝑏𝑙𝑖𝑚 ∶ 𝑊𝑚𝑎𝑔(𝐼2, 𝐽2) = −
𝜒
2𝜇
𝑏2𝑙𝑖𝑚−

𝜒
𝜇
𝑏𝑙𝑖𝑚

(
√

𝐽2
𝐼2

− 𝑏𝑙𝑖𝑚

)

+
𝛼𝑠𝑚𝑠
𝛽

[

ln

(

𝛽

(
√

𝐽2
𝐼2

− 𝑏𝑙𝑖𝑚

))

− ln

(

sinh

(

𝛽

(
√

𝐽2
𝐼2

− 𝑏𝑙𝑖𝑚

)))]

; 𝛽 ≡ 3
𝛼𝑠𝑚𝑠

𝜒
𝜇
,

(4.6)

where 𝑚𝑠 is the magnetization at saturation, and 𝛼𝑠 is a correction
coefficient introduced to obtain a better fit to experimental data (see
Section 5). It should be noted here that the isotropic magnetic energy
density in (4.6) depends solely on the magnitude of the current mag-
netic field, i.e. 𝑊𝑚𝑎𝑔(𝐼2, 𝐽2) = 𝑊𝑚𝑎𝑔(‖𝒃‖), since 𝑩 = 𝐽𝑭 −1⋅𝒃 ⟹ 𝒃⋅𝒃 =
𝐽2∕𝐼2.

For small strains – typical in electric motors – i.e. when ‖𝝐‖ ≪ 1,
where 𝝐 ≡ (1∕2)(𝛁𝒖 + 𝒖𝛁), but arbitrary magnetic field amplitudes ‖𝒃‖,
the present choice of specific free energy matches the small strain
magnetization and stress expressions presented in Hanappier et al.
(2021). In particular, the total stress 𝝈 (≈ 𝜫) is the sum of a purely
elastic part

𝑒
𝝈(𝝐) and a purely magnetic part

𝑚
𝝈(𝒃)

𝝈 =
𝑒
𝝈 +

𝑚
𝝈 ;

𝑒
𝝈 ≡ 𝜆tr(𝝐)𝑰 + 2𝐺𝝐 ,

𝑚
𝝈 ≡ 1

𝜇0

[

𝒃𝒃 − 1
2
(𝒃⋅𝒃)𝑰

]

−
𝜒(‖𝒃‖)
𝜇(‖𝒃‖)

[𝒃𝒃 − (𝒃⋅𝒃)𝑰] + 𝛬(‖𝒃‖)
𝜇(‖𝒃‖)

𝒃𝒃 ,

𝒎 =
𝜒(‖𝒃‖)
𝜇(‖𝒃‖)

𝒃 , 𝜇(‖𝒃‖) = 𝜇0 (1 + 𝜒(‖𝒃‖)) ,

(4.7)

where 𝜒(‖𝒃‖) is the material’s magnetic susceptibility, 𝜇(‖𝒃‖) its magnetic
permeability and 𝛬(‖𝒃‖) a magneto mechanical coupling coefficient which
gives the curvature of the strain vs magnetic field in a stress-free
uniaxial magnetostriction experiment. For the magnetic energy adopted
in (4.6), 𝛬(‖𝒃‖) = 0.

4.2.2. For airgap and conductor domains
For airgap domain, 𝑊𝑚𝑎𝑔 = 0 but a penalty-type method, with a

mechanical energy density 𝑊𝑚𝑒𝑐ℎ ≠ 0 is adopted (see Thomas and
Triantafyllidis, 2009) to obtain continuous displacement fields. We
assume 𝐺𝑎𝑖𝑟 = 10−5𝐺𝑠𝑡𝑒𝑒𝑙 while keeping the Poisson ratio 𝜈 the same
as in the steel stator.

For the coil conductor’s domain (typically made of copper, a non-
magnetic material), we also take 𝑊𝑚𝑎𝑔 = 0. The selection of its
mechanical energy density is more complicated, as this domain is not
monolithic but consists of wires in contact with each other and the
stator. Two limiting cases are thus considered for this domain’s 𝑊𝑚𝑒𝑐ℎ:
(i) for the case of ‘‘loosely packed conductors’’ and not in contact with
the stator, we neglect the stiffness of the copper wire domain by taking
𝐺𝑐𝑜𝑝𝑝𝑒𝑟 = 𝐺𝑎𝑖𝑟 = 10−5𝐺𝑠𝑡𝑒𝑒𝑙 and (ii) for the case of ‘‘tightly packed
conductors’’ in contact with the stator, we assume a monolithic copper
domain bonded to the stator, in which case we use the corresponding
values of the shear modulus and Poisson ratio.

4.3. FEM discretization

For the sake of simplicity and meshing flexibility, the elements
chosen for the FEM spatial discretization are constant strain triangular
2D elements; the sole numerical integration point being at the element
centroid. The three degrees of freedom of node 𝑖 are 𝒒(𝑖) = (𝑢(𝑖)1 , 𝑢

(𝑖)
2 , 𝐴

(𝑖))
and the corresponding element force vector 𝒇 𝑒 and element stiffness
matrix 𝒌 are derived in Appendix B. The corresponding UEL (user
5

𝑒 s
element) is provided to ‘‘Abaqus’’ in the final assembly of the global
force vector and stiffness matrix of the problem.

5. Simulation of electric stators

Results obtained for the multiphysics modeling of stators, using
the numerical implementation described in Section 4, are presented
here in two parts. In Section 5.1 an idealized (cylindrical) rotor is
solved using the FEM code.13 We present the results for the nonlinear
magnetic response in (4.6) and we assess its influence by comparing
the FEM results to the corresponding analytical solution of Hanappier
et al. (2022). In Section 5.2, numerical results are presented using the
same constitutive laws but a more realistic stator geometry inspired
from Devillers et al. (2018b) that includes teeth and slots.

An important point needs to be made here: although the numerical
calculations are done in a full Lagrangian setting, due to the small
strains, results are expressed in the current configuration, i.e. 𝑨 ≈
𝒂, 𝑩 ≈ 𝒃, 𝑯 ≈ 𝒉, 𝜫 ≈ 𝝈.

5.1. Results for an idealized (cylindrical) stator problem

Geometry The idealized motor geometry is shown in Fig. 3(a) and its
dimensions are given in Fig. 4(a). Because of the symmetries in the
geometry – and in the subsequently defined loading – only a quarter
domain is discretized, as shown in Fig. 3(b) which also introduces the
labeling of the different domains and their boundaries. The unstruc-
tured mesh consists of 27,783 elements with 14,794 nodes and 44,382
d.o.f.; the mesh is optimized for accuracy using the analytical solution
for the linear magnetic response.

