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Instabilities of a Finitely Deformed 
Fiber-Reinforced Elastic Material 
The instabilities of a finitely deformed Blatz-Ko material reinforced with fibers in a 
single direction (an anisotropic, nonlinearly elastic material) are examined. The 
loading is one of plane strain uniaxial stress with the load axis being inclined with 
respect to the fiber direction. In general one finds a critical applied stress (or 
stretch) at which surface instabilities of the body occur. This is then followed by a 
shear band-type instability. For a certain range of fiber orientations these in-
stabilites appear a maximum stress level has been reached. It has also been found 
that when the fiber direction approaches the loading axis, the material is stabilized 
in tension but destabilized in compression. 

1 Introduction 

The mechanical properties of a ductile solid play an im
portant role in determining its failure mechanism at high 
strain levels. Failure modes of particular interest are those due 
to a loss of stability, which can either be of a local or a global 
character. A local (or material) instability refers to one that 
occurs at a point in the body once a certain critical state of 
stress or strain has been reached at that point, irrespective of 
the conditions at the boundary. Such an instability is often 
associated with a shear band-type failure mode and occurs 
when the governing displacement equations of equilibrium 
lose ellipticity. On the other hand, a global (or geometric) 
instability is associated with a buckling type of failure that is 
critically dependent on the details of the boundary conditions. 

A common way of strengthening certain materials, mainly 
elastomers, is by reinforcing them with fibers along a given 
direction. The present study examines the aforementioned 
stability properties of a fiber reinforced composite, modeled 
as a homogeneous, anisotropic material. 

Here, attention is focused on the plane strain deformation 
of a hyperelastic material reinforced with a single family of 
fibers. More specifically, we examine the isotropic con
stitutive model proposed by Blatz and Ko [1] generalized in 
order to account for reinforcement. The choice of a Blatz-Ko 
material for the matrix was made because it exhibits shear 
band-type local instabilities at sufficiently large strain levels 
(Knowles and Sternberg [2]). On the other hand, in the 
presence of suitable reinforcement we find that no such local 
instabilities exist in the material when subjected to a state of 
plane strain uniaxial tension in the direction of the fibers. 
However, if the tensile stress is directed normal to the rein
forcement, the material exhibits the same instabilities as does 
a Blatz-Ko material. It is apparent, therefore, that the 
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direction of reinforcement significantly influences the 
stability properties of the composite. 

In order to investigate the effect of the anisotropy on global 
stability, we study the bifurcation buckling of a plane strain, 
uniaxially stressed half space bounded by a traction-free 
surface. The buckling mode here is of the form of a surface 
wave exponentially decaying amplitude. For both types of 
instabilities we examine the dependence of the bifurcation 
stress (or stretch) on the fiber orientation. The effect of the 
relative proportion of fibers as well as the stiffness of the 
fibers are also considered. 

The onset of surface instabilities in finitely strained or-
thotropic solids has been studied by Biot [3], Hill and Hut
chinson [4], and others. Recently, the bifurcation of a 
transversely isotropic elastic material has been considered by 
Kurashige [5] and Arcisz [6]. These studies restrict attention 
to the particular (orthotropic) cases in which the applied stress 
is normal to and parallel to the fibers, respectively. On the 
other hand, material instabilities of the shear band type have 
been examined by Rice [7], Knowles and Sternberg [8], and 
others. Douglas and Jaunzemis [9] have formulated the 
conditions for a loss of ellipticity of a general, transversely 
isotropic, elastic material and analyzed the particular 
examples of hydrostatic pressure and simple shear. However, 
an investigation that studies the effect of an arbitrary 
direction of reinforcement on either geometric or material 
instabilities does not appear to have been carried out. 

2 Preliminaries 

Consider a body occupying the region R0 in an undeformed 
configuration and let X denote the position vector of a typical 
particle. A deformation of the body is described by 

x,=x,(X) (2.1)1 

which transforms R0 into a region R and where x denotes the 

All vector and tensor components are taken with respect to a fixed rec
tangular Cartesian frame. We use standard indicial notation with Greek and 
Latin subscripts having the respective ranges (1,2) and (1, 2, 3). 
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which transforms R0 into a region R and where x denotes the 
position vector of a material point in the deformed con
figuration. The components of the deformation gradient 
tensor F and the left and right Cauchy-Green tensors B and C 
are given by 

Fij = dXi/dXj, Bv = FikFjk, Cu = Fki Fkj, (2.2) 

and in view of the invertibility of (2.1) the Jacobian of the 
deformation is positive, J = det F > 0. 

