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Abstract Of interest in this work are nematic continua that exhibit electromechanical cou-
pling. The first part of this paper presents a novel variational formulation with a potential
energy depending on four independent variables (the displacement, director, specific po-
larization and electric displacement perturbation). Variations of the potential energy with
respect to each one of these variables lead to the governing mechanical equilibrium and
constitutive relations plus Maxwell’s equations.

The proposed variational formulation is next applied to the study of bifurcation of an
infinite layer of a nematic liquid crystal confined between two parallel plates and subjected
to a uniform electric field perpendicular to these plates under full anchoring boundary con-
ditions. As the electric field exceeds a critical value, the nematic directors which are initially
parallel to the plates, rotate and tend to align with the electric field orientation. This phe-
nomenon, termed in the literature as Freedericksz transition, is treated here as a bifurcation
problem using a fully 2D formulation. It is shown that the solution corresponding to the low-
est applied electric field, also termed the critical load, is uniform in the direction parallel to
the plates and that the corresponding bifurcated path is stable near this critical load. This re-
sult holds for arbitrary positive constants of the Frank-Oseen energy (and values of electric
susceptibility constants that allow bifurcation) and justifies the 1D treatment of the Freed-
ericksz transition in 2D settings that is widely adopted in the liquid crystal literature. An
asymptotic analysis of the supercritical, stable bifurcated equilibrium path about the critical
load is also presented and compared with the exact bifurcated solution.
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1 Introduction

Nematic elastomers, also termed liquid crystal elastomers, are rubber-like solids formed by
crosslinking polymeric chains that include liquid crystal molecules. In a simple description,
they consist of a network of polymeric strands connecting liquid crystal compartments of
the size of some micrometers. The interaction between rubber elasticity of the network and
the alignment of liquid crystal molecules leads to peculiar optical properties that make ne-
matic elastomers a promising material for applications. Besides mechanical-optical effects,
nematic elastomers also exhibit interesting electro-mechanical coupling effects (e.g., see
[3, 9, 42, 46]), thus considerably increasing the technological importance of these materi-
als. The interested reader is referred to [45] for a description of the physics of liquid crystal
elastomers and an exhaustive list of references.

One simple way to describe nematic ordering effects within a continuum theory is to
represent the local molecular orientation through a unit vector, called director. This idea
was introduced for liquid crystals by [35] and [47], further developed by [20] and set in a
consistent mathematical framework by [16] and [29]. Progress on mechanical theories for
these materials continued (e.g., see [2, 8]) and more general, coupled mechanical-electro-
magnetic models were also presented (e.g., [18, 39]). One should also point out that in the
modeling of nematic elastomers, without or with electro-mechanical coupling effects, the
interactions between the rubber network and the liquid crystal molecules are described by a
non-convex strain energy density with multiple natural configurations (e.g., see [4, 13]).

Of interest here are fully coupled, continuum theories for thermomechanical-electromag-
netic interactions in solids; a detailed review of this vast topic is beyond the scope of
this work but the interested reader is referred to the book by [26] and the more recent
work by [19] and the references quoted therein. Since our goal is the study of stability
for boundary value problems involving nematic elastomers, we first propose a fully coupled
electro-mechanical variational formulation where stable equilibrium solutions are energy
minimizers, in the spirit of recent relevant work for finitely strained electro-elastic solids
by [7, 14, 17, 40, 44], and for finitely strained magneto-elastic materials by [23], where the
equilibrium and Maxwell equations are obtained as the Euler-Lagrange equations of a total
potential energy. More specifically, the potential energy functional of the model introduced
in Sect. 2 for nematic continua has four independent variables: displacement, director, po-
larization and electric displacement potential and variations of this potential energy with re-
spect to each one of these variables give respectively the equilibrium equations for stresses
and couple stresses, constitutive law for polarization and Gauss law. The Lagrangian formu-
lation of the variational principle is required in order to give the Maxwell stress and hence,
via its divergence from equilibrium, the corresponding body forces.

The above-proposed variational formulation is next applied in Sect. 3 to the study of
the stability of an infinite layer of a nematic liquid crystal confined between two paral-
lel plates and subjected to a uniform electric field perpendicular to these plates under full
anchoring boundary conditions. As the electric field exceeds a critical value, the nematic
directors which are initially parallel to the plates, rotate and tend to align with the electric
field orientation. This phenomenon, termed in the literature as Freedericksz transition, plays
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a fundamental role in liquid crystals and is at the heart of modern electronic display technol-
ogy. Due to its technological importance, the Freedericksz transition under electric field has
been extensively studied in the literature, and the interested reader is referred to the excellent
textbooks of [22] and [38] for further reading.

The 2D bifurcation problem for the Freedericksz transition has been widely studied ana-
lytically and numerically and under different boundary conditions, initially in the framework
of the Frank-Oseen theory (e.g., see [6, 15, 21, 34, 36]) and subsequently by using more so-
phisticated constitutive models (e.g., using de Gennes order-tensor theory as in [5])—a full
literature review being beyond the scope of this presentation. A common feature of these
stability analyses of the fully 2D boundary value problem is the use of the simplifying as-
sumption of 1D solutions, i.e., that field quantities depend solely on the thickness coordinate.

Analyses of the liquid crystal stability between two plates problem in 3D have also
been considered from the patterning viewpoint, i.e., finding values of material constants
and boundary conditions that allow for solutions that vary periodically along the plate di-
rections. Reference [30] and later [32] showed that a periodic splay-twist solution appears if
the liquid crystal exhibits large elastic anisotropies. Patterning along the transverse direction
can also occur in the case of an oblique external field [24], for high values of the saddle-
splay elastic constant and asymmetry of the anchoring strengths [1, 27] or under the action
of crossed electric and magnetic fields [25]. Again, a comprehensive review of the widely
studied topic of Freedericksz transitions is beyond the scope of this paper and the interested
reader is referred to the book by [43].

The study of the nonlinear boundary value bifurcation problem of the infinite liquid crys-
tal layer subjected to a transverse electric field, where no restrictive assumption is made on
the eigenmode, has not been studied in anything higher than a 1D setting, to the best of the
authors knowledge. The presentation in Sect. 3 treats the Freedericksz transition as a bifurca-
tion problem using a 2D formulation with no restriction placed on the electric displacement
potential, polarization and director fields (save of course for boundedness of fields and an-
choring condition for the director). It is proved that the solution corresponding to the lowest
applied electric field, also termed the critical load, is uniform in the direction parallel to
the plates. Moreover, this result holds for arbitrary positive constants of the Frank-Oseen
energy (assuming of course that the electric susceptibility constants of the model allow bi-
furcation) and justifies the 1D simplification of the Freedericksz transition in 2D settings
that is widely used in the liquid crystal literature. An asymptotic analysis of this supercriti-
cal, stable bifurcated equilibrium path about the critical load is also presented and compared
with the numerically obtained exact bifurcated solution. Concluding remarks and sugges-
tions for future work are provided in Sect. 4. For convenience and clarity of the presentation
the intermediate steps of the asymptotic bifurcation analysis are given in Appendix.

