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Scaling laws for step bunching on vicinal surfaces: Role of the dynamical and chemical effects

L. Benoit–Maréchal ,1,2 M. E. Jabbour,1,3 and N. Triantafyllidis 1,3,4

1LMS, École polytechnique, CNRS, Institut polytechnique de Paris, 91128 Palaiseau, France
2LPICM, École polytechnique, CNRS, Institut polytechnique de Paris, 91128 Palaiseau, France

3Département de Mécanique, École polytechnique, 91128 Palaiseau, France
4Aerospace Engineering Department & Mechanical Engineering Department (emeritus),

The University of Michigan, Ann Arbor, Michigan 48109-2140, USA

(Received 29 April 2021; accepted 7 September 2021; published 28 September 2021)

We study the evolution of step bunches on vicinal surfaces using a thermodynamically consistent step-flow
model. By accounting for the dynamics of adatom diffusion on terraces and attachment-detachment at steps
(referred to collectively as the dynamical effect), this model circumvents the quasistatic approximation that
prevails in the literature. Furthermore, it generalizes the expression of the step chemical potential by incor-
porating the necessary coupling between the diffusion fields on adjacent terraces (referred to as the chemical
effect). Having previously shown that these dynamical and chemical effects can explain the onset of step
bunching without recourse to the inverse Ehrlich-Schwoebel (iES) barrier or other extraneous mechanisms,
we are here interested in the evolution of step bunches beyond the linear-stability regime. In particular, the
numerical resolution of the step-flow free boundary problem yields a robust power-law coarsening of the surface
profile, with the bunch height growing in time as H ∼ t1/2 and the minimal interstep distance as a function of
the number of steps in the bunch cell obeying �min ∼ N−2/3. Although these exponents have previously been
reported, the novelty of the present approach is that these scaling laws are obtained in the absence of an iES
barrier or adatom electromigration. In order to validate our simulations, we take the continuum limit of the
discrete step-flow system via Taylor expansions with respect to the terrace size, leading to a novel nonlinear
evolution equation for the surface height. We investigate the existence of self-similar solutions of this equation
and confirm the 1/2 coarsening exponent obtained numerically for H . We highlight the influence of the combined
dynamical-chemical effect and show that it can be interpreted as an effective iES barrier in the setting of the
standard Burton-Cabrera-Frank theory. Finally, we use a Padé approximant to derive an analytical expression for
the velocity of steadily moving step bunches and compare it to numerical simulations.

DOI: 10.1103/PhysRevE.104.034802

I. INTRODUCTION

Step bunching is a morphological instability on vici-
nal surfaces whereby straight atomic steps deviate from an
equidistant configuration and coalesce, resulting in an alter-
nating pattern of step bunches and wide flat terraces. The
study of the characteristic length scales of these patterns
which coarsen in time is fundamental to our understanding of
the microscopic mechanisms governing crystal growth in the
step-flow regime, thus paving the way for such applications as
the nanopatterning of semiconductor surfaces [1,2].

Several mechanisms have been proposed to explain the
observed bunching of steps on various semiconductor and
metallic surfaces. They include the inverse Ehrlich-Schwoebel
(iES) barrier, i.e., the preferential attachment of terrace
adatoms to descending steps [3]; the anisotropy of adatom
diffusion on the terraces of reconstructed surfaces [4]; adatom
electromigration when the substrate is heated by an electric
current [5,6]; the presence of impurities, real or effective, that
hinder step motion [7]; chemical reactions between different
species during growth of multicomponent crystals, resulting
in an effective iES barrier [8]; and edge diffusion [9,10].

Recently, Guin et al. [11] revisited the bunching instability
by means of a step-flow model derived from the thermo-
dynamics of nonequilibrium processes [12]. By accounting
for the dynamics of both adatom diffusion on terraces and
their attachment to and detachment from steps (collectively
referred to as the dynamical effect), this model goes beyond
the quasistatic approximation that prevails in the literature on
step instabilities. Furthermore, in this model the expression of
the step chemical potential generalizes the one found in the
literature by accounting for the necessary contribution of the
adjacent terraces in the form of a jump in the adatom grand
canonical potential. The resulting coupling between the diffu-
sion fields on adjacent terraces is referred to as the chemical
effect. Importantly, these dynamical and chemical effects are
unaccounted for in the stability analyses that take the standard
Burton-Cabrera-Frank (BCF) theory as their starting point.
However, there is no a priori justification for the neglect of
these effects. Indeed, as shown in [11,13], their combination
significantly alters the stability analysis of step dynamics,
even in the low-deposition regime where the quasistatic ap-
proximation is assumed to hold, and can quantitatively explain
the onset of step bunching on such surfaces as Si(111), where
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FIG. 1. One-dimensional schematic of successive straight atomic
steps, depicting the microscopic mechanisms that govern step-flow
growth.

uncertainty remains about the existence of an iES barrier
[14–17], and GaAs(001), where a direct ES barrier is believed
to exist [18–20].

In this work we aim to investigate step bunching beyond
the linear-stability regime. Specifically, we derive scaling
relations for the evolution of step bunches induced by the
combined dynamical and chemical effects, and show that they
suffice to reproduce the coarsening behavior observed exper-
imentally [21], circumventing the need for the controversial
iES barrier. The remainder of the article proceeds as follows.
In Sec. II we summarize the thermodynamically consistent
step-flow model that serves as our starting point, highlighting
the terms that are unaccounted for in the standard BCF theory.
Section III is devoted to the scaling laws for the coarsening
process obtained from numerical simulations of step flow. The
continuum limit, whereby a continuous function is used to
describe the surface height, is derived in Sec. IV via Taylor
expansions with respect to the terrace size. Although the non-
linear evolution equation that governs the surface height has
a similar structure to that derived elsewhere, its coefficients
are modified by the inclusion of the dynamical and chemical
effects, allowing for the bunching instability to develop even
in the presence of a direct ES barrier. In Sec. V the exponents
that enter the scaling laws are extracted analytically and found
to be in agreement with our numerical estimates. Finally, an
analytical expression for the velocity of steadily moving step
bunches is derived using a Padé approximant of the continuum
limit, and compared with simulation results of the discrete
step-flow equations.

II. MODEL

A. Generalized BCF free-boundary problem

Our starting point is a thermodynamically consistent gen-
eralization of the BCF model that circumvents the quasistatic
approximation which prevails in the literature on step dynam-
ics and includes terms that are unaccounted for in the step
boundary conditions of the standard model, with important
implications on the stability of the vicinal surface with respect
to bunching [11,13].