If a is the Cauchy (or true) stress tensor field accompanying 
the deformation at hand, the equilibrium equations, in the 
absence of body forces, are 

doij/dXj = 0, au = Oji. (2.3) 

Suppose now that the body under consideration is 
homogeneous and elastic and that it possesses an elastic 
potential W representing the strain energy per unit un-
deformed volume. The components of true stress are given by 

jfikFj,dW/dCk, (2.4) 

The principal scalar invariants of the Cauchy-Green tensors 
B and C are 

11 = Cu, h = Y <C" CH ~ C'J ciD> h=J2= det C. 
(2.5) 

If the material under consideration is transversely isotropic, 
with the preferential "fiber" direction in the undeformed 
configuration given by the (constant) unit vector A, then the 
elastic potential W depends on the three isotropic invariants 
/ , , I2, h a s w e u a s o n t w o additional invariants I4 and I5 

where 

U = Cu A, Aj, h = C„ Cik Aj Ak (2.6) 

(see Spencer [10]). It is apparent from (2.2) and (2.6) that VZt 
represents the extensional ratio IFA 1/ IA I of a fiber. Con
sequently the deformation (2.1) carries the direction of 
reinforcement A into the direction defined locally by the unit 
vector a 

a,=FuAj/yIT4. (2.7) 

Under these conditions we have W = W(C, A) = W(I\, I2, 
I3, In, I5) with the corresponding constitutive law given by 
(2.4)-(2.7) as 

2 r dW (dW 3 f f \ 9fV 

°iJ = 7 i ' 3 a776" + V a/7 + / l WjBii--df2
BikBkJ 

bW dW 
+I4-rai aj + I 

014 
•A -Qf(BJk "• °k + Bik aj ak)j. (2.8) 

A special form of the elastic potential for a compressible, 
isotropic material was adopted by Blatz and Ko [1] on the 
basis of experimental data obtained by them in tests of a foam 
rubber. We consider here a Blatz-Ko material modified in the 
simplest possible manner to allow for fibers embedded in the 
direction A and take 

W= \hh-l+2h -5+/( /„)) , / ( / 4) = a ( / 4 - l ) " 

(2.9) 

The Baltz-Ko material corresponds to the choice a = 0. Here, 
the infinitesimal shear modulus /x and the anisotropy 
parameter a are both positive (>0) and the hardening ex
ponent m is taken to be an even, positive integar. Equations 
(2.8) and (2.9) yield the corresponding constitutive law 

1 
flr' + 4 / ' (A ) f l , - f l y j . (2.10)2 
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Fig. 1 Response curves in plane strain uniaxial stress. Stress versus 
stretch. 

In order to motivate our particular choice of material, we 
examine a state of plane strain uniaxial stress parallel to the 
A^-axis, au = a, a22 = 0, X3 = 1. When the fibers are parallel 
to the direction of loading, A^ = 1, A2 = A3 = 0, it can 
readily be shown from (2.6) and (2.10) that the applied stress a 
and the transverse stretch X2 are related to the principal 
stretch X[ = A by 

<r/ti=\-K-m+Amf (A2), X2=A~1 /3 . (2.11) 

In view of the specific form of/given in (2.9) it follows that in 
tension cr— + ooasA— + oo and likewise in compression a 
— - oo as A -~ 0 + . On the other hand, if the fibers are 
normal to the direction of loading, Ax = A3 = 0, A2 = 1, 
one finds that 

t r / /x=l-A-3X2- X 2 / ' (X i ) . (2.12) 

The Cayley-Hamilton theorem has also been used in deriving the particular 
form in (2.10). Kurashige [5] has previously considered such a constitutive law. 

In this case, one has a -~ n as A — oo in tension whereas in 
compression <T— - ooasA~~0+. 

Figure 1 displays graphs of the stress-stretch relation a 
versus A for the material under consideration here with a = 
0.25, m = 2, as well as for the isotropic Blatz-Ko material. It 
is clear that in tension, the fibers have a "strengthening ef
fect" when aligned with the direction of stressing whereas 
they have relatively no effect when aligned in a direction 
normal to it. At any intermediate orientation of the fibers one 
expects the response to lie somewhere between these two 
cases. 

