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HIDDEN ASYMPTOTIC SYMMETRY IN A LONG ELASTIC
STRUCTURE\ast 
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NICOLAS TRIANTAFYLLIDIS\S 

Abstract. Transverse wrinkles are known to appear in thin rectangular elastic sheets when
stretched in the long direction. Numerically computed bifurcation diagrams for extremely thin, highly
stretched films indicate entire orbits of wrinkling solutions; cf. Healey, Li, and Cheng [J. Nonlinear
Sci., 23 (2013), pp. 777--805]. These correspond to arbitrary phase shifts of the wrinkled pattern in
the transverse direction. While such behavior is normally associated with problems in the presence
of a continuous symmetry group, an unloaded rectangular sheet possesses only a finite symmetry
group. In order to understand this phenomenon, we consider a simpler problem more amenable to
analysis---a finite-length beam on a nonlinear softening foundation under axial compression. We first
obtain asymptotic results via amplitude equations that are valid as a certain nondimensional beam
length becomes sufficiently large. We deduce that any two phase shifts of a solution differ from one
another by exponentially small terms in that length. We validate this observation with numerical
computations, indicating the presence of solution orbits for sufficiently long beams. We refer to this
as ``hidden asymptotic symmetry.""
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1. Introduction. We address a question in this work that was previously raised
in the context of wrinkling in highly stretched thin elastic membranes [1]. When a
rectangular sheet, say, of length L and width W , with L > W , is uniaxially stretched
between rigid end grips in the longer direction, transverse wrinkles often emerge. The
phenomenon is well known, e.g., [2, 3, 4, 5]. The question in [1] concerns observed
properties of computed transverse wrinkling patterns. Finite-element solutions were
obtained on half of the domain, of width W/2, for two distinct cases, assuming (1)
reflection symmetry leading to symmetric boundary conditions along the cut edge; (2)
reflection-inversion symmetry leading to anti-symmetric boundary conditions there.
The two boundary value problems give rise to transverse wrinkled patterns that are
(1) even and (2) odd, respectively, about the mid-plane. Remarkably the two resulting
global bifurcation diagrams are identical (to within several significant digits commen-
surate with the accuracy of the computations); cf. [1]. Additional computations were
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subsequently carried out employing the full rectangular domain. Transverse wrinkled
patterns of arbitrary phase---neither symmetric nor anti-symmetric, in general---were
obtained. Again, these yield precisely the same global bifurcation diagram, indepen-
dent of the phase. Moreover, as the phase is increased (or decreased) an entire closed
orbit of computed solutions, connecting the symmetric and anti-symmetric patterns,
is inferred. In other words, the system behaves as though it possesses a continuous
symmetry group in the transverse direction.

Nonetheless, the complete symmetry group of the rectangular reference configu-
ration in \BbbR 3 is finite, and its irreducible representations are all 1-dimensional. Con-
sequently, the physical symmetry of the problem does not account for the observed
degeneracy. The question is ``What does?"" The wrinkling problem addressed in [1] is
difficult to analyze. First, there is no closed-form trivial (planar) solution; a difficult
problem of 2-dimensional nonlinear elasticity must be solved numerically. Worse, the
domain has true corners; the solutions are not classical. Therefore, a rigorous bifur-
cation analysis, much less an analysis of the above-mentioned behavior, is apparently
out of reach. However, the apparent emergence of continuous symmetry in a prob-
lem possessing only a finite symmetry group, which is the primary motivation of this
work, can be studied in a simple model that is amenable to analysis, viz., an axially
compressed, linear beam on a softening, nonlinear elastic foundation.

Two-scale asymptotic approaches for beams resting on an elastic foundation or
fluid supported beams are well known [6, 7, 8, 9, 10, 11, 12, 13]. For infinite-length
beams these correspond to a one-parameter family of asymptotic solutions that rapidly
decay at \pm \infty [14, 15, 16, 17]. An arbitrary phase shift acting on the ``fast"" variable
serves as the parameter, and an even solution connects to an odd one as the phase
varies. Here we pursue the case of very long, simply supported finite-length beams.
We treat these as a perturbation from the infinite-length case. Intuitively one expects
the correction to approach zero as the length approaches infinity. Our main contri-
bution here is that we obtain an additive correction term that is an exponentially
decaying function of the length. Accordingly, we deduce, for sufficiently long beams,
that all phase shifts acting on the fast variable yield equivalent solutions modulo ex-
ponentially small terms. We refer to this as hidden asymptotic symmetry. Clearly
the exponentially small correction terms are not detectable by numerical methods for
sufficiently long beams. We illustrate this via finite-element solutions of the boundary
value problem which show excellent agreement with the asymptotic solution. In the
same way, we deduce that the energy difference between phase-shifted solutions is
exponentially small. We compute global bifurcation diagrams, verifying that the cor-
rected asymptotic solutions coincide with secondary bifurcations for very long beams
of finite length. The numerically calculated bifurcation diagram can be validated
through a complete local bifurcation analysis near the bifurcation points. A discus-
sion to this end is provided in Appendix A, which extends the work in [8] for secondary
bifurcation points.