In the present one-dimensional setting, straight steps are
represented by their positions {xn(t )}n∈N∗ along the x axis
(Fig. 1). Let �n(x, t ) and jn(x, t ) be the adatom density and
diffusive flux on the nth terrace [xn(t ), xn+1(t )], and denote
by rn(x, t ) the adsorption-desorption flux on the same terrace.
Mass balance has the form ∂t�n =−∂xjn+rn. Let μn(x, t ) be
the adatom chemical potential on the nth terrace and denote

by μv the chemical potential in the vapor on top of the vicinal
surface. Assuming the constitutive relations jn =−�nM∂xμn

and rn = −σ (μn−μv ), with M >0 the adatom mobility and
σ >0 the adsorption-desorption coefficient, mass balance on
the nth terrace takes the form

∂t�n = −∂x(�nM∂xμn) − σ (μn − μv ). (1)

Given a field ϕn(x, t ) defined on the nth terrace, let ϕ+
n (t )=

ϕn[xn(t ), t] be its limiting value at the nth step. As the nth
step is approached from the nth terrace, mass balance yields
the condition �+

n ẋn−j+
n =J+

n , where the superimposed dot de-
notes differentiation with respect to time and J+

n (t ) is the flux
of adatoms from the nth terrace to the nth step. Assuming the
constitutive relation J+

n =γ+(μ+
n −μs

n), with μs
n the chemical

potential of the nth step and γ+ >0 the attachment-detachment
coefficient to a step from its lower terrace, we get

�+
n [ẋn + M(∂xμn)+] = γ+

(
μ+

n − μs
n

)
. (2)

Similarly, let ϕ−
n (t )=ϕn[xn+1(t ), t] be the limiting value of

ϕn at the (n+1)th step. Approaching the (n+1)th step from
the nth terrace, mass balance yields the condition −�−

n ẋn+1+
j−

n =J−
n+1, with J−

n+1 =γ−(μ−
n+1−μs

n) the flux of adatoms to
the (n+1)th step from its upper terrace and γ− the correspond-
ing attachment-detachment coefficient. Thus,

−�−
n [ẋn+1 + M(∂xμn)−] = γ−

(
μ−

n − μs
n+1

)
. (3)

We refer to the transient term ∂t�n in (1) and the advective
terms �+

n ẋn and �−
n ẋn+1 in (2) and (3) collectively as the

dynamical effect, in contrast to the quasistatic approximation
(in which these terms are absent) that prevails in the literature
on step dynamics [3,22,23].

Let a and ψc be the lattice parameter and free-energy den-
sity of the undeformed crystal, and denote by ωn =ψn−μn�n

the grand canonical potential of adatoms on the nth terrace,
with ψn the corresponding Helmholtz free-energy density. The
step chemical potential satisfies the relation

μs
n = μc − a2([[ω]]n + fn + bẋn), (4)

where μc =a2ψc is the free energy per atom in the bulk,
[[ω]]n =ω+

n −ω−
n−1 is the jump of ω across the nth step, b is the

step kinetic coefficient, and fn is the contribution to the driving
force at the nth step of the elastic fields generated by the other
steps on the vicinal surface. For homoepitaxial growth, fn can
be approximated by

fn = −α
∑
i∈N∗

{
(xn+i − xn)−3 − (xn − xn−i )

−3
}
, (5)

where α depends on the Young modulus and Poisson’s ratio of
the crystal, and the strength of the dipole-dipole interactions
between steps [24,25]. In two space dimensions, an additional
term −ψ̃ s

nKn appears on the right side of (4), with Kn the
curvature of the nth step and ψ̃ s

n its stiffness [12,23]. Hence,
even in the present one-dimensional setting, we refer to (4)
as the generalized Gibbs-Thomson relation. It states that the
chemical potential of the nth step differs from its bulk counter-
part μc, and that the difference consists of three contributions:
one, −a2[[ω]]n, from the adatoms on the adjacent terraces;
another, a2fn, from the elastic bulk; and a third, a2bẋn, akin to
kinetic undercooling in solidification problems [26]. Hereafter

034802-2



SCALING LAWS FOR STEP BUNCHING ON VICINAL … PHYSICAL REVIEW E 104, 034802 (2021)

we neglect this last contribution by assuming that the terraces
are in phase equilibrium at the steps, which is tantamount to
taking b=0.

We refer to the terrace contribution as the chemical effect,
since chemical equilibrium between two phases separated by
a thermodynamically structureless interface entails the conti-
nuity of the grand canonical potential. In the present context,
the adjacent terraces can be viewed as distinct phases charac-
terized by different adatom densities and the step separating
them as an interface endowed with a free-energy density and
chemical potential.

At the nth step, mass balance states that the step velocity
is proportional to the intake of adatoms from the adjacent
terraces

ẋn = a2(J+
n + J−

n ), (6)

a relation that bears resemblance to the Stefan condition,
which in the setting of solidification derives from energy
balance.

With the constitutive prescription of the Helmholtz free-
energy density ψn(�n), so that the adatom chemical potential
μn =∂ψn/∂�n and grand canonical potential ωn are given
functions of the adatom density, (1), (2), (3), and (6) form
a free-boundary problem whose unknowns are the adatom
densities {�n}n∈N∗ and step positions {xn}n∈N∗ .

Next, assume that the adatoms behave like an ideal lattice
gas. Let kB be the Boltzmann constant and T the absolute tem-
perature, and denote by D=kBTM the adatom diffusivity. The
adatom balance (1) reduces to a nonlinear reaction-diffusion
equation on the nth terrace

∂t�n = D∂2
xx�n − σ

{
kBT ln

(
�n

�eq

)
+ μc − μv

}
, (7)

where �eq is the equilibrium adatom density defined by
μn(�eq )=μc for a train of equidistant steps at rest. Moreover,
the boundary condition (2) at the nth step now has the form

�+
n ẋn + D(∂x�n)+ = J+

n , (8)

where, denoting κ+ = kBTγ+/�eq, the flux of adatoms from
the nth terrace to the nth step is given by

J+
n = κ+

{
�eq ln

(
�+

n

�eq

)
− a2�eq

(
[[�]]n + fn

kBT

)}
. (9)

Similarly, the boundary condition (3) at the (n+1)th step
can be rewritten as

−�−
n ẋn+1 − D(∂x�n)− = J−

n+1, (10)

where, denoting κ− = kBTγ−/�eq, the flux of adatoms from
the nth terrace into the (n+1)th step reads

J−
n+1 = κ−

{
�eq ln

(
�−

n

�eq

)
− a2�eq

(
[[�]]n+1 + fn+1

kBT

)}
. (11)

Assuming small departures of the adatom density from
its equilibrium value |�n−�eq|/�eq �1, we can linearize the
logarithmic terms in (6), (7), (8), and (10). In particular, (7)
reduces to

∂t�n = D∂2
xx�n + F − ν�n, (12)

where F =σ (μv−μc+kBT) can be viewed as a constant de-
position flux and ν =σkBT/�eq as a desorption rate. In what
follows, we are interested in temperatures that are sufficiently
low for desorption to be negligible.

