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Abstract This work pertains to the stability of struc-
tures under rapid loading rates when inertia is taken
into account. In contrast to the widely used approach
in the relevant literature, which is based on the method
of modal analysis to determine the structure’s fastest
growing eigenmode—meaningful only for cases where
the velocity of the perfect structure is significantly
lower than the associated characteristic wave propa-
gation speeds—the present study analyzes the time-
dependent response to spatially localized perturbations
of the transient (time-dependent) states of these struc-
tures, in order to understand the initiation of the cor-
responding failure mechanisms. We are motivated by
the experimental studies of Zhang and Ravi-Chandar
(Int J Fract 142:183-217, 2006), Int J Fract 163:41-65,
(2010) on the high strain-rate expansion of thin rings
and tubes,which shownoevidence of a dominantwave-
length in their failure mode and no influence of strain-
rate sensitivity on the necking strains. Recently, Ravi-
Chandar and Triantafyllidis (Int J Solids Struct 58:301-

G. Wen · N. Triantafyllidis (B)
Laboratoire de Mécanique des Solides, C.N.R.S.
UMR7649 École Polytechnique, 91128 Palaiseau, France
e-mail: nick@lms.polytechnique.fr

N. Triantafyllidis
Département de Mécanique, École Polytechnique,
91128 Palaiseau, France

N. Triantafyllidis
Aerospace Engineering Department and Mechanical
Engineering Department (emeritus), The University
of Michigan, Ann Arbor, MI 48109-2140, USA

308, 2014) studied the dynamic stability of an incom-
pressible, nonlinearly elastic bar at different strain-rates
by following the evolution of localized small perturba-
tions introduced at different times. The same approach
is followed here for the biaxial stretching of thin plates,
where we follow the time evolution of spatially local-
ized perturbations and their interactions. The nonlin-
ear time evolution of a such a perturbation is studied
numerically and it is shown that these structures are
stable until the time when the condition for the loss
of ellipticity is reached. An analytical method, based
on linearization, is used to define the size of the influ-
ence zone of a point-wise perturbation and we study
its dependence on constitutive laws and loading condi-
tions.
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1 Introduction

The issue of dynamic stability of structures is an impor-
tant engineering problem and as such has drawn con-
siderable attention. The first investigation in this area
appears to be the work of Koning and Taub (1933),
who investigated the influence of inertia in a simply
supported imperfect column subjected to a sudden axial
load. A substantial amount of work followed that inves-
tigated the response of, mainly elastic, structures to
impulse or time-dependent loads. As a result, and due
to themanypossible definitions for the stability of time-
dependent systems, the term dynamic stability encom-
passes many classes of problems and different physical
phenomena and has many interpretations, with inertia
being the only common denominator.

In the absence of inertia, the processes of failure
by a bifurcation instability mode in elastic solids and
structures are well understood (e.g. Brush and Alm-
roth (1975)) and a general asymptotic analysis, termed
Lyapunov-Schmidt-Koiter (LSK), has been developed
for their study. The first effort to use the LSK gen-
eral analysis for the dynamic stability problem of an
elastic structure appears to be Budiansky and Hutchin-
son (1964), where the authors proposed an asymp-
totic analysis of the time-dependent problem using the
eigenmodes of the static problem.

Another idea, popular in fluid mechanics, has also
been adopted for the dynamic stability analysis of solids
with more general constitutive laws under high rates of
loading, according towhich one seeks the solid’s fastest
growing eigenmode, or the wavelength associated with
lowest necking strain. This method has been repeatedly
applied in the study of the dynamic stability of various
elastoplastic structures (bars, rings, plates, shells e.t.c.)
under high loading rates where the failure pattern and
size of fragments is of interest (e.g. see Shenoy and
Freund (1999), Sorensen and Freund (2000), Guduru

and Freund (2002), Mercier andMolinari (2003), Zhou
et al. (2006), Xue et al. (2008), Mercier et al. (2010),
Jouve (2015)).

However, recent experimental evidence from rapidly
expanding electromagnetically loaded metallic rings
by Zhang and Ravi-Chandar (2006, 2008) finds no
evidence of a dominant wavelength at the necked pat-
tern of the rings. Moreover, they find no experimen-
tal evidence of influence of strain rate on the necking
strains, which are consistent with maximum force cri-
terion of a rate independent constitutive law (Considère
criterion).