2 Electromechanical Theory for Nematic Continua—A Variational
Approach

2.1 General Formulation

Consider a nematic continuum of density ρ occupying in the current configuration a volume
v with boundary ∂v. The system’s stored energy E , assuming isothermal, quasistatic and
non-dissipative electromechanical processes, consists of two parts as follows:

E =
∫

v

ρ ψ dv +
∫
R3

ε0

2
(e · e)dv, (2.1)
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where the first term (integral over v) represents the energy stored in the nematic continuum
itself, with ψ the specific (i.e., per unit mass) free energy and the second term (integral over
the entire space R

3) accounts for the electric energy of the entire space, since the electric
field e exists both inside as well as outside v. The symbol ε0 is the standard notation for the
electric permittivity of free space. For the materials under consideration, their free energy
ψ = ψ(F,n,n∇,p) where F is the deformation gradient, n the nematic director and n∇1 its
gradient in the current configuration while p is the polarization per current volume. These
quantities are functions of the current position x (in Cartesian coordinates: ∇ ≡ ∂/∂x =
ei ∂/∂xi ).

The continuum is subjected to a general mechanical and electrical loading as follows: on
the volume v a mechanical body force f per unit mass is work-conjugate to the displacement
u and a mechanical body couple g per unit mass is work-conjugate to the director n. On
the boundary ∂v the counterparts of the mechanical body force f and the couple g are the
surface traction t and moment r, both per unit current area da. An externally applied, over
the free space, electrical field e0 is also considered, which due to the presence of the nematic
continuum in v, will result in the following total electric field e (e.g., see [40]), where ê is
the perturbation of the electric field due to the presence of the nematic continuum:

e = e0 + ê. (2.2)

Consequently the potential of the externally applied loads is:

W = −
∫

v

[
ρ(f · u + g · n) + e0 · p

]
dv −

∫
∂v

(t · u + r · n)da. (2.3)

The decomposition of the total electric field into an applied and perturbed part according to
(2.2) can simplify the expression for the electric energy, if one further assumes that the per-
turbed electric field ê vanishes far away from the bounded nematic elastomer, i.e., ‖̂e‖ → 0,
as ‖x‖ → ∞. In this case one can easily show by using Gauss and Faraday laws for elec-
trostatics for both e0 and ê, namely ∇ · e0 = 0 and ê = −∇ϕ̂, where ϕ̂(x) → 0 as ‖x‖ → ∞,
that: ∫

R3
(e0 · ê)dv = 0,

in which case, recalling also (2.2) the electric energy of (2.1) becomes:

∫
R3

ε0

2
(e · e)dv =

∫
R3

ε0

2
(e0 · e0)dv +

∫
R3

ε0

2
(̂e · ê)dv. (2.4)

Thus, from (2.1), (2.3), (2.4), the potential energy of the system P = E +W takes the form:

P =
∫

v

[
ρ(ψ − f · u − g · n) − e0 · p

]
dv +

∫
R3

ε0

2
(̂e · ê)dv −

∫
∂v

(t · u + r · n)da, (2.5)

where the electric energy of the externally applied field
∫
R3 ε0(e0 · e0)/2 dv in (2.4) is omit-

ted as constant, i.e., independent of the problem’s variables. For reasons that will be subse-

1For generality dyadic notation is being used in this section (e.g., see [31]). The dot symbol · denotes inner
product operations; so (in Cartesian coordinates for simplicity) the single dot product of two vectors is:
a · b = ai bi and of two rank two tensors A · B = Aij Bjk . Similarly, we can define double dot products of
two rank two tensors A · ·B = Aij Bji , A :B = Aij Bij , and so on.
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quently clear, the potential energy is expressed in terms of the electric displacement d:

d = ε0e + p. (2.6)

In the absence of the nematic continuum, the applied field e0 is related to d0 by:

d0 = ε0e0, (2.7)

while the presence of the nematic continuum introduces a perturbation d̂ on the entire
space R

3:

d = d0 + d̂; d̂ = ε0̂e + p, x ∈ v; d̂ = ε0̂e, x ∈R
3 \ v. (2.8)

From Gauss’ law, due to the absence of free electric charges, ∇ · d = 0 and hence ∇ · d̂ = 0,
which allows the following representation of d̂ in terms of a potential â:

d̂ = ∇ × â. (2.9)

Hence the potential energy of the system given in (2.5), can be rewritten as:

P =
∫

v

[
ρ(ψ − f · u − g · n)− e0 · p

]
dv −

∫
∂v

(t · u + r · n)da +
∫
R3

1

2 ε0
‖∇ × â − p‖2 dv,

(2.10)
in terms of field quantities defined in the current configuration.

We need the Lagrangian version of the potential energy in (2.10), because we are in-
terested in a coupled electro-mechanical formulation of the problem which should give a
Maxwell stress contribution to the total stress tensor. Since the Maxwell stress has a non-
linear dependence on electric field quantities, only a Lagrangian (reference configuration)
formulation of the potential energy can achieve this (the Maxwell stress contribution will
come from the electric field energy part of the potential energy, as shown subsequently).
The sought final form of the system’s potential energy is the reference configuration coun-
terpart of (2.10):

P =
∫

V

ρ0(ψ − f · u − g · n − e0 · P)dV −
∫

∂V

(T · u + R · n)dA

+
∫
R3

1

2 ε0 J

∥∥F · (∇ × Â) − ρ0P
∥∥2

dV. (2.11)

In the above expression and henceforth, quantities associated with the reference configu-
ration are denoted by capital symbols to distinguish them from their current configuration
counterparts which are denoted by script symbols, e.g., V is the volume occupied by the
nematic continuum in the reference configuration and ∂V its boundary, ∇ ≡ ∂/∂X is the
gradient operator in the reference configuration where X is the reference position of a mate-
rial point currently at: x = X + u, F is the deformation gradient, T and R are the reference
configuration surface tractions and moments, Â is the vector potential of the reference con-
figuration electric displacement perturbation D̂ with the following relations holding:

D̂ = ∇ × Â, D̂ = JF−1 · d̂, F ≡ x∇ = ∂x/∂X = I + u∇, (2.12)

while ρ0 is the reference mass density and P the specific (i.e., per unit mass) polarization of
the material, expressed in terms of ρ and volume change J by:

ρ0 = ρJ, P = p/ρ, J = det(F). (2.13)
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Note that ρ0(X) �= 0 for X ∈ V while ρ0(X) = 0 for X ∈ R
3 \ V in (2.11). Similar relations

between the current and the reference configuration surface tractions (t and T) and surface
moments (r and R) can also be established and the interested reader is referred to the ap-
propriate literature (i.e., [28]) for derivations of the Maxwell’s equations in a Lagrangian
(reference configuration) setting from their Eulerian (current configuration) counterparts.