Let L0 be the initial terrace width and denote by P=
Fa2L0/D the Péclet number. We introduce the dimensionless
variables

t = PDt

L2
0

, x = x

L0
, �n = �n

�eq
, (13)

and by making the change of spatial variable

u = x − xn(t )

xn+1(t ) − xn(t )
, (14)

map the free-boundary problem over the nth terrace onto the
fixed interval [0,1]. Specifically, letting F =FL2

0/�eqD denote
the scaled deposition flux, (12) can be rewritten in dimension-
less form

χaP
{

∂t�n − (ẋn + ṡnu)

sn
∂u�n

}
= 1

s2
n

∂2
uu�n + F, (15)

where sn(t )=xn+1(t )−xn(t ) is the scaled width of the nth
terrace and χa =1 is a parameter introduced to track the
dynamical effect, in the sense that formally setting χa =0
corresponds to the quasistatic approximation.

Let �=a2�eq be the equilibrium adatom coverage, so that
P=F�, and introduce the dimensionless parameters

κ = κ−L0

D
and S = κ+

κ−
, (16)

where κ measures the strength of the step attachment-
detachment kinetics relative to the terrace diffusion kinetics
and S specifies the nature of the ES effect: S >1 corresponds
to the direct ES barrier, S <1 to the iES barrier, and S =1
to symmetric adatom attachment to and detachment from the
steps. We refer to the limit κ �1 as the kinetic-limited regime
and κ �1 as the diffusion-limited regime. Equation (15) is
supplemented by the boundary conditions

χasn�
+
n ẋn + (∂u�n)+ = snJ

+
n (17)

at the nth step and

−χasn�
−
n ẋn+1 − (∂u�n)− = snJ

−
n+1 (18)

at the (n+1)th step. In (17), the dimensionless adatom flux
from the nth terrace to the nth step is given by

J
+
n = κS(�+

n − 1 − χc�[[�]]n + fn), (19)

where, letting α=a2α/(kBTL3
0 ), the scaled elastic contribu-

tion to the driving force at the nth step reads

fn = −α
∑
i∈N∗

{
(xn+i − xn)−3 − (xn − xn−i )

−3
}
, (20)

and in (18) the dimensionless adatom flux from the nth terrace
to the (n+1)th step has the form

J
−
n+1 = κ (�−

n − 1 − χc�[[�]]n+1 + fn+1). (21)

The parameter χc =1 is introduced in (19) and (21) in order to
track the chemical effect, in the sense that by formally setting
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χc =0 (in addition to χa =0) the step conditions (17) and (18)
reduce to those of the standard BCF model [3,22].

Finally, the adatom balance (6) at the nth step can be
rewritten in nondimensional form as

P ẋn = �(J
+
n + J

−
n ). (22)

B. Numerical solution method

Recall that the quasistatic BCF model is recovered by set-
ting χa =χc =0 in (15), (17), (18), and (22). This model can
easily be solved for the adatom densities, yielding a system
of ordinary differential equations (ODE) for the step positions
whose numerical integration is straightforward [27–29]. Since
we are interested in the influence of the dynamical and chem-
ical effects on the onset and evolution of step bunching, this
method is not suitable for our model.

An alternative to the BCF model that includes dynamical
effects is the phase-field approximation, whereby step flow
is governed by a system of two coupled partial differential
equations (PDE) for a global adatom density field and an
order parameter (the phase field). The latter is constant on
the terraces but varies rapidly inside narrow transition regions
around the steps [30,31]. The main feature of the phase-
field model is that it automatically captures such topological
changes as island formation or step coalescence, making
it particularly efficient at predicting the evolution of island
shapes in two space dimensions [32,33]. However, in the
present one-dimensional setting and in the absence of nu-
cleation and coalescence, the phase-field model is not more
advantageous than the direct numerical resolution of the
sharp-interface free boundary problem (15), (17), (18), and
(22). Furthermore, since our objective is to obtain scaling
laws for the coarsening of step bunches, we need to simulate
large numbers of steps in order to mitigate finite-size effects,
whereas phase-field simulations are typically limited to small
numbers of steps [34,35].

Thus, in order to simulate the evolution of a sufficient
number of steps while retaining the transient and advective
terms in the free boundary problem, we use finite elements
to discretize the terraces by the Galerkin method, and solve
for the adatom densities and the step positions concomitantly
(cf. Appendix A for details). For computational efficiency,
the number of elements per terrace is reduced to a minimum.
Convergence tests show that using only one element already
offers a high degree of accuracy. For the same reason, we only
consider the first five terms in (20).

To integrate the resulting ODEs, we rely on an implicit
scheme since the 1/s2

n factor in (15) diverges to infinity when
bunching occurs (sn →0), making the equation extremely
stiff and causing explicit solvers to fail. We use Julia’s im-
plementation of Sundials’ CVODE routine with backward
differentiation formula, which implements a variable step,
variable order, multistep method [36,37]. To improve the
solver efficiency, the analytical expression of the jacobian is
provided and sparse matrices are used.

We impose periodic boundary conditions on the space
domain and initialize the system into two different config-
urations. Under natural bunching conditions, the integration
is initiated from a vicinal surface with 500 steps whose de-

N

H

FIG. 2. Height profile of a surface with 500 steps after deposition
of 3 × 104 monolayers. Same parameters as those of Fig. 3. The
definitions of H and N are given in the text.

viation from their equidistant equilibrium position follows a
uniform distribution in [−0.1, 0.1]. This leads to a surface
profile consisting of many bunches separated by large ter-
races (Fig. 2), which slowly coarsens. Under forced bunching
conditions, a number of steps (from 10 to 200) are initially
placed in close proximity (∀n, sn =0.1 is arbitrarily chosen)
so that, as time progresses, they will relax towards a stable
arrangement, providing the actual quasisteady bunch shape.
For easier comparison with existing results, we only consider
nearest-neighbors elastic interaction in this configuration. The
model parameters are selected to trigger the step bunching
instability, as discussed in [11].

In all the displayed figures, the normalized time t defined
in (13) is used, which represents the number of deposited
monolayers, and distances are normalized by the initial terrace
length L0. An example of the formation and evolution of step
bunches is shown in a spatiotemporal diagram (Fig. 3), where
each line represents a step trajectory. The lines are initially
straight and parallel as the steps propagate at a constant
velocity (obtained from the steady-state solution), until the
instability develops (visible already after 20 monolayers) and
the lines swerve towards each other as steps start to coalesce.