The outline of the work is as follows. After briefly summarizing a nondimensional
formulation for the problem in section 2, we provide the main results of this work
in section 3. We first summarize the existence of nontrivial solutions bifurcating
from the compressed straight state. These solutions can be identified with spatially
periodic solutions that are even and odd, respectively, for lengths that are odd and
even multiples of \pi , respectively. We then focus on amplitude modulated solutions
from the primary path of odd-periodic solutions (modulated solutions from the even-
periodic solutions follow in the same manner). Following the lead of [7], we seek two-
scale solutions and obtain the so-called amplitude equation. We analyze the amplitude
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equations, obtaining an asymptotic correction to the infinite-length solution for the
very long, simply supported beams.

In section 4 we present finite-element solutions for sufficiently long beams, demon-
strating the accuracy of the asymptotic solutions and the numerical equivalence of all
phase-shifted solutions, as described above. We compute an apparent closed orbit
of solutions connecting odd to even solutions; i.e., the numerical model behaves as
though it possesses a continuous symmetry group. We conclude with some final re-
marks in section 5.

2. Beam on a nonlinear elastic foundation. We consider a linear elastic
beam on a nonlinear elastic foundation, characterized by a softening cubic nonlinear-
ity. The simply supported beam has length \=L and bending stiffness EI. The \=x-axis
coincides with the undeformed centerline of the beam, with origin at mid-span. The
beam is subjected to axial, compressive end loading P , and we denote the small trans-
verse displacement of the beam by \=w(\=x). The total potential energy of the system is
given by

(2.1) \=\scrE [ \=w] =
\int \=L/2

 - \=L/2

\Biggl[ 
1

2
EI

\biggl( 
d2 \=w

d\=x2

\biggr) 2

 - 1

2
P

\biggl( 
d \=w

d\=x

\biggr) 2

+
1

2
k2 \=w

2  - 1

4
k4 \=w

4

\Biggr] 
d\=x.

We rescale via x = \=x/Lc, w = \=w/Lc, and L = \=L/Lc, where Lc := (EI/k2)
1/4

is
chosen as a characteristic length. The nondimensional potential energy functional,
\scrE := \=\scrE Lc/EI, then reads

(2.2) \scrE [w] =
\int L/2

 - L/2

\biggl[ 
1

2
(w\prime \prime )

2  - \lambda 

2
(w\prime )

2
+

1

2
w2  - 1

4
w4

\biggr] 
dx,

where (\dotp )\prime := d(\dotp )
dx , \lambda := P\surd 

k2EI
, and k4\equiv k2

\sqrt{} 
k2

EI .

We observe here that the nondimensional length L being sufficiently large corre-
sponds to a variety of scenarios, including the case that the thickness of the beam is
sufficiently small (causing I to be sufficiently small) and/or the foundation stiffness
k2 is sufficiently large.

3. Asymptotic analysis. The first variation of the energy (2.2) leads to the
equilibrium equation

(3.1) w\prime \prime \prime \prime + \lambda w\prime \prime + w  - w3 = 0,

on ( - L/2, L/2), subject to the boundary conditions

(3.2) w(\pm L/2) = w\prime \prime (\pm L/2) = 0.

The linearization of (3.1) about the trivial solution is given by

(3.3) T (\lambda )w := w\prime \prime \prime \prime + \lambda w\prime \prime + w = 0,

subject to (3.2). We focus here on two possible families of nontrivial solutions of the
linearized problem, each at \lambda = 2:

Symmetric:

(3.4) L = Ls := (2n - 1)\pi , n = 1, 2, . . . ; w = hs :=

\sqrt{} 
2

Ls
cos(x).
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Anti-symmetric:

(3.5) L = La := 2n\pi , n = 1, 2, . . . ; w = ha :=

\sqrt{} 
2

La
sin(x).