Moreover, it may be observed in (2.12) and (2.11) that at 
severe extensions, A — + oo, the anisotropy term/becomes 
insignificant in (2.12) but that it dominates in (2.11). Thus the 
material behavior approaches that of a Baltz-Ko material in 
the former case and is quite different (much "stiffer") in the 
latter. As a consequence, we will find that the material loses 
ellipticity when the fibers are normal to the axis of loading but 
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Fig. 2 Cross section of the body; (a) undeformed and (b) deformed 

that it always remains elliptic when the fibers are parallel to it. 
The stability of a state of plane strain uniaxial tension may 
thus be expected to be highly dependent on the fiber orien
tation. 

It is convenient to scale the stresses with respect to the 
infinitesimal shear modulus n and thus we will henceforth 
formally set fx. = 1. 

3 Plane Strain Uniaxial Stress 
Suppose that the region occupied by the undeformed body 

is a half space3 (Fig. 2(a)), and consider a homogeneous plane 
strain deformation in the plane of the fibers that leaves the 
boundary free of traction. We choose a rectangular Cartesian 
coordinate frame such that the fibers lie parallel to the (x\, 
x2)- plane and with the deformed half-space boundary 
coinciding with the (xlt x3)-plane (Fig. 2(b)). Then the 
components Fla, Fo3 of the deformation gradient tensor 
vanish while F33 = 1. In the case of a transversely isotropic 
material, this assures that the shear components a3a of the 
true stress tensor also vanish. Consequently the coordinate 
directions chosen here are principal for a and 

<7ll=<7,<722=0, Oij=0(i*j). (3.1) 

Since the components A3, a3 of the fiber directions vanish, it 
follows from (2.10) that a33 = 1 - l/J. 

The fiber directions A, a are defined by the angles *, <t> 
made by the fibers with a normal to the undeformed and 
deformed boundary, respectively (Fig. 2). 

Here we view the applied stress a and the fiber angle in the 
undeformed configuration * as being prescribed and seek to 

3 The results in this and the next section continue to hold true for a strip of 
finite dimensions. 

Fig. 3 Response curves in plane strain uniaxial tension. Stress versus 
stretch for different undeformed fiber angles * . 

determine the deformed fiber angle <t> and the left Cauchy-
Green tensor B. Solving (2.10) for B "' gives 

By i = / [8U - au + !jf (/4)fl, fly] . (3.2) 

Elementary manipulation4 of equations (2.1), (2.2), (2.7) and 
(3.2) yields the following scalar equations: 

/ = [ / ^ ' - ^ / ' ( W O - f f s i n 2 4>), 

U = (1-ff cos2 0)/3/(l +J4 a1 sin2 0 cos2 </>), 
aJ^+b J 4 +c = 0, (3.3) 

where 
a = <P-{\ -a)2 sin2 </> cos4 <t> cos2 *, c = sin2 4> cos2 *, 

b = {[( l-of + o2 sin4</>]cos2 $ 
-(1-fjcos2 </>)2) cos2 *. (3.4) 

The three algebraic equations in (3.3) are to be solved for J, I4 
and 4>. Thereafter the Cauchy-Green deformation tensor B 
may be computed from (3.2) and in particular, the stretch 
ratio in the direction of the traction-free surface, A, 

A = (51,-1)1/2=^cos$/Vr4 cos0. (3.5) 

may be determined. 
For given values of the applied stress a and the undeformed 

fiber angle * equations (3.3) were solved numerically for the 
Jacobian / (>0) , fiber stretch ratio \fT4, and deformed fiber 

4 The principal steps involved consist of (i) computing the determinant of 
each side of (3.2), (H) utilizing IA I = 1 in conjunction with (2.7), and (///) 
computing Bu~

l from (2.7) as well as from the maping of the boundary. 
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angle </> (0 < </> < ir/2). Figure 3 displays the resulting stress-
stretch response, a graph of a versus A, for different values of 
the fiber angle $ in the case of tension (a > 0). Keeping in 
mind that the undeformed fiber angle $ is measured from a 
normal to the boundary, one observes that the material 
becomes "stiffer" as the fiber is aligned more closely with the 
direction of stressing, i.e., increasing $. It should be noted 
that (except in the case * = 0 deg, 90 deg) the stress reaches a 
maximum, say o,„, at some value of stretch Am as is clearly 
seen in the curves corresponding to * = 60 deg, 75 deg. The 
value of am is observed to increase with the fiber angle 
whereas the corresponding value of stretch Am decreases. 