At later times, the bunched structure is clearly visible. Note
that step bunching is a dynamic process: a bunch is not a fixed
entity which contains identifiable steps (as can be the case
under certain electromigration conditions [38–40]), but rather
continually emits and receives steps to and from neighboring
bunches (crossing steps). Moreover, the number of bunches
decreases as they increase in size: this is a direct manifestation
of the coarsening process. Finally, bunches move much slower
than steps, with a seemingly inverse correlation between their
velocity and size.

III. COARSENING BEHAVIOR

Before proceeding with the quantitative analysis of the
coarsening process, we introduce some characteristic param-
eters to describe the bunched surface. A difference is made
between a bunch, which corresponds to the high step-density
region only, and a bunch cell, which comprises a bunch and the
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FIG. 3. Spatiotemporal evolution of a vicinal surface with 500-step periodicity. Each line is a step trajectory. Only 45 steps are shown for
clarity. The chosen parameters are: S = 1, � = 0.02, F = 10−4, κ = 10−2, and α = 10−5.

terraces running to the next bunch. We denote H the height
and W the width of a bunch, �min and �max the narrowest
and widest terrace on the surface, and N the number of steps
in a bunch cell, which corresponds to the distance between
bunches in units of L0, as shown in Fig. 2. Since vicinality
requires the average slope of the surface to remain constant,
H ∼ N .

Among these parameters, we choose to focus on the scaling
of H with t and the scaling of �min with N , as they are the
most reliable indicators and can be easily computed from
theoretical models for comparison. Indeed, monitoring the
evolution of bunches requires the introduction of an arbitrary
threshold on the interstep distance, which determines whether
steps belong to the same bunch or not. While some quantities
(e.g., �min and �max) are independent of any threshold, others
(e.g., H and W ) are sensitive to this choice, especially so
because of the asymmetrical distribution of crossing steps
between bunches. While there is an abrupt change in the
terrace length at the upper edge of the bunch, making the
transition with the low step-density region clear-cut, at the
lower edge, steps gradually depart from the bunch, blurring
this transition zone, as observed in Fig. 2. This asymmetrical
distribution of steps around a bunch is not specific to our
thermodynamically consistent model. It is also observed in the
case of ES-triggered step bunching under evaporation [29],
in the generic model [41] where the step velocity is a linear
combination of the neighboring terrace widths, and in the
cellular automaton-based model [42].

We verify however that the bunch height is only weakly
impacted: as all steps have the same height, the total bunch
height is not dramatically modified by a few additional steps
at the boundaries of the bunch, especially for large bunches.
On the other hand, since terraces further from the bunch center
are much wider than terraces close to it, the same additional
steps have a considerable impact on the total bunch width.
Hence, W is strongly conditioned by the choice of threshold
and cannot serve as a reliable indicator of the coarsening
process in the presence of crossing steps. Lastly, as the dis-
tance between two bunches can be precisely determined as
the distance between their respective sharp upper edges, N is
also a robust quantity.

The typical evolution of H (t ) and �min(N ) are plotted in
Figs. 4 and 5, where steps are considered as bunched when
their distance is smaller than the initial terrace width [43].
It is interesting to comment on the nondimensional physi-

cal parameters of our model. Based on experiments [16,44],
the kinetics of deposition on Si(111) at low temperatures
(less than 900

◦
C) is expected to be kinetic limited (κ � 1)

for miscut angles greater than 0.2
◦
, and we thus restrict the

parameter space to κ � 10−1. To obey the near-equilibrium
hypothesis, additional restrictions are necessary. From the
steady-state solution of (15), the maximum departure of the
adatom density from its equilibrium value can be estimated as
max(F/8,F/κ ) so that the near-equilibrium hypothesis im-
poses F � 10 and F � κ . Hence, the latter condition being
more restrictive here, F � κ/10 is assumed in our simula-
tions.

In addition, due to the low temperatures, we assume a low
equilibrium adatom coverage �=0.02. This value is conser-
vatively low in the sense that it minimizes the strength of the
dynamical and chemical effects. Indeed, estimates from the
literature place this value closer to 0.04 for Si [45] and as high
as 0.2 for GaAs [46]. Finally, the elastic coefficient is set to
α=10−5. With these restrictions, systematic simulations were
conducted every decade for F from 10−5 to 10−2 and κ from
10−4 to 10−1. Additional simulations were conducted with
F =10−4 and κ =10−2 for various values of � and α in order
to ascertain the scaling with respect to those parameters. From
all the simulations performed, robust scaling laws emerge, and

FIG. 4. Bunch height H scaling with time t . The black trend line
shows the theoretical H ∼ t1/2 scaling. Same parameters as those of
Fig. 3.
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FIG. 5. Minimal interstep distance �min scaling with N . The black
trend lines show the theoretical predictions �min ∼ N−2/3. Same pa-
rameters as those of Fig. 3.

we find, in the absence of any ES barrier (S =1):

H 
 2.2�0.7±0.05 t1/2
, �min 
 1.6

(
κ α

F�

)1/3

N−2/3. (23)

Systematic quantitative experiments on coarsening without
electromigration are scarce. Of the three studies found in the
literature, one concerns Si(001) [47], on which adatom diffu-
sion is strongly anisotropic, and another concerns GaAs(001)
[48], where the surface is grown by metalorganic vapor phase
epitaxy, so that precursor interactions need to be taken into
account. Since we are interested in investigating the influence
of the dynamical and chemical effects on the step bunching
instability, effects that are basic to step flow in the sense that
they are present irrespective of whether adatom diffusion is
anisotropic or not and whether chemical reaction between
distinct species occur or not, we only consider Si(111) [21],
which is the ideal candidate to test our model due to its
isotropy and weak (or absent) ES barrier. On this surface, the
bunch height and width were monitored and found to grow
as tβ and t1/α with β =0.49±0.09 and 1/α=0.54±0.08.
In the framework of universality classes based on the clas-
sical BCF model [49], the destabilizing mechanism leading
to the closest match (β =1/α=0.5) is the iES effect, whose
existence remains controversial [8,41,50], with contradictory
experimental results [14–17]. Importantly, our simulations of
the thermodynamically consistent model reproduce the bunch
height scaling (β =1/2) without recourse to an iES (S =1).

Since there are no experimental studies for the scaling of
�min in the absence of electromigration, we are not able to test
our prediction. However, we note that the exponent we find is
identical to the one obtained in the simulations of [51].

IV. CONTINUUM EVOLUTION EQUATION

A. Discrete-to-continuum limit

In this section we derive the continuum limit of the discrete
step-flow equations (15), (17), (18), and (22), whereby the
stepped surface profile is described by a smooth function.
The nonlinear PDE that governs the evolution of the surface
height provides insight into the mechanisms responsible for

step bunching and explains the coarsening behavior observed
in the simulations.