In Appendix A we demonstrate that these correspond to subcritical pitchfork bifur-
cations.

We now proceed to derive amplitude modulated asymptotic solutions considering
L = La in a small half-neighborhood of \lambda = 2. In particular, we choose \varepsilon =

\surd 
2 - \lambda ,

and (following [7]) seek a two-scale solution of the form

(3.6) wa = \varepsilon A(X) sin(x),

where X = \varepsilon x. It will soon be clear that a similar analysis can be carried out for ws

with L = Ls. In any case, (3.6) and the boundary conditions (3.2) imply that

(3.7)
dA

dX
| X=\pm \varepsilon La

2
= 0.

Next we substitute (3.6) into the energy (2.2). To leading order in \varepsilon , integration by
parts and (3.7) yield

(3.8) \scrE a[A] = \varepsilon 3
\int \varepsilon La

2

 - \varepsilon La
2

\Biggl[ \biggl( 
dA

dX

\biggr) 2

+
1

4
A2  - 3

32
A4

\Biggr] 
dX,

the first variation of which delivers the amplitude equation

(3.9)
d2A

dX2
 - 1

4
A+

3

16
A3 = 0.

The general solution of (3.9) can be expressed in terms of the Jacobi elliptic ``dn""
function, viz.,

(3.10) A(X) = \alpha dn(\Omega X,m), m \in [0, 1).

Our goal here is to obtain an asymptotic approximation of A as the length of the
beam becomes very large but stays finite. Substituting (3.10) into (3.9), we find

(3.11) \alpha = 2

\sqrt{} 
2

3(2 - m)
, \Omega =

1

2
\surd 
2 - m

.

Next we use the boundary conditions (3.7) to deduce

(3.12) \alpha m \Omega sn

\biggl( 
\varepsilon \Omega La

2

\biggr) 
cn

\biggl( 
\varepsilon \Omega La

2

\biggr) 
= 0.

At m = 0, dn(\Omega X, 0) \equiv 1, and from (3.9), (3.11), the amplitude reduces to A \equiv 2/
\surd 
3,

which we recall represents the primary bifurcating path; cf. after (A.6). Thus, we
require m \in (0, 1) for secondary bifurcation. With this in hand (m \not = 0), (3.12)
implies that the argument of sn or cn is equal to a quarter period, viz.,

(3.13) \varepsilon \Omega La = 2K(m),
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where

(3.14) K(m) =

\int \pi /2

0

1\sqrt{} 
1 - m sin2 \phi 

d\phi ;

cf. [18]. We note here that K(m)  - \rightarrow \infty as m \nearrow 1.
We now fix the \varepsilon > 0 sufficiently small and seek an expression for La. From (3.11)

and (3.13) we find

(3.15) La = f(\mu ) :=
4
\surd 
1 + \mu 

\varepsilon 
K(1 - \mu ),

where \mu := 1  - m,\mu \in (0, 1), is the complementary modulus. From (3.15) and the
behavior of K, we see that

(3.16) f  - \rightarrow \infty as \mu \searrow 0, and f(1) =
2
\surd 
2\pi 

\varepsilon 
.

Moreover, we deduce

(3.17)
df

d\mu 
= g(\mu ),

where

(3.18) g(\mu ) =  - 2

\varepsilon \mu 
\surd 
1 + \mu 

\int \pi /2

0

cos2(\phi ) - \mu sin2(\phi )\sqrt{} 
cos2(\phi ) + \mu sin2(\phi )

d\phi < 0,

i.e., f is monotonically decreasing. The above observations can be verified by plotting
f as a function of \mu for fixed values of \epsilon as shown in Figure 1.

Hence, (3.16)--(3.18) imply there is a unique value \mu \in (0, 1) for every

(3.19) La >
2
\surd 
2\pi 

\varepsilon 
;

i.e., secondary solutions exist. We note that at criticality (equality), (3.19) gives

(3.20) \epsilon c = 2
\surd 
2\pi /La =\Rightarrow \lambda c = 2 - 2(2\pi /La)

2.

Of course (3.15)--(3.18) also imply that \mu = f - 1(La), where f
 - 1 is monotonically

decreasing for La \in ( 2\pi 
\surd 
2

\varepsilon ,\infty ), with f - 1(
\bigl( 
2\pi 

\surd 
2

\varepsilon 

\bigr) 
) = 1 and f - 1 \searrow 0 as La - \rightarrow \infty .

