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Abstract We revisit the classic stability problem of the buckling of an inextensible, axi-
ally compressed beam on a nonlinear elastic foundation with a semi-analytical approach to
understand how spatially localized deformation solutions emerge in many applications in
mechanics. Instead of a numerical search for such solutions using arbitrary imperfections,
we propose a systematic search using branch-following and bifurcation techniques along
with group-theoretic methods to find all the bifurcated solution orbits (primary, secondary,
etc.) of the system and to examine their stability and hence their observability. Unlike previ-
ously proposed methods that use multi-scale perturbation techniques near the critical load,
we show that to obtain a spatially localized deformation equilibrium path for the perfect
structure, one has to consider the secondary bifurcating path with the longest wavelength
and follow it far away from the critical load. The novel use of group-theoretic methods here
illustrates a general methodology for the systematic analysis of structures with a high degree
of symmetry.
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1 Introduction

Surface instabilities in soft elastic materials under compression, leading to highly localized
deformation regions known as creases, have been reported in the recent experiments by
[21]. Since then, a number of studies have discussed the computations of such deformations
(e.g., [4, 8, 10–12, 14, 17, 24–26, 34, 35, 37, 46, 53, 55]). It is well-known that a linearized
stability analysis of the flat surface predicts wrinkles (see [6]) and hence precludes a per-
fect half-space model from directly bifurcating from a flat state to a creased one. While
the methods proposed in the existing literature overcome this difficulty by introducing an a
priori imperfection which biases the system to a desired configuration, the choice of imper-
fection introduces an arbitrariness in the procedure. In this work, we present an approach
which is based on applying a systematic numerical continuation coupled with analytical
group-theoretic methods (equivariant bifurcation theory). We demonstrate our methodol-
ogy on the classical problem of stability of an infinite linear beam1 on a nonlinear elastic
foundation. The nonlinearity in the foundation allows a diverse set of stable and unstable
deformations of the beam. Of particular interest in this study are the stable spatially local-
ized configurations of the beam which are the equilibrium solutions to systems having a
softening foundation in the small deformation regime. Although the higher regularity re-
quired by the beam–foundation system precludes the existence of a true “crease,” its fully
localized “single-hump” solutions2 will serve as reasonable surrogates. Thus, the model is
well-suited for the purpose at hand. Indeed, the behavior of the beam–foundation system is
representative of a much larger class of problems which exhibit spatially localized patterns
(e.g., [3, 18, 39, 42, 45]).

Owing to its rich post-critical behavior, several aspects of this simple system and its
variants are much studied. For example, the existence of global bifurcations correspond-
ing to spatially localized large deformation solutions for fourth-order ordinary differential
equations with quadratic nonlinearity was established by [9]. Similarly, the existence of
periodic solutions for a system with cubic-quintic nonlinearity was explored by [5]. Asymp-
totic approaches employing an ansatz having two different length scales lead to the so-called
amplitude equations that predict spatially localized solutions. These methods have been ap-
plied for linear beams on softening foundations (e.g., [28, 29, 43, 44]) and geometrically
nonlinear beams on linear elastic foundations (e.g., [30]). While these approaches give an
amplitude modulated solution, their validity is restricted to axial loads in a small neigh-
borhood of the critical load. Moreover, it can be shown that all such solutions are unsta-
ble and hence not observable. Highly spatially localized stable solutions, as will be shown
through this work, exist only far from the trivial flat state and well below the buckling load
where uniformly wrinkled deformations first bifurcate—a behavior common to the creasing
problem. To overcome the restriction to axial loads in a neighborhood of the critical load,
a localized Rayleigh-Ritz method was proposed by [51]. Deformations of the beam are rep-
resented as a sum of terms involving sinusoidal and hyperbolic functions. This approach
was successful in obtaining approximate localized deformation solutions far from the initial

1The reader should note that we employ a linear beam model for its simplicity, both analytically and numeri-
cally, in this work. Thus, undue weight should not be given to the physical interpretation of fine-scale details
associated with the highly-deformed solutions obtained here. Instead, the primary focus here is an analysis
of the simplest model leading to the existence of such spatially localized solutions. As we show, all of the
important phenomena (primary bifurcation, cascades of secondary bifurcations, etc.) occur well within the
small-displacement regime. Thus, the linear beam model poses no limitation on our ability to determine the
correct mechanics of the nonlinear beam–foundation system of interest.
2Such as those illustrated in Fig. 8(a).
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buckling load (e.g., [50, 51]). Once such localized deformation solutions were found, it was
noticed that beams with foundations that soften for small displacements and reharden as
the displacement increases display an oscillatory behavior, termed “snaking,” in their axial
load–displacement response (see e.g., [7, 41, 54]). Here the bifurcating branch initially de-
velops a highly localized “single-hump” configuration as the load sharply decreases (with
increasing average axial compression) from the critical value. Eventually the load reaches
a minimum at a turning point and the branch stabilizes with increasing load as the average
axial compression increases. As the path continues, it oscillates (snakes) between turning
points with alternating stable and unstable segments. With each oscillation an additional
hump is added to the localized deformation pattern and eventually a wave-packet-like shape
is achieved. This phenomenon is also referred to as cellular buckling [31]. The existence of
“multi-hump” solutions, unrelated to snaking behavior and associated with beams on soft-
ening foundations, was shown by [9]. These solutions are characterized by packets of large
amplitude-modulated deformation separated by sections of nearly flat, undeformed beam.
In this regard, perturbation approaches for “double-hump” solutions associated with soften-
ing foundations have been discussed by [49]. For rehardening foundations, similar solutions
have been obtained by [52]. Finally, similar to Biot’s instability of an elastic half-space,
the deformations on the primary bifurcation path for a perfect beam–foundation system
represent uniformly wrinkled solutions. However, it has been shown that the deformations
localize on the primary bifurcation path if an inhomogeneity (imperfection) is introduced in
the stiffness of the foundation or in the bending modulus of the beam [2, 15, 16, 38, 48].

In contrast to the above localized behavior for softening foundations, beams on founda-
tions having a purely hardening response buckle to form stable small-amplitude wrinkles. As
the axial load is increased the wrinkles can change periodicity through an unstable connec-
tion in the bifurcation diagram. This phenomenon, known as “mode-jumping,” was studied
by [27] and [19].

Due to the high degree of symmetry present in perfect structures such as the one consid-
ered here, the use of standard “imperfection methods” for bifurcation problems is insufficient
to discover and organize its rich solution set. Accordingly, we introduce a rigorous and sys-
tematic group-theoretic framework that provides analytical characterization of all bifurca-
tions and bifurcating paths as well as a systematic classification of every equilibrium branch
based on its geometric symmetry group. This approach draws on “equivariant bifurcation
theory” [13, 22, 32] and is integrated with efficient numerical branch-following algorithms
[1, 20, 36] to create a robust, consistent methodology for the theoretical and numerical study
of highly-symmetric bifurcation problems. Through this work, we show that highly local-
ized stable equilibrium solutions exist on the long wavelength secondary bifurcation paths.
These paths bifurcate in a cascading fashion from the short wavelength, wrinkled, primary
bifurcation paths. These primary paths in turn emerge from the system’s symmetry-breaking
bifurcations points on its flat configuration. Later in this work, we demonstrate that a small
imperfection in the linear foundation stiffness yields highly spatially localized stable solu-
tions on the primary bifurcation path which is almost indistinguishable with secondary path
for the perfect system.

We review the non-dimensional model and discuss its numerical implementation in
Sects. 2 and 3, respectively. A parametric study is used to explore the effects of different
types of foundations and the results are presented in Sect. 4. Bifurcation diagrams and sta-
bility results are presented and analyzed in each case. In Sect. 4 we compare the imperfect
structure with its perfect counterpart. The conclusions of this work are presented in Sect. 5.
A brief presentation of the pertaining group theory and how it applies to the problem at hand
is provided in Sect. 2.3 and the Appendix.
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2 Theory

Section 2 presents the theoretical aspects of the beam model. The perfect case and its im-
perfect counterpart are defined in Sect. 2.1 and Sect. 2.2, respectively. The perfect model’s
symmetry group is presented in Sect. 2.3, followed by Sect. 2.4 which discusses how to
determine the stability of each orbit.

2.1 Model—Perfect Case

The model adopted here is that of an inextensible, linear elastic beam resting on a non-
linear elastic foundation (with a cubic–quintic nonlinearity). In order to make the problem
manageable—and deal with compact symmetry groups—we will consider the L̄-periodic
solutions of an infinite beam and then choose L̄ ! 1. The beam has bending stiffness EI

and its undeformed centerline coincides with the x̄-axis. The beam is subjected to an axially
compressive load P and has the lateral deformation w̄(x̄). The total potential energy density
(per unit reference length) of the system is given by

Ē(w̄(x̄);P ) = 1

L̄

∫ L̄/2

−L̄/2

[
1
2
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(
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dx̄ ;

w̄(x̄) ∈ H̄ , (2.1)

where the L̄-periodic displacement functions w̄(x̄) belong to the space of admissible
functions H̄ , here identified with the Hilbert space H̄ := H 2

L̄
(R), consisting of all L̄-

periodic functions, say, w̄(x̄), such that w̄ and its first two distributional derivatives are
each square integrable functions on (−L̄/2, L̄/2). Identifying the characteristic length
L̄c := (EI/k2)

1/4, Eq. (2.1) can be non-dimensionalized by setting x := x̄/L̄c , w := w̄/L̄c

and L := L̄/L̄c , leading to a potential energy density of the beam

E(w(x);λ) = 1
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dx ;

w(x) ∈ H , (2.2)

where E := Ē(L̄c)
2/EI , λ := P (L̄c)

2/EI = P/
√

k2EI , α := k4(L̄c)
6/EI = k4

√
EI/

(k2)
3/2, γ := k6(L̄c)

8/EI = k6EI/(k2)
2 and H := H 2

L(R). A schematic of the system is
shown in Fig. 1(a).