Two methods have been proposed in the literature for this
discrete-to-continuum transition. In [29], a hybrid approach
is adopted in which the nonlinear repulsion term is treated
using a first-order correspondence between finite differences
and derivatives, and the remaining terms, which form a linear
combination of the adjacent terrace widths in the model con-
sidered, are coarse-grained through a Fourier transform [52].
In [53,54] the discrete step velocity equation is interpreted as
a numerical scheme for a differential equation, with the step
height representing the grid constant, in a process reminiscent
of the modified equation technique [55].

The derivation we present here is conducted in the same
spirit as the latter method, but incorporates the dynamical
and chemical effects, which are unaccounted for in the cited
works, and ensures all terms are expanded to the same order in
their Taylor-series representation. The expansion is based on
the assumption that the terrace widths are small compared to
the mesoscopic length scale L characterizing the spatial vari-
ations of step density on the vicinal surface [56]. Let ε=L0/L
be the nondimensional parameter for the Taylor expansion.
All functions and their derivatives are assumed to be bounded,
i.e., O(1).

Since Eqs. (15), (17), (18), and (22) constitute a free-
boundary problem with time-dependent coefficients that
cannot be solved analytically, we will only retain the advective
contributions to the dynamical effect by making the change of
variables

x̂ := x − xn(t ) and �̂n(t, x̂) := �̃n(t, x), (24)

and neglecting the transient term ∂t̄ �̂n, so that (15) reduces to

0 = ∂2
x̂x̂�̂n + χaP ẋn∂x̂�̂n + F . (25)

Introducing u := x̂/sn, the solution of (25) can be expressed as

�̂n(t, u) = �̂+
n ϕn(t, u) + �̂−

n ψn(t, u) + cn(t, u), (26)

where the expressions for ϕn(t, u), ψn(t, u), and cn(t, u) are
given in Appendix B.

In the boundary conditions (17) and (18), the chemical
effect couples the diffusion fields on adjacent terraces. We
use the interface motion equation (22) to express �̂+

n+1 as a
function of ẋn+1 and �̂−

n , and �̂−
n−1 as a function of ẋn and �̂+

n .
Inserting these expressions in (17) and (18), and appealing to
(26) to express the derivatives of �̂n in terms of �̂+

n and �̂−
n ,

we obtain a linear system that can be solved for �̂+
n and �̂−

n
(whose explicit expressions are given in Appendix B).

Substituting the resulting expressions in (22), we obtain

P ẋn = P
[

sn + sn−1

2
+ C2 − C1

2
δ

(
sn−1

Bn−1

)]

− κS�δ

(
δ(fn−1)

Bn−1

)
+ P�C0δ

(
δ(ẋn−1)

Bn−1

)

− P�(χa − χc)
S + 1

2
δ

(
ẋn + ẋn−1

Bn−1

)
+ O(P2,Pα),

(27)
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where, for any zn, δ(zn)=zn+1 − zn, and

Bn := 1 + S + κSsn,

C0 := (1 − S)(χa + χc)/2 + χaχc�(S + 1),

C1 := 1 + χc�(S + 1),

C2 := S − χc�(S + 1). (28)

In the kinetic-limited regime, κ � 1, so that Bn 
 1 + S.
We can now proceed to the homogenization of (27). To ap-
proximate the profile of the vicinal surface, we introduce the
continuous function X (t, y) such that

xn(t ) = ε−1X (t = εt , y = −nε), (29)

where the space variable has been normalized and the time
appropriately rescaled to reflect the change from microscopic
length scale L0 to macroscopic length scale L. Taylor expand-
ing the different terms in (27) up to order 3 (the dominant
order of the elastic repulsion term), we get

sn + sn−1

2
= −Xy − ε2

6
Xy3 + O(ε4),

δ

(
sn−1

Bn−1

)
= ε

S + 1

(
Xy2 + ε2

12
Xy4

)
+ O(ε5),

δ

(
δfn−1

Bn−1

)
= −γ (R)

αε3

S + 1

[
1

X 3
y

]
y3

+ O(ε5),

δ

(
δ(ẋn−1)

Bn−1

)
= ε2

S + 1
Xty2 + O(ε4),

δ

(
ẋn + ẋn−1

Bn−1

)
= − 2ε

S + 1

(
Xty + ε2

6
Xty3

)
+ O(ε5). (30)

In the limit R→∞, γ (R)=∑R
r=1 r−2 →π2/6
1.64. If the

infinite sum is instead truncated at 5 terms like in the nu-
merical simulations, γ (5) 
 1.46. Although this introduces an
error of 11%, it has effectively no impact on the scaling law
for the bunch height as H is independent of the strength of the
elastic repulsion.

In order to obtain an equation for the surface height
h(t, x), we start by introducing the nonlinear transform t +
h[t, εxn(t )]=−nε, i.e., t + h[t, X (t, y)]=y (Fig. 6), such that
we absorb the constant deposition term, yielding

Xt = −1 + ht

hx
, Xy = 1

hx
, Xyy = 1

hx

[
1

hx

]
x

, (31)

and so on for higher-order derivatives. To eliminate the cross-
derivative terms, we rearrange the terms of the equation by
repeated differentiation, division by hx, and substitutions, re-
sulting in the sought-after PDE:

ht − εK1

[
1

hx

]
x

+ ε3K2

[
1

hx

(
h2

x

)
xx

]
x

+ ε2K4

[
hxx

h3
x

]
x

+ ε3K5

[
1

hx

[
hxx

h3
x

]
x

]
x

= O(ε4), (32)

y = t+h(t,x),
x = X(t,y)

y = t+ t+h(t+ t,x)

 x
-n

y x

FIG. 6. In black, correspondence between the discrete and con-
tinuous surface profiles at time t . In blue, the surface profile at a later
time t + �t .

where, having introduced K0 :=C0/(S + 1) and
K3 := 1

12 [(2χa − χc)� − 1
2

S−1
S+1 ],

K1 := χa� − 1

2

S − 1

S + 1
,

K2 := 3

2

S

S + 1
γ (R)

κ α

F
,

K4 := 1

6
+ �K0 + K1�(χa − χc),

K5 := K3 + �K0K1 + K4�(χa − χc). (33)

The prevailing equation in the literature [3,49], based on
the quasistatic BCF model, can be recovered from Eq. (32) by
neglecting the dynamical and chemical effects (χa =χc =0)
and setting K5 =0. While the first condition ensues naturally
from the definitions of χa and χc, the second amounts to
neglecting a term that is of the same order as the K2 term of
elastic repulsion, which is not justified a priori. Numerical
integration of Eq. (32) in the presence and absence of the K5

term show that its impact on the bunch profile is limited to
narrow regions at the upper and lower edges, with no visible
effect on the bunch shape. Nevertheless, we show in the next
section that the K5 term plays an important role in the onset of
instability, where its influence cannot be neglected.