Accordingly, we seek an asymptotic solution of (3.15) in the limit as \mu goes to zero.
From [18] we observe that K (cf. (3.14)) has a logarithmic singularity at \mu = 0, from
which we deduce

(3.21) La = f(\mu ) \sim 2

\varepsilon 
ln

\biggl( 
16

\mu 

\biggr) 
as \mu \searrow 0 =\Rightarrow \mu \sim 16 exp

\biggl( 
 - \varepsilon La

2

\biggr) 
as La  - \rightarrow \infty .

We now obtain an asymptotic expression for A(X) from (3.10) when \mu is close to
zero. Define A\ast (X) := lim\mu \searrow 0 [\alpha dn(\Omega X,\mu )]. Noting that lim\mu \searrow 0 \alpha (\mu ) = 2

\sqrt{} 
2/3 and

lim\mu \searrow 0 \Omega (\mu ) = 1/2, one obtains

A\ast (X) = 2

\sqrt{} 
2

3
dn

\biggl( 
X

2
, \mu \searrow 0

\biggr) 
.(3.22)
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Fig. 1.

The dn(X/2, \mu ) function can be approximated in terms of hyperbolic functions when
\mu is close to zero [18], in which case A\ast (X) has an asymptotic expression given by

A\ast (X) \sim 2

\sqrt{} 
2

3
sech

\biggl( 
X

2

\biggr) \biggl[ 
1 +

\mu 

4

\biggl\{ 
sinh

\biggl( 
X

2

\biggr) 
cosh

\biggl( 
X

2

\biggr) 
+

\biggl( 
X

2

\biggr) \biggr\} 
tanh

\biggl( 
X

2

\biggr) \biggr] 
.

(3.23)

Finally, on substituting \mu from (3.21) into (3.23), we get

A\ast (X) \sim 2

\sqrt{} 
2

3
sech

\biggl( 
X

2

\biggr) 
\times 
\biggl[ 
1 + 4 exp ( - \varepsilon La/2)

\biggl\{ 
sinh

\biggl( 
X

2

\biggr) 
cosh

\biggl( 
X

2

\biggr) 
+

\biggl( 
X

2

\biggr) \biggr\} 
tanh

\biggl( 
X

2

\biggr) \biggr] 
.

(3.24)

If we begin as in (3.6), but now with the symmetric ansatz ws = \varepsilon A(X) cos(x)
for L = Ls (cf. (3.4)), it is not hard to see that the amplitude equation (3.9) is
unchanged on the domain ( - Ls/2, Ls/2). Likewise, the boundary conditions (3.7)
hold at X = \pm \varepsilon Ls/2. Moreover, an analysis identical to that given here in section 3
gives the same asymptotic expression (3.24) for the amplitude, but with Ls in place
of La. Of course, these two amplitude functions have the same limit as Ls, La \rightarrow \infty ,
viz.,

(3.25) A\ast (X) \rightarrow 2

\sqrt{} 
2

3
sech

\biggl( 
X

2

\biggr) 
,

which confirms the fact that an infinitely long beam admits a one-parameter family
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of solutions

(3.26) w\infty ,\phi = 2\varepsilon 

\sqrt{} 
2

3
sech

\biggl( 
X

2

\biggr) 
sin (x - \phi ) , \phi \in [0, 2\pi ).

Our goal is to show that this is essentially the case for extremely long beams as well.
We start with a beam of length La = 2n\pi , for very large values of n, and consider

the asymptotic solution wa(x) = \varepsilon A\ast (X) sin(x), with \varepsilon =
\surd 
2 - \lambda sufficiently small

and fixed. In the view of (3.7), wa satisfies the boundary conditions (3.2). Now define

(3.27) wa,\phi = \varepsilon A\ast (X) sin (x - \phi ) , \phi \in [0, 2\pi ),

which is also an asymptotic solution that does not satisfy the boundary conditions
unless \phi = 0. However, for sufficiently large values of La (or n), (3.24) yields

wa,\phi 

\biggl( 
x =

La

2

\biggr) 
\sim 2\varepsilon 

\sqrt{} 
2

3
sech

\biggl( 
\varepsilon 
La

4

\biggr) 
sin

\biggl( 
La

2
 - \phi 

\biggr) 
\times 
\biggl[ 
1 + 4 exp ( - \varepsilon La/2)