Materials Fig. 4(a) records the material parameters of the cylindrical
stator. The nonlinear description of the magnetic response in (4.6)
requires, in addition to the magnetic susceptibility 𝜒 , two more param-
eters: the magnetization at saturation 𝑚𝑠 and the correction coefficient
𝛼𝑠. The saturation value 𝑚𝑠 = 1.3×106 is taken as the maximum mag-
netization reported in the experimental data of Rekik et al. (2014).14

The best fit to the experimental data reported there correspond to a
correction factor 𝛼𝑠=3.8 and a transition magnetic field 𝑏𝑙𝑖𝑚=55%𝜇0𝑚𝑠,
as seen in Fig. 4(b).

Loading The rotor comprises 𝑝-pairs (𝑝 = 2 here) of permanent magnets
that produce a rotating radial magnetic field 𝐵𝑟 = −𝐵0 sin(𝑝𝜃 − 𝑝𝛺𝑡) at
the rotor boundary D1, with 𝐵0 the amplitude of the field and 𝛺 the
angular velocity of the rotor. The FEM results obtained here correspond
to a snapshot at time 𝑡 = 0; the solution at any time 𝑡 is obtained by a
rotation by an angle 𝛺𝑡.

We proceed next by recording the essential (Dirichlet) magnetic and
mechanical boundary conditions imposed. The maximum amplitude 𝐵0
is chosen so that the numerically calculated magnetization nowhere
exceeds its saturation value15, thus operating within the range of the
fitted magnetic response, as shown in Fig. 4(b) and hence justifying
the adopted value 𝐵0=23%𝜇0𝑚𝑠 in Fig. 4(a).

Magnetic boundary conditions Magnetic loading is imposed by prescrib-
ing the magnetic potential 𝐴 at the outer boundary of the rotor

𝜕D1 ∶ 𝐴 =
𝑅1𝐵0
𝑝

cos(𝑝𝜃) . (5.1)

13 For code validation and accuracy checking, the FEM results are compared
to the analytical results in Hanappier et al. (2022) obtained for small values
of the magnetic field (linear range of magnetic behavior).

14 We use the data for the unstressed configuration (Figure 11(a) of Rekik
et al. (2014) with – following their notations – 𝜎1 = 𝜎2 = 0).

15 We take 𝑚𝑠 as the experimentaly observed magnetization of the material
t saturation. Although accurate at small values of ||𝒉||, see Fig. 4(b), our
odel reaches magnetization values above 𝑚𝑠 for high magnetic fields – in

−1
mall strains, the magnetization from Eq. (4.6) tends to 𝜒𝜇 𝑏𝑙𝑖𝑚 + 𝛼𝑠𝑚𝑠.
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Fig. 3. In (a) cross-section of the idealized (cylindrical stator) electric motor, indicating rotor, airgap and stator domains and associated boundaries and in (b) FEM mesh used
for modeling the quarter domain of the idealized stator.
Fig. 4. Table of geometry, loading parameter and material properties for the cylindrical rotor in (a) and fitting of the magnetic constitutive law in Eq. (4.6) to the experimental
𝑚 − ℎ results of Rekik et al. (2014) in (b).
On the outer boundary of the stator the magnetic potential 𝐴 is pre-
scribed

𝜕D3 ∶ 𝐴 = 0 . (5.2)

From the above condition we conclude that the radial component
of the magnetic field vanishes ((𝜕𝐴∕𝜕𝜃)∕𝑅 = 𝐵𝑟 = 𝑵 ⋅𝑩 = 0), thus
explaining the term ‘‘negligible magnetic leakage flux condition’’ recorded
in Fig. 3(a). No essential boundary conditions are imposed on the
lateral boundaries 𝜕D1, 𝜕D2 due to the symmetry of the geometry and
6

𝑙 𝑙
loading. The corresponding natural (Neumann) boundary condition is
𝑵×𝑯 = −𝐻𝑟𝒆𝑧 = 0.

Mechanical boundary conditions Displacements are set to zero on the
inner boundary of the airgap 𝜕D1.

𝜕D1 ∶ 𝑢𝑟 = 𝑢𝜃 = 0 . (5.3)

Moreover, given the symmetries of the geometry and loading, we
need only prescribe the tangent displacements on the lateral surfaces
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Fig. 5. Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization response) for the cylindrical stator at large values of the
magnetic field ‖𝒃‖ at three different angles. In (a) dimensionless magnetic potential 𝐴∕𝑅2𝜇0𝑚𝑠 vs 𝑟, in (b) dimensionless radial displacement 𝑢𝑟∕𝑅2 vs 𝑟 and in (c) dimensionless
tangential displacement 𝑢𝜃∕𝑅2 vs 𝑟 (dimensionless radius 𝑟 = 𝑅∕𝑅2).
𝜕D1
𝑙 , 𝜕D

2
𝑙 , and hence

𝜕D1
𝑙 , 𝜕D

2
𝑙 ∶ 𝑢𝜃 = 0 . (5.4)

The corresponding natural Neumann boundary conditions provide on
𝜕D1

𝑙 and 𝜕D2
𝑙 ∶ 𝛱𝑟𝜃 = 0. Since no displacement constraints are imposed

on the outer stator boundary, the corresponding natural (Neumann)
boundary conditions are on 𝜕D3 ∶ 𝜎𝑟𝑟 ≈ 𝛱𝑟𝑟 = 0, 𝜎𝑟𝜃 ≈ 𝛱𝑟𝜃 = 0.

Normalization In order to present results in dimensionless form, the
following normalization is adopted using magnetic saturation,

𝑎𝑟𝑒𝑓 = 𝑅2𝜇0𝑚𝑠 , 𝑏𝑟𝑒𝑓 = 𝜇0𝑚𝑠 , ℎ𝑟𝑒𝑓 = 𝑚𝑟𝑒𝑓 = 𝑚𝑠 ,

𝑢𝑟𝑒𝑓 = 𝑅𝑟𝑒𝑓 = 𝑅2 , 𝜎𝑟𝑒𝑓 = 𝜇0𝑚
2
𝑠 .

(5.5)

The results of the FEM calculations for the magnetic constitutive law
of (4.6) and their comparison to the predictions of the analytic model
(magnetic susceptibility 𝜒 = 2500 and magneto-mechanical coupling
coefficient 𝛬 = 0 – see Appendix A), are presented at three different
radial directions: 𝜃 = 0, 𝜋∕8, 𝜋∕4, in Figs. 5 to 8.