The potential energy in (2.11) depends on four independent variables: u(X), n(X), P(X),
Â(X) namely the displacement, director, specific polarization and electric displacement per-
turbation. The constitutive response of the nematic continuum is described by its free en-
ergy ψ(F,n,n∇,P) whose specific form depends on the application at hand. Extremizing
P with respect to each one of these independent variables, i.e., setting each corresponding
variational derivative to zero, leads to the governing Euler-Lagrange equations and associ-
ated boundary/interface conditions.

Starting by extremizing P with respect the director n, the corresponding functional
derivative is:2

P,n δn =
∫

V

ρ0

[(
∂ψ

∂(n∇)

)T

· ·(δn∇) +
(

∂ψ

∂n
− g

)
· δn

]
dV −

∫
∂V

(R · δn)dA = 0,

(2.14)
where ν is the outward normal to ∂V . Upon integration by parts one obtains the following
Euler-Lagrange equation and interface condition for director equilibrium plus constitutive
law:

∇ ·
(

∂ψ

∂(n∇)

)T

− ∂ψ

∂n
+ g = 0, X ∈ V,

ν ·
�

∂ψ

∂(n∇)

�
= R, X ∈ ∂V .

(2.15)

Extremizing P with respect to Â results in Faraday’s law and associated interface con-
dition:

P,Â δÂ =
∫

R3
∇ ×

[
1

ε0J

(
F · (∇ × Â) − ρ0P

) · F
]

· δÂ dV

+
∫

∂V

ν ×
[

1

ε0J

(
F · (∇ × Â) − ρ0P

) · F
]

· δÂ dA = 0, (2.16)

where the vector identity: ∇ · (z × w) = w · (∇ × z) − z · (∇ × w) has been used in the
derivation of (2.16). The Euler-Lagrange equations of (2.16) and corresponding interface
condition are:

∇ × Ê = 0, X ∈R
3,

ν × �Ê� = 0, X ∈ ∂V,

Ê ≡ 1

ε0J

(
F · (∇ × Â) − ρ0P

) · F = 1

ε0

(
J−1F · D̂ − ρP

) · F = ê · F,

(2.17)

where Ê is the perturbation reference electric field and ê is its current configuration coun-
terpart.

2Henceforth we denote variational derivation by a comma. Therefore, P,n is the linear operator in δn such
that the following first-order expansion holds: P(u,n + δn,P, Â) = P(u,n,P, Â) + P,n δn + o(δn).
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The extremization of P with respect to the specific polarization P results in the electric
part of the constitutive law:

P,P δP =
∫

V

[
ρ0

(
∂ψ

∂P
− 1

ε0J

(
F · (∇ × Â) − ρ0P

) − e0

)
· δP

]
dV = 0, (2.18)

which gives:

∂ψ

∂P
= e0 + 1

ε0J

(
F · (∇ × Â) − ρ0P

) = e0 + ê = e, (2.19)

where the reference configuration perturbed electric field Ê is related to its current configu-
ration counterpart ê by (2.17)3.

Finally, the extremization of P with respect to the displacement u yields:

P,u δu =
∫

R3

{[
ρ0

(
∂ψ

∂F

)T

+ 1

ε0J
(∇ × Â)

(
F · (∇ × Â) − ρ0P

)

− 1

2ε0J

∥∥F · (∇ × Â) − ρ0P
∥∥2

F−1

]
· ·(δu∇)

− ρ0

(
P · (e0∇) · F−1 + f

) · δu
}

dV −
∫

∂V

T · δu dA = 0. (2.20)

Integration by parts of (2.20) gives the following Euler-Lagrange equation and interface
conditions for mechanical equilibrium plus the constitutive law:

Π̂ = ΠS + Π̂M, ΠS = ρ0

(
∂ψ

∂F

)T

,

Π̂M = 1

ε0J

[
(∇ × Â)

(
F · (∇ × Â) − ρ0P

) − 1

2

∥∥F · (∇ × Â) − ρ0P
∥∥2

F−1

]
,

∇ · Π̂ + ρ0

(
f + P · (e0∇) · F−1

) = 0, X ∈R
3,

ν · �Π̂� = T, X ∈ ∂V .

(2.21)

In the above expressions Π̂ is the total perturbed stress measure of the nematic continuum
where ΠS is its constitutive part and Π̂M is the perturbed Maxwell stress measure. A total
stress measure Π can also be defined as the sum of ΠS , given in (2.21) above, and a total
Maxwell stress ΠM that uses the total electric displacement potential A = A0 + Â with the
following properties:

Π = ΠS + ΠM, ΠS = ρ0

(
∂ψ

∂F

)T

,

A = A0 + Â, e0 = 1

ε0J
F · (∇ × A0),

ΠM = 1

ε0J

[
(∇ × A)

(
F · (∇ × A) − ρ0P

) − 1

2

∥∥F · (∇ × A) − ρ0P
∥∥2

F−1

]
,

∇ · Π + ρ0f = 0, X ∈ R
3,

ν · �Π� = T, X ∈ ∂V .

(2.22)
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Note that using the total first Piola-Kirchhoff stress Π3 which contains the information about
the applied electric field e0, results in an equilibrium equation involving only mechanical
body forces.

The general formulation of the coupled electro-mechanical problem for the equilibrium
of a nematic continuum, given by (2.15), (2.17), (2.19) and (2.21), (2.22) is now complete.

2.2 The Specific Case of Nematic Liquid Crystals

Nematic liquid crystals are usually modeled as incompressible fluids and the equilibrium
relations are generally written in the current configuration. We start by deriving the current
configuration counterpart of the equilibrium relations (2.21). By using the following identity
from continuum mechanics:

∇ · Σ = J∇ ·
(

1

J
F · Σ

)
, (2.23)

valid for any arbitrary rank two tensor Σ , and by identifying Σ with the total Piola-Kirchhoff
stress tensor Π, one can introduce the total Cauchy stress tensor σ as:

σ ≡ 1

J
F · Π =

[
ρ

∂ψ

∂F
· FT + 1

J
F · ΠM

]T

. (2.24)

In the specific case of a incompressible nematic liquid crystal the free energy ψ =
ψ(n,n∇,P), and hence one has:

∂ψ

∂F
= ∂ψ

∂(n∇)
· ·

(
∂(n∇)

∂F

)T

. (2.25)

By using the identity ∇n = F−T · ∇n, the relations (2.6), (2.12) and (2.22) one rewrites the
total Cauchy stress tensor σ in the form:

σ T = −pI − ρ (∇n) · ∂ψ

∂(n∇)
+ de − 1

2
(e · e)I, (2.26)

where p is an arbitrary pressure arising from the incompressibility constraint.
Consequently, the current configuration counterpart of the equilibrium equation (2.22)

takes the form:

∇ · σ + ρf = 0, x ∈R
3,

ν · �σ � = t, x ∈ ∂v,
(2.27)

where Nanson’ relation: ν da = JF−T · ν dA, was used for converting the interface condition
(with ν the outward unit normal to ∂v being the current configuration counterpart of ν).
Using once more the identity (2.23) with Σ = (ρ0∂ψ/∂(n∇))T and by recalling the relation:

∂ψ

∂(n∇)
= ∂ψ

∂(n∇)
· F−T, (2.28)

3Note that in the absence of the electric field Π becomes the first Piola-Kirchhoff stress tensor of nonlinear
elasticity.
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one obtains the equilibrium relation for the director n in the current configuration:

∇ ·
(

ρ
∂ψ

∂(n∇)

)T

− ρ
∂ψ

∂n
+ ρg = 0, x ∈ v,

ν ·
�

∂ψ

∂(n∇)

�
= r, x ∈ ∂v.