\biggl\{ 
sinh

\biggl( 
\varepsilon 
La

4

\biggr) 
cosh

\biggl( 
\varepsilon 
La

4

\biggr) 
+

\biggl( 
\varepsilon 
La

4

\biggr) \biggr\} 
tanh

\biggl( 
\varepsilon 
La

4

\biggr) \biggr] 
= 2\varepsilon 

\sqrt{} 
2

3
sech

\biggl( 
\varepsilon 
La

4

\biggr) 
sin

\biggl( 
La

2
 - \phi 

\biggr) 
\times 
\biggl[ 
2 + exp ( - \varepsilon La) + exp ( - \varepsilon La/2)

\biggl( 
\varepsilon La tanh

\biggl( 
\varepsilon 
La

4

\biggr) 
 - 2

\biggr) \biggr] 
(3.28)

with a similar expression resulting at x =  - La/2. That is, for \phi \not = 0, the end
displacements miss satisfying the boundary conditions by exponentially small terms
only. Clearly, we can start with ws(x) = \varepsilon A\ast (X) cos(x) and make the same argument
for ws,\phi (x) = \varepsilon A\ast (X) cos(x  - \phi ), for an arbitrary phase shift \phi , and arrive at the
same conclusion for very large Ls.

In a similar manner, we substitute (3.10) into (3.8) to obtain an asymptotic
expression for the potential energy:

\scrE a =
2\varepsilon 3

3

\int \varepsilon La
2

 - \varepsilon La
2

\Biggl[ 
m2

(2 - m)2
sn2(\Omega X,m) cn2(\Omega X,m)

+
1

(2 - m)
dn2(\Omega X,m) - 1

(2 - m)2
dn4(\Omega X,m)

\Biggr] 
dX.

(3.29)

Since the integrand of \scrE a is even, the energy can be rewritten via the change of variable
\Omega X = t, which yields

\scrE a =
8\varepsilon 3

3

\int \varepsilon \Omega La
2

0

\Biggl[ 
m2

(2 - m)
3
2

sn2(t) cn2(t) +
1

(2 - m)
1
2

dn2(t)

 - 1

(2 - m)
3
2

dn4(t)

\Biggr] 
dt.

(3.30)

We now substitute m = 1 - \mu into the expression of the total potential energy \scrE a given
in (3.30) and then expand the integrand in a Taylor series centered around \mu = 0. On
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approximating the functions sn(t), cn(t), and dn(t) in terms of hyperbolic functions
for \mu \searrow 0 [18] and neglecting the terms of order \mu 2 and higher, we find

\scrE \ast 
a \sim \scrE \infty + \scrE La

,(3.31)

where

\scrE \infty = \varepsilon 3
\biggl( 
8

3

\biggr) \int \varepsilon \Omega La
2

0

2 sinh2(t)

cosh4(t)
dt = \varepsilon 3

\biggl( 
16

9

\biggr) 
,(3.32)

and

\scrE La
= \varepsilon 3 \mu 

\biggl( 
8

3

\biggr) \int \varepsilon \Omega La
2

0

\biggl[ 
t sinh(t)

cosh3(t)
 - 2 t sinh(t)

cosh5(t)
+

5

cosh4(t)
 - 4

cosh2(t)

\biggr] 
dt

=  - \varepsilon 3 exp ( - \varepsilon La/2)

\biggl( 
4

3

\biggr) 
.

(3.33)

Here \scrE \infty corresponds to the energy of an infinitely large beam, and \scrE La
represents the

energy correction owing to the finiteness of the beam length. For a symmetric ansatz
ws = \varepsilon A(X) cos(x) with L = Ls, it can be shown that the asymptotic expression for
energy is identical to (3.31), with L = Ls. When La, Ls \rightarrow \infty , \scrE La

= \scrE Ls
= 0, and we

recover the energy of an infinitely long beam. Moreover, the energy of the asymptotic
solution wa,\phi can be obtained by substituting (3.27) into (2.2). Noting that A\ast (X)
satisfies (3.7) at the boundaries x = \pm La/2, we see that an integration of (2.2) by
parts gives the leading order terms

(3.34) \scrE a,\phi \sim  - \varepsilon 2

\Biggl[ 
(A\ast (\varepsilon x))

2
sin (2 (x - \phi ))

2

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
La
2

 - La
2

+ \scrE a,

where \scrE a is the energy of the anti-symmetric configuration; cf. (3.8). We observe that
the boundary terms in (3.34) are exponentially small for fixed, small \varepsilon > 0 and La

sufficiently large; cf. (3.24). That is, the energies of beam configurations (3.27) differ
by exponentially small terms for very long length beams.