4 Material Instabilities - Loss of Ellipticity 

In this section we examine the change of the local stability 
properties of the composite material due to the presence of the 
reinforcment. After setting down the general conditions for 
such an instability, we examine its implications in the par
ticular case of plane strain uniaxial stress. 

The local instability criterion to be examined here is that for 
the onset of shear bands. Failures of this type are often ob
served in highly strained ductile solids. The mathematical 
condition corresponding to the initiation of a shear band at a 
given point in a body is the loss of ellipticity of the 
displacement equations of equilibrium at the point in question 
(Rice [6], Knowles and Sternberg [8]). 

If u(x) denotes a further incremental displacement field 
from a homogeneous equilibrium state of a finitely deformed 
hyperelastic body, the corresponding incremental equilibrium 

equations linearized about this configuration are (Douglas 
and Jaunzamis [9]) 

LijkiUk,u=0 on R. (4.1) 
Here a comma followed by a subscript denotes partial dif
ferentiation with respect to the corresponding ^-coordinate. 
The incremental moduli LiJki are given by 

Lijki j Fip Fjq Fkr F/s 
d2W 

dCrsdC„ 
+ °ij &ik (4.2) 

where a, F, and J denote the Cauchy stress tensor, defor
mation gradient F, and Jacobian associated with the 
homogeneous equilibrium state. In the case of the reinforced 
Blatz-Ko material (2.9) these moduli may be explicitly 
calculated, leading to 

_2_-._ _ 1 
-iiki 3 (By Bkl - (Bik Bji+Bn Bjk) 

- IiBy 8k!+Bkl 8ij) 

+ (Bin B„jbkl+Bkn Bn/ 8jj) 

+ (h + y J3)&tj 8« + y (/2 -^)(8/*«// + «,/«/*) 

+ Wf'il^ajatari+at/Su. (4.3) 
The incremental equilibrium equations (4.1) are elliptic if 

and only if 
det (Lijiii rrij w,)^0 (4.4) 

1.2 

o-m(a=0.25,m=2)/ 

o-e(a=0.25,m=2) ,..-•••-
^-<rb(a=0.25,rr^2) 

<re(a=0) 

<Va=0) 
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Fig. 4 Variation of the critical stresses ab, ag with fiber orientation 
(tension). Uses « = 0 corresponds to unreinforced material. 
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Fig. 5 Variation of the critical stretches with fiber orientaiton (tension) 

for every unit vector m. When specialized to plane strain (4.4) 
yields 

P(Z) = det[La2/32Z2+(Lal 
02+^a20l) Z +£al(3l ] * 0 (4.5) 

for all real numbers Z (Z = m2/m(). A loss of ellipticity of 
the material is therefore equivalent to the presence of at least 
one real zero of the characteristic polynomial P(Z). 

In the particular case of a state of plane strain uniaxial 
stress the polynomial P{Z) can be written explicitly by sub
stituting the field quantities determined in Section 3 into (4.3) 
and (4.5). The question of a loss of ellipticity may then be 
addressed by studying the zeros of P(Z). This was carried out 
numerically. For various fiber orientations $, we determined 
the stress a (or stretch A) at which ellipticity fails; the results 
are discussed in Section 6. 

In the special case when the fibers are oriented parallel to 
the traction-free boundary, $ = TT/2, one finds from (2.11), 
(3.2), and (3.3) that 

Lnn = 3X,-8/3 + Xf3/'(X?) + 2Xr/"(X?), 
Llm = l + Xt/3/'(X?), 

^•1212 = ^1221 = ^ 2 1 1 2 = X f . 