(2.29)

Finally, the current configuration counterpart of relation (2.17) is Faraday’s law:

∇ × e = 0, x ∈R
3,

ν × �e� = 0, x ∈ ∂v.
(2.30)

The system (2.29), (2.30) is completed by the constitutive relation (2.19).
The above proposed general theory is in essence a fusion between purely mechanical

director theories for liquid crystals, e.g., [2, 10] and electroelasticity, e.g., [14, 17] as one
can find by eliminating either the director or the electric field contributions to the free energy
(and considering additional details due to differences coming from various constraints).

3 Freedericksz Transition as a Bifurcation Problem

In this section, a specific free energy ψ of a nematic liquid crystal is considered and a bound-
ary value problem leading to a bifurcation, also called Freedericksz transition, is solved. In
particular, we focus attention on the Freedericksz transition in the 2D setting. In such a case,
the nematic liquid crystal is confined between two plates and an external electric field is
applied perpendicular to the plates. The remarkable behavior of liquid crystals in Freed-
ericksz transition originates from the competition between the alignment of the director n
prescribed at the boundary and the orientation of n favored by the electric field. For small
electric fields, the director orientation is not influenced by the electric field. As the magni-
tude of the electric field overcomes a certain threshold value, the nematic begins to adjust
its director orientation forwards the applied external electric field.

3.1 Material Selection

To represent an incompressible nematic liquid crystal, the free energy ψ is taken to be the
sum of two contributions: the Frank-Oseen energy ψF−O , characteristic of nematics,4 and a
polarization energy ψP :

ρψ(n,n∇,P) = ρψF−O(n,n∇) + ρψP (n,P),

ρψF−O = 1

2
k1(∇ · n)2 + 1

2
k2

(
n · (∇ × n)

)2 + 1

2
k3

∥∥n × (∇ × n)
∥∥2 + 1

2
c1(n · n − 1)2,

ρψP = ρ2

2ε0

(
χ−1P · P + (

χ−1
n − χ−1

)
(P · n)2

)
,

(3.1)

4The saddle splay term of the Frank-Oseen energy is here omitted since it does not contribute to the bulk
energy, see [38] for details.
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Fig. 1 Schematic representation
of an infinite nematic liquid
crystal layer with strong
anchoring conditions, confined
between two parallel plates and
subject to a electric field e0
perpendicular to the plates

where k1, k2 and k3 are positive constants, called in the literature the splay, twist and bend
constants, respectively. The inextensibility of the director n is taken into account by the pe-
nalization term (n · n − 1)2 multiplied by a large constant c1. In (3.1) χ and χn are the
electric susceptibility constants when the polarization field and the director n are perpendic-
ular or parallel, respectively.

3.2 The 2D Boundary Value Problem

Consider a two-dimensional infinite layer of a nematic liquid crystal confined between two
parallel plates at distance l, as depicted in Fig. 1. The director n is anchored parallel to the
plates at the extremities, and an electric field e0 is applied perpendicular to the plates (i.e.,
x2-direction). Note that since the dependence on the x3 coordinate is ignored and n3 = 0, the
k2 term of the Frank-Oseen energy in (3.1) vanishes. Since the director is anchored at the two
end plates (strong anchoring conditions), the corresponding essential boundary conditions
are:

n1(x1,±l/2) = 1, n2(x1,±l/2) = 0. (3.2)

No essential boundary condition is imposed on α, where α is the only nonzero component
of â (i.e., α ≡ â3).5 The natural boundary conditions on α are compatible with a fixed electric
potential (voltage) imposed at each one of the end plates, as it will be discussed later.

Since the liquid crystal is supposed to be incompressible, and there is no interest in
computing forces, the variation with respect to u can be ignored (from here on we take
F = I), thus making P a functional of n, P and α(= â3). Hence for the 2D problem at hand,
the system’s potential energy P(n,P, α), is found from (2.10) and (3.1) to be (in Cartesian
coordinates):

P =
∫

a

[
1

2
k1(δij δklni,j nk,l) + 1

2
k3(εij εklni,j nk,l)

+ ρ2

2ε0

(
χ−1δijPiPj + (

χ−1
n − χ−1

)
ninjPiPj

)

− ρe0P2 + 1

2ε0
(εkiα,i + ρPk)

2 + c1

2
(δij ninj − 1)2

]
da, (3.3)

5Since the dependence of all field quantities on x3 is ignored and d̂3 = 0, the only nonzero component of â
is â3.
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where c1 is an adequately large constant (penalty parameter) that enforces the constraint
‖n‖ = 1. Integrations are over a 2D domain denoted by a ≡ R × [−l/2, l/2] while Latin
indexes range from 1 to 2.

For every value of the externally applied electric field e0, the equilibrium configuration
can be found, according to Sect. 2, by extremizing the potential energy P in (3.3):

P,v δv = 0, v ≡ (n,P, α). (3.4)

One obvious solution to Eq. (3.4) is the principal solution, where all pertaining field quanti-
ties are denoted by a 0 superscript (0). This solution corresponds to constant director orien-
tation parallel to the bounding plates and zero electric displacement perturbation potential α.
Moreover, the principal solution has zero polarization for zero applied electric field, namely:

0
v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
n = (1,0),

ρ
0
P =

(
0,

χ

1 + χ
ε0e0

)
,

0
α = 0.

(3.5)

At small values of the applied electric field, the principal solution
0
v is stable6 since it is

a local minimizer of P .7 As e0 increases, it reaches a value ec
0 where the principal solution

is no longer a minimizer of the potential energy, but where the energy vanishes along a

particular direction
1
v, called the critical mode.

