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a b s t r a c t 

The mechanics of cellular honeycombs—part of the rapidly growing field of architected 

materials—in addition to its importance for engineering applications has a great theoretical 

interest due to the complex bifurcation mechanisms leading to failure in these nonlinear 

structures of high initial symmetry. 

Of particular interest to this work are the deformation patterns and their stability of 

finitely strained circular cell honeycomb. Given the high degree of symmetry of these 

structures, the introduction of numerical imperfections is inadequate for the study of 

their behavior past the onset of first bifurcation. Thus, we further develop and explain a 

group-theoretic approach to investigate their deformation patterns, a consistent and gen- 

eral methodology that systematically finds bifurcated equilibrium orbits and their stability. 

We consider two different geometric arrangements, hexagonal and square, biaxial com- 

pression along loading paths, either aligned or at an angle with respect to the axes of 

orthotropy, and different constitutive laws for the cell walls which can undergo arbitrarily 

large rotations, as required by the finite macroscopic strains applied. 

We find that the first bifurcation in biaxially loaded hexagonal honeycombs of infinite ex- 

tent always corresponds to a local mode, which is then followed to find the deformation 

pattern and its stability. Depending on load path orientation, these first bifurcations can be 

simple, double or even triple. All bifurcated orbits found are unstable and have a maximum 

load close to their point of emergence. In contrast, the corresponding instability in square 

honeycombs always corresponds to a global mode and hence the deformation pattern will 

depend on specimen size and boundary conditions. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

Honeycomb materials are widely used in industry for their high strength-to-weight ratio and their efficient, shock-

absorbing behavior. As such, they have been extensively studied in recent decades, both under static and dynamic load-
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ings, using experimental and numerical techniques. Very recently, especially with the advent of additive manufactur-

ing,“architected materials ” i.e. materials with complex, periodic microstructures are seeing an impressive growth. Novel archi-

tected materials, with intriguing macroscopic properties-by-design, not encountered in natural materials and termed “me- 

chanical metamaterials ”, are being introduced at an increasing rate (see the recent review article by Surjadi et al., 2019 ).

Our work is motivated by the stability and mechanical failure of this important class of engineered materials, due to the

complex bifurcation mechanisms of these geometrically and constitutively nonlinear structures of high initial symmetry. 

Of the vast literature on the subject, in the interest of space and efficiency only the work relevant to the problem of in-

terest is reported here. Of particular interest to the present investigation is the experimental work of Papka and Kyriakides

(1999a,b) which focused attention on the in-plane crushing of circular honeycombs. It was noticed that under this type of

loading, honeycombs have a specific crushing mode based on buckling of the cell walls that creates a pattern involving mul-

tiple cells. This mechanism was shown to lead to the plateau stress observed on the stress-strain curve of in-plane loaded

honeycombs which is followed by densification of the microstructure and stiffening of the material response. There now

exists a significant literature of subsequent experimental work studying the static and dynamic behavior of honeycombs,

but an exhaustive accounting of this literature is beyond the scope of this presentation. 

The early modeling studies focused mainly on hexagonal cell honeycombs, whereas the experiments of Papka and Kyri-

akides (1999a,b) used circular cell honeycombs. Among these early studies the work of Triantafyllidis and Schraad (1998) and

Okumura et al. (2002) on hexagonal cell honeycombs studied various loading directions to determine the onset of buckling.

Triantafyllidis and Schraad (1998) focused on double-wall honeycombs with deformation theory of plasticity constitutive

behavior in order to compare onsets of plasticity and buckling. Bloch-wave theory was used to compute the onset of buck-

ling and predict the critical wavelength of instability. Okumura et al. (2002) focused on single-wall honeycombs and used

a predetermined non-primitive unit-cell based on experimental observations to study microscopic buckling. It was found

that under equibiaxial loading microscopic buckling occurs in the form of a third order bifurcation point while under non-

equibiaxial loading there is either a simple or a double bifurcation point depending on the orientation of loading. In a

separate theoretical study, Saiki et al. (2005) used group theory (symmetry) tools to determine the buckling deformation

modes of hexagonal cell honeycomb under in-plane equibiaxial displacement control conditions. In addition to the numer-

ical studies using finite element full-scale modeling, of Papka and Kyriakides (1999a,b) , the only other theoretical study of

circular cell honeycomb, of which the authors are aware, is that of Karagiozova and Yu (2008) . They focus on strain local-

ization using a structural approach and employ approximate deformation modes based on experimental observations. 

In this paper, we perform an extended study of the deformation patterns and their stability for finitely strained circu-

lar cell honeycombs. We consider two different geometric arrangements, hexagonal and square, biaxial compression along

multiple loading paths, either aligned or at an angle with respect to the axes of orthotropy, and different constitutive laws

for the cell walls which can undergo arbitrarily large rotations ( Triantafyllidis and Samanta, 1986 ), as required by the finite

macroscopic strains applied. Given the high degree of symmetry of these infinite structures, the introduction of numerical

imperfections is inadequate for their study, requiring the use of group theory tools as presented in Combescure et al. (2016) .

To this end we further develop and explain our group theory-based methodology that systematically finds bifurcating equi-

librium paths in these high-symmetry structures. 

In Section 2 , the problem is defined, the cell wall model is presented along with the general group theoretic method for

studying bifurcating equilibrium orbits and their stability in periodic, nonlinear structures of infinite extent. Section 3 out-

lines the numerical implementation of the cell wall model. Results are presented in Section 4 focusing first on the onset

of bifurcation for the three constitutive behaviors and hexagonal honeycombs. Then we determine the primary bifurcating

equilibrium orbits for different loading orientations. The section ends with a discussion of the corresponding results for

square honeycombs. Conclusions are presented in Section 5 . 

2. Theory 

2.1. Problem setting 

We consider a prismatic structure consisting of circular tubes of initial radius r in two different geometric arrangements—

hexagonal and square—with their undeformed, stress-free cross-section shown in Fig. 1 . Each cylindrical tube deforms only

in its cross-sectional plane and is idealized as a curved shell 1 with initial thickness h and unit out-of-plane width. All tubes

are rigidly joined together along common generators (perpendicular to the X 1 , X 2 plane). Since only 2D deformations of this

3D prismatic structure are considered, for simplicity we refer to it hereafter as a 2D honeycomb consisting of circular cells. 

Of interest here is the onset-of-instability surface of the infinite honeycomb, as introduced by Triantafyllidis and

Schraad (1998) . To this end, a bi-axial far field compression 

2 is applied to the honeycomb: 

� = −λE 

[
cos φ − sin φ
sin φ cos φ

][
cos θ 0 

0 sin θ

][
cos φ sin φ

− sin φ cos φ

]
, (2.1) 
1 The thin shell elements ( h � 1) deform only in the X 1 , X 2 plane, as shown in Fig. 1 . 
2 Honeycombs are designed for compression to absorb deformation by cell wall bending; under tension joins come apart. 
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Fig. 1. Geometric arrangement and loading of circular (radius r ) cell honeycombs: (a) hexagonal and (b) square. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where � is the applied macroscopic stress, 3 φ ∈ [0, π /6] (for hexagonal honeycombs) or φ ∈ [0, π /4] (for square hon-

eycombs) is the loading orientation angle, θ ∈ [0, π /2] is the loading path angle, E is the material’s small-strain Young’s

modulus and λ ≥ 0 is the dimensionless macroscopic (compressive) load parameter. 