As inferred from Eq. (2.2) and depicted in Fig. 1, the foundation force per unit length
opposing a displacement w is f = w + αw3 + γw5, with corresponding results labeled by
f(α,γ ). Two different nonlinear foundation types will be considered: a “softening foundation”
with α = −1 and a “hardening foundation” with α = +1. From the first category (α = −1)
we distinguish three different variations: the “no re-hardening” foundation where γ = 0,
the “mild re-hardening” foundation where γ = 0.25 and the “strong re-hardening” founda-
tion where γ = 0.50, resulting in a monotonically increasing foundation force–displacement
response. The no re-hardening foundation, although interesting from a mathematical point
of view, is unrealistic as it produces foundation forces in the same direction as w above a
certain displacement threshold.
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Fig. 1 (a) Schematic of the undeformed and deformed configuration of the axially compressed beam on a
nonlinear foundation. (b) Foundation force–displacement curves for the different nonlinear laws considered

The equilibrium solutions of the model extremize the energy density given in Eq. (2.2)
and are found by setting to zero the first variation E,wδw of E with respect to w. The corre-
sponding fourth-order Euler–Lagrange ordinary differential equation (per period L) is

E,wδw = 0 =⇒ d4w

dx4
+ λ

d2w

dx2
+ w + αw3 + γw5 = 0 ; x ∈ (−L/2, L/2) , (2.3)

subjected to the four periodicity-induced boundary conditions3

dpw

dxp
(−L/2) = dpw

dxp
(L/2) ; p = 0,1,2,3 . (2.4)

By embedding, any w ∈ H 2
L(R) can be associated with a C1 function. We then see directly

from Eq. (2.3) that all weak solutions in H 2
L(R) are, in fact, classical.

Of interest here are the equilibrium solutions of this structure as a function of either the
load λ or its work conjugate quantity from Eq. (2.2), the (average) axial strain %

% := 1
2L

∫ L/2

−L/2

[(
dw

dx

)2
]

dx . (2.5)

The nonlinear boundary value problem defined by Eqs. (2.3), (2.4) admits a large sym-
metry group resulting in a complex structure with an infinite number of equilibrium paths.
Equilibrium paths related by symmetry form orbits, which is a more appropriate term to de-
scribe the equilibrium solutions of the problem at hand and thus the two terms are used here
interchangeably.4 From the trivial, flat principal solution (w = 0) an infinity of primary equi-

3Assuming adequate continuity, the fourth-order Euler–Lagrange equation in [−L/2,L/2] requires four
boundary conditions to be satisfied.
4In fact, for systems with Lie symmetry groups (continuous infinite groups), such as the one considered
here, the continuous orbits of solutions are known as relative equilibria. In general, relative equilibria of the
system’s equations of motion can correspond to an orbit of equilibria, traveling or rotating waves, dynamic
trajectories that appear time-periodic in a suitable moving frame, or other more complicated motions. For a
discussion of the theory of relative equilibria and their stability see [13]. In this work, we explore only orbits
of equilibria, and so the distinction between a relative equilibrium of a system with continuous symmetry and
an orbit of equilibria of a system with discrete symmetry is immaterial.
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librium paths (more precisely continuous orbits) emerge. From each one of these, secondary
orbits with different periods also emerge. Tertiary branches emerge from the secondary paths
and so on, although the symmetry group of each orbit is reduced at each bifurcation, enough
symmetries remain to admit further bifurcations.

The focus here is on following each one of these orbits, away from the bifurcation point
of their origin and studying their stability. The symmetry group of this problem and its
subgroups that explain the structure of the bifurcated equilibrium paths are well known
(e.g., [32]). However, for reasons of clarity and completeness, the interested reader can find
a brief presentation of the pertaining theory and how it applies to the problem at hand in
Sect. 2.3 and the Appendix.

The numerical solution of the boundary value problem given by Eqs. (2.3), (2.4) is pre-
sented in Sect. 4.1.

2.2 Model—Imperfect Case

It is also of interest to consider a more realistic, imperfect structure—slightly perturbed
from the perfect one—and compare the corresponding equilibrium solutions. To this end
we assume that the infinite beam of period L has a foundation with a perturbed stiffness
zone (softer when ζ < 0, and stronger when ζ > 0) of length 2x0 about the origin. The
corresponding energy density and admissible displacement space are

E(w(x);λ) = 1
L

∫ L/2

−L/2

[
1
2

(
d2w

dx2

)2

− 1
2
λ

(
dw

dx

)2

+ 1 + z(x)

2
w2 + α

4
w4 + γ

6
w6

]

dx ;

z(x) = 0 for |x| > x0 , z(x) = ζ for |x| ≤ x0 ; w(x) ∈ H ,
(2.6)

where the admissible L-periodic displacement functions w(x) belong to the same Sobolev
space as for the perfect case in Eq. (2.2). The corresponding Euler–Lagrange equilibrium
equations are

E,wδw = 0 =⇒ d4w

dx4
+ λ

d2w

dx2
+ [1 + z(x)]w + αw3 + γw5 = 0 ; x ∈ (−L/2, L/2) ,

(2.7)
subjected to the periodicity conditions given in Eq. (2.4).

The numerical solution of the boundary value problem given by Eqs. (2.7), (2.4) is pre-
sented in Sect. 4.2.

2.3 Symmetries of the Perfect Model

For the perfect, elastic beam–foundation model at hand, there exists a group G of transfor-
mations that leave its energy E(w;λ)—defined in Eq. (2.2)—invariant under the action of
all transformations g ∈ G. For practical purposes, we want to deal with a compact symmetry
group G. To this end a maximum fundamental period Ld of all sought equilibrium solutions
must be selected. In principle, the choice of Ld is limited only by the available computa-
tional resources. It is also desirable to choose Ld so that it is commensurate with (i.e., an
integer multiple of) the fundamental period Lc of the primary bifurcation orbit:5 Ld = Lcq

5In Sect. 4.1.1 it is shown that Lc = 2π for the perfect beam–foundation system.
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and q ∈ N. Thus, the appropriate Hilbert space of interest is H = H 2
Ld

(R). Finally, it is im-
portant to point out that the selection of q > 1 facilitates the inclusion of “period-extending”
(period-doubling, -tripling, etc.) solutions.6

The symmetry group G of the Ld -periodic, perfect beam–foundation system with energy
density given by Eq. (2.2), is the infinite, compact group G = D∞h, a faithful representation
on H of which is generated by the following three linear operators:

– Phase-shift c(φ) by phase angle φ ∈ [−π,π):

Tc(φ) : H → H, w(x) )→ Tc(φ)[w(x)] := w(x + c(φ)),

where c(φ) := φLd/2π ∈ [−Ld/2,Ld/2);
– Reflection σv through x = 0:

Tσv : H → H, w(x) )→ Tσv [w(x)] := w(−x);

– Reflection σh through y = 0:

Tσh
: H → H, w(x) )→ Tσh

[w(x)] := −w(x).

Indeed, for every element g ∈ D∞h, the energy density Eq. (2.2) is invariant

E(Tg[w(x)];λ) = E(w(x);λ); ∀w(x) ∈ H, ∀λ ∈ R. (2.8)

The fixed-point space SD∞h
:= {w(x) ∈ H | Tg[w(x)] = w(x), ∀g ∈ D∞h} of this com-

pact group consists of all configurations w(x) of the infinite, Ld -periodic beam that remain
unaltered by the action of the group. It is easy to see that SD∞h

contains only one ele-
ment: the beam’s reference (straight) configuration w(x) = 0. Along with the equivariance
property Eq. (A.2) of the equilibrium Eqs. (2.3) (which is inherited from Eq. (2.8)), this

implies that
0
w(x;λ) = 0 is the principal solution—also termed fundamental solution—for

the beam–foundation system.
In Sect. 4 and the Appendix we show that for this system the primary bifurcation orbits

have symmetry group Dqd (containing 4q elements) which is generated by the two symme-
try elements Tσhc(π/q) and Tσhσv corresponding to phase-shift plus horizontal reflection, and
inversion through x = 0, respectively. Note that Dqd is a finite subgroup of D∞h. A sample
of Ld -periodic orbit configurations belonging to different symmetry groups is depicted in
Fig. 2 for the special case Ld = Lcq , q = 4, with Fig. 2(a) showing an element with D4d

symmetry. There are four inversions (through x = 0,Ld/8,Ld/4,3Ld/8; the inversions at
x = −Ld/2,−3Ld/8,−Ld/4, respectively, are equivalent to the first four due to the Ld -
periodicity of w(x)); four vertical mirrors (through x = Ld/16,3Ld/16,5Ld/16,7Ld/16;
the vertical mirrors at x = −7Ld/16,−5Ld/16,−3Ld/16,−Ld/16, respectively, are equiv-
alent to the first four due to the Ld -periodicity of w(x)); and there are four phase-shifts
(c = −Ld/2,−Ld/4,0,Ld/4). It is worth noting that the inversion through x = 0 implies
that w(x) = −w(−x), i.e., w(x) is an odd function. Given a configuration v(x) ∈ H there
is an associated orbit of configurations {w(x) | w(x) = Tg[v(x)] for some g ∈ D∞h}. Fig-

6Indeed, with (as below) q = 20, the primary bifurcation branch will have period Lc . Then each secondary
bifurcating branch may be associated with one of the periods Lm = mLc with m ∈ {1,2, . . . , q}.
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Fig. 2 Ld -periodic orbit configurations belonging to different symmetry groups. Here Ld = Lcq , and q = 4
is selected for illustrative purposes. Subfigures (a) and (b) present two members of a D∞h orbit with D4d
symmetry. Subfigures (c)–(h) present examples of configurations with symmetries that are subgroups of D4d :
(c) D4, (d) C4v , (e) D2, (f) C2v , (g) D1, and (h) C1v

ure 2(b) shows an example of a member of the orbit of the configuration of Fig. 2(a). This
configuration also has D4d symmetry,7 and is obtained by a phase-shift of c = Ld/16. Bifur-

7Actually, its symmetry is a subgroup of D∞h that is conjugate to D4d . Here, we will not be concerned with
this distinction.
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cation from a primary orbit with Dqd symmetry will break symmetries and result in bifur-
cating orbits with symmetry groups that are subgroups of Dqd .

In Sect. 4 and the Appendix we find secondary bifurcation orbits, bifurcating from the
primary orbit with Dqd symmetry, which have either Crv or Dr symmetry (each containing
2r elements), where r is a divisor of q . Configurations with Crv symmetry have phase-shift
and vertical mirror symmetries, whereas configurations with Dr symmetry have phase-shift
and inversion symmetries. Figures 2(c)–(h) show examples of configurations with symmetry
groups D4, C4v , D2, C2v , D1, and C1v , respectively. Notice that, as presented here, config-
urations with Dr symmetry are odd: w(x) = −w(−x), and those with Crv symmetry are
even: w(x) = w(−x). We refer to the Appendix for details.