The second functional derivative of the potential energy P,vv (the bilinear operator
which is the functional derivative of the linear operator P,v) has at that point a zero eigen-

value (the corresponding eigenmode
1
v is assumed unique, an assumption that holds true in

the problem at hand), which satisfies:

(
P,vv

(0
v
(
ec

0

)
, ec

0

)1
v
)
δv = 0,

1
v = (

1
n,

1
P,

1
α). (3.6)

The above Eq. (3.6) is the compact form of the following three independent variational
equations over the 2D domain a ≡R× [−l/2, l/2]:

(
Pc

,nn
1
n + Pc

,nP

1
P + Pc

,nα

1
α
)
δn =

∫
a

[(
Lnn

ijkl

1
nk,l

)
δni,j + (

Ln
ij

1
nj +LnP

ij

1
P j

)
δni

]
da = 0,

(
Pc

,Pn
1
n + Pc

,PP

1
P + Pc

,Pα

1
α
)
δP =

∫
a

[(
LPn

ij

1
nj +LPP

ij

1
P j +LPα

ij

1
α,j

)
δPi

]
da = 0,

(
Pc

,αn
1
n + Pc

,αP

1
P + Pc

,αα

1
α
)
δα =

∫
a

[(
LαP

ij

1
P j +Lα

ij

1
α,j

)
δα,i

]
da = 0,

(3.7)

6The literature for liquid crystals invariably assumes that a potential energy minimizing solution is stable (see
for example [43]); this viewpoint is also adopted here, which will be commented in Sect. 4.
7Positive definiteness of P for e0 = 0 can be easily shown for the physically meaningful case of all positive
material constants of the free energy ρψ in (3.1), i.e., ki > 0 (i = 1 . . .3), χ > 0, χn > 0.
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where the non-zero coefficients L..
.... entering (3.7) are given by:

Lnn
ijkl ≡ ∂2(ρψF−O)

∂ni,j ∂nk,l

∣∣∣∣
c

, Ln
ij ≡ ∂2(ρψF−O + ρψP )

∂ni∂nj

∣∣∣∣
c

, LnP
ij ≡ ∂2(ρψP )

∂ni∂Pj

∣∣∣∣
c

= LPn
ji ,

LPP
ij ≡

(
∂2(ρψP )

∂Pi∂Pj

∣∣∣∣
c

+ ρ2

ε0
δij

)
, Lα

ij ≡ 1

ε0
δij , LPα

ij ≡ ρ

ε0
εij = LαP

ji .

(3.8)

Integration by parts and the elimination of
1
P from (3.7)2 make it possible to obtain, in

view of the arbitrariness of δn, δP, δα, the following differential equations for x ∈ a:

Lnn
1111

1
n1,11 + Lnn

1122
1
n2,21 + Lnn

1212
1
n1,22 + Ln

11
1
n1 = 0,

Lnn
2222

1
n2,22 + Lnn

2211
1
n1,12 + Lnn

2121
1
n2,11 + Ln

22
1
n2 + Lnα

22
1
α,2 = 0,

Lα
11

1
α,11 + Lα

22
1
α,22 + Lnα

22
1
n2,2 = 0,

(3.9)

with the corresponding natural boundary conditions (since
1
n2(x1,±l/2) = 0):

1
α,2(x1,±l/2) = 0. (3.10)

The non-zero coefficients L..
.... appearing in (3.9) are found to be:

Lnn
1111 ≡ −k1 = Lnn

2222, Lnn
1122 ≡ k3 − k1 = Lnn

2211, Lnn
1212 ≡ −k3 = Lnn

2121,

Lnα
22 ≡ χ − χn

(1 + χ)(1 + χn)
ec

0, Ln
11 ≡ 4 c1, Ln

22 ≡ χ − χn

(1 + χ)(1 + χn)
ε0

(
ec

0

)2
,

Lα
11 ≡ 1

ε0(1 + χ)
, Lα

22 ≡ 1

ε0(1 + χn)
.

(3.11)

A note on the physical meaning of the boundary condition (3.10) is in order at this point.

From (3.7) and the essential boundary condition for n in (3.2) one obtains that
1
P 1 = 0 on

x2 = ±l/2. Since on the boundary
1
α,2 = 0 from (2.8), the corresponding electric field com-

ponent
1
e1 = − 1

φ,1 = 0 thus showing that, at the first order, the electric potential φ is constant
at each of the two end plates x2 = ±l/2, as expected in a problem where we apply a con-
stant voltage (electric potential difference) at the two conducting end-plates. It should also
be added that the constant voltage difference between the two end plates implies a constant

total electric field in the principal solution
0
e = je0 and hence from (2.6)–(2.8) leading to

0
α = 0, in agreement with (3.5).

The symmetries in the problem allow for the following Fourier decomposition with re-
spect the x1-direction of the solution of the system (3.9):

S 1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n1 = n1(x2) sin(ω1x1),

1
n2 = −n2(x2) cos(ω1x1),

1
α = α(x2) sin(ω1x1),

A 1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n1 = n1(x2) cos(ω1x1),

1
n2 = n2(x2) sin(ω1x1),

1
α = −α(x2) cos(ω1x1),

(3.12)
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where the symbols S 1 and A 1 denote the symmetric and antisymmetric modes with respect
to coordinate x1. Upon substitution of the expression (3.12) into the governing equations
(3.9) one obtains the following system of ordinary differential equations in the domain a:

Lnn
1111 (ω1)

2 n1 − Lnn
1122 ω1 n2,2 − Lnn

1212 n1,22 − Ln
11n1 = 0, (3.13a)

Lnn
2222 n2,22 − Lnn

2211 ω1 n1,2 − Lnn
2121 (ω1)

2 n2 + Ln
22n2 − Lnα

22 α,2 = 0, (3.13b)

Lα
11 (ω1)

2 α − Lα
22 α,22 + Lnα

22 n2,2 = 0. (3.13c)

Further simplification is obtained by the director’s inextensibility. Taking the limit for
c1 → +∞ in Eq. (3.13a), one obtains n1 = 0, and can then rewrite Eqs. (3.13b)–(3.13c)
solely in terms only of n2(x2) and α(x2) as follows:

Lnn
2222 n2,22 + (

Ln
22 − Lnn

2121 (ω1)
2
)
n2 − Lnα

22 α,2 = 0,

Lα
22 α,22 − Lα

11 (ω1)
2 α − Lnα

22 n2,2 = 0.
(3.14)

Due to the symmetry of the problem, the solutions n2(x2) and α(x2) of (3.14) can be
written as:

S 2 :
{

n2 = Vn cosh(ω2x2),

α = Vα sinh(ω2x2),
A 2 :

{
n2 = Vn sinh(ω2x2),

α = Vα cosh(ω2x2),
(3.15)

where the symbols S 2 and A 2 denote the symmetric and antisymmetric modes with respect
to the coordinate x2.

The constants ω2, Vn and Vα entering (3.15) are related by:

Q(ω1,ω2) · V = 0,

Q ≡
[
Lnn

2222 (ω2)
2 − Lnn

2121 (ω1)
2 + Ln

22 −Lnα
22 ω2

−Lnα
22 ω2 Lα

22 (ω2)
2 − Lα

11 (ω1)
2

]
, V ≡

[
Vn

Vα

]
,

(3.16)

with ±ωJ
2 (J = 1,2) are the four roots of the bi-quadratic polynomial:

det
(
Q

(
ω1,ω

J
2

)) = 0. (3.17)

The critical electric field e0 can be found by enforcing the boundary conditions. To this
end, one needs to express n2(x2) and α(x2) as a linear combination of the eigenmodes in
(3.15):

S 2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2 =
∑

J=1,2

HJ V J
n cosh

(
ωJ

2 x2
)
,

α =
∑

J=1,2

HJ V J
α sinh

(
ωJ

2 x2

)
,

A 2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2 =
∑

J=1,2

HJ V J
n sinh

(
ωJ

2 x2
)
,

α =
∑

J=1,2

HJ V J
α cosh

(
ωJ

2 x2

)
.