More specifically, an onset-of-instability surface for the infinite honeycomb is given by the load parameter λ( θ , φ), cor-

responding to the first instability encountered along the primary equilibrium path, as a function of the loading path angle

θ and the principal stress axes orientation angle φ. The influence of material properties on the onset-of-instability surface,

and the character of the critical bifurcation points and the symmetries and stability of the emerging bifurcated equilibrium

orbits are the object of the present investigation. 

2.2. Cell wall model 

Fig. 2. Cell wall kinematics. 

Consider a curved wall element of initial length l , thickness h (and unit out-of-plane width) with a cross-section shown

in Fig. 2 . During loading, a material point initially at arc length coordinate s on the curved element’s undeformed mid-line

(dashed line) moves to a new position on the deformed mid-line by displacements v ( s ) and w ( s ) along the local tangential ( t )

and normal ( n ) directions, respectively, of the undeformed configuration’s mid-line. We adopt the classical Bernoulli-Euler-

Navier assumptions where cross-sections normal to the undeformed mid-line remain normal to its deformed counterpart

and undergo small strain extension. Consequently, as shown in Fig. 2 , a material point A at the undeformed (reference)

configuration, with initial local coordinates ( s, z ), moves in the deformed (current) configuration to A 

′ . 
A uniaxial plane stress assumption is adopted for the in-plane deformation of the curved wall element with the (small)

axial strain in a fiber at distance z from the mid-line εss ( s, z ) ≡ e ( s, z ) given by: 

e (s, z) = ε(s ) + zρ(s ) , (2.2)
3 To be subsequently identified as the work-conjugate of the applied macroscopic deformation measure. 
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where, in view of the finite rotations and axial stretching, the mid-line axial strain ε( s ) and the bending strain ρ( s ) are

expressed in terms of the normal v ( s ) and tangential w ( s ) displacements by: 

ε = 

[
(1 + g) 2 + f 2 

]1 / 2 − 1 , f ≡ dw 

ds 
− κv , g ≡ dv 

ds 
+ κw , 

ρ = 

[
f 

dg 

ds 
− (1 + g) 

df 

ds 

]
/ 
[
(1 + g) 2 + f 2 

]
− κ , 

(2.3) 

where κ( s ) is the curvature of the reference configuration mid-line. 

The internal virtual work contribution from a cell wall segment of length l to the weak form of the equilibrium equations

is: 

δW int = 

∫ l 

0 

(Nδε + Mδρ) ds ; N ≡
∫ h/ 2 

−h/ 2 

σ dz , M ≡
∫ h/ 2 

−h/ 2 

σ z dz , (2.4) 

where N ( s ) and M ( s ) are the axial force and bending moment resultants, respectively, and σ ss ( s, z ) ≡ σ ( s, z ) is the normal

axial stress in the cell wall, work-conjugate to e ( s, z ) defined in (2.2) . The Euler-Lagrange equations corresponding to (2.2) –

(2.4) can be shown to coincide with the exact equilibrium equations of this element in the current configuration, thus

making this structural theory a consistent one (the interested reader is referred to Triantafyllidis and Samanta, 1986 , for a

detailed discussion). 

For the case of an elastic material, or a deformation theory of plasticity model 4 (as in the present case of uniaxial

stressing of metallic structures in the absence of unloading), one can find an energy density of the curved wall ̂ w (per unit

volume) and by integrating it through the thickness (for a wall of unit out-of-plane width) obtain an energy density per

unit length W : 

̂ w (e ) = 

∫ e 

0 

σ (e ′ ) de ′ , W (ε, ρ) = 

∫ h/ 2 

−h/ 2 ̂

 w (ε + zρ) dz . (2.5)

Consequently, the contribution of internal virtual work from each cell wall section of length l is the first variation of the

cell wall’s stored elastic energy E cell : 

δW int = δE cell = 

∫ l 

0 

[
∂W 

∂ε 
δε + 

∂W 

∂ρ
δρ

]
d s ;

(
E cell = 

∫ l 

0 

W d s 

)
, 

N = 

∂W 

∂ε 
= 

∫ h/ 2 

−h/ 2 

∂ ̂  w 

∂e 
dz , M = 

∂W 

∂ρ
= 

∫ h/ 2 

−h/ 2 

∂ ̂  w 

∂e 
z dz ;

(
σ = 

∂ ̂  w 

∂e 

)
. 

(2.6) 

Fig. 3. Uniaxial response of cell walls: a linearly elastic response ( m = 1 ), a stiffening response ( m = 2 > 1 ) – corresponding to elastomeric cell walls – and

a softening response ( m = −0 . 9 < 1 ) – typical of metallic or some polymeric cell walls. 
4 The so-called “deformation theory ” plasticity models, derived by integrating the constitutive response along proportional loading paths, are a preferred 

alternative for stability calculations in elastoplastic structures. The present case of uniaxial stressing of the cell walls does result in such a model in the 

absence of unloading. For a detailed discussion of the use of deformation theories of plasticity in stability calculations, the reader is referred to the review 

article by Hutchinson (1974) . 
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A piecewise power law response (relating σ to e ), common in applications involving the stability of elastoplastic struc-

tures (e.g. Hutchinson, 1974 ), with the following energy density is adopted : 

̂ w (e ) = E 
(
ε l 

)
2 
[ 

1 

η(1 + η) 

( | e | 
ε l 

)
η+1 + 

η − 1 

η

| e | 
ε l 

− η

1 + η
+ 

1 

2 

] 
, 

{ 

η = 1 for | e | ≤ ε l , 

η = m for | e | > ε l , 
(2.7)

where E is the material’s small-strain Young modulus and εl its linear elastic limit under uniaxial loading. 

Three different cases will be investigated: a linearly elastic response ( m = 1 ), a stiffening response ( m = 2 > 1 ) – typical

of elastomeric cell walls – and a softening response ( m = −0 . 9 < 1 ) – typical of metallic or some polymeric cell walls. The

corresponding representative dimensionless stress-strain curves are plotted (using ε l = 0 . 01 ) in Fig. 3 . 

2.3. Group theory approach 

The energy of the structure is thus the sum of the energies of each cell. Assuming rigid joints, i.e. that cells are welded to

their neighbors at their contact points, the displacements and rotations of each joint are the same for the two cells sharing

it: 

E(u ;λ) = 

N tot ∑ 

I=1 

∫ 2 π r 

0 

W I (ε, ρ) ds − �i j (U i j − δi j ) A domain , u ∈ H , λ ≥ 0 , (2.8)

where W I , the energy density of cell I , is defined in (2.5) , the macroscopic stress components �ij are given in (2.1) , U ij

are the components of the macroscopic right stretch tensor 5 and A domain is the area of the computational domain. Since

only biaxial compression is considered, the load parameter is positive λ ≥ 0, according to (2.1) . Moreover, the unknown

u ≡ (U ; v I (s ) , w I (s )) , I = 1 , N tot consists of the macroscopic stretch tensor plus the local displacement fields of all cells, which

must satisfy the displacement and slope continuity conditions at all contact points. The functional space of all admissible

fields u is denoted by H . To avoid issues associated with domains of infinite extent, we consider arbitrarily large—but finite—

domains of dimensions L 1 × L 2 with N tot cells and appropriate periodicity conditions at the opposite boundaries of the

chosen domain. 