More specifically Fig. 5(a) shows the influence of the nonlinear mag-
netic response on the dimensionless magnetic potential 𝐴∕𝑅2𝜇0𝑚𝑠 and
Figs. 5(b) and 5(c) show the corresponding effect on the dimensionless
radial and tangent displacement components, respectively 𝑢𝑟∕𝑅2 and
𝑢𝜃∕𝑅2, as functions of the radial coordinate 𝑟. According to Fig. 5(a),
there is no (discernible) influence of the nonlinear magnetic response
on the potential 𝐴. The maximum difference for the radial displacement
𝑢𝑟 occurs, according to Fig. 5(b) along the radial directions 𝜃 = 0, 𝜋∕4
at the inner boundary of the stator (𝑟2 = 1), but the change from
the linear model predictions is negligible. Similar results are found for
the hoop displacement 𝑢𝜃 in Fig. 5(c) where a (negligible) maximum
difference occurs again at the inner boundary of the stator but along
the direction 𝜃 = 𝜋∕8 (from symmetry 𝑢𝜃 = 0 along 𝜃 = 0, 𝜋∕4).
It should be noted here that for the values selected in Fig. 4(a), the
displacements are at most of order 10−5m. One can thus conclude from
Figs. 5(b) and 5(c) that the influence of nonlinear magnetic effects on
the mechanical response of the stator is negligible, even for magnetic
fields up to saturation level.

The above assertion – of a negligible influence of the nonlinear
magnetic behavior on the stator’s mechanical response – is no longer
valid for its magnetic counterpart, as seen from Fig. 6. The influence
of nonlinear magnetic response on the dimensionless magnetic field
𝑏 ∕𝜇 𝑚 is presented in Fig. 6(a), on the tangential component of
7

𝑟 0 𝑠
the ℎ-field ℎ𝜃∕𝑚𝑠 in Fig. 6(b)16 and on the norm of magnetization
vector ‖𝒎‖∕𝑚𝑠 in Fig. 6(c), as functions of the radial coordinate 𝑟. The
maximum deviations from the linear response occur, as expected, at
the inner boundary of the stator (𝑟2 = 1) where the magnetic field is
the highest. Unlike the radial component of the magnetic field 𝑏𝑟 that
is unaffected by the nonlinear magnetic behavior – as evidenced by
Fig. 6(a) – the tangential component ℎ𝜃 and the magnetization norm
‖𝒎‖ are influenced by it as seen from Figs. 6(b) and 6(c). In partic-
ular notice from Fig. 6(c) that the linear magnetic model (constant
magnetic susceptibility 𝜒) consistently overestimates/underestimates
the magnetization at the inner/outer boundary of the stator, with the
nonlinear magnetic model resulting in a more uniform distribution due
to saturation.

The influence of nonlinear magnetic response on the dimensionless
total stress field components is presented in Fig. 7. More specifically,
Fig. 7(a) shows the magnetically nonlinear (FEM) and linear (analyt-
ical) results for the dimensionless normal stress 𝜎𝑟𝑟∕𝜇0𝑚2

𝑠 , Fig. 7(b)
shows the results for the dimensionless shear stress 𝜎𝑟𝜃∕𝜇0𝑚2

𝑠 and
Fig. 7(c) shows the results for the dimensionless hoop stress 𝜎𝜃𝜃∕𝜇0𝑚2

𝑠 ,
as functions of the radial coordinate 𝑟. If one disregards the numerical
noise of the shear stress 𝜎𝑟𝜃 in the boundary 𝜃 = 0,17 the nonlinearity of
the magnetic response has negligible influence on the total stress field.

The non-zero total stress (Maxwell stress) in the airgap regions is
properly accounted for. Notice in Figs. 7(a) and 7(b) the continuity of
normal 𝜎𝑟𝑟 and hoop 𝜎𝑟𝜃 total stress components at the airgap-stator
interface, as expected from the current configuration version of the
boundary condition (3.9)2 and the absence of an externally applied
mechanical surface traction there (𝑻 = 𝟎).

Finally of interest is the influence of nonlinear magnetic response on
the strain field, which is presented in Fig. 8. More specifically, Fig. 8(a)
shows the magnetically nonlinear (FEM) and linear (analytical) results
for the normal strain 𝜖𝑟𝑟, Fig. 8(b) shows the results for the shear strain
𝜖𝑟𝜃 and Fig. 8(c) shows the results for the hoop strain 𝜖𝜃𝜃 , as functions
of the radial coordinate 𝑟. Interest in the strain field stems from its
direct relation to the mechanical (elastic) stress field

𝑒
𝝈 according to

16 The reason for plotting the components 𝑏𝑟 and ℎ𝜃 of the magnetic field is
to highlight their continuity at the 𝑟2 interface, as expected from the (current
configuration) interface conditions 𝒏⋅ [[𝒃]] = 0 and 𝒏×[[𝒉]] = 𝟎 respectively.

17 From symmetry 𝜎𝑟𝜃 = 0 at 𝜃 = 0 but the shear stress is calculated at the
midpoint of the boundary elements.
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Fig. 6. Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization response) for the cylindrical stator at large values of the
magnetic field ‖𝒃‖ at three different angles. In (a) dimensionless radial component of the magnetic field 𝑏𝑟∕𝜇0𝑚𝑠 vs 𝑟, in (b) dimensionless tangential component of the ℎ-field
ℎ𝜃∕𝑚𝑠 vs 𝑟 and in (c) dimensionless norm of the magnetic field ‖𝒎‖∕𝑚𝑠 vs 𝑟 (dimensionless radius 𝑟 = 𝑅∕𝑅2).

Fig. 7. Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization response) for the cylindrical stator at large values of the
magnetic field ‖𝒃‖ at three different angles. In (a) dimensionless radial stress 𝜎𝑟𝑟∕𝜇0𝑚2

𝑠 vs 𝑟, in (b) dimensionless shear stress 𝜎𝑟𝜃∕𝜇0𝑚2
𝑠 vs 𝑟 and in (c) dimensionless hoop stress

𝜎𝜃𝜃∕𝜇0𝑚2
𝑠 vs 𝑟 (dimensionless radius 𝑟 = 𝑅∕𝑅2).