— -£-2211— 1> -£-2222—3- (4.6) 

where /(X?) = a(X? -1)"' and with the remaining inplane 
moduli being zero. It is not difficult to show that in this case 
the polynomial P{Z) in (4.5) is now a biquadratic, and that for 
sufficiently large values of a, its coefficients are all positive 
when Xi > 1 (or equivalently a > 0). Thus with suitable 

reinforcement, loss of ellipticity can always be prevented for 
tensile loading parallel to the fibers. On the other hand, one 
can readily show that the characteristic polynomial always has 
a real root, and so ellipticity is lost, in the presence of a 
sufficiently large compressive stress a. This is also true, both 
in tension and compression, when the fibers are oriented 
normal to the loading direction ($ = 0). 

5 Geometric Instabilities - Surface Bifurcation 

Material instabilities in the form of shear localization occur 
at rather high strain levels. In general, and depending on the 
specific geometry and boundary conditions, a buckling-type 
global instability often precedes the onset of the more severe 
local instabilities mentioned in the preceding section. A simple 
problem that can be used to investigate the effect of rein
forcement on the geometric stability of the Blatz-Ko material 
is the buckling of a half space under conditions of plane strain 
uniaxial stress. As will be subsequently see, the bifurcation 
mode is a surface-type mode whose amplitude decays ex
ponentially with the distance from the free surface. 

A bifurcation eigenmode u(x) is required to satisfy the 
incremental equilibrium equations (4.1), the traction 
boundary condition on the free surface (Douglas and 
Jaunzemis [9]) 

*1,6 "0 rig = 0 on dR, 

and decay condition at infinity, 
ua— 0, «a,0—0 as Ixl —oo, x2<0. 

(5.1) 

(5.2) 
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Fig. 6 Variation of the critical buckling stress <rb with the fiber 
orientation (compression) 

Assuming that the buckling eigenmode u(x) is twice con
tinuously differentiable and bounded on the half space R, one 
can always ensure the existence of a Fourier transform ii(co, 
x2) = 3{\i(xi, x2) I*] — co] in the sense of distributions 
(Schwartz [12]). Although u is required to be a function in the 
classical sense, u in general will not be so. Consequently, the 
subsequent equations (5.3)-(5.8) of this section are to be 
interpreted in the distribution sense. 

On taking the Fourier transform of the equilibrium 
equations (4.1) with respect to xx we obtain the following 
ordinary differential equation with respect to x2 for u 

Ja202 W|3,22 ~iu{La\gi +La2l3l)uP,2 

- W £ a « J l " / 3 = 0 > (5-3) 

whose solution conforming to the decay condition (5.2) is 

ua(oi,x2) = 

MeoML1' exp(-tox2Z<») 

0 
?1(coMi1»exp(-(W2Z<1») 

+ £2(coM<?>exp(-(W*2Z<2>) 
for w>0, 

for to = 0, 
+ £2("M(

a
2)exp(-;a*2Z<2>) 
for w<0. 

(5.4) 

Here Z(1) and Z(2) are the roots of the characteristic 
polynomial (4.5) which have positive imaginary part and a bar 
denotes complex conjugation. The complex (constant) unit 
vectors A(1) and A(2) satisfy 

Aft = 0 (no sum on 7) (5.5) 

and ?!, £2 a r e arbitrary generalized functions of w. It should 
be noted that the existence of four complex roots of P(Z) is 
ensured by the fact that we are focusing attention on the 
buckling modes that occur before the material loses ellipticity 
(and thus P(Z) has no real roots). 

Taking the Fourier transform of the traction-free boundary 
condition (5.1) gives 

La2&2Ujil2 -iu> LaWiuB=0 for x2 = 0, (5.6) 

since nx = 0, n2 = 1. On using (5.4) in (5.6) one finds that the 
coefficients £,, £2 must necessarily satisfy 

SaB^=0 for co>0, §afi^=0 for co<0, (5.7) 

with 

Sa0=La2y2Z^Af+La2ylAf (no sum on 0). (5.8) 

Since according to (5.4) £a cannot have pointwise support at 
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Fig. 7 Variation of the critical stress ae 

different materials 
with the fiber orientation for 

w = 0, if a nontrivial solution (£i,£2) to (5.7) is to exist, it is 
necessary and sufficient that 

de tS = 0, (5.9) 

which then ensures the existence of a nontrivial buckling 
eigenmode. 

The buckling condition (5.9) was examined numerically for 
various fiber orientations $ and the smallest value of the 
applied stress a (or stretch A) for which (5.9) holds was 
determined. The results are described in Section 6. 