The fundamental concept used to study the bifurcated equilibrium paths and their stability in any conservative elastic

system with symmetries is the existence of a group G of transformations that leave its energy E(u ;λ) —defined in (2.8) for

the problem at hand—unchanged, i.e., invariant under the action of all transformations g ∈ G . More specifically, to each

element g ∈ G we associate a transformation T g (termed “representation ” of g ) acting on u ∈ H with image T g [ u ] ∈ H that

satisfies 

E(u ;λ) = E(T g [ u ] ;λ) ; ∀ λ ≥ 0 , ∀ u ∈ H , ∀ g ∈ G . (2.9)

It follows from (2.9) that the variation of E with respect to its argument u ( δE = E ,u δu, where E ,u is the first order

functional derivative of E with respect to u , a linear operator acting on δu ∈ H ) has the property of “equivariance ”6 

T g [ E ,u (u ;λ)] δu = E ,u (T g [ u ] ;λ) δu ; ∀ λ ≥ 0 , ∀ u, δu ∈ H , ∀ g ∈ G . (2.10)

The system’s equilibrium solutions u are found by extremizing its energy. Consequently all solutions of the system

E ,u (u ;λ) δu = 0 must satisfy (2.10) . It is more appropriate to talk about orbits of equilibrium paths, since in view of the

equivariance described in (2.10) , applying to an equilibrium solution u the transformation T g automatically generates an-

other equilibrium solution T g [ u ]. 

A subset of these equilibrium solutions, termed “principal solutions ” and denoted by 
0 
u (λ) , are invariant under all trans-

formations T g . These solutions belong to an invariant subspace of H , denoted S G and termed the “fixed-point space ”

E ,u ( 
0 
u 

(λ) ;λ) δu = 0 , ∀ λ ≥ 0 ; 0 
u 

∈ S G ≡ { u ∈ H| T g [ u ] = u , ∀ g ∈ G } . (2.11)

To determine the stability of a principal solution, one has to check the positive definiteness of the self-adjoint bilinear

operator E 0 ,uu , evaluated on the principal path 

0 
u (λ) , by finding its eigenvalues β( λ) 

(E 0 ,uu �u ) δu = β(λ) < �u, δu > ; ∀ δu ∈ H ; E 0 ,uu ≡ E ,uu ( 
0 
u 

(λ) ;λ) , (2.12)

where �u is the corresponding eigenvector and < · , · > denotes an inner product in H . A stable solution corresponds

to the case where the minimum eigenvalue is positive, βmin > 0 . For a well-posed problem, the stress-free (unloaded) con-

figuration at λ = 0 is stable. As the load increases stability will be lost at the first bifurcation point encountered along the

loading path parameterized by λ. 
5 Macroscopic rigid body rotation is superfluous since the stress state can be rotated with respect to the axes of orthotropy of the honeycomb, as seen 

in (2.1) ; the stress measure �, work conjugate to U is the symmetric “Biot stress ”. For a detailed discussion of the macroscopic loading issue in periodic 

solids, the reader is referred to Section 3.5 of Elliott et al. (2011) . 
6 Assuming in addition the orthogonality of the representation operator (T g ) −1 = (T g ) t , a property satisfied in most applications in mechanics and true 

for all finite groups G , as will be the case of the discretized problems considered here. 
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It can be shown, e.g., Golublitsky et al. (1988) ; McWeeny (2002) , that (i) associated with the representation T of G , there

exists a symmetry-adapted basis of H with respect to which the operator E 0 ,uu defined in (2.12) is block-diagonalized, and (ii)

the space of admissible functions H can be uniquely decomposed ( isotypic decomposition ) into a direct sum, H = �
η
μ=1 

V μ, of

mutually orthogonal invariant subspaces V 

μ ( η being the number of conjugacy classes of G ). Each subspace V 

μ is associated

to a n μ-dimensional irreducible representation τμ of G , also termed “irrep ”, from which an appropriate projection operator

can be constructed that gives the V 

μ component of any function of the admissible space H . 

Bifurcation points along the principal equilibrium path are characterized by a critical load λb , for which there exist zero

eigenvalues of the operator E 0 ,uu (i.e. β(λb ) = 0 ) 

(E b ,uu 

i 
u 

) δu = 0 , 
i 
u 

∈ N μ , < 

i 
u 

, 
j 
u 

> = δi j , i, j = 1 , . . . , n μ ; ∀ δu ∈ H ; E b ,uu ≡ E ,uu ( 
0 
u 

(λb ) ;λb ) , (2.13)

where the eigenmodes 
i 
u form an orthonormal basis 7 of N μ, the n μ-dimensional null space of the operator E b ,uu . Some

additional conditions must also hold to ensure that λb is a bifurcation and not a limit (i.e. turning) point, as follows 

E b 
,uλ

i 
u 

= 0 ; i = 1 , . . . , n μ . (2.14) 

For such points, equilibrium paths (termed primary paths ) cross, or bifurcate, from the principal path. It can be shown that

the null space N μ of the stability operator E b ,uu is an invariant subspace of V 

μ, i.e. N μ ⊆ V μ, associated with the irreducible

representation τμ of dimension n μ. 

For the case of periodic structures, i.e. groups having translational symmetries (in addition to point symmetries), one

can find 

0 
u by solving the equilibrium equations on a “primitive cell ”, which is the smallest unit cell of dimensions l 1 × l 2 

(for 2D honeycombs) that by translation along different coordinate directions (not necessarily orthogonal to each other,

depending on the honeycomb’s point group symmetry) produces the infinite structure. Moreover, one can take advantage of

the Bloch-wave representation theorem, according to which any eigenmode �u of the stability operator E 0 ,uu in (2.12) admits

the following representation 

�u (X 1 , X 2 ) = exp [ i (k 1 X 1 + k 2 X 2 )] p(X 1 , X 2 ) , (2.15)

where i = 

√ −1 is the imaginary unit, p ( X ) is a periodic function defined on the primitive unit cell and k is the wavenumber

vector. All admissible values of k are in the “Brillouin zone ” B ⊂ [0 , 2 π/l 1 ) × [0 , 2 π/l 2 ) , defined as a primitive cell of the

reciprocal lattice in k space. 

Of interest here is the load λb and the associated wavenumber k b corresponding to the onset of the first bifurcation

encountered along the loading path of interest defined in (2.1) . To find this, we proceed as follows: we first determine the

minimum eigenvalue of the stability operator βmin (λ, k ) for a given pair 8 ( λ, k ) (see definition (2.12) ) 

βmin (λ, k ) ≡ min ‖ �u ‖ =1 
(E 0 ,uu �u )�u ; ∀ �u ( X , k ) = exp [ i ( k · X )] p(X ) . (2.16)

We subsequently find λcr ( k ), the lowest nontrivial λ root of βmin for each fixed k , 

βmin (λcr (k ) , k ) = 0 ; βmin (λ, k ) > 0 , 0 ≤ λ < λcr (k ) . (2.17)

Finally, the sought bifurcation load λb is the infimum 

9 of λcr ( k ) with respect to k . This is computed by scanning all inde-

pendent wavevectors k , which due to the point group symmetry elements of G lie in a subdomain B G ⊂ B

λb ≡ inf 
k ∈B G 

λcr (k ) . (2.18) 

Note that the wavenumbers k b corresponding to λb are not unique. In particular, the existence of an energy implies

βmin (λ; −k ) = βmin (λ; k ) . The critical vectors k b allow the identification of a new (larger than the primitive) unit cell re-

quired for calculating the equilibrium paths emerging from λb ( Sorkin et al., 2014 ). 