2.4 Stability

To determine the stability of an equilibrium solution (w(x);λ), one has to check the positive
definiteness of the self-adjoint bilinear operator E,ww , evaluated at the investigated solution
(w(x);λ), by finding its eigenvalues β

(E,ww%w)δw = β < %w, δw > ; ∀δw ∈ H ; E,ww := E,ww(w(x);λ) , (2.9)

where %w is the corresponding eigenmode and < · , · > denotes an inner product in H .
A stable solution corresponds to a positive minimum eigenvalue8 βmin > 0 (the number
of eigenvalues depends on the dimension of H ). For the stability of periodic solutions (of
period Ld ) one can take advantage of the Bloch-wave representation theorem, according to
which any eigenmode %w of the stability operator E,ww in Eq. (2.9) admits the following
representation

%w(x) = exp(i2πkx/Ld) p(x) , (2.10)

where i =
√

−1 is the imaginary unit, p(x) is Ld -periodic, and k ∈ [0,1) is the wavenum-
ber. Thus, the Bloch-wave representation reduces the eigenvalue problem Eq. (2.9) to a set
of smaller dimensional ones (one such problem for each value of the wavenumber). By
scanning all admissible values of k, one can find βmin(k) for each value of k and ultimately
obtain βmin := min

k
(βmin(k)).

For a well-posed problem, its stress-free (unloaded) configuration at λ = 0 is stable; as
the load increases stability will be lost at the first bifurcation point encountered along the
loading path at some λb .

3 Numerical Method

The Finite Element Method (FEM) is used for the numerical solution of the boundary value
problem defined by Eqs. (2.3), (2.4). The calculation domain [−Ld/2, Ld/2] is divided in
Nd equal length elements. A cubic Hermite interpolation is used to approximate the dis-
placement w(x) within each two-node element. The unknown degrees of freedom q are the
values of the displacement and its derivative, i.e., q(x) = (w(x), dw/dx(x)). The discretiza-
tion procedure results in a 2(Nd + 1) nonlinear system of algebraic equations for the same

8As mentioned above, in the problem at hand, we find continuous orbits of equilibria, all having the same
energy. This implies the existence of a zero eigenvalue of the stability operator E,ww in Eq. (2.9). Thus, all
equilibria are, at best, neutrally stable. Accordingly, in this work we ignore the zero eigenvalue associated
with the solution orbit and require that all other eigenvalues be positive for stability.
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number of unknowns. A three point Gauss integration scheme9 was found satisfactory for
the numerical calculations, in view of the fine meshes required for the highly localized de-
formation solutions. Element sizes of length Ld/400 are used in the reported calculations;
smaller elements were also tested but made no difference for the required accuracy of the
results.

Given that we are seeking solutions in H 2
Ld

(R) approximated by Hermite cubics, we can-
not apply Eq. (2.4) for lack of adequate continuity. From group theoretic considerations (see
Sect. 2.3 and the Appendix), we observe that the deformations on the primary bifurcation
orbit should satisfy10 w(x) = −w(−x) corresponding to the Dqd symmetry group, whereas
on the secondary bifurcation orbits they should satisfy w(x) = w(−x) and w(x) = −w(−x)

corresponding to Crv and Dr symmetry groups, respectively. These conditions enable the ap-
plication of the following essential boundary conditions for the finite element model, while
the work conjugate natural boundary conditions remain unconstrained:11

Primary bifurcated equilibrium orbits:

w(−Ld/2) = w(Ld/2) = 0,

dw

dx
(−Ld/2) = dw

dx
(Ld/2),

(Dqd symmetry); (3.1)

Secondary bifurcated equilibrium orbits:

w(−Ld/2) = w(Ld/2),

dw

dx
(−Ld/2) = dw

dx
(Ld/2) = 0,

(Crv symmetry);

w(−Ld/2) = w(Ld/2) = 0,

dw

dx
(−Ld/2) = dw

dx
(Ld/2),

(Dr symmetry).

(3.2)

A standard Newton–Raphson method is employed to solve the nonlinear system with an
arc-length continuation method (see [36]) to handle local extrema in the dimensionless axial
load λ or its work-conjugate (average) strain %.

Dispersion relations for an equilibrium path of period Ld are based on examination of
the eigenvalues of the stiffness matrix (discretized second derivative of the energy density
E,ww) appropriately modified by using the Bloch-wave theorem, which couples the degrees
of freedom q at the two ends of the domain with the help of the dimensionless wavenumber k

q(Ld/2) = exp(i2πk) q(−Ld/2) ; k ∈ [0,1). (3.3)

The resulting complex, Hermitian stiffness matrix has real eigenvalues. As discussed
in Sect. 2.4, stability of the equilibrium path at hand is guaranteed only if the minimum
eigenvalue of this stiffness matrix is positive for all values of the wavenumber k, i.e.,
βmin(k) > 0, k ∈ [0,1).

9This is adequate for correct integration of the higher-order gradient term in the stiffness matrix.
10As described in Sect. 2.3, the primary bifurcation orbit consists of an infinite set of configurations generated
by the symmetries of D∞h; here we select one specific representative of the orbit.
11The higher-order derivatives that must vanish by symmetry are thus only approximately satisfied.

Author's personal copy



Stable Spatially Localized Configurations in a Simple Structure. . . 173

Additional information is available from the stiffness matrix of an equilibrium path: bi-
furcation points appearing on that path are obtained by examining the vanishing of the real
eigenvalues of the path’s stiffness matrix, while the corresponding eigenmodes are used to
start the emerging higher-order bifurcated equilibrium paths.

4 Results

In this section we present the principal solution, the primary and higher-order bifurcated
equilibrium orbits for the perfect structure, the equilibrium orbits for the imperfect structure,
as well as their stability for the nonlinear beam–foundation model described in Sect. 2. Solid
and dashed lines in figures correspond, respectively, to stable and unstable solutions, based
on Bloch-wave analysis of the largest supercell, here taken to be Ld = Lcq = 40π .

4.1 Perfect Model

Here we analyze the equilibrium solutions of the perfect model described in Sect. 2.1, start-
ing with the principal solution for the initial (and largest) symmetry group D∞h. We study
its stability and find the continuous orbit of the primary bifurcation paths, emerging from the
lowest critical load, which has a Dqd symmetry group. We subsequently follow the emerg-
ing secondary bifurcation branches of even lower symmetry groups away from the primary
branch. It should be noted at this point that due to symmetry, several equilibrium paths
emerge from each bifurcation point, usually belonging to different orbits. For the graphi-
cal projections employed here, only different orbits result in different graphs. Moreover, by
abuse of language we use the word “equilibrium path” for any path belonging to the same
orbit.

4.1.1 Principal Solution and Its Stability

As discussed in Sect. 2.3, the unique element of the model’s fixed-point space SD∞h
is

0
w(x;λ) = 0, the trivial principal solution of the system given by Eqs. (2.3), (2.4). To in-
vestigate its stability, i.e., whether it corresponds to a local energy minimizer, we must
find the minimum eigenvalue βmin(λ) of the corresponding stability operator E0

,ww :=
E,ww(

0
w(x;λ);λ) evaluated on the principal solution, as indicated in Eq. (2.9). The mini-

mum eigenvalue βmin(λ) can be found by minimizing the quadratic form (E0
,wwδw)δw over

all admissible δw with a unit norm

βmin(λ) = min
δw

{
(E0

,wwδw)δw
}
, < δw, δw >=‖ δw ‖2= 1 . (4.1)

Using the Fourier series representation12 of δw(x)

δw =
∞∑

n=0

[
δwcn cos

(2nπ

Ld

x
)

+ δwsn sin
(2nπ

Ld

x
)]

, (4.2)

12Note, as written it is necessary to take δws0 := 0.
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we obtain by substituting Eq. (4.2) into Eq. (4.1)

βmin(λ) = min
‖δw‖=1

{

(δwc0)
2 +

∞∑

n=1

1
2

[((2nπ

Ld

)2
− 1

)2

+ (2 − λ)
(2nπ

Ld

)2][
(δwcn)

2 + (δwsn)
2
]}

. (4.3)

A simple inspection of Eq. (4.3) reveals that βmin(λ) > 0 for 0 ≤ λ < 2 and hence the

principal solution
0
w is always stable for 0 ≤ λ < 2. The critical bifurcation, i.e., the one

corresponding to the lowest possible root of βmin(λ) = 0, occurs at λ = λc = 2. Moreover,
taking Lc = 2π and Ld = Lcq, q ∈ N where q ! 1, one can see that this bifurcation corre-
sponds to a double eigenvalue with eigenmodes

λc = 2 , Lc = 2π , nc = q ; c1
w(x) = sin(x) ,

c2
w(x) = cos(x) . (4.4)

Additional, double bifurcations can be found from Eq. (2.9) corresponding to the next
higher roots of β(λn) = 0 with λn > λc = 2, Ln = (q/n)Lc and eigenmodes given by

λn =
[(

n

q

)2

+
(q

n

)2
]

, q ,= n ∈ N ; n1
w(x) = sin

(
n

q
x

)
,

n2
w(x) = cos

(
n

q
x

)
. (4.5)

Each λn corresponds to a bifurcation point, as guaranteed by the transversality conditions
(see [33])

En
,wλ

ni
w = 0, i = 1,2; and det

[([
dE0

,ww

dλ

]

λ=λn

ni
w

)
nj
w

]

,= 0 i, j = 1,2 , (4.6)

where the superscript n denotes evaluation of the quantity at hand at a point (
0
w, λn). These

results are consistent with group theory, as discussed in the Appendix.

4.1.2 Primary Bifurcation Orbit and Its Stability

We focus next on the bifurcated equilibrium paths which are the uniformly wrinkled periodic
configurations of the beam–foundation system. These paths emerge from the lowest critical
load λc , where—according to Eqs. (4.4) and (4.6)—a double, pitchfork bifurcation occurs
(see the Appendix). At this point a continuous orbit of bifurcated equilibrium paths can be
constructed starting from any linear combination of the eigenmodes: a cos(x) + b sin(x).
A representative element of this orbit that also belongs to the fixed-point space SDqd

(see

the Appendix), is the 2π -periodic solution
1
w(x; ξ), plotted in Fig. 3, and parameterized

using the bifurcation amplitude ξ := max−Ld/2≤x≤Ld/2 | 1
w(x)|. It is obtained by solving nu-

merically the Euler–Lagrange Eq. (2.3) subjected to the boundary conditions Eq. (3.1) for
the full nonlinear problem in the interval (−Ld/2,Ld/2), with Ld = 2π in this case. The
reason for the ξ parameterization13 is that the applied axial load λ(ξ) is not a monotonic
function of the bifurcation amplitude ξ .