Remark. As special cases of (3.34), the energies of the anti-symmetric (\phi = 0, \pi )
and the symmetric (\phi = \pi /2, 3\pi /2) configurations are recovered. Observe that each
of these differ from the energy of an infinitely long beam by terms exponentially small
in beam length, as was conjectured in [16].

4. Comparison with numerical solutions. The objectives of this section are
twofold: (1) We present numerical bifurcation results, employing a finite-element
model for long beams, with the goal of validating the asymptotic results from the
previous section. For the numerical computation, we first consider beam lengths of
40\pi and 50\pi in the anti-symmetric case, and lengths of 45\pi and 55\pi in the symmetric
case, which are in consonance with (3.4), (3.5). In choosing these, we note that the
asymptotic results of section 3 give strong evidence for the existence of modulated,
two-scale solutions for sufficiently small values of the parameter \varepsilon =

\surd 
2 - \lambda . (2) Later

in the section we demonstrate that for a fixed small parameter \varepsilon , one can choose an
appropriate beam length (cf. discussion following Table 2) for which a continuous orbit
of solutions parametrized by the phase angle can be computed. The beam lengths so
obtained are an order of magnitude larger than the lengths previously considered.
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For the discretized model we use cubic Hermite shape functions to approximate
the displacement of the beam at the element level, and we employ 10 elements for
every \pi units of length. Furthermore, we exploit anti-symmetry and symmetry in the
numerical calculations. In particular, we consider the system on the interval (0, L/2),
with a simple support at x = L/2, with the following essential boundary conditions
at x = 0:

Anti-symmetric case: w (0) = 0;

Symmetric case: w\prime (0) = 0.
(4.1)

We use pseudo--arc-length continuation [19] to compute numerical solution paths.
We first obtain the primary bifurcation path, corresponding to a subcritical bifurca-
tion, as depicted in Figure 2, where \xi = max| w| denotes the maximum displacement.
All solutions along that path are (extendable to) periodic solutions on the entire x-
axis. For that reason the solution paths for each of our chosen lengths plot the same
in Figure 2. Next we compute secondary bifurcating solution paths. We pinpoint
the locations of secondary bifurcation points by monitoring the occurrence of a zero
eigenvalue of the tangent stiffness matrix, and then we employ a standard branch-
switching technique [19] to get onto the secondary bifurcating solution path. We note
that the primary and the secondary bifurcating branches are all subcritical, indicating
unstable equilibria.

The secondary bifurcation points corresponding to the four lengths are shown as
open circles in Figure 2. Their computed values are summarized in Table 1 along
with their respective values as predicted by the asymptotic analysis, viz., \lambda c = 2  - 
8\pi 2L\alpha 

2(\alpha = a or s); cf. (3.19) (and the discussion that immediately follows). The
agreement is clearly excellent.

1.98 1.985 1.99 1.995 2

0

0.05

0.1

0.15

0.2

0.25

Fig. 2. \xi = max| w| versus \lambda = load.
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Table 1
Secondary critical loads.

Beam length Analytical Numerical
40\pi 1.9950 1.9951
45\pi 1.9960 1.9961
50\pi 1.9968 1.9968
55\pi 1.9974 1.9974

In Table 2 we list the computed values of the total potential energy for the lengths
considered along with their respective asymptotic values from (3.31)--(3.33). Aside
from the very good agreement, we observe that the difference between the asymptotic
energy and the numerically calculated energy decreases with an increase in beam
lengths.

Table 2
Energy per unit beam length.

Beam length Analytical (10 - 5) Numerical (10 - 5) \% difference
40\pi 1.4091 1.3719 2.71
45\pi 1.2658 1.2473 1.49
50\pi 1.1296 1.1186 0.98
55\pi 1.0357 1.0280 0.75

Figures 3 and 4 provide a comparison of the beam deformation calculated us-
ing finite-element method and the asymptotic analysis, viz., w(x) = \varepsilon A\ast (X) p(x),
(p(x) = sin(x) or cos(x)) for anti-symmetric and symmetric modes, respectively, at
\varepsilon = 0.1, which corresponds to \lambda = 1.99 in Figure 2. Once again, the agreement
between the numerical results and the asymptotic solutions is excellent.