To avoid introducing superfluous notations, we will denote once more the energy defined on this new (larger than the

primitive) unit cell by E and the corresponding symmetry group (a subgroup of the original) again by G . The corresponding

fundamental solution 

0 
u (λ) and primitive cell remain the same as in the original problem (on the L 1 × L 2 domain 

10 ) defined

in (2.8) . 
7 In some cases it is convenient to use an alternative normalization of the basis for N μ . In particular for the Lyapunov-Schmidt-Koiter asymptotic analysis 

discussed later in this section, it is convenient to normalize according to the conditions < 

i 
u , 

j 
u > = χδi j , where χ is determined by the condition E i jλ = −δi j . 

The coefficient E i jλ is discussed after Eq. (2.21) and defined in Triantafyllidis and Peek (1992) . 
8 Due to singular behavior of the Bloch-wave behavior near k = 0 , βmin (λ, 0 ) must be defined slightly different from the general case. In particular, the 

case for which p(X ) = constant must be excluded from consideration. 
9 We consider the inf instead of the min in (2.18) in view of possible singularities of the λcr ( k ) surface defined on the Brillouin zone, see 

Triantafyllidis and Schraad (1998) . 
10 The initial L 1 × L 2 domain of the periodic structure is constructed from the primitive domain l 1 × l 2 by taking N 1 × N 2 = N tot primitive cells (see also 

(2.8) ). 
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To compute the (primary) bifurcated paths 
b 
u (λ) emerging from 

0 
u (λ) at λb , the following asymptotic expressions, result-

ing from the projection of the equilibrium equations into the null space N μ and termed “Lyapunov-Schmidt-Koiter ” (LSK)

asymptotics, are used 

λ = λb + λ1 ξ + 

1 

2 

λ2 ξ
2 + . . . , 

b 
u 

(λ) = 

0 
u 

(λ) + ξ

n μ∑ 

i =1 

αi 

i 
u 

+ O (ξ 2 ) , (2.19)

where ξ is the path’s “bifurcation amplitude ” parameter and αi the components of the bifurcated path’s unit tangent vector.

For the case of an asymmetric bifurcation λ1 � = 0, the tangents αi are given by the system of n μ polynomial equations of

order two 

n μ∑ 

j,k =1 

α j αk E i jk + 2 λ1 

n μ∑ 

j=1 

α j E i jλ = 0 , ‖ α ‖ = 1 , i = 1 , . . . , n μ. (2.20)

For the case of a symmetric bifurcation λ1 = 0 , E i jk = 0 , the tangents αi are given by the following system of n μ polynomial

equations of order three ( E i jk = 0 implies symmetry of solutions ± α) 

n μ∑ 

j,k,l=1 

α j αk αl E i jkl + 3 λ2 

n μ∑ 

j=1 

α j E i jλ = 0 , ‖ α ‖ = 1 , i = 1 , . . . , n μ. (2.21)

In the previous equations, the coefficients E i jkl , E i jk and E i jλ are expressed in terms of higher order functional derivatives

of the energy evaluated at the bifurcation point ( Triantafyllidis and Peek, 1992 ). As mentioned in Footnote 7 , it is always

possible to normalize these equations so that E i jλ = −δi j . 

The stability operator at λb determines the eigenmodes and the corresponding null space N 

μ, which allows for an ef-

ficient calculation of the bifurcation asymptotics in (2.19) . It turns out that the projection of the bifurcated equilibrium

solution on the null space N μ is equivariant 11 with respect to the elements of τμ and hence we can find the correspond-

ing symmetry-reduced equivalent set of Eqs. (2.20) or (2.21) , leading to the calculation of a unique representative of each

distinct equilibrium orbit emerging from λb 
12 . 

Having established the primary bifurcation orbits, we can then calculate their stability and corresponding bifurcation

points treating each 

b 
u (λ) as a new principal solution 

0 
u (λ) . The strategy followed is to sequentially apply the above-

described procedure to follow each bifurcated equilibrium orbit by identifying every time a new unit cell for the correspond-

ing eigenmodes, the corresponding energy and the new symmetry group. The basic method, called the “branch-following and

bifurcation method ” has been introduced for the case of atomistic bifurcation calculations for shape memory alloys by Elliott

et al. (2006, 2011) . 

3. Numerical aspects 

The FEM discretization of the curved cell wall model presented in Section 2.2 requires the normal and tangential dis-

placements v ( s ) and w ( s ) as well as their first derivatives dv / ds and dw / ds as nodal degrees of freedom, resulting in four

d.o.f. per node. As a consequence, Hermitian cubic shape functions are used for interpolation coupled with a numerical

integration scheme of four Gauss points per element. This choice of shape functions leads to a small (decreasing with

mesh refinement) error in the “patch test ,” since it generates strains upon rigid body motions. Hermitian cubics in s cannot

properly represent the functions cos ( s ) and sin ( s ) entering the expressions for the corresponding tangential and normal dis-

placements. For this reason, the curved shell element presented above is used only in the computation of the principal path

and its stability based on a primitive unit cell, with four elements per cell wall segment (circular sector of π /3 for hexagonal

geometry or π /2 for square geometry). A finer discretization of the cell walls using flat wall elements (simplified version

of the curved shell with curvature κ = 0 ) is used for larger unit cell computations, since straight elements always satisfy

the patch test. Although finer discretizations were used, the calculations presented here are based on six elements per cell

wall segment. Finally, for the constitutively nonlinear cell walls, an 81 equidistant points trapezoidal integration rule is

employed. 

The negligible axial strains in the cell walls result in the additional simplification of common nodal degrees of freedom

dv / ds and dw / ds , expressed in their local coordinate system, for all elements sharing this node in a common joint. The

finite rotation of the rigid joint is the same for each element ending in the common joint, as shown in Triantafyllidis and

Schraad (1998) . Consequently, when going from a rotated local coordinate system to a fixed global one, the only degrees of

freedom affected are the normal and tangential displacement degrees of freedom, v and w , respectively. 
11 The equivariance definition for equilibrium equations in subspace N μ is analogous to the general one in (2.10) . 
12 The LSK asymptotic method followed here, does not always work using expansions up to order two. Sometimes, especially for large n μ , one may 

need higher-order expansions. Fortunately, a group-theoretic alternative exists, involving the lattice of maximal isotropy subgroups of G , that predicts the 

symmetry of the bifurcated paths at λb , thus allowing us to find the bifurcated orbits without relying on the asymptotic expansions (2.20), (2.21) ; see 

Golublitsky et al. (1988) . 
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The FEM-discretized system’s d.o.f. are the nodal displacements and rotations of the cell walls, denoted by ̂ u plus the

components of the right stretch tensor U and hence the discretization of the displacement field u in (2.8) is (U , ̂  u ) . The non-

linear equilibrium equations resulting from the FEM discretization of E ,u δu are then solved using an incremental Newton-

Raphson method, as described in Combescure et al. (2016) . 

To bypass the difficulty of limit loads in λ, numerical calculations employ its work-conjugate dimensionless displace-

ment � (recalling the loading term from (2.8) , we define � ≡ [�i j (U i j − δi j )] /λ) ) (see Triantafyllidis and Schraad, 1998 ) in

combination with arc length continuation methods. 