(3.18)

Substituting (3.18) into the boundary conditions (3.2)2 and (3.10) results in a 2 × 2 homo-
geneous system for HJ . For the symmetric mode S 2 the boundary conditions give:

[
V 1

n cosh(ω1
2 l/2) V 2

n cosh(ω2
2 l/2)

V 1
α ω1

2 cosh(ω1
2 l/2) V 2

α ω
γ

2 cosh(ω2
2 l/2)

] [
H1

H2

]
=

[
0
0

]
. (3.19)
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In order to have no trivial solutions (HJ �= 0), the determinant of the above system must
vanish. This determinant, obtained by expressing V J

n in terms of V J
α from (3.16) reads:

Lnn
2222

Lnα
22

V 1
n V 2

n

((
ω2

2

)2 − (
ω1

2

)2)
cosh

(
ω1

2 l/2
)

cosh
(
ω2

2 l/2
) = 0, (3.20)

and is satisfied only if one ωJ
2 is a pure imaginary number with value i(2m − 1)π/l. Analo-

gously, one can consider the antisymmetric case A 2 (in which case the terms cosh(ωJ
2 l/2)

in (3.20) are replaced by sinh(ωJ
2 l/2)), thus concluding that a non-trivial solution of the

bifurcation equations exists when ω2 is a pure imaginary number with values:

S 2 : ω2 = i (2m − 1)π/l, A 2 : ω2 = i 2mπ/l. (3.21)

The critical electric field ec
0 is then found as the minimum value of e0 that satisfies (3.17)

where the coefficients, given by (3.11), are functions of ec
0. From (3.21), the ω2 are purely

complex numbers, which allows us to put (ω2)
2 = −(ωm)2 where ωm from (3.21) is an

integral multiple of π/l. After some algebra, the following expression for the critical electric
field ec

0:

(
ec

0

)2 = min
ω1,ωm

{
(1 + χ)(1 + χn)

χn − χ
(ωm)2

[
k3

ε0

(
ω1

ωm

)2

+ k1

ε0

][
(

ω1
ωm

)2 + 1+χ

1+χn

(
ω1
ωm

)2 + 1

]}
;

ω1 ∈R, ωm ≡ mπ

l
, m ∈N. (3.22)

Notice that the above equation admits a solution only where χn > χ . A straightforward
calculation, taking also into account (3.21) shows that ec

0 corresponds to ω1 = 0, ω2 = iπ/l

(i.e., m = 1) and hence the critical externally applied electric field ec
0 is:

ec
0 = π

l
(1 + χ)

(
k1

ε0 (χn − χ)

)1/2

. (3.23)

The above result agrees with the critical electric field found for the same problem in the
literature. For comparison purpose the total electric field in the x2-direction ec is the sum of
the externally applied field ec

0 plus the local electric field êc = −ec
0χ/(1+χ) for a total value

from (3.23) of ec = ec
0 + êc = (π/l)[k1/ε0(χn − χ)]1/2 which is exactly the value stated by

[38] in his Eq. (3.208). Notice that a bifurcation is possible if χn > χ , a condition that is
satisfied in liquid crystals of industrial interest, as found in the experiments by [33] on 8CB
nematic liquid crystal, or the values reported in [38] for the 5CB case.

Up to a constant, the corresponding critical mode
1
v is found from (3.5) to be:

1
v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
n = (

0, cos(π x2/l)
)
,

ρ
1
P =

(
π

l

(
k1 ε0 (χn − χ)

)1/2
cos(π x2/l),0

)
,

1
α = (

k1 ε0 (χn − χ)
)1/2

sin(π x2/l),

(3.24)

thus completing, along with (3.23) the onset of bifurcation analysis for the Freedericksz tran-
sition problem in 2D that proves that the x1-independent solution (with ω2 = i π/l) given in
the literature corresponds indeed to the lowest electric field for this instability phenomenon.



Continuum Electromechanical Theory for Nematic Continua. . . 233

3.3 L-S-K Asymptotic Analysis

It is typical of most boundary value problems exhibiting bifurcations that a post-bifurcated
solution has no easily obtainable analytical solution and even if this is possible, establishing
the stability of this analytically available post-bifurcated solution is exceedingly difficult.
To remedy this situation, an asymptotic analysis of the problem is sought that provides the
initial dependence of the critical load and corresponding eigenmode as a function of the
bifurcation amplitude.

This asymptotic technique, termed Lyapunov-Schmidt-Koiter method (L-S-K) is applied
here to determine the bifurcated equilibrium solution near the critical point and check its
stability, again using potential energy local minimization as the stability criterion. According
to the general theory in [41], the asymptotic expansion for the applied electric field e0 and
the bifurcated equilibrium solution v about the critical point ec

0, in the case of a simple
eigenmode, can be written as:

e0 = ec
0 + ξ e1

0 + ξ 2

2
e2

0 + O
(
ξ 3

)
, v = 0

v(e0) + ξ
1
v + ξ 2

2
2
v + O

(
ξ 3

)
, (3.25)

with ξ the bifurcation amplitude parameter defined as the projection of the bifurcated solu-

tion on the eigenmode
1
v, namely:

ξ ≡ 〈v − 0
v,

1
v〉. (3.26)

The choice of the inner product in the above equation is dictated by our selection of the
bifurcation amplitude parameter ξ , as discussed in Sect. 3.4 on the exact bifurcated solution.

The expressions for
1
v in (3.24) reflect the chosen normalization.

From the results of the previous section, the bifurcation at ec
0 is a simple one, since

the eigenmode
1
v in (3.24) is unique (up to an amplitude). Moreover the bifurcation is a

symmetric one since:

((
Pc

,vvv
1
v
) 1

v
) 1

v = 0, (3.27)

where the superscript (c) denotes evaluation of the operator in question at the critical point

(
0
v(ec

0), e
c
0).

According to the general theory in [41], the first term in the asymptotic expansion (3.25)1

of the applied electric field vanishes (e1
0 = 0) and the calculation of the next non-trivial term

e2
0 requires the calculation of

2
v, the second order term in the expansion (3.25)2, which is

obtained by the solution of the following variational equation:

(
Pc

,vv
2
v + (

Pc
,vvv

1
v
)1
v
)
δv = 0, with 〈δv,

1
v〉 = 0. (3.28)

Making use of (3.24), it can be shown that the solution of (3.28) results in the following

expression for
2
v:

2
v =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
n = (− cos2(π x2/l),0

)
,

ρ
2
P =

(
0, 2

π

l (1 + χ)

[
k1 ε0 (χn − χ)

]1/2
cos2(π x2/l)

)
,

2
α = 0.