B. Linear-stability analysis

The linear-stability analysis of (32) is performed by setting
h(t, x)=−x + δh eikx+ωt , where h(t, x)=−x corresponds to
the fundamental solution, and expanding (32) to linear order
in δh. Time and space are then rescaled (k =εk and ω=εω)
for comparison with the discrete system, yielding the disper-
sion relation

Re(ω) = K1k
2 − (2K2 + K5)k

4
. (34)

We conclude from (34) that a step-bunching instability
exists as long as K1 >0. For the quasistatic BCF model, K1 =
(S − 1)/2(S + 1), so that an iES barrier (S <1) is necessary
to fulfill that condition, and its absence (S =1) or the presence
of a direct ES barrier (S >1) leads to a stable step flow [57]. In
contrast, the inclusion of the dynamical and chemical effects
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renders the recourse to an iES barrier unnecessary to explain
instability, as long as the attachment-detachment asymmetry
satisfies S < (1 + 2�)/(1 − 2�).

Note that setting S = (1 − 2�)/(1 + 2�) in the quasistatic
BCF model mimics the same K1 coefficient than setting S =1
in the full model with the dynamical effect. In other words, the
dynamical effect may be interpreted as an effective iES effect,
analogously to chemical reactions [8] or diffusion anisotropy
[47]. This interpretation also sheds a new light on the
experimental uncertainty surrounding the nature of the ES
barrier on Si(111). Indeed, the smallness of � implies a weak
effective iES barrier, and since only indirect methods are
available to determine this value, it is likely that the measure-
ment accuracy is insufficient to conclude.

Regarding the chemical effect, the complete linear-stability
analysis [58] shows that its destabilizing effect is strongest for
the step pairing mode but that its impact is reduced in the limit
of large wavelengths, which is the relevant one when passing
to the continuum limit, thus explaining its absence from the
dominant destabilizing contribution in (34).

Going back to the discrete equation (27) and setting xn =
n + t + δx eikn+ωt , we obtain

ω = i sin(k) +
(

4[K1 − (χa − χc)� − K0�ω]

− �(χa − χc)i sin(k) ω

+ 32
γd (R, k)

γ (R)
K2

)
sin2(k/2), (35)

with γd (R, k) := ∑R
r=1

sin2(kr/2)
r4 .

Solving for ω, taking the real part, and expanding for long

wavelengths (k → 0) up to O(k
5
), we recover the exact same

expression (34) as in the continuum limit. This confirms the
validity and relevance of the continuum limit (32), notably
regarding the new K5 term. Indeed, as K5 � K2 for typical
values of the model parameters, it has a significant influence
on the maximum growth rate ωm = (2K2 + K5)−1(K1/2)2 and
the most unstable mode km =

√
(2K2 + K5)−1K1/2 .

V. SCALING LAWS

There are two scaling laws of interest to describe the
asymptotic behavior of the surface profile. The scaling of H
with time is an indicator of the evolution of surface roughness
and the scaling of �min with N characterizes the bunch shape.
We also look at the bunch velocity v scaling with N as an
additional descriptor of the coarsening process.

A. Bunch height H

A common approach to obtain scaling laws from PDEs
relies on identifying self-similar solutions. In [49], such so-
lutions are introduced based on a simplified version of (32)
where only the transient term ht , the destabilizing K1 term,
and the stabilizing K2 term are considered.

However, as pointed out in [29,41,43], the obtained so-
lutions do not reproduce the observed scaling laws. In each
of these works, a different argument is invoked to justify the

FIG. 7. Bunch steepening. Each curve corresponds to the
rescaled bunch profile after a fourfold time increase. Same param-
eters as those of Fig. 3.

shortcomings of [49]. Here we show that the reason is more
fundamental: the evolution of the surface profile is simply not
self-similar. Indeed, if we look for self-similar solutions of
(32) of the form h(t, x)= t a1φ(ζ ), with ζ =x/t a2 , we find

t a1−1(a1φ − a2ξφ′) − εK1t−a1

[
1

φ′

]′

+ t−2a1ε2K4

[
φ′′

φ′3

]′
+ t a1−4a2ε3K2

[
1

φ′ (φ′2)′′
]′

+ t−3a1ε3K5

[
1

φ′

[
φ′′

φ′3

]′]′
= 0. (36)

Since this equation cannot be made scale invariant, it does
not admit self-similar solutions. This is consistent with the
profiles obtained from numerical simulations of the discrete
step-flow equations which show the steepening of the bunch
despite rescaling it as per the expected t1/2 scaling law
(Fig. 7).

Analyzing (36) further, we note that the K4 and K5 terms,
which preclude scale invariance, present a t−2a1 and a t−3a1

factor, respectively. This indicates that they possibly become
negligible at long times compared to the K1 term exhibiting a
t−a1 factor, provided that the associated functions (φ′′/φ′3)′
and (1/φ′(φ′′/φ′3)′)′ are regular enough. While this is the
case inside the bunched and quasiflat regions, at the transi-
tion zones (which become sharper as the surface coarsens),
these functions diverge, and the associated terms cannot be
neglected, precluding the existence of self-similar solutions.

Nonetheless, it seems clear from Fig. 7 that the t1/2 scaling
plays a crucial role, regardless of self-similarity. To see this,
we modify the existing analysis to focus on the quasiflat
region, so that the K4 and K5 terms may be neglected, and we
consider asymptotic expansions for the characteristic height
and length of the region of the form

h(t, x) = h0(t, x) +
∑
i�0

t aiϕi(ζ ),

ζ = x∑
j�0 c jt b j

, (37)
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where h0(t, x)=−x represents the fundamental solution
(equidistant steps), and ∀i ∈ N, ai >ai−1, bi >bi−1, ϕi(ζ )=
O(1) and c0 =1. Thus,

hx = −1 +
∑

i�0 t aiϕ′
i (ζ )∑

j�0 c jt b j
. (38)

Since the slope in the quasiflat region must remain finite as
t → ∞, a0 � b0 must hold. Moreover, as it cannot coincide
with the −1 slope of the stable solution, strict inequality is
not possible, so that a0 =b0. Next, steps being far apart in the
quasiflat region, we neglect the elastic term, and (32) becomes

∑
i�0

t ai−1

[
aiϕi −

∑
j�0 b jc jt b j∑

j�0 c jt b j
ζϕ′

]

− εK1∑
j�0 c jt b j

[
1

−1 +
∑

i�0 t ai ϕ′
i (ζ )∑

j�0 c jt
b j

]′
= 0. (39)

Looking at the dominant contribution, we get

a0t a0−1[ϕ0 − ζϕ′
0] − εK1t−a0

[
1

−1 + ϕ′
0

]′
= 0. (40)

Hence, scale invariance imposes a0 − 1=−a0 =−1/2
which shows that the deviation of the surface profile from
the fundamental solution scales asymptotically as t1/2. From
geometrical arguments, this corresponds to the bunch height
and we thus recover the scaling law reported in the literature
[21,29].