Fig. 8. Difference between FEM (nonlinear magnetization response) and analytical predictions (linear magnetization response) for the cylindrical stator at large values of the
magnetic field ‖𝒃‖ at three different angles. In (a) radial strain 𝜖𝑟𝑟 vs 𝑟, in (b) shear strain 𝜖𝑟𝜃 vs 𝑟 and in (c) hoop strain 𝜖𝜃𝜃 vs 𝑟 (dimensionless radius 𝑟 = 𝑅∕𝑅2).
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Fig. 9. Realistic geometry stator, mesh and wiring plan; ⊗ denotes currents flowing in, and ⊙ currents flowing out of the plane at a given time (these currents alternate) in (a)
and Table of geometric parameters for the realistic stator boundary value problem.
(4.7). Notice that although the shear 𝜖𝑟𝜃 and hoop 𝜖𝜃𝜃 strain fields are
not influenced by the nonlinear magnetic response, this is not the case
for the radial strain field 𝜖𝑟𝑟, as seen in Fig. 8(a), where the maximum
difference occurs near the stator’s inner boundary where the magnetic
field is the strongest. Moreover, strains of the order of 10−6 correspond
to maximum elastic stresses of the order of a few MPa, well within the
linear elastic range of the steel’s response.

We can conclude that the nonlinear magnetic response of the stator
has a rather small influence in the magnetic fields but practically none
to the displacement, total stress and strain fields; the (analytically
available) linear magnetization model is adequate for the calculation
of the kinematic and mechanical fields.

5.2. Results for a realistic geometry stator

Attention is turned next to the FEM simulations for a realistic (slot-
ted) stator geometry. A four-pole (two pairs) induction machine with
plain ferromagnetic rotor (as in Hanappier et al., 2021) is considered.
The stator geometry is inspired by the benchmark machine of Devillers
et al. (2018a).

Geometry Fig. 9(a) shows the stator geometry, with the stator domain
D3 in dark gray and the airgap domain D2 in green.18 The stator
slots hold the conductor coil windings — blue, light gray and red
domains in Fig. 9(a) – supplying the alternating electric currents pro-
ducing the rotating stator magnetic field that drives the rotor. The
slots are numbered 1, 2,… , 12 circumferentially, starting from 𝜃 = 0.
The unstructured mesh is also displayed in Fig. 9(a) and consists of
88,244 elements with 44,863 nodes and 134,589 d.o.f. Contrary to the
idealized stator problem in Section 5.1, no symmetry conditions can
be used here, requiring the discretization and modeling of the entire
airgap and stator domains. The values of the geometric parameters of
the stator are given in Fig. 9(b).

Materials We use the material parameters of Fig. 4(a). The correspond-
ing magnetization curve is displayed in Fig. 4(b). As explained in
Section 4.3, for the case of the tightly packed conductors (case ii), the
copper domain’s magnetic energy density 𝑊𝑚𝑎𝑔 = 0 (𝜒 = 0) while its

18 D is reserved to the rotor domain (not shown in Fig. 9(a)).
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mechanical energy density 𝑊𝑚𝑒𝑐ℎ is given by (4.5) with 𝐺 = 44×109Pa
and 𝜈 = 0.33.

Loading The stator is supplied by a three-phase alternating current of
amplitude 𝐽0 and cyclic frequency 𝜔. We denote the phases 𝐴,𝐵 and 𝐶
and we have the phase current densities 𝑱𝐴,𝑱𝐵 and 𝑱𝐶 . The distributed
4 pole stator wiring adopted here is detailed in Fig. 9(a) where the
conductors C1,2,…,12 are given the following current densities

C1∪C10 ∶ 𝑱 =𝑱𝐴 ; C4∪C7 ∶ 𝑱 =−𝑱𝐴 ; 𝑱𝐴=𝐽0 cos(𝜔𝑡)𝒆𝑧 ,

C2∪C11 ∶ 𝑱 =𝑱𝐵 ; C5∪C8 ∶ 𝑱 =−𝑱𝐵 ; 𝑱𝐵 =𝐽0 cos(𝜔𝑡+
2𝜋
3
)𝒆𝑧 ,

C3∪C12 ∶ 𝑱 =𝑱𝐶 ; C6∪C9 ∶ 𝑱 =−𝑱𝐶 ; 𝑱𝐶 =𝐽0 cos(𝜔𝑡+
4𝜋
3
)𝒆𝑧 .

(5.6)

Simulations are performed with an input current amplitude 𝐽0 =
36%𝑚𝑠∕𝑅2 ≈ 107𝐴∕𝑚2; this value is chosen so that the numerically
calculated magnetization nowhere exceeds its saturation value, thus
operating within the range of the fitted magnetic response, as shown
in Fig. 4(b). The current density is constant within the corresponding
blue, light gray and red domains depicted in Fig. 9(a).

Magnetic boundary conditions We assume the plain ferromagnetic rotor
D1 has infinite permeability, i.e. D1 ∶ 𝑯 = 𝟎, which matches the
natural (Neumann) boundary condition 𝜕D1 ∶ 𝑵×𝑯 = 𝟎. On the outer
stator boundary, we assume negligible leakage flux, as for the idealized
stator case (see (5.2))

𝜕D3 ∶ 𝐴 = 0 , (5.7)

implying that the radial component of the magnetic field vanishes
(𝜕𝐴∕𝜕𝜃 = 𝐵𝑟 = 𝑵 ⋅𝑩 = 0).

Mechanical boundary conditions Similarly to the idealized rotor case (see
(5.3)), the displacements are constrained to zero on the inner airgap
boundary 𝜕D1.19

𝜕D1 ∶ 𝑢𝑟 = 𝑢𝜃 = 0. (5.8)

Similarly to the idealized stator case in Section 5.1, no constraints are
imposed on the outer stator boundary and hence the corresponding

19 Recall that the airgap has a very small stiffness, as discussed in
Section 4.2.
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Fig. 10. FEM results for the realistic stator with loosely packed conductors (case i). Contours in (a) dimensionless magnetization ‖𝒎‖∕𝑚𝑠, in (b) dimensionless magnetic field
‖𝒃‖∕𝜇0𝑚𝑠 and in (c) dimensionless displacement ‖𝒖‖∕𝑅2. The displacement norm contours are plotted over an exaggerated deformed configuration (magnification factor: 104).
Fig. 11. FEM results for the realistic stator with loosely packed conductors (case i) at large values of the magnetic field ‖𝒃‖. Contours in (a) dimensionless total radial stress
𝜎𝑟𝑟∕𝜇0𝑚2

𝑠 vs 𝑟, in (b) dimensionless total tangential stress 𝜎𝑟𝜃∕𝜇0𝑚2
𝑠 vs 𝑟 and in (c) dimensionless total hoop stress 𝜎𝜃𝜃∕𝜇0𝑚2

𝑠 vs 𝑟.
Fig. 12. FEM results for the realistic stator with loosely packed conductors (case i) at large values of the magnetic field ‖𝒃‖. Contours in (a) radial strain 𝜖𝑟𝑟 vs 𝑟, in (b) shear
strain 𝜖𝑟𝜃 vs 𝑟 and in (c) hoop strain 𝜖𝜃𝜃 vs 𝑟.
natural (Neumann) boundary conditions are on 𝜕D3 ∶ 𝜎𝑟𝑟 ≈ 𝛱𝑟𝑟 =
0, 𝜎𝑟𝜃 ≈ 𝛱𝑟𝜃 = 0.