As explained by these authors, using the fastest
growing eigenmode to predict the onset of failure is
physically meaningful provided that some character-
istic velocity of the principal solution—e.g. ring/tube
expansion rate—ismuch slower than the speed of prop-
agation of perturbations in the solid or structure at hand.
For high loading rates, commensurate with some char-
acteristic wave propagation speed in the structure, a
novel approach to the stability analysis is required,
namely the study of the evolution of localized pertur-
bations.

We are motivated by the experimental studies of
Zhang and Ravi-Chandar (2006, 2010) on the high
strain-rate expansion of thin rings and tubes, which
show no evidence of a dominant wavelength in their
failure mode and no influence of strain-rate sensitivity
on the necking strains—the onset of failure of an elec-
tromagnetically loaded, dynamically expanding tube is
shown in Fig. 1, where one can observe a rather random
failure mode. Recently, Ravi-Chandar and Triantafyl-
lidis (2015) studied the dynamic stability of an incom-
pressible, nonlinearly elastic bar at different strain-rates
by following the evolution of localized small perturba-
tions introduced at different times. The same approach
is followed here for the biaxial stretching of thin plates,
where we follow the time evolution of spatially local-

Fig. 1 Unfolded conical mirror image for an electromagneti-
cally expanding Al 6061-O tube test (from Zhang and Ravi-
Chandar (2010)), showing the onset and evolution of necks under

high strain rate loading; notice the absence of a dominant wave-
length in the failure pattern
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Dynamic stability of biaxially strained thin sheets... 101

ized perturbations and their interactions. Following this
introduction, in Sect. 1, the formulation of the prob-
lem (definition of influence zones and algorithm for
the nonlinear FEM calculations) is presented in Sect. 2.
Results are given in Sect. 3, starting with the descrip-
tion of the constitutive models and following with the
numerical study of the nonlinear time evolution of a
such a perturbation showing that these structures are
stable until the time when the condition for the loss of
ellipticity is reached. In the same section we present an
analytical method, based on linearization, to define the
size of the influence zone of a point-wise perturbation
and we study its dependence on constitutive laws and
loading conditions. The presentation is concluded in
Sect. 4.

2 Problem formulation

This section starts with the presentation of the model
for the propagation of perturbation about a point defect
on a biaxially strained, rate-independent, flat plate of
infinite extent by studying the evolution of influence
zones (linearized approach). The setting of the corre-
sponding nonlinear problem, which is treated numeri-
cally, is presented subsequently.

2.1 The influence zones of a biaxially strained
elastoplastic plate

We consider a 2D thin, flat plate (idealized as a mem-
brane) of infinite extent and uniform initial thickness
H subjected to a biaxial stretching as shown in Fig. 2.
To avoid in-plane acceleration terms in the unperturbed
solution of the perfect plate, the following stretch ratios
are being imposed at infinity:

λ1

λ2

REF

current

Fig. 2 A schematic diagram of a biaxially strained plate

λ1 = 1 + (c cosψ)t , λ2 = 1 + (c sinψ)t . (2.1)

Hence a uniaxial straining corresponds to tanψ =
0, balanced biaxial straining to tanψ = 1, while a
uniaxial stressing is approximated by tanψ = −1/2
(assuming incompressibility and valid only initially for
small strains. A more accurate value for finite strains
depends on constitutive response).

In the absenceof body forces the equations ofmotion
of the thin plate can be put in the form1:

∂Nαβ

∂Xβ

= ρ0
∂2uα

∂t2
, (2.2)

where Nαβ is the nominal (force/reference thickness)
stress resultant, ρ0 the reference mass density, Xα the
reference geometric coordinates and uα(X, t) the cor-
responding displacement of a material point initially
at X in the Lagrangian description. For simplicity the
reference configuration is identifiedwith the stress-free
configuration of the plate.

The plate’s constitutive equation is assumed to be
rate-independent with the following relation between
the time derivative of the stress measure Ṅαβ and rate
of deformation gradient Ḟαβ

2:

Ṅαβ = Lαβγ δ Ḟγ δ ; Fεζ = δεζ + ∂uε

∂Xζ

, (2.3)

whereLαβγ δ are the plane stress incremental moduli of
the plate,which in general dependon the current state of
stress plus the deformation history represented by a set
of internal variables. These moduli obtained from the
3D version of the constitutive equation �̇ j i = Li jkl Ḟkl
(relating the rate of the first Piola-Kirchhoff stress �̇ j i

to its work conjugate quantity Ḟkl ) plus the plane stress
condition �̇3i = 0 and the orthotropy of the plate with
respect to the thickness direction. For the case of a
hyperelastic material the stress measures are derivable
from a potential i.e. Nαβ = ∂W/∂Fαβ in which case
Lαβγ δ = ∂2W/∂Fαβ∂Fγ δ whereW (F) is the 2D strain
energy density of the plate.