One can easily deduce from (5.3) that u(xiy x2) decays 
exponentially with the depth x2 from the free surface. The 
analysis does not, however, determine the X\ -dependence of 
the eigenmode. This is, of course, to be expected in view of the 
absence of any characteristic length in the problem. 

Finally we note that bifurcation problems of this type have 
been previously considered by Biot [3], Hutchinson and 
Tvergaad [11], and others for orthotropic materials. These 
studies preassume the form of the bifurcation eigenmode and 
thus, at least in principle, lead to conditions that are necessary 
for buckling in the prescribed eigenmode only. 

6 Results and Discussion 

The numerical results reported here for the onset of a 
surface bifurcation and the loss of ellipticity of the reinforced 
Blatz-Ko material were based on a straightforward numerical 
implementation of the analysis presented in Sections 4 and 5. 
Of main interest in these calculations has been the dependence 
of the bifurcation and loss of ellipticity stresses ab, ae, (and 
the corresponding surface stretch ratios Ab, Ae), on the fiber 
angle $. The influence of the "density of reinforcement" 
which was assumed to be represented by the parameter or in 
the constitutive model (2.9) as well as that of the "fiber 
stiffness" characterized by the exponent m in the 
aforementioned equation was also examined. 

For purposes of references we note that the unreinforced 
(isotropic) Blatz-Ko material loses ellipticity at ae/^ — 
- 13.17, (Ae = 0.37) in compression, [2]. Similarly a surface-
type bifurcation first occurs at ab/fi — 0.915 (Ab = 2.52) in 
tension and at ab/n — -2 .9 (A 6 = 0.6) in compression, [5]. 

In Fig. 4 we have plotted ab and ae versus $ for plane strain 
tension (o > 0) in the case of a material with a = 0.25 and m 

= 2. Note that the value of ae is very close to that of ab (with 
ae > ab for * less than = 27 deg and ab > ae for * greater 
than = 27 deg. For fiber angles $ exceeding - 27 deg it is 
almost impossible to distinguish between the stress levels 
corresponding to bifurcation and loss of elliptiticy. For 
sufficiently small values of $ the fibers in fact weaken the 
material with respect to its stability, with the instabilities 
occuring at stress levels that are less than the corresponding 
values for the isotropic case. Thereafter, the critical stresses 
Oft, ae increase continuously with $. The relatively slow in
crease in 0/, and ae with respect to increasing $ may be ex
plained in part by the fact that the stress-stretch curves for this 
material are rather flat at sufficiently large stretches (Fig. 3). 
As will be seen in Fig. 5, the stretches at which these in
stabilities occur in fact increase sharply with *. The maximum 
stress am, as described at the end of Section 3, is also shown in 
this figure. For angle $ less than = 27 deg, bifurcation and 
loss of ellipticity occur before the maximum stress o,„ is 
reached while when * exceeds this value these phenomena 
occur after om has been attained, i.e., at stretch ratios ex
ceeding Am. 

In Fig. 5 we have plotted the logarithmic surface strains at 
instability, eb = /„ Ab and ee = In Ae, under the preceding 
conditions. One observes again that for sufficiently small 
fiber angles * the fibers weaken the material against in
stability. As before, the distinction between ab and oe for $ 
exceeding = 27 deg is virtually impossible. Also not that the 
critical strains increase sharply with relatively small changes 
in the undeformed fiber angle $, and the predicted critical 
surface strain levels rapidly reach values that appear to be 
unrealistically high. 

Figure 6 depicts the dependence of the bifurcation stress ab 

on the fiber angle $ for the same material as before but in the 
case of compression (o < 0).The stress at a loss of ellipticity in 
this case was considerably higher than ab and is thus not 
shown in this figure. (For example at * = 45 deg it is found 
that <je/fi — - 19.5.) We note two main differences between 
the tensile and compressive cases. In compression ab is highly 
dependent on the fiber angle $, presumably as a result of the 
steepness of the stress-stretch curves (Fig. 1). Secondly, 
bifurcation occurs at a stress level that is considerably smaller 
than oe. In contrast to the tensile case, here ab decrease with 
<f>. We also note that the reinforced material is weaker than 
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the unreinforced one for the fiber angles close to 90 deg (see 
also Arcisz [6]). 