13In fact, even the employed parameterization is problematic, since it is restricted to ξ ≥ 0, and is therefore
unable to distinguish between the two “halves” of the bifurcated path.
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Fig. 3 A primary bifurcated

equilibrium path
1
w(x; ξ) is a

2π -periodic function with
extremum values ±ξ , where

ξ := max−Ld/2≤x≤Ld/2 | 1
w(x)|

is the bifurcation amplitude
parameter. It is a representative
of the continuous orbit of the
Dqd -symmetric bifurcated paths
emerging at λc = 2

The nonlinear foundation plays an important role on the primary bifurcated equilibrium
orbit. This is shown in Fig. 4, which depicts the load λ vs. strain %, bifurcation amplitude ξ

vs. load λ, bifurcation amplitude ξ vs. strain %, and energy density E vs. load λ for the con-

tinuous orbit of the primary bifurcation path
1
w(x; ξ). Note that for the softening foundations

α = −1 the load λ is initially a decreasing function of the strain % and the bifurcation ampli-
tude ξ . This decrease is monotonic for the no re-hardening foundation γ = 0, but reverses
itself for the mild (γ = 0.25) and strong (γ = 0.5) re-hardening foundations. In contrast,
for the hardening foundation α = +1, the load λ is a monotonically increasing function of
the strain % and of the bifurcation amplitude ξ . These trends are shown in Fig. 4(a) and
Fig. 4(b). In Fig. 4(c) one can also observe that the amplitude ξ vs. strain % relation is
practically independent of the foundation, with only small differences emerging for large
values of the strain. The energy increases as we move along the primary bifurcation orbit
for the softening foundations α = −1, monotonically for γ = 0, but eventually reversing the
trend for γ = 0.25 and γ = 0.5. The energy decreases monotonically as we move along the
primary bifurcation orbit for the hardening foundation α = +1. The energy trends can be
observed in Fig. 4(d).

The stability of the primary bifurcation orbit
1
w(x; ξ) is also recorded in Fig. 4; solid

and dashed lines correspond, respectively, to stable and unstable parts. Notice that for the
softening with no re-hardening foundation (α = −1,γ = 0) the primary bifurcation orbit is
always unstable. For the re-hardening foundations (α = −1,γ ,= 0), in the neighborhood of
ξ = 0, the primary bifurcation paths are unstable. Stability is regained a little past the point
where the load λ reaches its minimum as a function of the strain % (the limit point). Also at
the limit point, the energy reaches its maximum value and starts decreasing as the bifurcation
amplitude increases. The energy trends are recorded in Fig. 4(d). The stability results for the
hardening foundation (α = +1) run opposite to the softening case: the primary bifurcated
equilibrium orbit is stable in the neighborhood of ξ = 0 but loses stability at about ξ ≈ 1.3.

A more detailed stability study of the primary bifurcation orbit
1
w(x; ξ) is provided by the

dispersion relation, giving its minimum eigenvalue βmin(k) as a function of the wavenumber
k at different values of the bifurcation amplitude ξ . Results for the softening foundations
(α = −1) are recorded in Fig. 5 and for the hardening foundation (α = +1) in Fig. 6. Since
the stability operator E,ww is self-adjoint, the eigenvalues of the corresponding discretized
Hermitian stiffness matrix are symmetric with respect to k = 0, i.e., β(k) = β(−k). This
property, combined with the periodicity of the eigenvalue, i.e., β(k + 1) = β(k), following
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Fig. 4 Plots showing the emergence of the primary bifurcation orbit
1
w(x; ξ) from the principal solution

(
0
w(x;λ) = 0) of a perfect structure for different types of foundations. Bifurcation diagrams showing (a) load

λ vs. strain %, (b) amplitude ξ vs. load λ, (c) amplitude ξ vs. strain %, and (d) energy density E vs. load
λ. Solid and dashed lines correspond, respectively, to the stable and unstable parts of the primary bifurcation
orbit, based on Bloch-wave analysis of a Ld = 2π unit cell

from Eq. (3.3), results in the mirror symmetry of the graphs in Fig. 5 and Fig. 6 with respect
to k = 1/2. Their intersection with the βmin = 0 line indicates bifurcation points.

For the softening foundations, as the bifurcation amplitude ξ increases the graphs in
Fig. 5 the minimum eigenvalue curve βmin(k) shifts downward and the curve flattens. For

the re-hardening case, as the primary bifurcation orbit
1
w(x; ξ) passes the limit point, the

graph starts moving upward, as seen in Fig. 5(c) corresponding to the strong re-hardening
foundation (α = −1,γ = 0.5).

The dispersion curves for the hardening foundation are plotted in Fig. 6. Notice that for
bifurcation amplitudes up to ξ ≈ 1.3, βmin(k) > 0 as expected from the stability results in
Fig. 4. For a fixed wavenumber k, the minimum eigenvalue βmin(k) is a decreasing function
of the bifurcation amplitude ξ . Moreover, and in contrast to the curves for the softening
foundation case in Fig. 5 which shift in the negative y direction as the bifurcation amplitude
increases, all the dispersion curves are pinned at the ends βmin(0) = βmin(1) = 0. As the
bifurcation amplitude increases further (ξ ≈ 1.725), the primary bifurcation path is unstable
over the entire range of wavenumbers, βmin(k) < 0.
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Fig. 5 Dispersion relations
(minimum eigenvalue of the
stability operator βmin(k) vs.
wavenumber k) for the primary
bifurcation paths of the three
different soft foundation models:
(a) no re-hardening
(α = −1, γ = 0), (b) mild
re-hardening
(α = −1, γ = 0.25), and
(c) strong re-hardening
(α = −1, γ = 0.50)

Finally a remark that applies to the existence of βmin(0) = 0 in the dispersion curves is in
order. At k = 0, as seen in the Fig. 5 graphs βmin = 0 for the principal solution (ξ = 0), while
β = 0 is an eigenvalue for the primary bifurcation orbit (ξ > 0), but not the minimum one.
In the Fig. 6 graphs βmin = 0 for the principal solution and the primary bifurcation orbit
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Fig. 6 Dispersion relations
(minimum eigenvalue of the
stability operator βmin(k) vs.
wavenumber k) for the primary
bifurcation path in the case of a
hardening foundation
(α = +1,γ = 0)

(∀ξ ≥ 0). The reason stems from the fact that any solution—principal, primary, etc.—of
the equilibrium equations which is 2π -periodic, and hence corresponds to k = 0 according
to Eq. (3.3), has a zero eigenvalue. Indeed differentiating the equilibrium equations for an
equilibrium solution E,w(w(x + c);λ)δw = 0 with respect to an arbitrary phase-shift of c we
obtain

d

dc

[
E,w(w(x + c);λ)δw

]
= 0 =⇒

(
E,ww

[
dw

dx
(x;λ)

])
δw = 0 , (4.7)

indicating that zero is always an eigenvalue of the stability operator E,ww with corresponding
eigenmode dw/dx.

4.1.3 Secondary Bifurcation Orbits for Softening Foundations (α = −1)

We are interested next in the secondary bifurcated equilibrium orbits emerging from the
primary one, i.e., solutions of the Euler–Lagrange Eq. (2.3) subjected to the boundary con-
ditions Eq. (3.2) for a beam of length Ld = Lcq resting on a softening foundation (α = −1).
According to the dispersion results in Fig. 5, the primary orbit is always unstable for long
wavelengths, i.e., in the neighborhood of k = 0; as the bifurcation amplitude ξ increases, it
becomes unstable for shorter wavelengths. To capture the longest possible wavelength mode,
a q ! 1 is needed and hence our numerical calculations use q = 20 along with boundary
conditions Eq. (3.2) for the Crv or Dr secondary bifurcating paths.

The secondary bifurcation orbits for the case of the softening foundation with no re-
hardening (α = −1, γ = 0) are recorded in Fig. 7. On the primary bifurcation orbit, we
mark all the (double) bifurcation points found for a Ld = 40π supercell. The secondary
bifurcation orbits plotted are labeled two ways: the first label indicates the symmetry group
of the orbit. The second label pertains to the corresponding eigenmodes: from the symmetry
of the dispersion curve with respect to k = 1/2 follows that each bifurcation point is double,
since it corresponds to two different modes; for example k = 7/20 and k = 1 − 7/20 =
13/20. The value of each wavenumber is directly related to the number of periods in the
supercell; for example k = 7/20 means a solution with 7 periods for the 20 unit supercell.
For simplicity, only the lower of the two wavenumbers corresponding to each bifurcation
point is recorded. A group-theoretic explanation of the results is given in the Appendix. The
top two graphs in Fig. 7 show the amplitude ξ vs. load λ in the interval 1.6 ≤ λ ≤ 2; more
specifically, all the secondary orbits emerging from the primary one are plotted in Fig. 7(a)
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Fig. 7 Emergence of secondary bifurcations from the primary orbit in the case of the softening foundation
model with no re-hardening (α = −1, γ = 0). All bifurcation points are indicated by a small circle. Notice
that all paths are unstable (plotted in dashed lines), based on Bloch-wave analysis of a q = 20 (Ld = 40π )
supercell. (a) Amplitude ξ vs. load λ bifurcation diagram for all secondary orbits emerging from the primary
orbit. (b) Amplitude ξ vs. load λ, (c) amplitude ξ vs. strain %, and (d) load λ vs. strain % bifurcation diagrams
for the simple harmonic secondary bifurcated orbits k = n/q,n = 1,2,4,5,10

while—to avoid clutter—only the orbits corresponding to the simple harmonic modes k =
n/q, n = 1,2,4,5,10 are plotted in Fig. 7(b). Results for these simple harmonic secondary
bifurcated orbits are presented as bifurcation amplitude ξ vs. strain % in Fig. 7(c) and as load
λ vs. strain % in Fig. 7(d). Observe that the secondary bifurcated orbit that emerges closest
to the critical load is the one with longest wavelength (k = 1/20), while orbits with shorter
wavelength modes emerge at lower loads. Notice that all secondary bifurcation orbits are,
like the primary one, unstable.

Although all bifurcation points are double, the number of emerging orbits can be either
one, for a globally transverse bifurcation, or two, for the case of a globally pitchfork bi-
furcation. As seen from Fig. 7, the only two single-orbit transverse bifurcations are found
at k = 4/20 and k = 8/20; from all other bifurcation points there emerge two different
globally pitchfork bifurcation orbits. Another interesting feature of this problem is that all
bifurcations—even the globally transverse ones—are locally pitchfork since symmetry dic-
tates that the coefficients of the bifurcation equations are all zero: Eijk = 0. A group theory
justification of this, due to symmetry, as well as an explanation for the transverse/pitchfork
orbits for the different wavenumber k is given in the Appendix. The two secondary bifurca-
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tion branches emerging from each bifurcation point (corresponding either to different orbits
in a pitchfork case or the two halves of the transverse orbit) are nearly coincident initially,
but subsequently grow apart; the further the bifurcation point is from the origin of the prin-
cipal branch, the sooner the secondary branches separate from each other. This is shown in
Fig. 7.