Normalization In order to present results in dimensionless form, the
same normalization (5.5) as for the cylindrical rotor is adopted.

The results of the FEM calculations for the magnetic constitutive
law of (4.6) and the corresponding material parameters in Fig. 4(a) are
presented in Figs. 10 to 12 for the loosely packed conductors (case i)
and in Figs. 13 to 14 for the tightly packed conductors (case ii).

More specifically, the results of the numerical calculations for the re-
alistic stator with loosely packed conductors (case i) depict the contours
of the dimensionless magnetization ‖𝒎‖∕𝑚𝑠 in Fig. 10(a), the contours
of the dimensionless magnetic field ‖𝒃‖∕𝜇0𝑚𝑠 in Fig. 10(b) and the
contours of the dimensionless displacement ‖𝒖‖∕𝑅 in Fig. 15(a). The
10

2

latter are plotted over an exaggerated deformed configuration (magni-
fication factor: 104). By comparing Figs. 10(a) and 10(b) one notices
that magnetic saturation is reached at the top and bottom parts of the
stator and that the corresponding contours are practically identical,
due to magnetic saturation. The (exaggerated) deformed configuration
is depicted in Fig. 15(a) and reflects the symmetry of the stator and
the applied loading, as seen in Fig. 9(a). As expected the maximum
deformation remains negligible and is of the order of 10−6 m. Notice
that the thinner, cylindrical outer part of the stator deforms more than
its thicker teeth.

Next come the total stress results of the numerical calculations for
the realistic stator with loosely packed conductors (case i). Contours
of the dimensionless radial stress 𝜎 ∕𝜇 𝑚2 are shown in Fig. 11(a), for
𝑟𝑟 0 𝑠
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Fig. 13. FEM results for the realistic stator with tightly packed conductors (case ii) at large values of the magnetic field ‖𝒃‖. Contours in (a) dimensionless total radial stress
𝜎𝑟𝑟∕𝜇0𝑚2

𝑠 vs 𝑟, in (b) dimensionless total tangential stress 𝜎𝑟𝜃∕𝜇0𝑚2
𝑠 vs 𝑟 and in (c) dimensionless total hoop stress 𝜎𝜃𝜃∕𝜇0𝑚2

𝑠 vs 𝑟.
Fig. 14. FEM results for the realistic stator with tightly packed conductors (case ii) at large values of the magnetic field ‖𝒃‖. Contours in (a) radial strain 𝜖𝑟𝑟 vs 𝑟, in (b) shear
strain 𝜖𝑟𝜃 vs 𝑟 and in (c) hoop strain 𝜖𝜃𝜃 vs 𝑟.
Fig. 15. Deformed configuration (×10, 000) of the loosely packed coils in (a) and the tightly packed ones (×50, 000) in (b). Notice the considerably smaller distortion in (b) in
spite of the five times larger magnification than (a).
the dimensionless shear stress 𝜎𝑟𝜃∕𝜇0𝑚2
𝑠 in Fig. 11(b) and for the dimen-

sionless hoop stress 𝜎𝜃𝜃∕𝜇0𝑚2
𝑠 in Fig. 11(c). Stresses are maximized at

the cylindrical part of the stator and at the base of the teeth where the
magnetic field is maximized.

Finally come the strain results of the numerical calculations for
the realistic stator with loosely packed conductors (case i). Contours
of the dimensionless radial strain 𝜖𝑟𝑟 are shown in Fig. 12(a), for the
dimensionless shear strain 𝜖 in Fig. 12(b) and for the dimensionless
11

𝑟𝜃
hoop strain 𝜖𝜃𝜃 in Fig. 12(c). Strains are maximized at the cylindrical
part of the stator and at the base of the teeth where the magnetic field is
maximized. Notice however that even at their highest values they never
exceed 10−5, thus establishing that the stator’s mechanical response is
well within its linear elastic regime.

Results of the numerical calculations for the realistic stator with
tightly packed conductors (case ii) are presented next, starting with
the components of the total stress field in Fig. 13. For its mechanical
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response the stator appears as a bimetallic cylinder (gaps between teeth
filled with copper and bonded to steel) thus significantly stiffening
it compared to case (i). Contours of the dimensionless radial stress
𝜎𝑟𝑟∕𝜇0𝑚2

𝑠 are shown in Fig. 13(a), for the dimensionless shear stress
𝑟𝜃∕𝜇0𝑚2

𝑠 in Fig. 13(b) and for the dimensionless hoop stress 𝜎𝜃𝜃∕𝜇0𝑚2
𝑠

n Fig. 13(c). Stresses are maximized at the cylindrical part of the stator
nd at the base of the teeth where the magnetic field is maximized. As
result, maximum stresses reached for the tightly packed conductors in
ig. 13 are significantly lower with respect to the corresponding stresses
n the loosely packed case in Fig. 11.

Lastly come the strain results of the numerical calculations for
he realistic stator with tightly packed conductors (case ii) with the
omponents of the strain field presented in Fig. 14. Contours of the
imensionless radial strain 𝜖𝑟𝑟 are shown in Fig. 14(a), for the dimen-
ionless shear strain 𝜖𝑟𝜃 in Fig. 14(b) and for the dimensionless hoop
train 𝜖𝜃𝜃 in Fig. 14(c). Strains are maximized at the cylindrical part
f the stator and at the base of the teeth where the magnetic field is
aximized. As a result of the stiffening response of the coils, maximum

trains reached for the tightly packed conductors in Fig. 14 are lower
ith respect to the corresponding strains in the loosely packed case in
ig. 12.

Finally a comparison between the (exaggerated) deformed config-
rations of the stator in cases (i) and (ii) are presented in Fig. 15,
howing not only an almost lower order of magnitude displacements
n the stiffer case (ii) but a different overall deformation pattern than
he softer stator of case (i) as well, as observed by comparing Fig. 15(a)
o Fig. 15(b).

. Conclusion

The increasing importance of environmental constraints in the
ransportation industry requires novel electric motor designs to meet
echnological challenges of cost, weight and efficiency. Modeling of
lectric motors has in the past been predominantly focussed on calcu-
ating magnetic fields and torque. Given the increased rotation speeds,
urrents and electromagnetic field levels, mechanical field (stress and
train) calculations are gaining importance for producing optimized
otor designs. To this end, the authors proposed in Hanappier et al.