We now proceed to compute an apparent one-parameter family of solutions cor-
responding to arbitrarily phase-shifted deformations of the beam for extremely long
beams (cf. section 3) using the finite-element model and a beam length of L = La.
For this we require longer lengths of the beam than the four cases considered above.
We explain this below.

The asymptotic amplitude function (3.24) takes a maximum value at X = 0
for X \in [ - \varepsilon La/2, \varepsilon La/2] and decreases towards X = \pm \varepsilon La/2. Furthermore, we see
from (3.28) that wa,\phi misses the zero-displacement boundary conditions at most by
\~w := max\phi \in [0,2\pi ) wa,\phi (\pm La/2) = \varepsilon A\ast (\varepsilon La/2). Clearly, if we choose La = 2n\pi large
enough so that \~w \approx 0, say, for \varepsilon = 0.1, it would ensure that the simply supported
boundary conditions are satisfied for any phase angle \phi \in [0, 2\pi ). Accordingly, we
choose La = 200\pi , which gives \~w = \scrO (10 - 8). It is worth mentioning that this
estimate for \~w was obtained merely to choose a sufficiently long beam for the purpose
of demonstration. In fact, one could choose any long length beam which gives \~w \approx 0.

The numerically computed beam deformations are obtained by employing the
asymptotic displacement function wa,\phi given in (3.27) as the initial trial solution for
the discretized model at \varepsilon = 0.1. Newton's method is then used iteratively. For any
chosen \phi \in [0, 2\pi ) the implementation converges within four iterations with a residue
of the order \scrO (10 - 13) using the default double-precision in MATLAB. Figure 5 gives
a polar plot of the \ell 2-norm as a function of \phi (rational multiples: \phi (p) := p\pi , p =
0, 1/24, . . . , 47/24; irrational multiples: \phi (q) := q\pi , q =

\surd 
2,
\surd 
3,
\surd 
5 - 2,

\surd 
7 - 2,

\surd 
11 - 

2,
\surd 
13  - 2) for the numerically computed solution points which align exactly on a

circle. Symmetric solutions correspond to p = 12/24, 36/24; anti-symmetric solutions
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Fig. 3. Comparison for anti-symmetric deformation modes.

correspond to p = 0, 24/24; and all the other values of p and all values of q correspond
to solutions that are neither even nor odd.

Remark. For the four lengths considered earlier (cf. Table 1), the solutions do not
converge via the procedure mentioned above for any arbitrary \phi (other than \phi = 0)
because \~w = \scrO (10 - 3) fails to accurately account for zero-displacement boundary



1094 S. PANDURANGI, T. HEALEY, AND N. TRIANTAFYLLIDIS

-0.5 0 0.5
-0.2

-0.1

0

0.1

0.2

Numerical

Analytical

(a)

-0.5 0 0.5
-0.2

-0.1

0

0.1

0.2

Numerical

Analytical

(b)

Fig. 4. Comparison for symmetric deformation modes.

conditions.
Figures 6 to 8 give a sampling of the numerical solutions of the beam displacement

field obtained as described above.

5. Conclusion. As mentioned in the introduction, this work is motivated by
the symmetry properties of the solution for wrinkling in highly stretched thin elastic
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Fig. 5. \eta = \| wa,\phi \| 2 versus \phi = phase-angle.

membranes [1]. A direct comparison of our analysis here for the ``long beam"" problem
with the more complex wrinkling problem is not possible. Nonetheless, both models
exhibit the same phenomenon, viz., behavior associated with a continuous symmetry
group in a computational problem possessing merely a finite symmetry group. In
the beam problem, the latter corresponds to simple even-odd symmetry with respect
to the origin. Yet, as the nondimensional length L becomes sufficiently large, an
additional translation symmetry emerges asymptotically, viz., the correction to the
infinite-length solution is an exponentially decaying function of the length.

Our results demonstrate the asymptotic emergence of an orbit of solutions in a
problem having only a finite complete symmetry group. We mention that in the analy-
sis of a closely related beam problem, an asymptotic correction to the exact infinite-
length solution for sufficiently long finite beams is obtained in [17]. The construction
there is based on an ansatz that is restricted to either symmetric or anti-symmetric
solutions. In particular, asymptotic orbits of solutions are not addressed in that work.

Appendix A. Bifurcation analysis.