4. Results 

Here are presented the results of the FEM calculations for circular cell honeycombs in hexagonal and square array ar-

rangements, submitted to the in-plane stress loadings defined in (2.1) . This study addresses the influence of the cell wall

material’s constitutive nonlinearity, loading angle and path orientation on the in-plane onset-of-instability surface as de-

fined in Section 2.1 . For the hexagonal geometry honeycomb, primary bifurcation orbits are presented for three different

types of radial loading paths, one for each type of point on the onset-of-instability surface corresponding to different bifur-

cations with “local modes ”, i.e. eigenmodes with finite wavelengths k b � = 0 that are periodic on a finite number of primitive

cells. For the square geometry honeycomb, all points on the onset-of-instability surface correspond to “global modes ”, i.e.

eigenmodes with (infinite) long wavelengths k b → 0 , in which case no primary bifurcations are considered since the corre-

sponding equilibrium paths will always depend on boundary conditions of the domain considered. 

It should also be pointed out that cell wall contact is not taken into account in the FEM simulations. As a consequence,

computations presented hereafter concern paths up to the point where the first contact is encountered, as indicated in the

corresponding onset-of-instability curves. 

Fig. 4. Primitive unit cell used for (a) the hexagonal honeycombs and (b) the square honeycombs. Cell contact points that are coupled in the Bloch-wave

calculations are marked identically. 

The primitive cell used for the hexagonal honeycomb calculations is depicted in Fig. 4 (a) and for the square honeycomb

calculations is depicted in Fig. 4 (b). Translations of the primitive cell pattern by 2 r along the G 1 and G 2 directions give the

infinite honeycomb. 

Calculating the principal equilibrium solutions 
0 
u (λ, θ, φ) along a given path with loading orientation φ and angle θ (see

(2.1) ) is based on solving the discretized equilibrium equations E ,u δu = 0 on this cell, as described in Section 2 , subject to

periodicity conditions of the joint nodes on opposites faces, as depicted in Fig. 4 . It should be mentioned at this point that

the vector space in which we seek these principal equilibrium solutions is the fixed-point subspace S G , defined in (2.11) . 

For a fixed loading orientation φ and angle θ , we seek the lowest value of the loading parameter λ at which the in-

finite honeycomb becomes unstable, as described in Section 2.3 . The primitive cell is again involved in the correspond-

ing calculations which use the Bloch-wave representation (2.15) and result in coupled boundary conditions, involving the

wavenumber k , between the contact nodes on opposites faces—see Fig. 4 . Details of the calculations, in particular on the

actual domain in the reciprocal k -space used in calculations (for reasons of coding simplicity larger than the irreducible

domain of the first Brillouin zone B G ) are similar to those described in Combescure et al. (2016) and need not be elaborated

here. 
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4.1. Material parameters 

In the following, the honeycomb’s dimensions, constitutive material’s parameters, as well as nonlinear parameters for

the power law are given in Table 1 . The latter were chosen so that they fit with the experiments in Papka and Kyri-

akides (1999a) for the case of softening behavior. 

Table 1 

Cell dimensions and constitutive parameters. 

Cell radius (mm) Wall thickness (mm) 

r = 3.48 h = 0.144 

Young’s modulus (MPa) linear elastic limit 

E = 2500 ε l = 10 −2 

power law exponent (softening) power law exponent (stiffening) 

m = −0 . 9 m = 2 . 0 

4.2. Hexagonal honeycombs 

4.2.1. Principal paths and onset-of-Instability curves based on the primitive cell 

The onset-of-instability curves computed for the loading defined in (2.1) , plotted in macroscopic stress space for the cir-

cular cell hexagonal honeycomb with different constitutive laws of the cell walls, are shown in Figs. 5–7 . Onset-of-instability

curves are plotted in solid lines, curves indicating the onset of cell wall contact are plotted in lines with cross markers,

curves indicating a limit (maximum) load are plotted in lines with triangular markers, and curves with dotted lines indicate

reaching the elastic limit (onset of nonlinear behavior). Numbers next to the onset of bifurcation curves indicate the order

of the corresponding bifurcation point. 

The onset of bifurcation, along with the first contact and maximum load curves for circular cell hexagonal honeycombs

with linearly elastic cell walls are plotted in Fig. 5 . The graph in Fig. 5 (a) corresponds to biaxial loading aligned with the

axes of orthotropy ( φ = 0 ). Notice that, due to the symmetry of the structure and loading for this case, three possibilities

exist for the onset of bifurcation: simple (indicated by number 1) for loading paths π /4 < θ ≤ π /2, double (indicated by

number 2) for loading paths 0 ≤ θ < π /4 and triple for the highest symmetry case of the equibiaxial loading path θ = π/ 4 .

The graph in Fig. 5 (b) corresponds to biaxial loading rotated with respect to the axes of orthotropy ( φ = π/ 15 ). Due to

the lower symmetry of the problem, all points at the onset of bifurcation along each loading path are simple, save for the

equibiaxial loading path θ = π/ 4 that is identical to the φ = 0 case and hence has a triple bifurcation point. Note also that

the rotation of principal loading axes results in reaching a maximum load prior to cell wall contact for almost all loading

paths except a narrow zone around θ = π/ 4 . 

The onset of bifurcation results for φ = 0 are qualitatively similar with the ones presented for the straight cell wall

hexagonal honeycomb by Triantafyllidis and Schraad (1998) and Okumura et al. (2002) . Along each loading path, contact

occurs before a maximum load is reached. No bifurcation is observed for the case of nearly uniaxial compression along

X 1 , i.e. for | θ | � 1, until first contact is detected. For the highest symmetry case of equibiaxial compression, no cell wall

contact is detected, even for loads several times higher than the one corresponding to first bifurcation. Similarly to what was

noted by Okumura et al. (2002) , for biaxial loading aligned with the axes of orthotropy, the paths where | �11 | > | �22 | have

bifurcation points of order two (two eigenmodes) whereas the paths where | �11 | < | �22 | have simple bifurcation points

(one eigenmode). As for the equibiaxial compression, it is the only loading path with a triple bifurcation, due to its highest
Fig. 5. Onset-of-instability (bifurcation) for circular cell hexagonal honeycombs, with linearly elastic cell walls under biaxial in-plane loading (a) aligned 

with the axes of orthotropy ( φ = 0 ) and (b) rotated with respect to the axes of orthotropy ( φ = π/ 15 ). Note that the rotation of principal loading axes ( φ � = 

0 ) results in reaching a maximum load prior to cell wall contact. The loading paths for which post-bifurcation equilibria are calculated are: θ = tan −1 (0 . 4) 

(plotted in solid, thin grey line), θ = π/ 4 (equibiaxial loading) and θ = π/ 2 (uniaxial compression along X 2 ). 
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symmetry. These results will be explained by the Bloch-wave calculations which give the wave vectors k b corresponding to

the critical load and the symmetry group of the energy defined on the domain required for the post-bifurcated orbit. 

Fig. 6. Onset-of-instability (bifurcation) for circular cell hexagonal honeycombs, with constitutively nonlinear cell walls under biaxial in-plane loading

aligned with the axes of orthotropy ( φ = 0 ) for (a) softening material and (b) stiffening material. 