2021) a thermodynamically consistent framework – based on the
irect (current configuration) approach of continuum mechanics – for
he concurrent calculation of mechanical and electromagnetic fields
n electric motors, accompanied by analytical examples of idealized
lectric motor problems (Hanappier et al., 2021, 2022).

Due to the complex geometry of a typical electric motor, numerical
olutions of the coupled magneto-mechanical governing equations are
equired. To this end, a Lagrangian (reference configuration) varia-
ional principle is proposed for the eddy current approximation that
roperly retrieves the Maxwell stresses and is consistent with its direct
pproach counterpart. An FEM discretization method based on this
ariational principle is subsequently proposed for the simultaneous
olution of the magnetic (Maxwell–Ampère’s) and mechanical (New-
on’s) governing equations. The method is first applied to a cylindrical
tator, where an analytical solution can be found for the linear elastic
nd magnetization regimes, thus providing firstly an independent code
erification and subsequently an assessment of the influence of the
tator’s nonlinear magnetic response. The approach is subsequently
sed to tackle a realistic geometry stator with two pole pairs under
three-phase current for two different cases: loosely or tightly packed

onducting wires to calculate the corresponding magnetic and stress
ields. The results of our calculations show the influence of magnetic
aturation effects as well of the current conducting coils on the stress,
train and magnetic fields.

The novelty – and advantage of the proposed variational approach
lies first in the concurrent solution of the magnetic and mechanical

overning equations without the need of stepwise methods and then
12

n the simplicity of the FEM discretization scheme since no special
lements are needed, just considering magnetic potential and displace-
ent variables as the nodal d.o.f. Although the application presented
ertains to a stator, the proposed methodology can be generalized to
he calculation of a complete motor with rotating parts and a more
omplicated, coupled magneto-mechanical constitutive response.
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ppendix A. Analytical solution of cylindrical stator

The analytical solution for the idealized (cylindrical) motor problem
stator, airgap and rotor – is presented in detail (and in the more

eneral setting of 𝛬 ≠ 0) in Hanappier et al. (2022). A brief summary
f the results for the stator are given here for completeness of the
resentation, obtained in the linear small strain, small magnetization
egime and hence expressed in the current configuration, i.e. 𝑨 ≈
, 𝑩 ≈ 𝒃, 𝑯 ≈ 𝒉, 𝜫 ≈ 𝝈.

The equations to be solved are respectively: Maxwell–Ampère (no
distributed currents) in the airgap and the stator20

𝒙 ∈ D2 ∪ D3 ∶ 𝛁2𝑎 = 0 ; 𝒃 = 𝛁×𝒂 = 1
𝑟
𝜕𝑎
𝜕𝜃

𝒆𝑟 −
𝜕𝑎
𝜕𝑟

𝒆𝜃 , (A.1)

nd the linear momentum balance in the stator21:

𝒙 ∈ D3 ∶ 𝛁 ⋅ 𝝈 = 0 ; 𝝈 =
𝑒
𝝈 +

𝑚
𝝈 ;

𝑒
𝝈 ≡ 2𝐺

[

𝝐 + 𝜈
1 − 2𝜈

tr(𝝐)𝑰
]

,

𝑚
𝝈 ≡ 1

𝜇0(1 + 𝜒)

[

𝒃𝒃 −
1 − 𝜒
2

(𝒃⋅𝒃)𝑰
]

.
(A.2)

t should be added here that for the airgap domain, the equilibrium
quation becomes 𝛁 ⋅

𝑚
𝝈 = 0 where the magnetic stress

𝑚
𝝈 is the Maxwell

tress of the vacuum 𝝈𝑀𝑎𝑥𝑤 = 𝜇−10 [𝒃𝒃 − 0.5(𝒃 ⋅ 𝒃)𝑰] (for the air 𝜒 = 0).
The following dimensionless variables and parameters are intro-

uced in Hanappier et al. (2022)
𝑟
𝑅2

→ 𝑟 , 𝑎
𝑅1𝐵0
𝑝

→ 𝑎 , 𝒖
𝑝2𝑎20

2𝜇0𝑅2𝐺

→ 𝒖 , 𝝈
𝑝2𝑎20

2𝜇0𝑅2𝐺

→ 𝝈 ,

𝑟1 ≡
𝑅1
𝑅2

, 𝑟3 ≡
𝑅3
𝑅2

,

(A.3)

with the dimensionless variables and field quantities of the problem,
𝑟, 𝑎, 𝒖, 𝝈 henceforth denoted by the same symbol as their dimensioned
counterparts.

20 Boundary conditions are discussed in Section 5.1.
21 See footnote A.
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The solution for the dimensionless magnetic potential 𝒂 is,

𝒙 ∈ D2 ∶ 𝑎2(𝑟, 𝜃, 𝑡) = 𝐴2(𝑟) cos𝛩 ; 𝐴2(𝑟) ≡ 𝐷𝑟𝑝 + 𝐸𝑟−𝑝 , 𝛩 ≡ 𝑝𝜃 − 𝜔𝑡 ,

𝒙 ∈ D3 ∶ 𝑎3(𝑟, 𝜃, 𝑡) = 𝐴3(𝑟) cos𝛩 ; 𝐴3(𝑟) ≡ 𝐹𝑟𝑝 + 𝐺𝑟−𝑝 ,

𝐷 ≡
[

𝜒𝑟𝑝3−(2 + 𝜒)𝑟
−𝑝
3

]

𝜒(𝑟𝑝3−𝑟
−𝑝
3 )(𝑟𝑝1 + 𝑟

−𝑝
1 )+2(𝑟𝑝3𝑟

−𝑝
1 −𝑟−𝑝3 𝑟

𝑝
1)
,

𝐸 ≡
[

(2 + 𝜒)𝑟𝑝3 − 𝜒𝑟
−𝑝
3

]

𝜒(𝑟𝑝3−𝑟
−𝑝
3 )(𝑟𝑝1+𝑟

−𝑝
1 )+2(𝑟𝑝3𝑟

−𝑝
1 −𝑟−𝑝3 𝑟

𝑝
1)
,

𝐹 ≡
−2(1 + 𝜒)𝑟−𝑝3

𝜒(𝑟𝑝3−𝑟
−𝑝
3 )(𝑟𝑝1+𝑟

−𝑝
1 )+2(𝑟𝑝3𝑟

−𝑝
1 −𝑟−𝑝3 𝑟

𝑝
1)
,

𝐺 ≡
2(1 + 𝜒)𝑟𝑝3

𝜒(𝑟𝑝3−𝑟
−𝑝
3 )(𝑟𝑝1+𝑟

−𝑝
1 )+2(𝑟𝑝3𝑟

−𝑝
1 −𝑟−𝑝3 𝑟

𝑝
1)
,

(A.4)

and the components of the magnetic field can be calculated with the
help of (A.1)2.