(3.29)
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The first non-zero coefficient in the asymptotic expansion of e0 can now be calculated

from the general theory using
2
v in (3.29) from the following expression:

e2
0 = −1

3

(((Pc
,vvvv

1
v)

1
v)

1
v)

1
v + 3((Pc

,vvv
2
v)

1
v)

1
v

((dPc
,vv/de0)c

1
v)

1
v

. (3.30)

The stability of the bifurcated equilibrium path in the neighborhood of ec
0 depends on the

sign of e2
0; if e2

0 > 0 the bifurcated path is stable since it minimizes the potential energy P
in a neighborhood of the critical point, while for e2

0 < 0 it is unstable near the critical point.
Upon using relations (3.24) and (3.29) into (3.30), the coefficient e2

0 is found to be:

e2
0 = 3k1 (χn − χ) + k3 (1 + χ)

2(k1 ε0 (χn − χ))1/2

π

l
> 0 (3.31)

A simple, supercritical e2
0 > 0, and hence stable according to the general theory bifurcated

solution exists only when χn > χ . The details of these asymptotic calculations are given in
Appendix.

3.4 Exact Bifurcated Solution

The exact bifurcated solution can be calculated using the equilibrium relations (2.29),
Farady’s law (2.30) and the constitutive relations (2.19). The problem can be simplified,
in view of the previous asymptotic analysis, by neglecting the x1 coordinate dependence.
By combining with Faraday’s law (̂ei = −φ,i , see (2.30)), one obtains ê1 = φ,1 = 0, which
in conjunction with the constitutive law (2.19), gives in view of the adopted free energy
(3.1), the following result for the polarization components P:

ρP1 = ε0
(χn − χ)n1n2

1 + χ + (χn − χ) (n2)2
e0, ρP2 = ε0

χ + (χn − χ) (n2)
2

1 + χ + (χn − χ) (n2)2
e0. (3.32)

The equilibrium relation for n in (2.29), in view of (3.1) and director inextensibility gives:

− k3

[
n1,22 − n1(n1,2)

2
] + χ − χn

ε0χnχ
(P1n1 + P2n2)P1 = 0, (3.33a)

− k1n2,22 + k3n2(n1,2)
2 + χ − χn

ε0χnχ
(P1n1 + P2n2)P2 = 0. (3.33b)

Upon multiplication of (3.33a) by n2 and of (3.33b) by −n1 and addition of the two resulting
equations:

k1n1n2,22 − k3n2n1,22 + χ − χn

ε0χnχ
(P1n1 + P2n2)(P1n2 − P2n1) = 0. (3.34)

By introducing the director orientation angle θ , defined by n1 = cos θ , n2 = sin θ (see
Fig. 2), and by using relations (3.32), one finally obtains the following differential equation
in terms of θ :

(
k1 cos2 θ + k3 sin2 θ

)
θ ′′ + (

(k3 − k1) cos θ sin θ
)(

θ ′)2 + ε0
(χn − χ) sin θ cos θ

(1 + χ + (χn − χ) sin2 θ)2
(e0)

2

= 0, (3.35)
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Fig. 2 Principal solution for e0 < ec
0 (left) and bifurcated solution for e0 > ec

0 (right)

Table 1 Coefficients of the 5CB
nematic liquid crystal used in the
numerical calculations

k1 [N] k3 [N] χ χn

6.2 × 10−12 8.2 × 10−12 6 17.5

while from (3.2) the corresponding boundary conditions are:

θ(±l/2) = 0. (3.36)

Multiplying (3.35) by θ ′, integrating and using symmetry-implied condition θ ′(0) = 0
gives:8

θ ′(x2) =
(

ε0(χn − χ)(sin2 θ0 − sin2 θ)

(k1 cos2 θ + k3 sin2 θ)(1 + χ̂ sin2 θ)(1 + χ̂ sin2 θ0)

) 1
2 e0

1 + χ
, (3.37)

where θ0 ≡ θ(0) and χ̂ ≡ (χn − χ)/(1 + χ). The above relation (3.37) can be integrated
using the boundary condition (3.36) to obtain the solution:

x2 + l

2
= 1 + χ

e0

(
k1

1 + χ̂ sin2 θ0

ε0(χn − χ)

) 1
2
∫ θ

0

(
(1 + k sin2 ϕ)(1 + χ̂ sin2 ϕ)

sin2 θ0 − sin2 ϕ

) 1
2

dϕ, (3.38)

where k ≡ ((k3 − k1)/k1).
For a given value of the external electric field e0 > ec

0 the solution can be computed by
solving numerically (3.38) in two steps: first an evaluation at x2 = 0 gives the value of θ0,
that can be then inserted again in (3.38) to obtain θ(x2). For this purpose a numerical code,
based on a trapezoidal integration rule within a iterative Newton-Raphson method, has been
used. Once the distortion angle θ is known, the distorted electric field ê can be computed
using the relations (2.30) and (3.1)

ê1 = 0, ê2(x2) = − χ + (χn − χ) sin2 θ

1 + χ + (χn − χ) sin2 θ
e0. (3.39)

At this point we have all the ingredients to plot the bifurcation diagram for this problem
and compare the exact solution in Sect. 3.4 with the asymptotic one obtained in Sect. 3.3. In
all our numerical calculations, we have used the coefficients of a 5CB nematic liquid crys-
tal reported by [38] and given in Table 1. The bifurcation amplitude ξ as a function of the

8Here one adopts the positive square root for the choice of θ(0) > 0.
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Fig. 3 Graph of dimensionless
external electric field e0/ec

0
versus the amplitude ξ of the
bifurcated mode for the exact
(full line) and for the asymptotic
(dotted line) solutions. Inner
product chosen so that ξ = sin θ0

Fig. 4 Graph of the director
orientation angle θ(x2) (in
degrees) for the exact bifurcated
solution, at different values of the
dimensionless external electric
field e0/ec

0

dimensionless applied electric field e0/e
c
0 is plotted in Fig. 3, which depicts the simple, sym-

metric, supercritical bifurcation at hand. To compare the exact and approximate bifurcated
electric fields, we select the inner product in (3.26) so that ξ = sin θ0. It is worth noticing
that the asymptotic analysis follows closely the exact solution even up to large values of the
bifurcation amplitude (ξ ≈ 0.5), as seen in Fig. 3. In Fig. 4 we plot the director orientation
angle θ(x2) (in degrees) of the bifurcated solution for different values of the applied dimen-
sionless electric field e0/e

c
0. The graph is symmetric with respect to x2 = 0 axis where the

angle θ is maximized. An increase in the applied electric field produces similarly shaped
curves, where θ(x2) increases monotonically at each point x2, except of course at the two
anchored ends x2 = ±l/2, where θ = 0.