The next question to be addressed pertains to the shape, i.e. spatial dependence of these
secondary bifurcated orbits. Symmetric (even with respect to x = 0) and antisymmetric (odd
with respect to x = 0) equilibrium solutions for the beam on a softening foundation with no
re-hardening (α = −1, γ = 0), calculated for a q = 20 (Ld = 40π) supercell at load λ = 1.3
for different orbits, are plotted in Fig. 8. These orbits emerge from pitchfork bifurcation
points with wavenumbers: k = 1/20 and 3/20 (corresponding to C1v orbits for the symmet-
ric case and D1 orbits for the antisymmetric case) and k = 6/20 (corresponding to a C2v

orbit for the symmetric case and a D2 orbit for the antisymmetric case). These secondary
bifurcation paths are plotted for a load λ = 1.3, well away from their origin point on the
primary bifurcation orbit. In each case the solution is localized about one (for k = 1/20) or
more (for k = 3/20 and 6/20) locations, distributed uniformly along the supercell domain,
as expected from the wavenumber of the corresponding eigenmode. Recall, from the results
in Fig. 7, that all solutions depicted in Fig. 8 are unstable. It is noteworthy that the equilib-
rium paths for k = 3/20 and 6/20 consist of equally spaced repetitions of the symmetric and
antisymmetric k = 1/20 shapes as their fundamental building blocks. We conclude that the
equilibrium solutions that are most localized are secondary bifurcated paths emerging near
the critical point and correspond to the eigenmode with the smallest wavenumber; however
they are always unstable due to the monotonically softening foundation.

Calculations for the secondary bifurcation orbits for the softening foundation with mild
re-hardening (α = −1, γ = 0.25) are presented next in Fig. 9. From the results in Fig. 4,
the primary bifurcation orbit is initially unstable, but stabilizes upon reaching a limit load
for a large value of the bifurcation amplitude parameter (ξ > 1.5). Moreover, from the
corresponding dispersion results in Fig. 5 and similarly to the no re-hardening case, the
primary orbit is always unstable for long wavelengths, i.e. in the neighborhood of k = 0;
as the bifurcation amplitude ξ increases, it becomes unstable for shorter wavelengths as
well. However, and in contrast to the no re-hardening foundation in Fig. 7, the bifurcation
points appear concentrated in two clusters, one near λ = 2 where the secondary bifurca-
tion paths emerge and the other near the limit load where the secondary paths reconnect to
the primary path. To avoid clutter, only orbits corresponding to the simple harmonic modes
k = n/q, n = 1,2,4,5,10 are plotted; for the same reason orbits emerging closer to the
critical load are stopped before reconnecting to the primary branch (ending point marked
by a ×). For the purpose of demonstration, only the secondary bifurcation orbits with the
k = 10/20 eigenmode are continued all the way until they reconnect to the primary one.

The main difference from the results in Fig. 7, for the no re-hardening foundation, is
the considerably more complicated structure of the secondary bifurcation orbits. This is
seen by a comparison to the mild re-hardening case in Fig. 9. The corresponding secondary
bifurcated orbits, initially similar to their counterparts in the no re-hardening case, reach a
state where they oscillate between two bounds of the load, in Fig. 9(a) and in Fig. 9(c), or of
the amplitude, in Fig. 9(b) (e.g., [31]). Even more interesting is the fact that these oscillating
secondary bifurcated paths are initially unstable, but stabilize and destabilize repeatedly
upon reaching either a limit load or another bifurcation point.

The shape of the symmetric (even with respect to x = 0) and antisymmetric (odd with
respect to x = 0) secondary bifurcated orbits calculated for a load λ = 1.2 and emerging
from the bifurcation with the lowest wavenumber k = 1/20, are plotted in Fig. 10. These are
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Fig. 8 Symmetric and
antisymmetric solutions w(x) for
the softening foundation model
with no re-hardening
(α = −1, γ = 0), calculated for a
q = 20 (Ld = 40π) supercell at a
load λ = 1.3 for secondary
bifurcation orbits corresponding
to different values of the
wavenumber (a) k = 1/20,
(b) k = 3/20, and (c) k = 6/20.
The bifurcated orbits depicted
here are all unstable

all stable, with the solutions at points A and C corresponding to symmetric (C1v) orbits and
the ones at B and D to antisymmetric (D1) ones. Observe that the deformation is spatially
localized at the middle of the supercell calculation domain; as the strain increases notice
a corresponding increase in the number of peaks by comparing the symmetric solutions at
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Fig. 9 Emergence of secondary
bifurcations from the primary
bifurcation orbit in the case of the
softening foundation with mild
re-hardening
(α = −1, γ = 0.25). All
bifurcation points are indicated
by a small circle. Solid and
dashed lines correspond,
respectively, to the stable and
unstable parts of these
equilibrium paths, based on
Bloch-wave analysis of a
q = 20 (Ld = 40π) supercell.
Notice that all bifurcated orbits
have stable portions, due to the
re-hardening foundation.
Moreover these secondary orbits
eventually join the primary
branch. Results are presented
only for orbits corresponding to
the simple harmonic modes
k = n/q, n = 1,2,4,5,10 and
show the (a) amplitude ξ vs. load
λ, (b) amplitude ξ vs. strain %,
and (c) load λ vs. strain %
bifurcation diagrams

points A and C or the antisymmetric ones at B and D. In comparing the secondary bifurca-
tion orbits corresponding to k = 1/20 for the two different foundations in Fig. 8 and Fig. 10
(at points A and B), it is noteworthy that the shape of the localized deformation equilibrium
paths are very similar (as the corresponding loads are close: λ = 1.3 in the first and λ = 1.2
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Fig. 10 Symmetric and antisymmetric stable solutions w(x) for the softening foundation model with mild
re-hardening (α = −1, γ = 0.25), calculated for a q = 20 (Ld = 40π) supercell at a load λ = 1.2 but at
different strains % for the secondary bifurcation orbits corresponding to the lowest value of the wavenumber
k = 1/20. (a) Points A and B, and (b) Points C and D (see Fig. 9(c))

in the second) although the corresponding solutions are unstable and stable, respectively.
We have thus observed that a stable equilibrium path with a sharply localized deformation
pattern in only one location occurs only when the foundation re-hardens. An uncluttered
bifurcation diagram showing only the primary and localized C1v : k = 1/20 secondary bi-
furcated equilibrium paths is shown later in Fig. 17 (where we also demonstrate that these
stable solutions are insensitive to imperfections).

Results for secondary bifurcation orbits of the beam with the softening foundation and
strong re-hardening (α = −1, γ = 0.50), calculated using a q = 20 (L = 40π) supercell,
are plotted in Fig. 11. Similarly to the mild re-hardening foundation results in Fig. 9, the sec-
ondary orbits for the strongly re-hardening foundation form loops that emerge and reconnect
to the primary orbit. Once again, to avoid clutter, only secondary orbits corresponding to the
simple harmonic modes k = n/q, n = 1,2,4,5,10 are plotted with orbits emerging closer
to the critical load stopped before reconnecting to the primary one (ending point marked by
a ×). The same features observed in Fig. 9 are also present here, namely the upper and lower
bounds for the bifurcation amplitude and the load as functions of the strain, as well as the
alternating stable/unstable portions of the corresponding orbits.

The shape of the equilibrium paths for the symmetric and antisymmetric (with respect to
x = 0) secondary bifurcation orbits calculated for a load λ = 1.62 and corresponding to the
bifurcation with the lowest wavenumber (k = 1/20) are plotted in Fig. 12. These are all sta-
ble, with the solutions at points P, R, and T corresponding to symmetric (C1v) orbits and the
ones at Q, S, and V corresponding to antisymmetric (D1) ones. Once again the deformation
is localized at the middle of the supercell calculation domain. However, the localized region
for the strong re-hardening foundation consists of a concentrated packet of high amplitude
oscillations as seen in Fig. 12(a) in contrast to the highly localized deformation observed
in Fig. 10(a); although, due to the re-hardening behavior, the evolution of deformation (see
Fig. 10(a)–(b) and Fig. 12(a)–(c)) in both the models show an increase in the number of
oscillations with the applied strain.

Reviewing the results for the softening foundation models (α = −1), we observe that the
primary bifurcation orbit corresponding to the lowest (i.e., critical) load λc = 2 is pitchfork
and subcritical—with the respect to the load—and unstable at least for small amplitudes ξ .
Moreover, with increasing values of ξ on the primary path, the mode corresponding to the
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Fig. 11 Emergence of secondary
bifurcations from the primary
bifurcation orbit in the case of the
softening foundation with strong
re-hardening
(α = −1, γ = 0.50). All
bifurcation points are indicated
by a small circle. Solid and
dashed lines correspond,
respectively, to the stable and
unstable parts of these
equilibrium paths, based on
Bloch-wave analysis of a
q = 20 (Ld = 40π) supercell.
Notice that all bifurcated orbits
have stable portions, due to the
re-hardening foundation.
Moreover these secondary orbits
eventually join the primary
branch. Results are presented
only for orbits corresponding to
the simple harmonic modes
k = n/q, n = 1,2,4,5,10 and
show the (a) amplitude ξ vs. load
λ, (b) amplitude ξ vs. strain %,
and (c) load λ vs. strain %
bifurcation diagrams

lowest wavenumber (i.e., k = 1/q for the supercell Ld = 2πq) becomes unstable first fol-
lowed by higher wavenumber modes. The critical load is an accumulation point for the cas-
cading secondary bifurcation points. From these bifurcation points we find the deformation
with only one localization zone is obtained by following the secondary orbit with the lowest
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Fig. 12 Symmetric and
antisymmetric stable solutions
w(x) for the softening foundation
with strong re-hardening
(α = −1, γ = 0.50), calculated
for a q = 20 (Ld = 40π)
supercell at load λ = 1.62 but
different strains % for the
secondary bifurcation orbits
corresponding to the lowest value
of the wavenumber k = 1/20.
(a) Points P and Q, (b) Points R
and S, and (c) Points T and V
(see Fig. 11(c))

wavenumber k = 1/q . Although this orbit is always initially unstable, we find that for the
case of the re-hardening foundations it stabilizes, thus explaining the mechanism of generat-
ing stable—and hence observable—highly localized deformation solutions. It should also be
repeated at this point that the secondary bifurcation orbits have their own symmetry groups
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(albeit smaller than the group Dqd of the primary orbit) and hence symmetry-breaking ter-
tiary bifurcations are possible. However, since the mechanism for the development of stable,
highly localized deformation solutions has been established with the help of secondary bi-
furcation orbits, these higher-order bifurcation paths will not be explored.