Results for the case of constitutively nonlinear cell walls under loading aligned with the axes of orthotropy ( φ = 0 ) are

given in Fig. 6 . The graph in Fig. 6 (a) corresponds to a softening material, and the graph in Fig. 6 (b) corresponds to a

hardening material. Note that for the softening material case in Fig. 6 (a), the paths with | �11 | > | �22 | result in a maximum

load before cell wall contact, whereas the contrary is observed along paths with | �11 | < | �22 |. For the hardening material

case in Fig. 6 (b), the behavior changes dramatically for paths with | �11 | > | �22 | with cell contact occurring before maximum

load and where a wider range of loading paths about θ = 0 remains stable all the way to cell contact. 

Fig. 7. Comparison of onset-of-instability (bifurcation) curves for circular cell hexagonal honeycombs with different constitutive laws: linear elastic ( m = 1 ,

solid black line), softening ( m = −0 . 9 , solid green line) and stiffening ( m = 2 , solid purple line) under biaxial in-plane loading aligned with the axes of

orthotropy ( φ = 0 ). The V-shaped region in stress space where the principal solution is in the linearly elastic regime is also indicated by dotted lines. 

The curves in Fig. 7 summarize the previous results by presenting the comparison of the onset-of-instability (bifurcation)

curves for the three types of constitutive behavior. The constitutive non-linearity of the cell wall material affects only radial

loading paths where | �11 | > | �22 | (0 < θ < π /4), in as much as the first (always double) bifurcation along the loading path

occurs in the nonlinear regime of the principal solution. As expected, increasing the cell wall stiffness increases the critical

load corresponding to the first bifurcation along each path and also enlarges the stable zone about the uniaxial compression

along the X 1 direction, i.e. the radial sector where no bifurcation can be found. In the remaining radial loading paths with

| �11 | < | �22 | ( π /2 ≥ θ > π /4) the first (always simple) bifurcation occurs mostly within the linear regime of the principal

solution or just immediately afterwards, and hence the corresponding onset-of-instability curves remain almost identical for

the three constitutive laws considered here. 

4.2.2. Primary bifurcation solutions for different loading paths and associated supercells 

The post-bifurcation behavior of linearly elastic circular cell hexagonal honeycombs loaded along the axes of orthotropy

(φ = 0 ) is presented in this section for three loading paths: (i) the uniaxial compressive loading path in direction X 2 ,

i.e. θ = π/ 2 , where a simple bifurcation point destabilizes the corresponding loading path; (ii) the loading path with
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θ = tan 

−1 (0 . 4) , where a double bifurcation point destabilizes the corresponding loading path; and (iii) the equibiaxial com-

pression path with θ = π/ 4 where a triple bifurcation point destabilizes the corresponding loading path. The non-existence

of a bifurcation instability before the first occurrence of cell wall contact for uniaxial compression along X 1 is the reason for

choosing a loading path angle θ = tan 

−1 (0 . 4) . These three characteristic loading paths provide a representative example for

each possible post-bifurcation behavior. 

Fig. 8. (a) Unit cell, identified by the Bloch-wave analysis, used for the post-bifurcation calculations for paths emerging from simple bifurcation points

(loading paths π /4 < θ ≤ π /2). Similar symbols on boundary nodes indicate nodes linked by periodicity conditions. The position of the mirror symmetry

axis of σ 1 is indicated by a dashed grey line. (b) The surface βmin (λ
+ 
b 
, k 1 , k 2 ) defined in (2.16) is plotted for a load ( λ+ 

b 
) slightly higher than the bifurcation

load, along the path of uniaxial compression in direction X 2 . Regions of negative βmin values highlighted in red. 

(i) Uniaxial compression in direction X 2 ( θ = π/ 2 ) 

On the radial loading path corresponding to a uniaxial compression along X 2 (i.e. θ = π/ 2 , φ = 0 ), the first instability

encountered corresponds to a simple bifurcation at (1 − U 22 , λ) = (0 . 0495 , 2 . 3 10 −3 ) . As seen from Fig. 8 (b) this bifurcation

is associated to dimensionless wavenumbers (k 1 , k 2 ) = (±0 . 5 , ±0 . 5) . 13 The corresponding eigenmodes involve a unit cell of

the type presented in Fig. 8 (a), which is composed of two primitive unit cells. The symmetry group G of the energy E
defined on this unit cell takes into account the symmetry of the geometry and loading and has the following generators:

clockwise rotation by π ( C 2 ), mirror symmetry ( σ 1 ) with respect to an horizontal axis situated at a quarter height of the

unit cell (see Fig. 8 (a)) and the internal translational symmetry along G 2 ( T G 2 ). Thus, the symmetry group G has 8 elements.

Its irreps have maximum dimension one and hence all the bifurcations are simple. 

The first bifurcation encountered along this loading path is simple and symmetric (pitchfork), i.e. λ1 = 0 ,

E 11 λ = −1 , E 111 = 0 , E 1111 � = 0 (see (2.20), (2.21) ) and the post-bifurcated path is found by following the unique eigenvec-

tor of the tangent stiffness matrix. A representative path of the unique post-bifurcated orbit is depicted in Fig. 9 

Fig. 9. (a) Post-bifurcation equilibrium orbit associated with the simple bifurcation point corresponding to uniaxial compression along X 2 -direction in a

circular cell hexagonal honeycomb with constitutively linear cell walls. This pattern has been constructed by periodicity from the yellow colored deformed

unit cell. (b) Corresponding load-strain curve. The principal path is plotted in black and the bifurcated branch in yellow. Solid line segments indicate

stability with respect to the Bloch-wave criteria βmin (λ, k ) > 0 (see (2.16) ), while dashed line segments indicate instability. 
13 The existence of four simultaneous critical k vectors can be understood if one accounts for the point symmetry of the principal path and recalls that, 

due to the existence of an energy, βmin (λ; −k ) = βmin (λ; k ) . 
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(a) and it has a symmetry group generated only by the clockwise π rotation ( C 2 ). 

The load-strain curve for this post-bifurcated orbit is depicted, along with the corresponding curve for the principal

path, in Fig. 9 (b); the bifurcated path is calculated up to first contact of the cell walls. Bloch-wave analysis applied on

the bifurcated path in Fig. 9 (b) using the unit cell of Fig. 8 (a), finds it to be unstable. The instability is due to long

wavelengths (for k i � 1) and starts immediately at the bifurcation point, marked by a black circle labeled “BP1”. This

primary path becomes unstable with respect to smaller, finite wavelength perturbations, as its bifurcation amplitude in-

creases. The path reaches a limit point at (1 − U 22 , λ) = (0 . 13476 , 2 . 34 10 −3 ) , represented by a yellow circle labeled “LP” on

Fig. 9 (b). 

(ii) Biaxial compression ( θ = tan 

−1 (0 . 4) ) 

Fig. 10. (a) Unit cell identified by the Bloch-wave analysis used for the post-bifurcation calculations for paths emerging from double bifurcation points

(load paths 0 < θ < π /4). Similar symbols on boundary nodes indicate nodes linked by periodicity conditions. (b) The surface βmin (λ
+ 
b 
, k 1 , k 2 ) defined in

(2.16) is plotted for a load ( λ+ 
b 

) slightly higher than the bifurcation load, along a loading path θ = tan −1 (0 . 4) . Regions of negative βmin values highlighted

in red. 