To investigate the effect of the material properties on 
stability, we have changed both the "fiber density" parameter 
a and the "fiber stiffness' parameter m and recalculated ab 

and <7e in the case of tension. The variation of ae is shown in 
Fig. 7, with ab having values very close to ae as in the case 
discussed previously. It is of interest to note that the increase 
in m does not seem to significantly alter the stability 
properties of the material, for small angles *. 

In conclusion, the results presented here for the particular 
Blatz-Ko material indicate that reinforcement in the direction 
of stressing provides the "greatest stability" in the case of 
tensile loading but "weakens" the material in the case of 
compression. The opposite is true when the fibers are normal 
to the load. 

Acknowledgments 

The results reported in this paper were obtained in the 
course of an investigation supported in part by the National 
Science Foundation through Grant CME 81-06581. 

References 

1 Blatz, P. J., andKo, W. L., "Application of Finite Elastic Theory to the 

Deformation of Rubbery Materials," Transaction of the Society ofRheology, 
Vol. 6,1962, pp. 223-251. 

2 Knowles, J. W., and Sternberg, E., "On the Ellipticity of the Equations 
of Nonlinear Elastostatics for a Special Material," Journal of Elasticity, Vol. 
5, 1975, pp.341-361. 

3 Biot, M. A., Mechanics of Incremental Deformations, Wiley, New York, 
1965. 

4 Hill, R., and Hutchinson, J. W., "Bifurcation Phenomena in the Plane 
Tension Test," Journal of the Mechanics and Physics of Solids, Vol. 23, 1975, 
pp.239-264. 

5 Kurashige, M., "Instability of a Transversely Isotropic Elastic Slab 
Subjected to Axial Loads," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, 
1981, pp.351-356. 

6 Arcisz, M., "Bifurcation Conditions for Ideal Fiber-Reinforced 
Materials," International Journal of Solids and Structures, Vol. 16, 1980, pp. 
1109-1121. 

7 Rice, J. R., "The Localization of Plastic Deformation," Proceedings of 
the 14th IUTAM Congress, Koiter, W. T., ed., Delft, Netherlands, Aug. 1976, 
pp. 207-220. 

8 Knowles, J. K., and Sternberg, E., "On the Failure of Ellipticity of the 
Equations for Finite Elastostatic Plane Strain," Archive for Rational 
Mechanics and Analysis, Vol. 63, 1977, pp. 321-326. 

9 Douglas, W. J., and Jaunzemis, W., "Stability of Prestrained Laminated 
Media," Proceedings of the 5th Symposium on Naval Structural Mechanics, 
Wendt, F. W., et al., eds., 1967, pp. 679-700. 

10 Spencer, A. J. M., Deformations of Fiber-Reinforced Materials, Oxford 
University Press, 1972. 

11 Hutchinson, J. W., and Tvergaard, V., "Surface Instabilities on 
Statically Strained Plastic Solids," International Journal of Mechanical 
Sciences, Vol. 22, 1980, pp. 339-354. 

12 Schwartz, L., Theorie des Distributions, Herrmann, 1950. 

.Readers Of. 
The journal Of Applied Mechanics 
Will Be Interested In9. 
Proceedings Of The First Offshore Mechanics Arctic Engineering Deepsea Systems Symposium 
Ed. J. S. Chung 

Volume I 
Offshore Mechanics: Offshore Platforms • Hydrodynamics • Fatigue & Structure Mechanics Ocean Margin Drilling: 
Deep Sea Drilling • Advanced Ocean Drilling Energy From The Ocean: Wave Energy • Thermal Energy. 

Volume II 
Offshore Mechanics: Submarine Pipelines/Pipelaying • Marine Riser Design and Cable Systems • Offshore Systems 
• Offshore Systems/Terminals 
Arctic Engineering: Field Ice Mechanics • Ice Forces • Arctic Operations Engineering • Permafrost Engineering. 

1982 
1982 

Volume I 
Volume II 

Bk. No. 100147 
Bk. No. 100148 

$45.00 
$45 00 

Members $22.50 
Members $22.50 

Descriptions of other volumes of interest appear on pages 42,49, 66, 76, 84,94,122,148,164,178, and 189. 

Address Orders To: 
ASME Order Department • P.O. Box 3199, Grand Central Station • New York, N.Y. 10163 AM 105 

156/Vol. 50, MARCH 1983 Transactions of the ASME 
Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org on 10/11/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use