4.1.4 Secondary Bifurcation Orbits for the Stiffening Foundation (α = +1)

Attention is now turned to the secondary bifurcated equilibrium orbits emerging from the
primary one, i.e., solutions to Eqs. (2.3), (3.2) for a beam of length Ld = 2πq resting on
a monotonically stiffening foundation (α = +1). As seen in Fig. 4, the corresponding pri-
mary bifurcation orbit is supercritical, i.e., increasing with respect to both load λ and strain
% and—in contrast to the softening foundation case—stable in the neighborhood of the
critical load λc = 2 (see also the dispersion results in Fig. 6). The secondary bifurcation
orbits corresponding to the simple harmonic modes k = n/q , n = 1,2,4,5,10 are recorded
in Fig. 13. They correspond to pitchfork bifurcations with two orbits emerging from each
bifurcation point, except for the one with k = 1/4 which is globally transverse with only
one orbit emerging at the bifurcation. These unstable secondary orbits eventually join the
supercritical, globally pitchfork primary orbits emerging at loads λ > 2 (and hence with unit
cell lengths Ld = 2π/r, r > 1, see also Eq. (4.5) and, e.g., [31]). It is also worth mentioning
that the primary bifurcations emerging for λ > 2 are initially unstable for small values of the
amplitude ξ , but at larger amplitudes they stabilize. This can be as seen in Fig. 13 for the
primary bifurcation paths with r = 1.5, 1.25, and 1.20 (periods Ld = 2π/r = 4π/3, 8π/5,
and 5π/3).

The hardening foundation model presents an important difference with the softening
foundation ones: the absence of equilibrium solutions with a single, highly localized de-
formation zone. Typical results are shown in Fig. 14 depicting symmetric (even with respect
to x = 0) and antisymmetric (odd with respect to x = 0) unstable solutions. These configu-
rations correspond to the monotonically hardening foundation (α = +1, γ = 0), calculated
for a q = 20 (Ld = 40π) supercell at a load λ = 2.48 and are associated with the secondary
orbit emerging from the bifurcation point with the lowest wavenumber (k = 1/20, see point
U in Fig. 13(c)). These unstable secondary bifurcated orbits eventually connect to an, also
unstable, primary bifurcation orbit emerging from the principal solution at λ > 2. This helps
explain the shapes observed in Fig. 14. Only the critical primary orbit is stable near λc = 2.
However, once the load λ becomes somewhat larger, λ > λc , there exist stable primary or-
bits.

4.2 Imperfect Model

The imperfect model for Ld = Lcq with q = 20 has the same trivial solution (w(x;λ) = 0)
as its perfect counterpart. Its considerably lower symmetry group (D1h) results in simple
bifurcations (of symmetry14 C1v) at loads λcis that depend on the imperfection amplitude
ζ and size 2x0. This critical load and corresponding eigenmode can be found analytically
and the corresponding calculations are given in Appendix A.4. Starting at this critical load
and using the corresponding eigenmode as an initial guess, we construct the equilibrium
solutions for an imperfect beam and compare them to the corresponding solutions of its
perfect counterpart of the same length.

14There are also simple bifurcations of symmetry D1 which occur at loads λcia , but λcia > λcis (see Ap-
pendix A.4). Here we are interested in the first (i.e. lowest load) bifurcation point, so we do not present the
imperfect bifurcations with D1 symmetry.
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Fig. 13 Emergence of secondary
bifurcations from the primary
bifurcation orbit in the case of the
monotonically hardening
foundation (α = +1, γ = 0). All
bifurcation points are indicated
by a small circle. Solid and
dashed lines correspond,
respectively, to the stable and
unstable parts of these
equilibrium paths, based on
Bloch-wave analysis of a
q = 20 (Ld = 40π) supercell.
Notice that the primary orbit is
stable from its origin at λc = 2 up
to point (λ,%) ≈ (3.4,0.5),
beyond which secondary
bifurcation orbits emerge. These
eventually join primary orbits
emerging from the principal
solution at λ > 2 (orbits with unit
cell periods Ld = 2π/r, r > 1,
see also Eq. (4.5)). Results are
presented only for orbits
corresponding to the simple
harmonic modes k = n/q ,
n = 1,2,4,5,10 and show the
(a) amplitude ξ vs. load λ,
(b) amplitude ξ vs. strain %, and
(c) load λ vs. strain % bifurcation
diagrams

Figure 15 shows a comparison of the imperfect and perfect beam solutions. Results for
each of the four different foundations considered in this work are included. The primary
bifurcation paths (termed imperfect solutions) of an imperfect (ζ = −0.01, 2x0 = 0.01Ld )

periodic beam of period Ld = 40π emerge from the bifurcation point with eigenmode
is
w (x)
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Fig. 14 Symmetric and
antisymmetric unstable solutions
w(x) for the monotonically
hardening foundation
(α = +1, γ = 0), calculated for a
q = 20 (L = 40π) supercell at
load λ = 2.48 for the secondary
bifurcation orbits corresponding
to the lowest value of the
wavenumber k = 1/20 (see
Point U in Fig. 13(c))

(see Eq. (A.10)). The corresponding secondary bifurcation orbits of the perfect periodic
beam, (termed perfect solutions) are also shown. The secondary bifurcated equilibrium or-
bits of a perfect infinite, periodic beam emerge from the bifurcation point with the lowest
wavenumber k = 1/20. Plots in Fig. 15 show the (a) load λ vs. strain %, (b) bifurcation
amplitude ξ vs. load λ, (c) bifurcation amplitude ξ vs. strain %, and (d) energy density E
vs. load λ. Recall the convention that solid and dashed lines correspond, respectively, to the
stable and unstable parts of the different equilibrium paths.

For the case of the softening foundations (α = −1), the main conclusion from Fig. 15
is that a small, localized imperfection results in a primary bifurcation orbit almost indistin-
guishable from the corresponding secondary bifurcation orbit with the longest wavelength
emerging closest to λc = 2 of the perfect structure, as seen also in Figs. 7, 9, and 11. Another
noteworthy fact is that the stability of the two paths (imperfect and perfect) is the same. Not
only are the overall measures of these perfect and imperfect equilibrium orbits practically
coincident (i.e., load vs. strain, bifurcation amplitude vs. strain, etc.), but their shapes (see
Fig. 17) are also practically indistinguishable.

For the case of the hardening foundation (α = +1), one can see (by comparing the re-
sults in Fig. 15 to the corresponding ones for the perfect structure in Fig. 13) that a small,
localized imperfection results in a primary bifurcation orbit almost indistinguishable from
the corresponding primary bifurcation orbit of the perfect structure. Again, these two paths
(imperfect and perfect) share nearly identical stability properties.

To understand the emergence of the imperfect equilibrium paths and their connection to
the primary and secondary orbits of the perfect structure better, we zoom in to the region
near the critical load λc = 2 in Fig. 16. For the softening foundation case α = −1, the graphs
of Fig. 16 clearly show that the imperfect equilibrium path, starting from15 λcis , skirts the
primary bifurcated orbit of the perfect structure and subsequently follows the secondary
bifurcated orbit with the smallest wavenumber k = 1/20. If a longer domain had been used,
the imperfect solution would, similarly, eventually follow the perfect structure’s secondary
bifurcation with the longest wavelength. The imperfect primary path for the monotonically
hardening foundation α = +1, which also starts from λcis , is almost indistinguishable from
the stable, perfect primary bifurcation branch emerging at λc = 2.

To conclude, in Fig. 17 we emphasize the main results of this investigation by presenting
an uncluttered bifurcation diagram showing only the (perfect and imperfect) primary and

15From Appendix A.4, it is clear that 2(1 + ζ )1/2 < λcis < 2, for ζ < 0.
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Fig. 15 Emergence of the primary bifurcation paths, termed imperfect solutions, from the principal solution

(
0
w (x;λ) = 0) for a periodically imperfect (ζ = −0.01, 2x0 = 0.01Ld ) infinite beam of period Ld = 40π

for the four different foundations considered in this work. Results are compared to the corresponding sec-
ondary bifurcated equilibrium orbits of a perfect beam emerging from bifurcation points with an eigenmode
wavenumber k = 1/20, calculated for a q = 20, (Ld = 40π , same length) supercell (termed perfect solu-
tions). Solid and dashed lines correspond, respectively, to the stable and unstable parts of these different
equilibrium paths, based on Bloch-wave analysis of a q = 20 (Ld = 40π ) supercell. Plots show the (a) load
λ vs. strain %, (b) amplitude ξ vs. load λ, (c) amplitude ξ vs. strain %, and (d) energy density E vs. load λ

localized C1v : k = 1/20 secondary bifurcated equilibrium paths corresponding to the mild
re-hardening foundation (cf. Fig. 9). The perfect and imperfect equilibrium paths and their
corresponding deformed configurations are nearly indistinguishable; i.e., these solutions are
insensitive to imperfections. In Fig. 17(a) we plot the amplitude ξ vs. load λ for the (perfect
and imperfect) stable spatially localized and stable uniformly wrinkled equilibrium solutions
that exist simultaneously at a load value of λ = 1.2. This load is significantly below the
critical value λc = 2 of the perfect system. Similarly, the load λ vs. strain % is plotted in
Fig. 17(b). These are solutions for the mild re-hardening foundation. Point E corresponds to
the fully localized deformation solutions (perfect and imperfect) shown in Fig. 17(c); Point F
corresponds to the localized packet of deformation solutions (perfect and imperfect) shown
in Fig. 17(d); and Point G corresponds to the uniformly wrinkled deformation solutions
(perfect and imperfect) shown in Fig. 17(e). Not shown is the stable principal solutions

(perfect and imperfect),
0
w(x;λ) = 0, at this load. It is worth repeating that all of these

solutions (and others not shown) are stable. Thus, there exists a rich set of stable deformed
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Fig. 16 Behavior of the perfect and imperfect beams in a region near the critical load λc = 2. Solid and
dashed lines correspond, respectively, to the stable and unstable parts of the different equilibrium paths,
based on Bloch-wave analysis of a q = 20 (Ld = 40π) supercell. Plots show the (a) load λ vs. strain %,
(b) amplitude ξ vs. load λ, (c) amplitude ξ vs. strain %, and (d) energy density E vs. load λ

equilibrium structures for the beam–foundation system at loads well-below the critical value
predicted by the standard linearized buckling analysis of Sect. 4.1.1. Here, we have shown
that a subset of those solutions, that correspond to highly localized deformations, occur as
secondary bifurcations which emerge from the primary bifurcated path immediately after it
emerges from the principal path.