B. Minimal terrace size �min

As the previous analysis is conducted in the quasiflat re-
gion, a different approach is needed to determine the scaling
law for �min in the bunch. In the stationary regime, the scaling
of the bunch can be well approximated [29,59] and leads, for
large enough bunches, to

�min 

(

16

3

K2

K1

)1/3

N−2/3 = 41/3

(
κ α

F�

)1/3

N−2/3. (41)

This expression predicts exactly the different exponents
observed for each physical parameter and the theoretical
prefactor 41/3 
 1.58 is in excellent agreement with the 1.6
numerical estimate found in (23).

However, although the scaling behavior of �min is accu-
rately described in the context of the stationary approxima-
tion, a closer inspection reveals that the predicted slope of the
bunch is symmetric with respect to its center, in disagreement
with previous simulations [51] and our own. Specifically, even
though the velocity of a bunch decreases with its size, which
a priori legitimizes the stationary approximation for large
bunches, it still has a crucial influence on the bunch shape. In-
deed, if the advective contribution due to the bunch motion is
included, while neglecting other dynamical contributions, the
expected asymmetric bunch shape is recovered [51]. Nonethe-
less, as this adjustment only introduces a 6% correction [51]
in the numerical prefactor of (41), the validity of the latter can
be extended from the stationary to the quasisteady regime.

FIG. 8. Comparison of the surface slope obtained from simu-
lations of the discrete system under forced bunching (x) with the
analytic expression (43), where the coefficients are given by (44)
and v is determined from the numerical resolution of (42). The inset
focuses on the bunched region.

C. Bunch velocity

In this section we analytically derive an expression for the
bunch velocity, which was previously only assessed via nu-
merical simulations [51]. Neglecting the K5 term in Eq. (32),
we apply the traveling-wave change of variable h(t, x)=g(x −
vt ) + �t to transform the PDE into an ODE. Denoting deriva-
tives with respect to ξ =x − vt by primes, we obtain

−v(1 + g′) − εK1

[
1

g′

]′
+ ε3K2

[
(g′2)′′

g′

]′
+ ε2K4

[
g′′

g′3

]′
= 0,

(42)

after identifying �=−v from the fundamental solution for
which g′ =−1.

Denoting M the absolute value of the maximum slope in
the bunch, we use a (2,3) Padé approximant to estimate the
shape of the bunch slope:

g′(ξ ) = −M + a1ξ + a2ξ
2

1 + b1ξ + b2ξ 2 + b3ξ 3
, (43)

where the ξ origin is set at the point of maximum slope.
The condition g′′(0)=0 imposes b1 =−a1/M. The remaining
coefficients a1, a2, b2, and b3 are determined following the
procedure detailed in Appendix C. Setting η :=v/(ε3K2), we
obtain, at leading order:

a1 
 A1η
1/3M, a2 
 A2η

2/3M,

b2 
 B2η
2/3, b3 
 B3η, (44)

The exact expressions for the Ai and Bi are not reported,
as they consist of tedious polynomial roots with no special
interest.

To compute the relationship between M and v, we use the
fact that the height of the bunch is normalized to 1. When in-
tegrating the slope, we neglect the contribution of the quasiflat
terraces and assume that the main contribution comes from the
bunched region, i.e., the region between the roots ξ− and ξ+
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FIG. 9. Bunch velocity v scaling with N . The asymptote is at 8.3.

of g′ (Fig. 8). Hence,∫ ξ+

ξ−
g′(ξ ) dξ 
 −1. (45)

As the exact integration is unnecessarily laborious, we
use a third-order Gauss quadrature (higher orders procure
negligible corrections) to get an approximate expression. The
dominant contribution yields

M 
 0.303 η1/3. (46)

Recalling that the velocity of a moving bunch mainly im-
pacts its shape but has a negligible effect on the maximum
slope M [51], we finally conclude:

0.3033 v

ε3K2

 3

16

K1

ε2K2
, (47)

yielding the expression

v 
 6.74
K1

N
. (48)

While we correctly predict the scaling v ∼ K1/N , in agree-
ment with [51] and our own simulations, the prefactor is
20% smaller than the expected value of 8.3 derived from the
numerical simulations (Fig. 9). This can be traced back to
the fact that the Padé approximant does not capture the exact
bunch shape (Fig. 6). In addition, the error is also expanded
by the cubic power applied in (48).

VI. SUMMARY AND DISCUSSION

In this paper we revisit the coarsening behavior of step
bunching on vicinal surfaces in the kinetic-limited growth
regime, with our starting point a thermodynamically con-
sistent generalization of the BCF model that accounts for
the dynamics of adatom diffusion on terraces and adatom
attachment-detachment at steps, and the necessary coupling of
the diffusion fields on adjacent terraces. Our numerical sim-
ulations show that these dynamical and chemical effects can
account for the onset of step bunching and for the scaling laws
observed in the coarsening regime, thereby circumventing the
uncertainty surrounding the existence of an inverse ES barrier.

Through a careful rescaling and systematic Taylor ex-
pansions, we propose a coherent discrete-to-continuum

derivation, leading to a nonlinear PDE that describes the
macroscopic evolution of the surface profile. This continuum
limit differs from those found in the literature in that it incor-
porates the dynamical and chemical effects. The contributions
of these effects to the coefficients of the nonlinear equation
show that the step-bunching instability may be triggered even
in the presence of a direct ES barrier, in contrast to the conclu-
sions drawn in the framework of the quasistatic approximation
where an inverse ES barrier is required. Moreover, we report a
new term, the K5 term in (32), which, given its magnitude, has
a crucial influence on the growth rate and the most unstable
mode of the instability.

We also show, using the derived continuum limit, that the
evolution of bunches is not self-similar, in agreement with
the numerical simulations of the discrete step-flow equations,
and in contrast with the results found in the literature, which
are based on a simplified, and thus incomplete, evolution
equation. However, by taking into account the multiple length
scales at play and by restricting our scaling analysis to the
quasiflat region of the bunch cell to avoid the high-curvature
transition zones with diverging terms, our investigation recov-
ers the 1/2 coarsening exponent for the bunch height H , which
has been observed experimentally and reported in a number of
simulations.