In Fig. 5 we plot the dimensionless x2 component of the perturbed electric field ê2/e
c
0 for

various values of the dimensionless applied electric field e0/e
c
0. Again the perturbed electric

field is symmetric with respect to x2 and its absolute value increases monotonically at each
point x2, except of course at the two ends x2 = ±l/2, where its value is determined by the
principal solution ê2/e

c
0 = −χ/(1+χ). The total value of the electric field for the bifurcated

solution being ê2 + e0 is, because of the negative sign of ê2, minimized at the middle x2 = 0.
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Fig. 5 Graph of the
dimensionless x2 component of
the perturbed electric field ê2/ec

0
for the exact bifurcated solution,
at different values of the applied
dimensionless electric field e0/ec

0

As expected from the results of Fig. 3, the L-S-K asymptotic results are a very good ap-
proximation of the exact bifurcated solution up to relatively large values of ξ . Consequently
the corresponding asymptotic orientation angles and perturbation electric fields have not
been plotted in Fig. 4 and Fig. 5 respectively.

A final remark is in order at this point. The fact that the lowest electric field for the
Freedericksz transition corresponds to a global mode, i.e., is uniform in the direction par-
allel to the plates, is a result valid for a 2D analysis for arbitrary positive constants of the
Frank-Oseen energy and a quadratic polarization energy. Using the same general framework
proposed here, [37] have shown that a 3D analysis of a liquid crystal stability between two
plates under full anchoring conditions can, depending of the values of the Frank-Oseen and
polarization parameters, lead to solutions with local eigenmodes that depend on all three
space variables, if the liquid crystal exhibits large elastic anisotropies. These authors find
that for the commonly used 5CB liquid crystal, the global mode is found to be stable for the
3D twist-free case, becoming unstable only when a large twist angle is imposed.

4 Summary and Conclusions

Nematic continua are media with elongated rod-like molecules that have preferred local
average directions and exhibit important multi-physics coupling properties between their
director orientation and externally applied mechanical, electric, magnetic or thermal fields.
In the new model proposed here, their potential energy depends on four independent vec-
tor fields: displacement, director, specific polarization and electric displacement potential.
By taking variations with respect to each one of these fields, the resulting Euler-Lagrange
equations are: equilibrium relations for the displacement and the director, the constitutive
relation linking the polarization to the electric field and Faraday’s law, all in the reference
configuration. The Lagrangian formulation of the variational principle is essential to obtain
the medium’s Maxwell stress. It should also be pointed out here that even though mechanical
strains in these applications are often relatively small, in view of the nonlinear dependence
of Maxwell’s stress on electric or magnetic fields, a large strain formulation of the prob-
lem is essential to capture the nonlinear electrostrictive or magnetostrictive effects in active
materials, as explained in [12].
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The general theory is subsequently restricted to incompressible liquid crystals. The pro-
posed variational formulation is used to investigate the response of a nematic liquid crystal
confined, under full anchoring conditions, between two parallel plates and subjected to an
electric field perpendicular to these plates. This well-known problem, called in the literature
Freedericksz transition, is studied here as a bifurcation problem with the intensity of the
electric field serving as the load parameter.

The contribution of this part of the work consists in demonstrating that of all possi-
ble fully 2D solutions of the above-described bifurcation problem, the one with the lowest
critical electric field corresponds to a global eigenmode, i.e., one with an infinitely long
wavelength in the direction parallel to the plates. This result justifies the 1D analysis of this
2D problem that is frequently adopted without proof in the liquid crystal literature (e.g.,
[38, 43]). This is a strong result, since it holds for arbitrary positive constants of the Frank-
Oseen energy (assuming of course full anchoring and that the electric susceptibility con-
stants of the model allow bifurcation, i.e., χn > χ > 0). For the problem investigated here,
the post-bifurcation solution is available analytically. An L-S-K asymptotic analysis pro-
vides an independent check of the results, as well as the proof that the bifurcated solution is
a local energy minimizer, at least in the neighborhood of the critical electric field. However,
in more complicated problems where an analytical post-bifurcated solution is not generally
available, the asymptotic methodology used here is the most efficient way to analyze the
post-bifurcation solution and the stability of the problem at hand.

A comment on stability is in order at this point. A widely used assumption in the liquid
crystals’ literature (e.g., see the book by [43]) assumes that if an equilibrium solution is a lo-
cal potential energy minimizer, that equilibrium solution is stable. For conservative, purely
mechanical systems (rigid or deformable elastic), this assertion, termed Lejeune-Dirichlet
theorem, can be proved by considering inertia as the time-dependent mechanism govern-
ing the non-equilibrium states. For conservative electro-magneto-mechanical processes in
solids, where inertia is taken into account, [19] introduce a non-increasing Lyapunov func-
tional to study stability. For the case of liquid crystals, a proof of the analogous stability
criterion could use, instead of inertia, the dissipation mechanism inherent in the general
Ericksen-Leslie theory for these materials and show stability for energy minimizing solu-
tions (e.g., see [11] for a 1D model of a magnetic Freedericksz transition where viscosity is
taken into account for studying the stability of the problem’s solutions).

The proposed general methodology, although it has been used here to study the Freeder-
icksz transition in a 2D setting, can be extended to more realistic situations. In a recent work
[37] study the 3D stability problem of the twisted nematic device, one of the most celebrated
technological applications of these materials that is used in electronic display technology.
Although an analytical solution of the general 3D problem is no longer possible, for the spe-
cial case of a zero-twist device an analytical solution is still possible in 3D and finds material
constants that allow for a local, i.e., finite wavelength along the plate directions, bifurcation
eigenmode at criticality. Moreover, the proposed Lagrangian variational formulation allows
us to study more complicated problems, such as the stability of swollen nematic elastomers
or nematic gels subjected to external electric fields, in which case the switch of the director
orientation is accompanied by a deformation of the solid, as seen for example in [42, 46].
An additional future direction include applications in liquid crystal elastomers, where more
complicated energy densities involving phase transformations are required.
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Appendix: Detailed Derivation of the Terms
2
v and e2

0 in L-S-K
Asymptotics

Following the general theory presented in [41], the second order term
2
v is obtained by solv-

ing the variational equation (3.28) that can be expanded as:
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where only the non-vanishing terms are recorded.
The terms in Eq. (A.1a) involving the third order variational derivatives of P are:
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and those in Eq. (A.1b) are:
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By substituting the expression of the eigenmode
1
v in (3.24), Eqs. (A.1a)–(A.1c) give the

following system in terms of the components of
2
v:
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with the corresponding natural boundary conditions (since
2
n2(x1,±l/2) = 0):

2
α,2(x1,±l/2) = 0. (A.5)

In addition to the constants L..
.... already defined in (3.11), the new ones appearing in (A.4)

are:
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Since
2
v has to be orthogonal to the eigenmode

1
v, and taking into account that c1 → +∞,

one obtains for
2
v the expressions recorded in (3.29).

The determination of the second order term e2 of the expansion of e0 in the neighborhood
of ec

0 according to (3.30) requires the calculation of the quantities that follow. The first term
in the numerator is found to be:
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the second term in the numerator is:
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and the denominator of e2
0 is:
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Recalling the definition of the system’s potential energy in (3.3), the expressions for
2
v in

(3.29) and
1
v in (3.24), one finally finds e2

0 given by (3.31) (in the calculations account has
also been taken of the fact that c1 → +∞).
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