At the stator D3, the components of the elastic stress field
𝑒
𝝈 in (A.2)3

are obtained in terms the Airy stress function 𝜙

𝑒
𝜎𝑟𝑟 =

1
𝑟
𝜕𝜙
𝜕𝑟

+ 1
𝑟2
𝜕2𝜙
𝜕𝜃2

+𝑉 ,
𝑒
𝜎𝜃𝜃 =

𝜕2𝜙
𝜕𝑟2

+𝑉 ,
𝑒
𝜎𝑟𝜃 = − 𝜕

𝜕𝑟

(

1
𝑟
𝜕𝜙
𝜕𝜃

)

. (A.5)

The Airy stress function 𝜙 consists of a homogeneous part 𝜙ℎ and a
particular part 𝜙𝑉

𝜙 = 𝜙ℎ + 𝜙𝑉 ,

𝜙ℎ(𝑟, 𝜃, 𝑡) = 𝛷01𝑟2 +𝛷02𝑟2 ln(𝑟) +𝛷03 ln(𝑟) +𝛷04𝜃

+
(

𝛷𝑐1𝑟−2𝑝+2 +𝛷𝑐2𝑟2𝑝 +𝛷𝑐3𝑟−2𝑝 +𝛷𝑐4𝑟2𝑝+2
)

cos(2𝛩)

+
(

𝛷𝑠1𝑟−2𝑝+2 +𝛷𝑠2𝑟2𝑝 +𝛷𝑠3𝑟−2𝑝 +𝛷𝑠4𝑟2𝑝+2
)

sin(2𝛩) ,

𝜙
𝑉
(𝑟, 𝜃, 𝑡) = −1 − 2𝜈

1 − 𝜈

(

∫

𝑟

0

1
𝑟 ∫

𝑟

0
𝑉0𝑟d𝑟 d𝑟 +

[

𝑟2𝑝

4𝑝 ∫

𝑟

0
𝑉𝑐𝑟

−2𝑝+1d𝑟

− 𝑟−2𝑝

4𝑝 ∫

𝑟

0
𝑉𝑐𝑟

2𝑝+1d𝑟
]

cos(2𝛩)
)

.

𝑉0(𝑟) = −
𝑠𝑚
2

[

𝑝2

𝑟2
𝐴2
3 +

(

𝑑𝐴3
𝑑𝑟

)2
]

,

𝑉𝑐 (𝑟) = −
𝑠𝑚
2

[

−
𝑝2

𝑟2
𝐴2
3 +

(

𝑑𝐴3
𝑑𝑟

)2
]

; 𝑠𝑚 = 1
2

𝜒
1 + 𝜒

.

(A.6)

The constants 𝛷01, 𝛷02, 𝛷03, 𝛷04, 𝛷𝑐1, 𝛷𝑐2, 𝛷𝑐3, 𝛷𝑐4, 𝛷𝑠1, 𝛷𝑠2, 𝛷𝑠3, 𝛷𝑠4 are
evaluated numerically by application of the boundary condition for
stress on 𝜕D2 and 𝜕D3.

Strains 𝝐 are obtained by inverting the constitutive law in (A.2)3
and the displacement field follows from the classical kinematic (strain–
displacement) relationship of linear elasticity in polar coordinates.

Appendix B. Element force vector and stiffness matrix

For meshing flexibility purposes, the simplest FEM discretization
method is used here, based on constant strain triangular 2D elements
(one integration point at the element centroid) as depicted in Fig. B.1.
The corresponding degrees of freedom for the element [𝒒𝑒] are22

[𝒒𝑒] = { 𝑢(1)1 , 𝑢(1)2 , 𝐴(1), 𝑢(2)1 , 𝑢(2)2 , 𝐴(2), 𝑢(3)1 , 𝑢(3)2 , 𝐴(3) }𝑇 , (B.1)

where indices (1), (2), (3) refer to the nodes of the element as depicted in
Fig. B.1. The vector of unknown fields [𝒒(𝑿)] in an element are found

22 Standard matrix algebra notation is used here where vectors and matrices
are denoted by bold symbols in brackets.
13
Fig. B.1. Constant strain triangular elements used for the FEM discretization.

in terms of the nodal variables 𝒒𝑒 and the shape functions 𝑁𝑖(𝑿), 1 ≤
𝑖 ≤ 3, where 𝑿 = (𝑋1, 𝑋2)

[𝒒(𝑿)] = {𝑢1(𝑿), 𝑢2(𝑿), 𝐴(𝑿)}𝑇 = [𝑵(𝑿)][𝒒𝑒] , (B.2)

where the shape function matrix [𝑵(𝑿)] is given by

[𝑵(𝑿)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁1(𝑿) 0 0 𝑁2(𝑿) 0 0 𝑁3(𝑿) 0 0

0 𝑁1(𝑿) 0 0 𝑁2(𝑿) 0 0 𝑁3(𝑿) 0

0 0 𝑁1(𝑿) 0 0 𝑁2(𝑿) 0 0 𝑁3(𝑿)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑁1(𝑋1, 𝑋2) =
1

2𝐴𝑒

[

𝑋(2)
1 𝑋(3)

2 −𝑋(3)
1 𝑋(2)

2 + (𝑋(2)
2 −𝑋(3)

2 )𝑋1 − (𝑋(2)
1 −𝑋(3)

1 )𝑋2

]

,

𝑁2(𝑋1, 𝑋2) =
1

2𝐴𝑒

[

𝑋(3)
1 𝑋(1)

2 −𝑋(1)
1 𝑋(3)

2 + (𝑋(3)
2 −𝑋(1)

2 )𝑋1 − (𝑋(3)
1 −𝑋(1)

1 )𝑋2

]

,

𝑁3(𝑋1, 𝑋2) =
1

2𝐴𝑒

[

𝑋(1)
1 𝑋(2)

2 −𝑋(2)
1 𝑋(1)

2 + (𝑋(1)
2 −𝑋(2)

2 )𝑋1 − (𝑋(1)
1 −𝑋(2)

1 )𝑋2

]

,

(B.3)

where 𝐴𝑒 is the surface of the element.