5 Conclusion

The nonlinear beam–foundation model problem analyzed here, although it looks decep-
tively simple, has a very rich and complex set of solutions due to the high degree of its
initial symmetry. Unlike previously proposed methods that use asymptotic techniques (to
obtain an equation for the localized amplitude of a rapidly-oscillating principal bifurcation
eigenmode) near the critical load, we show that to obtain a stable fully localized deformation
for the perfect structure, one has to follow the secondary bifurcating equilibrium path with
the longest wavelength far away from the critical load. The existence of stable—and hence
observable—fully localized deformation solutions appears to require both initial-softening
and later re-hardening of the nonlinear foundation. Indeed, for monotonically softening

Author's personal copy



Stable Spatially Localized Configurations in a Simple Structure. . . 191

Fig. 17 Bifurcation diagram and stable deformed configurations emphasizing the coexistence of multiple
stable solutions at the same value of load λ ≈ 1.2, which is well below the critical load λc = 2 of the perfect,
mild re-hardening (α = −1, γ = 0.25) beam–foundation system. (a) Amplitude ξ vs. load λ bifurcation di-
agram showing only the perfect primary and C1v : k = 1/20 secondary bifurcated paths, and their imperfect
counterparts, for the mild re-hardening foundation (cf. Fig. 9); (b) Load λ vs. strain % bifurcation diagram;
(c) Symmetric fully localized deformation perfect and imperfect solutions (Point E); (d) Symmetric local-
ized packet of deformation perfect and imperfect solutions (Point F); and (e) Symmetric uniformly wrinkled
deformation perfect and imperfect solutions (Point G)
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foundations no stable fully spatially localized solutions are found. Similarly, for monotoni-
cally hardening foundations no stable fully localized deformation solutions are found.

In addition to explaining how to find stable, fully localized deformation solutions in the
problem at hand, the use of group-theory methods for this problem illustrates the general
methodology for tackling nonlinear problems in mechanics with a high degree of symmetry
for which the standard imperfection method is not a reliable option.
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Appendix: Group-Theoretic Considerations

The fundamental concept used to study the bifurcated equilibrium paths and their stability
in any conservative elastic system is the existence of a group G of transformations that
leave its energy E(w;λ)—defined in Eq. (2.2) for the problem at hand—unchanged, i.e.,
invariant under the action of all transformations g ∈ G. More specifically, to each element
g ∈ G we associate an orthogonal transformation Tg (termed “representation” of g) acting
on w(x) ∈ H with image Tg[w] ∈ H that satisfies

E(Tg[w];λ) = E(w;λ) ; ∀λ ≥ 0 , ∀w ∈ H , ∀g ∈ G , (A.1)

where λ is the scalar load parameter (assumed positive) and H the space of admissible
displacements.

It follows from Eq. (A.1) that the variation of E with respect to its argument w (first order
functional derivative E,w) possess the property of “equivariance”

Tg[E,w(w;λ)]δw = E,w(Tg[w];λ)δw ; ∀λ ≥ 0 , ∀w, δw ∈ H , ∀g ∈ G . (A.2)

According to Eq. (2.3), the system’s equilibrium solutions w(x;λ) are found by extrem-
izing its energy; consequently all solutions of the system E,w(w;λ)δw = 0 must satisfy
Eq. (A.2). It is more appropriate to talk about orbits of equilibrium paths since, in view of
the equivariance described in (A.2), applying to an equilibrium solution w the transforma-
tion Tg automatically generates another equilibrium solution Tg[w].

A subset of these equilibrium solutions, termed “principal solutions” and denoted by
0
w(x;λ), are invariant under all transformations Tg . These solutions belong to an invariant
subspace of H , denoted SG and called the “fixed-point space”

E,w(
0
w(x;λ);λ)δw = 0 , ∀λ ≥ 0 ; 0

w ∈ SG := {w ∈ H | Tg[w] = w , ∀g ∈ G} . (A.3)
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To determine the stability of a principal solution, one has to check the positive definite-

ness of the self-adjoint bilinear operator E0
,ww , evaluated on the principal path

0
w(x;λ), by

finding its eigenvalues β(λ)

(E0
,ww%w)δw = β(λ) < %w, δw > ; ∀δw ∈ H ; E0

,ww := E,ww(
0
w(x;λ);λ) , (A.4)

where %w is the corresponding eigenvector and < · , · > denotes an inner product in H .
A stable solution corresponds to a positive minimum eigenvalue16 βmin > 0 (the number of

eigenvalues depends on the dimension of H ). When
0
w(x;λ) is periodic, the Bloch-wave

representation may be used, as described in Sect. 2.4. For a well-posed problem, its stress-
free (unloaded) configuration at λ = 0 is stable; as the load increases stability will be lost at
the first bifurcation point encountered along the loading path at some λb .

It can be shown, e.g., [22, 40], that the existence of the group G implies the existence
of a symmetry basis with respect to which (i) the operator E0

,ww defined in (A.4) can be
block-diagonalized and (ii) the space of admissible functions H = ⊕h

µ=1V
µ can be uniquely

decomposed into a direct sum of mutually orthogonal invariant subspaces V µ (with h being
the number of equivalence, or conjugacy, classes for G). Each subspace V µ is associated
with an nµ-dimensional irreducible representation τµ of G, also termed “irrep” from which
an appropriate projection operator can be constructed giving the V µ component of any func-
tion in H .

Bifurcated equilibrium paths, termed primary, can emerge from the principal path at
loads λb corresponding to zero eigenvalues of Eb

,ww . That is, β(λb) = 0 so that

(Eb
,ww

i
w)δw = 0 ,

i
w ∈ Nµ , <

i
w,

j
w >= δij , i, j = 1, . . . , nµ ;

∀δw ∈ H ; Eb
,ww := E,ww(

0
w(x;λb);λb) ,

(A.5)

where the eigenmodes %w = i
w span Nµ, the nµ-dimensional null space of the operator Eb

,ww .
Some additional conditions, termed “transversality” conditions must also hold to ensure that
λb is a bifurcation and not a limit (i.e., turning) point:17

([dE0
,ww/dλ]b

1
w)

1
w ,= 0 . (A.6)

It can be shown that the null space Nµ of the stability operator Eb
,ww is an nµ-dimensional

subspace of the invariant subspace V µ for some µ, i.e. Nµ ⊆ V µ, associated to the irre-

ducible representation τµ. The (primary) bifurcated paths
b
w(x;λ) emerging from

0
w(x;λ)

at λb , can be represented with the following asymptotic expressions, resulting from the pro-
jection of the equilibrium equations onto the null space Nµ and termed “Lyapunov–Schmidt–

16See Footnote 8.
17Compare Eq. (A.6) to Eq. (4.6). In Eq. (4.6), no assumptions about symmetry are made, and one must
ensure that the entire operator is non-singular. In Eq. (A.6), equivariance is assumed and this suffices to

ensure that Eb
,wλ

i
w = 0 , i = 1,2, . . . , nµ and that the operator E0

,ww is a scalar multiple of the identity. Thus,
the two criteria are equivalent when the assumptions of equivariant bifurcation theory are satisfied.
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Koiter” asymptotics:

λ(ξ) = λb + λ1ξ + 1
2
λ2ξ

2 + O(ξ 3) ,
b
w(x; ξ) = 0

w(x;λ(ξ)) + ξ

nµ∑

i=1

αi

i
w(x) + O(ξ 2) ,

(A.7)
where ξ is the path’s “bifurcation amplitude” parameter and αi the components of the bifur-
cated path’s initial tangent vector. From knowledge of the bifurcation irrep τµ, group theory
results (such as the “lattice of isotropy subgroups” of G [13]) allow the direct computation
of the αi tangents (one set for each bifurcating orbit) emerging at λb . Once the asymptotic

expression of the primary bifurcating equilibrium path
b
w(x; ξ) is established, the global

solution path may be computed efficiently by using the path’s isotropy group, i.e. the el-

ements of the subgroup of G satisfying Tg[
b
w] = b

w, to find its corresponding fixed-point
space. Along this path there may occur (secondary) bifurcation points. In such cases, the

above procedure begins once again with
b
w(x;λ) as the new principal path from which—

secondary with respect to
0
w(x;λ)—bifurcated orbits will emerge.

In order to determine the local (asymptotic) type—transverse or pitchfork—of the bifur-
cating paths (which may be different than the global type), we need to determine if λ1 = 0
or λ1 ,= 0 in Eq. (A.7)1. From an asymptotic analysis (e.g., [47]) λ1 = 0 is guaranteed if

Eijk := (([E,www(
0
w(x;λb);λb)]

i
w)

j
w)

k
w = 0, i, j, k = 1, . . . , nµ. (A.8)

To reiterate, the strategy followed in this work is to sequentially apply the above-
described procedure to follow the bifurcating equilibrium orbits of the system by identifying,
each time, their symmetry group and their corresponding fixed-point space. As we proceed
from the principal solution to the primary bifurcations emerging from it, then to the sec-
ondary bifurcations emerging from the primary ones, the corresponding symmetry groups
and fixed-point spaces change accordingly. Knowledge of the symmetries of a path allows
for an efficient calculation of a unique solution in its own fixed-point space. The method
adopted here follows the procedures introduced by [20, 23]. Moreover, following [13, 20],
knowledge of the lattice of isotropy subgroups of the initial symmetry group guides the
search for the bifurcated equilibrium paths in a systematic way and explains our findings.

A.1 Principal Solution, Irreps, and Bifurcations—Group G = D∞h

As described in Sect. 2.3, the fixed-point space of D∞h for the beam–foundation system

consists of only the trivial principal solution
0
w(x;λ) = 0. According to group theory (e.g.,

[32]) D∞h has four 1-dimensional irreps (one being the trivial identity irrep). These provide
the possibility of simple bifurcations to paths with symmetry groups of C∞v , C∞h or D∞.
There are also an infinity of 2-dimensional irreps, providing the possibility of double bifur-
cations. These correspond to bifurcating paths with symmetry groups Dnh or Dnd , where
n ∈ N, as shown in Table 1. In Sect. 4.1.2 we find from Eq. (4.5) only double bifurcations at

λn ≥ 2 with corresponding eigenmodes
ni
w(x), i = 1,2—as expected from the 2-dimensional

irreps of D∞h of Table 1. Notice that no simple bifurcations exist, in spite of the existence
of 1-dimensional irreps of this group. From the infinity of primary bifurcation paths, we
follow next the bifurcation orbit emerging from the lowest load λc = 2 which corresponds
to nc = q and Lc = 2π (recall that the periodicity of the model is Ld = Lcq).
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Table 1 Table of irreps and bifurcated orbit symmetries for G = D∞h . The first column gives the dimension
nµ of the corresponding irrep; the second column gives a standard label/name for the irrep; the third through
fifth columns provide the corresponding irrep matrix for the generators τ

µ
c(φ) , τ

µ
σv , and τ

µ
σh

, respectively; the

sixth column gives the kernel of τµ (i.e., Gµ = {g ∈ G | τ
µ
g = I }, where I is the nµ-dimensional identity

matrix); the seventh column gives the symmetry group of the corresponding bifurcating equilibrium path(s)

nµ Irrep µ τ
µ
c(φ) τ

µ
σv τ

µ
σh

Gµ Bifurc. Orbit Sym.