On the radial loading path corresponding to a biaxial compression aligned with the principal axes

(i.e. θ = tan 

−1 (0 . 4) , φ = 0 ), the first instability encountered corresponds to a double bifurcation at the point

(1 − U 11 , 1 − U 22 , λ) = (0 . 067 , −0 . 037 , 2 . 62 10 −3 ) . As seen from Fig. 10 (b) this bifurcation is associated to dimension-

less wavenumbers (k 1 , k 2 ) = (±0 . 5 , 0) and (k 1 , k 2 ) = (0 , ±0 . 5) . The corresponding eigenmodes involve a unit cell of the

type presented in Fig. 10 (a), which is composed of four primitive unit cells. The symmetry group G of the energy E defined

on this unit cell takes into account the symmetry of the geometry and loading and has the following generators: clockwise

rotation by π ( C 2 ), mirror symmetry with respect to a horizontal axis situated at the center of the unit cell ( σ 1 ) and the

internal translational symmetries along G 1 ( T G 1 ) and G 2 ( T G 2 ). Thus, the symmetry group G has a total of 16 elements and

its irreps have maximum dimension two. 

The first bifurcation encountered along this loading path is double and symmetric (pitchfork), i.e. λ1 = 0 , E i jk = 0 (see

(2.20) ). Consequently the initial tangents of the bifurcated equilibrium paths will be found from (2.21) . Using the τμ equiv-

ariance of the two-dimensional ( n μ = 2 ) equilibrium equations of the system restricted on the null space N μ, we find only

two different non-zero coefficients E i jkl in (2.21) 

E 1111 = E 2222 , E 1122 , (4.1) 

with the rest generated by the symmetries: E π(i jkl) = E i jkl , where π ( ijkl ) is any permutation of the indices ijkl . Recalling

E i jλ = −δi j (by appropriate normalization of the two eigenvectors 
1 
u and 

2 
u ), we obtain two different post-bifurcated orbits.

One representative path from each orbit is characterized by 

Orbit I : (α1 , α2 ) = (1 , 0) , 

Orbit II : (α1 , α2 ) = ( 1 / 
√ 

2 , 1 / 
√ 

2 ) . 
(4.2) 
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Fig. 11. The two different post-bifurcation equilibrium orbits – (a) Orbit I and (b) Orbit II – associated with the double bifurcation point corresponding

to biaxial compression with a loading path angle θ = tan −1 (0 . 4) for a circular cell hexagonal honeycomb with constitutively linear cell walls. These modes

have been reconstructed by periodicity from the colored deformed unit cells. (c) Corresponding load-strain curves. The principal path is plotted in black

and the bifurcated orbits in yellow and red. Solid line segments indicate stability with respect to the Bloch-wave criteria βmin (λ, k ) > 0 (see (2.16) ), while

dashed line segments indicate instability. 

These paths are shown in Fig. 11 : the Orbit I path (plotted in yellow), whose typical configuration is depicted in Fig. 11 (a),

has a symmetry subgroup with generators { C 2 , T G 2 } but no mirror symmetry and the Orbit II path (plotted in red), whose

typical configuration is depicted in Fig. 11 (b), has a symmetry subgroup with generators { C 2 , σ 1 } but no translational sym-

metry. 

The load-strain curves of the principal path and the two bifurcated orbits calculated up to first contact between

cell walls, are plotted in Fig. 11 (c). In order to properly distinguish Orbit I and Orbit II paths, the load-displacement

curves are plotted in a three-dimensional space where the two horizontal axes are the strains 1 − U 11 and 1 − U 22

and the vertical axis is λ. Bloch-wave analysis applied on each one of the two bifurcated paths in Fig. 11 us-

ing the unit cell of Fig. 10 (a) finds them to be both unstable. The Orbit I path reaches a maximum load turning

point at (1 − U 11 , 1 − U 22 , λ) = (0 . 103 , −0 . 008 , 2 . 64 10 −3 ) . Similarly, Orbit II reaches a maximum load turning point at

(1 − U 11 , 1 − U 22 , λ) = (0 . 099 , −0 . 012 , 2 . 64 10 −3 ) . 

(iii) Equibiaxial compression ( θ = π/ 4 ) 

Fig. 12. (a) Unit cell identified by the Bloch-wave analysis used for the post-bifurcation equilibrium paths emerging from the triple bifurcation point

(load path angle θ = π/ 4 ). Similar symbols on boundary nodes indicate nodes linked by periodicity conditions. (b) The surface βmin (λ
+ 
b 
, k 1 , k 2 ) defined

in (2.16) is plotted for a load ( λ+ 
b 

) slightly higher than the bifurcation load, along the principal path of equibiaxial compression. Regions of negative βmin

values highlighted in red. 

On the radial loading path corresponding to an equibiaxial compression (i.e. θ = π/ 4 , φ = 0 ), the first instability encoun-

tered corresponds to a triple bifurcation at (1 − U 11 , 1 − U 22 , λ) = (0 . 0 078 , 0 . 0 078 , 1 . 84 10 −3 ) . As seen from Fig. 12 (b) this

bifurcation is associated to dimensionless wavenumbers (k , k ) = (±0 . 5 , 0) , (k , k ) = (0 , ±0 . 5) and (k , k ) = (±0 . 5 , ±0 . 5) .
1 2 1 2 1 2 
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The corresponding eigenmodes involve a unit cell of the type presented in Fig. 12 (a), which is composed of four primitive

unit cells. The symmetry group G of the energy E defined on this unit cell takes into account the symmetry of the geometry

and loading and has the following generators: clockwise rotation by 2 π /6 ( C 6 ), mirror ( σ 1 ) and the internal translational

symmetries along G 1 ( T G 1 ) and G 2 ( T G 2 ). The symmetry group G has thus a total of 48 elements and its irreps have maximum

dimension three. 

The first bifurcation point encountered along this path is a triple symmetric (pitchfork) one, i.e. λ1 = 0 , E i jk = 0 (see

(2.20) ). Consequently the initial tangents of the bifurcated equilibrium paths will be found from (2.21) . Using the τμ equiv-

ariance of the three-dimensional ( n μ = 3 ) equilibrium equations of the system restricted on the null space N μ, we find only

two different non-zero coefficients E i jkl in (2.21) 

E 1111 = E 2222 = E 3333 , E 1122 = E 2233 = E 3311 , (4.3) 

with the rest generated by the symmetries: E π(i jkl) = E i jkl . Recalling E i jλ = −δi j (by appropriate normalization of the three

eigenvectors 
1 
u , 

2 
u and 

3 
u ), we obtain three different post-bifurcated orbits. One representative path from each orbit is char-

acterized by 

Orbit I : (α1 , α2 , α3 ) = (1 , 0 , 0) , 

Orbit II : (α1 , α2 , α3 ) = ( 1 / 
√ 

2 , 1 / 
√ 

2 , 0) , 

Orbit III : (α1 , α2 , α3 ) = ( 1 / 
√ 

3 , 1 / 
√ 

3 , 1 / 
√ 

3 ) . 

(4.4) 

Fig. 13. The three different post-bifurcation equilibrium orbits – (a) Mode I, (b) Mode II, (c) Mode III – associated with the triple bifurcation point corre-

sponding to equibiaxial compression with a loading path angle θ = π/ 4 for a circular cell hexagonal honeycomb with constitutively linear cell walls. These

modes have been reconstructed by periodicity from the colored deformed unit cells. (d) Corresponding load-strain curves. The principal path is plotted in

black and the bifurcated orbits in yellow, red and blue. Solid line segments indicate stability with respect to the Bloch-wave criteria βmin (λ, k ) > 0 (see

(2.16) ), while dashed line segments indicate instability. 