The load vector for the element [𝒇 𝑒] is obtained by the first variation
of the potential energy P in (4.1)

[𝒇 𝑒]𝑇 [𝛿𝒒𝑒] = ∫𝐴𝑒

[

𝜕p
𝜕𝐹𝛼𝛽

𝛿𝐹𝛼𝛽 +
𝜕p
𝜕𝐵𝜖

𝛿𝐵𝜖 −J𝛿𝐴
]

d𝐴𝑒 , (B.4)

where p is the system’s energy density. The element stiffness matrix [𝒌𝑒]
is similarly obtained from the second variation of the potential energy
P in (4.1)

[𝛥𝒒𝑒]𝑇 [𝒌𝑒][𝛿𝒒𝑒] = ∫𝐴𝑒

[

𝜕2p
𝜕𝐹𝛼𝛽𝜕𝐹𝛿𝛾

𝛿𝐹𝛼𝛽𝛥𝐹𝛿𝛾 +
𝜕2p

𝜕𝐵𝜖𝜕𝐹𝛿𝛾
𝛿𝐵𝜖𝛥𝐹𝛿𝛾

+
𝜕2p

𝜕𝐹𝛼𝛽𝜕𝐵𝜁
𝛿𝐹𝛼𝛽𝛥𝐵𝜁 +

𝜕2p
𝜕𝐵𝜖𝜕𝐵𝜁

𝛿𝐵𝜖𝛥𝐵𝜁

]

d𝐴𝑒.

(B.5)

The calculation of the integrals in (B.4) and (B.5) requires the
auxiliary step of evaluating the potential field 𝐴 (at the element
centroid), its (constant) derivatives (components of the magnetic field
𝐵 = −𝜕𝐴∕𝜕𝑋 and 𝐵 = 𝜕𝐴∕𝜕𝑋 ) and the (constant) derivatives of the
1 2 2 1
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s

[

displacement field 𝒖
{

𝜕𝑢1
𝜕𝑋1

,
𝜕𝑢1
𝜕𝑋2

,
𝜕𝑢2
𝜕𝑋1

,
𝜕𝑢2
𝜕𝑋2

, 𝐴, 𝐵1, 𝐵2

}𝑇
= [𝑮][𝒒𝑒] ,

[𝑮] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁1
𝜕𝑋1

0 0
𝜕𝑁2
𝜕𝑋1

0 0
𝜕𝑁3
𝜕𝑋1

0 0

𝜕𝑁1
𝜕𝑋2

0 0
𝜕𝑁2
𝜕𝑋2

0 0
𝜕𝑁3
𝜕𝑋2

0 0

0
𝜕𝑁1
𝜕𝑋1

0 0
𝜕𝑁2
𝜕𝑋1

0 0
𝜕𝑁3
𝜕𝑋1

0

0
𝜕𝑁1
𝜕𝑋2

0 0
𝜕𝑁2
𝜕𝑋2

0 0
𝜕𝑁3
𝜕𝑋2

0

0 0 𝑁𝑐
1 0 0 𝑁𝑐

2 0 0 𝑁𝑐
3

0 0
𝜕𝑁1
𝜕𝑋2

0 0
𝜕𝑁2
𝜕𝑋2

0 0
𝜕𝑁3
𝜕𝑋2

0 0 −
𝜕𝑁1
𝜕𝑋1

0 0 −
𝜕𝑁2
𝜕𝑋1

0 0 −
𝜕𝑁3
𝜕𝑋1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(B.6)

where by 𝑁𝑐
𝑖 we denote evaluation of the shape function at the centroid

of the element.
The force vector [𝒇 𝑒] for the element is thus found from (B.4) in

terms of the first derivatives vector [𝒇⋆]

[𝒇 𝑒] = 𝐴𝑒[𝑮]𝑇 [𝒇⋆] ;

[𝒇⋆] =
{

𝜕p
𝜕𝐹11

,
𝜕p
𝜕𝐹12

,
𝜕p
𝜕𝐹21

,
𝜕p
𝜕𝐹22

, −J,
𝜕p
𝜕𝐵1

,
𝜕p
𝜕𝐵2

}𝑇
.

(B.7)

The element stiffness matrix [𝒌𝑒] is found from (B.4) in terms of the
econd derivatives matrix [𝒌⋆]

[𝒌𝑒] = 𝐴𝑒[𝑮]𝑇 [𝒌⋆][𝑮] ; (B.8)

𝒌⋆
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2p
𝜕𝐹11𝜕𝐹11

𝜕2p
𝜕𝐹11𝜕𝐹12

𝜕2p
𝜕𝐹11𝜕𝐹21

𝜕2p
𝜕𝐹11𝜕𝐹22

0
𝜕2p

𝜕𝐹11𝜕𝐵1

𝜕2p
𝜕𝐹11𝜕𝐵2

𝜕2p
𝜕𝐹12𝜕𝐹11

𝜕2p
𝜕𝐹12𝜕𝐹12

𝜕2p
𝜕𝐹12𝜕𝐹21

𝜕2p
𝜕𝐹12𝜕𝐹22

0
𝜕2p

𝜕𝐹12𝜕𝐵1

𝜕2p
𝜕𝐹12𝜕𝐵2

𝜕2p
𝜕𝐹21𝜕𝐹11

𝜕2p
𝜕𝐹21𝜕𝐹12

𝜕2p
𝜕𝐹21𝜕𝐹21

𝜕2p
𝜕𝐹21𝜕𝐹22

0
𝜕2p

𝜕𝐹21𝜕𝐵1

𝜕2p
𝜕𝐹21𝜕𝐵2

𝜕2p
𝜕𝐹22𝜕𝐹11

𝜕2p
𝜕𝐹22𝜕𝐹12

𝜕2p
𝜕𝐹22𝜕𝐹21

𝜕2p
𝜕𝐹22𝜕𝐹22

0
𝜕2p

𝜕𝐹22𝜕𝐵1

𝜕2p
𝜕𝐹22𝜕𝐵2

0 0 0 0 0 0 0

𝜕2p
𝜕𝐵1𝜕𝐹11

𝜕2p
𝜕𝐵1𝜕𝐹12

𝜕2p
𝜕𝐵1𝜕𝐹21

𝜕2p
𝜕𝐵1𝜕𝐹22

0
𝜕2p

𝜕𝐵1𝜕𝐵1

𝜕2p
𝜕𝐵1𝜕𝐵2

𝜕2p
𝜕𝐵2𝜕𝐹11

𝜕2p
𝜕𝐵2𝜕𝐹12

𝜕2p
𝜕𝐵2𝜕𝐹21

𝜕2p
𝜕𝐵2𝜕𝐹22

0
𝜕2p

𝜕𝐵2𝜕𝐵1

𝜕2p
𝜕𝐵2𝜕𝐵2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The numerical implementation is based on software Abaqus via a
user element, which provides the element force vector [𝒇 𝑒] and the
element stiffness matrix [𝒌𝑒], given respectively by (B.7) and (B.8).
Following the assembly of the global force vector and stiffness ma-
trix from its element counterparts, the algorithm solves the resulting
FEM-discretized nonlinear system using a Newton–Raphson algorithm.
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