A.1. Primary bifurcation. We view system (3.1), (3.2) as defining a continu-
ously differentiable mapping F (\cdot ) from all real numbers \lambda and all four-times continu-
ously differentiable functions w on [ - L/2, L/2] that satisfy (3.2) into all continuously
differentiable functions on [ - L/2, L/2] (with the usual maximum norms). Thus, sys-
tem (3.1), (3.2) is equivalent to F (\lambda ,w) = 0. Clearly the straight state w \equiv 0 gives a
trivial solution, i.e., F (\lambda , 0) \equiv 0. The linear operator in (3.3), T (\lambda ) = DwF (\lambda , 0), is
the total (Fr\'echet) derivative of F (\lambda , \cdot ) evaluated at w = 0.

It is not hard to show that T (\lambda ) is self-adjoint, and the usual sufficient condition
for bifurcation [20] at (\lambda ,w) = (2, 0) is satisfied, viz., \langle h\beta , T

\prime (2)h\beta \rangle \not = 0, \beta = s, a,
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Fig. 6. Symmetric.

where \langle f, g\rangle :=
\int L/2

 - L/2
f(x)g(x)dx. Accordingly, we deduce the existence of nontrivial

solutions of (3.1), (3.2), and the usual Taylor-series expansion (e.g., [21]) reveals sub-
critical pitchfork bifurcations.
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Fig. 7. Anti-symmetric.

Symmetric:

(A.1) \lambda = 2 - 3

2Ls
\eta 2 +\scrO (\eta 4), ws = \eta 

\sqrt{} 
2

Ls
cos(x) +\scrO (\eta 3); \eta := \langle hs, w\rangle \rightarrow 0.
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Fig. 8. Neither symmetric nor anti-symmetric.

Anti-symmetric:

(A.2) \lambda = 2 - 3

2La
\eta 2 +\scrO (\eta 4), wa = \eta 

\sqrt{} 
2

La
sin(x) +\scrO (\eta 3); \eta := \langle ha, w\rangle \rightarrow 0.

A.2. Secondary bifurcation. We now obtain local bifurcating solutions of the
amplitude equations, representing secondary bifurcation solutions of the boundary
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value problem.
We return to the anti-symmetric case by considering L = La with \varepsilon =

\surd 
2 - \lambda . A

comparison of (A.2) with the two-scale anti-symmetric solution (3.6) implies that

(A.3) \eta =

\sqrt{} 
2La

3
\varepsilon =\Rightarrow wa = \varepsilon 

2\surd 
3
sin(x) +\scrO (\varepsilon 3).

The trivial solution of (3.9) subject to (3.7) is a constant, say, Ao. Comparing
(3.6) and (A.3), we see that Ao = 2\surd 

3
, i.e., the primary branch of periodic solutions

now appears as a constant (amplitude). We then look for a nontrivial solution of the
form A(\varepsilon x) = 2\surd 

3
+ u(x), which leads to the boundary value problem

(A.4) u\prime \prime +
(2 - \lambda )

2

\Biggl( 
u+

3
\surd 
3

4
u2 +

3

8
u3

\Biggr) 
= 0, u\prime (\pm La/2) = 0.

Clearly u \equiv 0 is the trivial solution of (A.4), and the linearized problem is then given
by

(A.5) u\prime \prime +
(2 - \lambda )

2
u = 0,

subject to the same boundary conditions (3.7). This problem admits the nontrivial
solution u = C cos (\gamma kx), where \gamma k,a := 2k\pi 

La
, k = 1, 2, . . . . The corresponding bifurca-

tion values are \lambda = 2  - 2 (\gamma k,a)
2
, which match with (3.20). Then, as in the previous

section, a Taylor-series expansion yields the following family of subcritical pitchfork
bifurcating solution branches for (A.4):

(A.6) \lambda = 2 - 2 (\gamma k,a)
2  - 9

2La
(\gamma k,a)

2
\eta 2 +\scrO 

\bigl( 
\eta 3
\bigr) 
, u = \eta 

\sqrt{} 
2

La
cos (\gamma k,ax) +\scrO 

\bigl( 
\eta 2
\bigr) 
,

as \eta \rightarrow 0, k = 1, 2, . . . . Since A(X) = 2\surd 
3
+ u(X/\varepsilon ), we see that (A.6) represents a

family of solutions of (3.7), (3.9) bifurcating from the constant solution A0 = 2\surd 
3
.
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