1 A1 1 1 1 D∞h No Bif.

1 A2 1 1 −1 C∞v C∞v

1 B1 1 −1 1 C∞h C∞h

1 B2 1 −1 −1 D∞ D∞

2 E1n

[
cos(nφ) − sin(nφ)

sin(nφ) cos(nφ)

] [
1 0

0 −1

] [
1 0

0 1

]

Cnh Dnh

2 E2n

[
cos(nφ) − sin(nφ)

sin(nφ) cos(nφ)

]

n = 1,2,3, . . .

[
1 0

0 −1

] [
−1 0

0 −1

]

S2n Dnd

Table 2 Table of irreps and bifurcated orbit symmetries for G = Dqd . The first column gives the dimension
nµ of the corresponding irrep; the second column gives a standard label/name for the irrep; the third and
fourth columns provide the corresponding irrep matrix for the generators τ

µ
c(π/q) and τ

µ
σhσv , respectively;

the fifth column gives the kernel of τµ (i.e., Gµ = {g ∈ G | τµ
g = I }, where I is the nµ-dimensional identity

matrix); the sixth column gives the symmetry group of the corresponding bifurcating equilibrium path(s). The
function gcd(a, b) is the greatest common divisor of a and b

nµ Irrep µ τ
µ
σhc(π/q) τ

µ
σhσv Gµ Bifurc. Orbit(s) Sym.

1 A1 1 1 Dqd No Bif.

1 A2 1 −1 S2q S2q

1 B1 −1 1 Dq Dq

1 B2 −1 −1 Cqv Cqv

2 Ej

[
− cos(πj/q) sin(πj/q)

− sin(πj/q) − cos(πj/q)

]

1 ≤ j ≤ q − 1

[
−1 0

0 1

]

S2r : (q + j)/r even

Cr : (q + j)/r odd

r := gcd(j, q)

Drd

Crv and Dr

A.2 Primary Bifurcation Orbit at λc = 2, Irreps, and Bifurcations—Group
G = Dqd

The bifurcated equilibrium paths emerging from the lowest critical load λc correspond ac-

cording to Eq. (4.4) to a double bifurcation with eigenmodes
c1
w(x) = sin(x) and

c2
w(x) =

cos(x). Since every linear combination of these eigenmodes is left invariant by the elements
of the group S2q , the critical point corresponds to the µ = E2q irrep, and according to the
general theory (see Table 1) the symmetry group of the bifurcating orbit is Dqd . This sym-
metry group is finite and has the following two generators: σhc(π/q) and σhσv .

As indicated in Table 2, this group has four 1-dimensional irreps (one being the trivial
identity irrep). These provide the possibility of simple bifurcations to paths with symme-
try groups of S2q , Dq , or Cqv . There are also (q − 1) 2-dimensional irreps, providing the
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Table 3 Correspondence between irreps of D20d and Bloch-wave wavenumber k. Also shown are the sym-
metries and global bifurcation type (transverse or pitchfork) of the corresponding bifurcating orbits

D20d 2D Irrep no. j r=gcd(20,j) (20+j)/r — even/odd orbit(s) sym. global bif. type wavenumber(s) k

1 1 odd C1v and D1 pitchfork k = 3/20, 17/20

2 2 odd C2v and D2 pitchfork k = 6/20, 14/20

3 1 odd C1v and D1 pitchfork k = 9/20, 11/20

4 4 even D4d transverse k = 8/20, 12/20

5 5 odd C5v and D5 pitchfork k = 5/20, 15/20

6 2 odd C2v and D2 pitchfork k = 2/20, 18/20

7 1 odd C1v and D1 pitchfork k = 1/20, 19/20

8 4 odd C4v and D4 pitchfork k = 4/20, 16/20

9 1 odd C1v and D1 pitchfork k = 7/20, 13/20

10 10 odd C10v and D10 pitchfork k = 10/20

11 1 odd C1v and D1 pitchfork k = 7/20, 13/20

12 4 even D4d transverse k = 4/20, 16/20

13 1 odd C1v and D1 pitchfork k = 1/20, 19/20

14 2 odd C2v and D2 pitchfork k = 2/20, 18/20

15 5 odd C5v and D5 pitchfork k = 5/20, 15/20

16 4 odd C4v and D4 pitchfork k = 8/20, 12/20

17 1 odd C1v and D1 pitchfork k = 9/20, 11/20

18 2 odd C2v and D2 pitchfork k = 6/20, 14/20

19 1 odd C1v and D1 pitchfork k = 3/20, 17/20

possibility of double bifurcations. These correspond to bifurcating paths with symmetry
groups Drd , Crv and Dr , where r := gcd(j, q), with j = 1, . . . , q − 1. The fixed-point space

SDqd
:= {w(x) ∈ H | Tg[w(x)] = w(x), ∀g ∈ Dqd} of the primary bifurcation solutions

1
w

with Dqd symmetry, as defined above, contains configurations w(x) of the Ld -periodic beam
that remain unaltered under the transformations of this group. The primary bifurcation path
1
w(x;λ) is contained within SDqd

and a representative configuration along this path parame-
terized with respect to the bifurcation amplitude ξ (see Sect. 4.1.2) is plotted in Fig. 3.

A.3 Secondary Bifurcation Orbits and Their Symmetry

Recall that for the numerical calculations reported here, we have selected q = 20 which
gives Ld = Lcq = 40π . Due to the (energy-induced) symmetry of the dispersion curve dis-
cussed in Sect. 4.1.2, all bifurcations are double. Indeed, double bifurcation points corre-
sponding to all of the 2-dimensional irreps Ej of D20d are found along the primary bifur-

cation orbit
1
w(x;λ). The correspondence between the 2-dimensional irrep index j of Ta-

ble 2 and the Bloch-wave wavenumber k is presented in Table 3, along with the symmetry
group of each orbit bifurcating from a bifurcation point of this type. The j–k correspon-
dence is obtained by using standard group representation theory results to decompose the
irreps of D20d into direct sums of the irreps of its subgroup C20. In this way, we can find
which wavenumbers k (used in the Bloch-wave calculations of Sect. 3) correspond to each
2-dimensional irrep of D20d . The global bifurcation type, either transverse or pitchfork, is
obtained from a theorem in equivariant bifurcation theory [20], and indicates the nature of
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the global bifurcating equilibrium path. In particular, a globally transcritical path w(x; ξ)

will have w(x;−ξ) ,= w(x; ξ) for some value(s) of ξ , whereas a globally pitchfork path will
have w(x;−ξ) = w(x; ξ) for all ξ . See Sect. 4 for some discussion of the different types of
paths found in the present work.

In addition to the group-theory results in Table 3, we can also show by group-theoretic
calculation that all the secondary bifurcating paths are locally pitchfork, i.e. λ1 = 0 in
Eq. (A.7)1 since all the coefficients Eijk of Eq. (A.8) vanish. This result is obtained by
constructing an appropriate tensor-product rep [40] for the vector space of third-order ten-
sors to which the “vector” Eijk belongs. Due to equivariance, Eijk must be in the fixed-point
space SD20d

of this tensor-product space. Further, it is easily found that SD20d
= {0}. Thus, all

paths bifurcating from the D20d primary orbit are locally pitchfork. However, as indicated
in Table 3, not all such bifurcating paths are globally pitchfork. Again, see Sect. 4 for some
discussion of this issue.

A.4 Critical Load and Eigenmodes for the Imperfect Beam (Amplitude: ζ < 0)

We present here a calculation of the lowest load λcis corresponding to a bifurcation with

a symmetric (with respect to x = 0) eigenmode
is
w(x) for an imperfect, periodic beam of

length Ld . The calculation of the lowest load corresponding to a bifurcation with an anti-
symmetric (with respect to x = 0) eigenmode is similar and gives a slightly higher critical
load λcia ; the corresponding calculation is omitted here since we are interested in the bifur-
cated equilibrium paths emerging from the lowest load λcis .

By taking the functional derivative of the equilibrium Eq. (2.7) and evaluating at w(x) =
0 we obtain the equation for the symmetric with respect to x = 0 eigenmode of the imperfect

beam (
is
w(x) = is

w(−x)). The corresponding boundary conditions follow from Eq. (2.4) for
p = 1,3 and hence

d4 is
w

dx4
+ λ

d2 is
w

dx2
+ [1 + z(x)] is

w = 0 , x ∈ (0,
Ld

2
);

d
is
w

dx
(0) = d

is
w

dx
(
Ld

2
) = 0 ,

d3 is
w

dx3
(0) = d3 is

w

dx3
(
Ld

2
) = 0 .

(A.9)

Solving the problem in Eq. (A.9) with the constant coefficient ordinary differential equation
in the intervals (0, x0) and (x0,Ld/2), one has

is
w(x) =






η cos(aζ x) + θ cos(bζ x)

aζ :=
[

λ + [λ2 − 4(1 + ζ )]1/2

2

]1/2

, bζ :=
[

λ − [λ2 − 4(1 + ζ )]1/2

2

]1/2






x ∈ [0, x0]

δ cosh[a(x − Ld

2
)] cos[b(x − Ld

2
)] + ε sinh[a(x − Ld

2
)] sin[b(x − Ld

2
)]

a := [2 − λ]1/2

2
, b := [2 + λ]1/2

2






x ∈ [x0,
Ld

2
]

(A.10)
where aζ , bζ , a, b are all positive constants. Notice from Eq. (A.10) that the periodicity-
imposed symmetry conditions at Ld/2 according to Eq. (A.9) are automatically satisfied.
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Using the continuity condition at x0 for
is
w(x) and its derivatives up to order three, one

obtains a homogeneous linear system of four equations for the four constants η, θ, δ, ε ap-
pearing in Eq. (A.10). The vanishing of the determinant of the corresponding 4 × 4 matrix
(not recorded here in view of the cumbersome expressions) provides the equation for the
critical load 2(1 + ζ )1/2 < λcis < 2 (guaranteed by ζ < 0), which is obtained numerically.
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