These paths are shown in Fig. 13 : the Orbit I path (plotted in yellow), whose typical configuration is depicted in Fig. 13 (a),

has a symmetry subgroup with generators { C 2 , T G 1 + G 2 , T G 1 −G 2 
} , the Orbit II path (plotted in red), whose typical configura-

tion is depicted in Fig. 13 (b), has a symmetry subgroup with generators { C 2 , σ 1 } and the Orbit III path (plotted in blue),

whose typical configuration is depicted in Fig. 13 (c), has a symmetry subgroup with generator { C 6 }. Notice that the paths

corresponding to the last two orbits have no translational symmetry. 

The load-strain curves of the principal path and the three bifurcated orbits calculated up to first contact between cell

walls, are plotted in Fig. 13 (d). In order to properly distinguish Orbit I, Orbit II and Orbit III paths, the load-strain curves are

plotted in a three-dimensional space where the two horizontal axes are the strains 1 − U 11 and 1 − U 22 and the vertical axis

is λ. Notice that Orbit I and Orbit II paths involve different macroscopic strains 1 − U 11 � = 1 − U 22 while Orbit III paths have

equal macroscopic strains 1 − U 11 = 1 − U 22 , as seen from their projections in the graph of Fig. 13 (d). 

Bloch-wave analysis is applied to each one of the three bifurcated paths in Fig. 13 using the unit cell of Fig. 12 (a) and

finds them to be all unstable, reaching a maximum load and subsequently evolving under a monotonically decreasing load.

Orbit I path reaches a maximum load (turning) point at point (1 − U 11 , 1 − U 22 , λ) = (0 . 027 , 0 . 070 , 2 . 64 10 −3 ) . Orbit II

reaches a maximum load (turning) point at (1 − U 11 , 1 − U 22 , λ) = (0 . 058 , 0 . 037 , 2 . 635 10 −3 ) . Similarly, Orbit III reaches

a maximum load (turning) point at (1 − U 11 , 1 − U 22 , λ) = (0 . 048 , 0 . 048 , 2 . 635 10 −3 ) . 

The orbit with the lowest energy is Orbit III which reaches a maximum load shortly after the onset of bifurcation and

is unstable only for very large wavelengths (see further, Combescure et al., 2016 ), explaining its appearance in the finite

specimen experiments of Papka and Kyriakides (1999a) . 
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Fig. 14. Onset-of-instability (bifurcation) for circular cell square honeycombs, with linearly elastic cell walls under biaxial in-plane loading (a) aligned 

with the axes of orthotropy ( φ = 0 ) and (b) rotated with respect to the axes of orthotropy ( φ = π/ 15 ). First bifurcation along any loading path always 

corresponds to global modes (long wavelength modes k i → 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Square honeycomb 

4.3.1. Principal paths and onset-of-Instability based on the primitive cell 

The onset-of-instability curves computed for the loading defined in (2.1) , plotted in macroscopic stress space for the

circular cell square honeycomb are shown in Fig. 14 (a) for the case of loading aligned with the axes of orthotropy φ = 0 and

in Fig. 14 (b) for the case of loading at φ = π/ 15 with respect to the orthotropy axes. Onset-of-instability curves are plotted

in solid lines, curves indicating the onset of cell contact are plotted in lines with cross markers. 

The results shown here correspond to linear elastic cell walls, since the constitutive law is found to play an insignificant

role in the stability results (calculations not shown here). Only a small range of path angles near the equibiaxial loading

( θ = π/ 4 ) lead to an instability prior to contact between cell walls. Moreover, all instabilities occur at an infinitely long

wavelength ( k i → 0). These results are consistent with Haghpanah et al. (2014) ; Ohno et al. (2004) but puzzling, since the

continuum case of biaxially compressed periodic, porous elastomers with the same symmetry shows local bifurcation modes

( Bertoldi et al., 2008; Michel et al., 2007 ). 

Some explanation for these results could be found in the work by Overvelde et al. (2012) ; Overvelde and

Bertoldi (2014) that shows the important role played by the shape of the pore in porous elastomers on the length scale

of bifurcations. In particular, a change in the pore geometry may result in a switch from microscopic to macroscopic buck-

ling. Moreover, recent work by He et al. (2018) underlines the influence of the stiffness of the joints in square grid lattices.

The difference between our present results and those for porous elastomers may be explained by the fact that a structural

shell model is used for the cell walls and that this model reaches its limits of validity when cell walls become thick. Further,

the shell model may provide an inadequate representation of the joint behavior. Such issues with the structural shell model

have already been reported in Combescure et al. (2016) where it was noticed that a shell model under dead load control

leads to zero energy modes that artificially create a triple bifurcation point when a two-dimensional plane strain model of

the same problem finds separate simple and double bifurcation points. 

5. Conclusions 

Of interest in this work are the deformation patterns and their stability of finitely strained circular cell honeycombs.

We consider two different geometric arrangements, hexagonal and square, biaxial compression along loading paths either

aligned or at an angle with respect to the axes of orthotropy, and different constitutive laws for the cell walls which can

undergo arbitrarily large rotations. Given the high degree of symmetry of these infinite structures, the introduction of nu-

merical imperfections is inadequate for the study of their behavior past the onset of first bifurcation. Consequently group

theory considerations are further developed to efficiently calculate all the different post-bifurcated equilibrium orbits and

their stability. 

Using Bloch wave analysis, it is found that the hexagonal honeycombs of infinite extent have a first bifurcation corre-

sponding to a local mode (involving a finite number of primitive cells). By redefining the problem on an appropriate super-

cell and finding its corresponding symmetry group, we calculate the post-bifurcated orbits and their stability. Depending on

load path orientation, the first bifurcation encountered along a loading path can be simple, double or even triple. Cell wall

constitutive response is found to strongly influence the onset of double bifurcations but leaves the simple ones, as well as

the triple, unchanged. Rotation of the principal stress axes with respect to the axes of orthotropy results in simple bifurca-

tions insensitive to the constitutive response, save for a triple bifurcation at equibiaxial compression which is independent

of the principal axes rotation. 

In following the different bifurcated orbits, we found that they all show a maximum load shortly after their emergence

from the principal path. Moreover, Bloch wave analysis shows that they are always unstable, indicating the impossibility of
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their observation in large enough laboratory specimens. However some orbits stabilize for wavenumbers larger than a small

critical value (corresponding to large but finite wavelengths), thus explaining their observation in laboratory experiments.

Bloch wave analysis for circular cell square honeycombs gives the first bifurcation along any loading path corresponding

to a global mode ( k → 0 ). Consequently there is no point in following bifurcated equilibrium paths since they depend on

specimen size and boundary conditions. Further study of the circular cell square honeycombs using a two-dimensional plane

strain formulation (as opposed to the current shell element formulation) is necessary to elucidate the change in behavior of

continuum porous elastomers as the volume fraction goes to zero. 

The group-theoretic approach developed and described in Section 2.3 to investigate the deformation patterns and their

stability in finitely strained periodic honeycombs is a consistent and general methodology that finds the bifurcating equi-

librium paths in these high-symmetry structures. The circular cell honeycomb application studied here investigates a large

range of (compressive) loading paths and explains the observation of deformation patterns observed experimentally. It can

be used to study nonlinear periodic composites with arbitrary microstructures, a class of engineering materials with an

ever-growing range of applications. 
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