To derive the appropriate stationary scaling for the min-
imal interstep distance �min, we transpose the quasisteady
analysis of [51] to our thermodynamically consistent model.
Finally, we derive a theoretical expression for the bunch
velocity, which was previously identified numerically, offer-
ing a way of determining the destabilizing factor K1 from
macroscopic features of the nonlinear evolution of the vicinal
surface.

With this in mind, we conduct additional simulations of
the discrete step-flow equations as described in the paragraph
above Eq. (23) but for various values of the ES barrier S (not
reported here) to determine the scaling of the bunch height and
minimal interstep distance with S. The resulting generalized
scaling laws are

H 
 2.2K0.07
1 t1/2

, �min 
 1.6(K2/K1)1/3N−2/3. (49)

Therefore, the identification of K1 and K2 from the prefactors
of these scaling laws offers an interesting alternative for de-
termining microscopic parameters of the vicinal surface (e.g.,
the attachment-detachment coefficient κ , the elastic repulsion
coefficient α, and the equilibrium adatom coverage �) from
macroscopic features.

Our extension of the stability analysis of the thermody-
namically consistent step-flow model to account for adatom
electromigration (with special attention to the extreme-
deposition regime, where the dynamical effect plays a crucial
role in destabilizing the vicinal surface), and the derivation
and analysis of the corresponding continuum limit will be
presented elsewhere. Finally, we have generalized the present
one-dimensional step-flow model to two space dimensions.
The resulting analysis of the onset of the step meandering and
of the coexistence of the bunching and meandering instabili-
ties will be presented elsewhere.
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APPENDIX A: DISCRETIZATION OF (15) USING
THE GALERKIN METHOD

We multiply (15) by a weight function φ and integrate:

P
∫ 1

0
∂t�nφ du = 1

s2
n

∫ 1

0
(∂uu�n)φ du

+ P ẋn

sn

∫ 1

0
(∂u�n)φ ddu

+ P ṡn

sn

∫ 1

0
(u∂u�n)φ du

+ F
∫ 1

0
φ du. (A1)

Next, integrating by parts the term with the double derivative,
we get

P
∫ 1

0
∂t�nφ du = 1

s2
n

[
(∂u�n)φ

]1

0

− 1

s2
n

∫ 1

0
(∂u�n)φ′ du + P ẋn

sn

∫ 1

0
(∂u�n)φ du

+ P ṡn

sn

∫ 1

0
(u∂u�n)φ du + F

∫ 1

0
φ du. (A2)

Finally, introducing some shape functions ϕi, we write
�n(t, u)=∑

i qn
i (t )ϕi(u) and substitute φ for an arbitrary ϕ j

to obtain the following system:

PMq̇n = An − 1

s2
n

D(2)qn + P ẋn

sn
D(1)qn

+ P ṡn

sn
D(u)qn + FB, (A3)

at the nth terrace (n ∈ N∗), where, from the boundary condi-
tions (17) and (18),

An
i = 1

s2
n

[
(∂u�n)ϕi

]1

0 = 1

sn
(−J

−
n+1 − �−

n ẋn+1)ϕi(1)

− 1

sn
(J

+
n − �+

n ẋn)ϕi(0),

(A4)

and

Mi j =
∫ 1

0
ϕi(u)ϕ j (u) du,

D(2)
i j =

∫ 1

0
ϕ′

i (u)ϕ′
j (u) du,

D(1)
i j =

∫ 1

0
ϕi(u)ϕ′

j (u) du, (A5)

D(u)
i j =

∫ 1

0
uϕi(u)ϕ′

j (u) du,

Bi =
∫ 1

0
ϕi(u) du.

APPENDIX B: SOLUTIONS OF EQ. (26)

The functions ψn, ϕn, and cn introduced in (26) are
given by

ψn(t, u) = exp(−χaP ẋnsnu) − 1

exp(−χaP ẋnsn) − 1
,

ϕn(t, u) = 1 − ψn(t, u),

cn(t, u) = 1

�

sn

χaẋn
[ψn(t, u) − u]. (B1)

Furthermore, letting Rn = T (0)
n T (1)

n − T (2)
n T (3)

n , the boundary
values can be expressed as

�̃+
n = 1

Rn

(
T (3)

n T (4)
n − T (0)

n T (5)
n

)
,

�̃−
n = 1

Rn

(
T (2)

n T (5)
n − T (1)

n T (4)
n

)
. (B2)

where

T (0)
n = 1

sn
ψ ′

n(0),

T (1)
n = 1

sn
ϕ′

n(1),

T (2)
n = 1

sn
ϕ′

n(0) − κS

C1
+ χaP ẋn,

T (3)
n = 1

sn
ψ ′

n(1) + κS

C2
+ χaP ẋn+1,

T (4)
n = 1

sn
c′

n(0) − κS

C1
(fn − 1) − χcS

C1
P ẋn,

T (5)
n = 1

sn
c′

n(1) + κS

C2
(fn+1 − 1) − χc

C2
P ẋn+1. (B3)

APPENDIX C: APPROXIMATE SOLUTIONS OF (42)

The coefficients a1, a2, b2, and b3 in (43) are determined
as follows. We substitute (43) in (42), Taylor expand in ξ , and
look at the four lowest orders, which yields a nonlinear system
of four equations with the four coefficients as unknowns.

As this system is impossible to solve analytically, we in-
stead solve an approximated version. We proceed by first
solving the system numerically for a wide range of model
parameters to determine the dominant scaling of the unknown
coefficients with ε, and find

a1 ∼ ε−5/3, a2 ∼ ε−8/3,

b2 ∼ ε−2, b3 ∼ ε−3. (C1)

Next, using these scaling relations and M = �−1
min ∼ ε−2/3, we

approximate each equation of the system by its two leading
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contributions in ε:

− v(1 + M ) + 12K2

M
�2ε

2 = 0,

− 16K2[−3a1�2 + M�1(a2 + 4Mb2)]ε2 = 0,

− 120K2M2a2
1�2ε

2 + M5�1v

+ 24K2M3[a1�1(3a2 + 13Mb2)ε2

+ M2b3(8a2 + 13Mb2)]ε2 = 0,

− M3�2v + 8K2
{
30a3

1�2

− 5Ma2
1�1(5a2 + 23Mb2)

− 2M3a1b3(47a2 + 77Mb2)

+ M2
[− 4a2

2(a2 − Mb2)

+ 50M2a2b2
2 + 3M3

(
14b3

2 − 13b2
3

)]}
ε2 = 0. (C2)

where

�1 = a2 + Mb2,

�2 = a1�1 + M2b3. (C3)

This approximate system can now be solved analytically and
yields (44) at leading order in ε.
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