Of interested here is the propagation of the local-
ized perturbation about X = 0. Using  f to denote

1 Here and subsequently Greek indexes range from 1 to 2 while
Latin indexes range from 1 to 3.
2 Here and subsequently, superimposed dot denotes time differ-
entiation ḟ ≡ ∂ f (X, t)/∂t .
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102 G. Wen, N. Triantafyllidis

the difference between the perturbed and unperturbed
values respectively of a field quantity f and exploiting
the fact that the principal solution is homogeneous (i.e.
independent of X), one obtains the following systems
governing the evolution of perturbation3:

Lαβγ δ

∂2uγ

∂Xδ∂Xβ

= ρ0
∂2uα

∂t2
. (2.4)

We follow the propagation of the perturbation in all
directions n and for this propose we consider solutions
of the form:

uα(X, t) = Uα f (V t − nαXα) , (2.5)

where f (z) is an arbitrary function of z ∈ R, Uα is the
perturbation amplitude and V its speed of propagation.

Introducing (2.5) into (2.4) one finds that (V )2 is
one of the two eigenvalues of Lαβγ δnβnδ ≡ Aαγ (n)

which is the acoustic tensor along n:

[
Lαβγ δnβnδ − ρ0(V )2δαγ

]
Uγ = 0 . (2.6)

The absence of any characteristic length ratio in
the infinite flat plate, leads do the following non-
dimensionalization of perturbation velocity (ν), dis-
tance (χ ), and time (τ ) for this problem

ν ≡ V [G/ρ0]
−1/2 ; χ ≡ Xc [G/ρ0]

−1/2 τ ≡ ct,

(2.7)

where [G/ρ0]−1/2 is the shear wave propagation speed
at zero strain (G being the corresponding shear modu-
lus of the plate at zero strain) and c the straining speed
introduced in (2.1).

We are now in a position to estimate the extent of
the zone influenced by a point-wise perturbation intro-
duced at the onset of deformation (τ = 0) in the plate
until the onset of a necking localization, characterized
by the loss of ellipticity in the perfect thin plate. We
also call this perturbation an initial defect, since the
introduction of the spatially localized perturbation at
the beginning of the loading process is equivalent to

3 For hyperelastic material, a linearization of perturbation yields
Nαβ = Lαβγ δFγ δ . To avoid algebraic complications we fur-
ther assume that the same holds true for a rate-independent mate-
rial.

a the presence of a defect in the plate. To this end we
define the lowest and highest dimensionlesswave prop-
agation speeds ν− and ν+ which are the lowest and
highest eigenvalues of the acoustic tensor according to
(2.6) appropriately non-dimensionalized with the help
of (2.7).

For a given time τ , on can thus define the influence
zones χ− and χ+ determined by:

χ−(φ, τ ) ≡
∫ τ

0
ν−

(
φ, τ ′) dτ ′ ,

χ+(φ, τ ) ≡
∫ τ

0
ν+

(
φ, τ ′) dτ ′ , (2.8)

which are the distances traveled at time τ by the slow
and fast wave fronts respectively along direction φ

(recall n1 = cosφ, n2 = sin φ) (Fig. 3).
The perturbation can no longer propagate along a

direction φ once its lowest speed reaches ν− = 0,
which occurs at time τe(φ) (subscript e standing for
loss of ellipticity in the incremental equilibrium equa-
tions):

ν− (φ, τe(φ)) = 0

(ν−(φ, τ ) > 0 for 0 ≤ τ < τe(φ)) . (2.9)

The locus of points reached by the wave propagating
along a given direction φ until ν− = 0 is given by:

χe(φ) ≡
∫ τe(φ)

0
ν−

(
φ, τ ′) dτ ′ , (2.10)

Fig. 3 Typical influence cone of an initial (τ = 0) perturbation
atX = 0 showing the evolution of the influence zones χ−, χ+ of
the slow (ν−) and fast (ν+) wave speeds as a function of time τ
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Dynamic stability of biaxially strained thin sheets... 103

δ−

δ+

χ−(φ, τm)

χ+(φ, τM )

χe(φ)

χ1

χ2

Fig. 4 Influence zones of an initial (τ = 0) perturbation atX = 0
for biaxially stretched thin, flat plates: χ− (φ, τm), χ+ (φ, τM )

in solid lines. The minimum δ− and maximum δ+ discs of influ-
ence are depicted in dotted line. Also plotted in dashed line is
χe(φ), the locus of points reached by the wave propagating along
a given direction φ until loss of ellipticity occurs. Results cor-
respond to uniaxial strain ψ = 0 of a power-law type material
with hardening exponent n = 0.22

as shown in Fig. 4. Two particular values of τe(φ) are of
interest: the ones corresponding to the lowest (τm) and
highest (τM ) values of τe(φ)with respect to φ, namely:

τm =min
φ

τe(φ) = τe(φm) ;
τM =max

φ
τe(φ) = τe(φM ) . (2.11)

At time τm the plate reaches for the first time con-
ditions of loss of ellipticity of its incremental equilib-
rium equations. The influence zone corresponding to
the lowest speed ν− is χ− (φ, τm) as seen in Fig. 4.
One can thus define δ− the radius of the minimum disc
influenced by the perturbation at X = 0 at the onset of
loss of ellipticity:

δ− = χ−(φm, τm) =
∫ τm

0
ν−

(
φm, τ ′) dτ ′ . (2.12)

In a similar way we are interested in the maximum
size disc, centered at X = 0, that the perturbation can
reach. At time τM the plate has already lost ellipticity
for all possible directions of wave propagation φ and
the zone influenced by the perturbation at X = 0 is

χ+ (φ, τM ) as seen in Fig. 4. In analogy to δ−, one can
also define δ+ the radius of the maximum disc cover-
ing entirely the range of influence of the perturbation
at X = 0 when the plate has lost ellipticity along all
possible directions φ, namely:

δ+ = χ+ (φM , τM ) =
∫ τM

0
ν+

(
φM , τ ′) dτ ′ . (2.13)

It should be noted here that δ− exists as long as
the model loses ellipticity for the loading considered.
Moreover even if a δ− exists, a δ+ might not.

2.2 Numerical calculations

Nonlinear dynamics calculations for the evolution of
a spatially localized initial perturbation are done using
the finite element method using the simplest consti-
tutive law, namely a hyperelastic, finite (logarithmic)
strain model fitted a uniaxial power law. The use of
this model for elastoplastic materials is justified by the
absence of unloading in the calculations (of interest is
the response of the plate up to the loss of ellipticity).
A brief description of the algorithm used is presented
here.

The starting point of the calculations is the weak for-
mulation of equilibrium equations (2.2) in Lagrangian
(reference) configuration:

∫

A
[Nαβδuα,β + ρ0

∂2uα

∂t2
δuα]d A = 0 , (2.14)

with δu is the test function. A spatial FEM discretiza-
tion leads to the solution of the following system of
equations:

M · A(t) + F(U(t)) = 0 ; A(t) ≡ ∂V(t)/∂t ,

V(t) ≡ ∂U(t)/∂t (2.15)

where F is the force vector, M the mass matrix and
U(t), V(t) and A(t) respectively vector of nodal dis-
placements, velocities and accelerations.

The time marching algorithm chosen for the solu-
tion of (2.15) is the HHT-α method (see Hilber et al.
(1977) which uses the following updating scheme for
the displacement and velocity vectors:
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104 G. Wen, N. Triantafyllidis

Ut+t = Ut + tVt

+ (t)2

2

(
(1 − 2β)At + 2βAt+t) ,

Vt+t = Vt + t
(
(1 − γ )At + γAt+t) , (2.16)

which are in turn used for the iterative solution of (2.15)
by driving its residual vectorR at each time step to zero
according to:

0 = Rt+t = M·At+t+(1+α)F(Ut+t )−αF(Ut ) .

(2.17)

In the above expressions, the constants α, β and γ

govern the stability and numerical dissipation of the
algorithm and are related by β = (1 − α)2/4 and γ =
1/2 − α (see Hilber et al. 1977). For the calculations
reported here we choose α = −0.05. The remainder
Rt+t
i at iteration i at time step t+t is updated using

the tangent stiffness matrix Kt+t
i of the algorithm:

Rt+t
i =Kt+t

i · (Ut+t
i+1 − Ut+t

i ) ,

Kt+t
i ≡ ∂R

∂Ut+t
i

= 1

βt2
M + (1 + α)

∂F
∂U

(Ut+t
i ) ,

(2.18)

until convergence in the displacement is reached, i.e.
‖Ut+t

i+1 − Ut+t
i ‖ ≤ ε‖Ut+t

i ‖, where ε is a conve-
niently chosen tolerance parameter.

The spatial discretization of the plate uses standard
2D isoparametric quadrilateral elements. The bound-
ary conditions imposed at any time are the displace-
ments and velocities of the principal (perfect) solution
given in (2.1). The reference configuration rectangu-
lar domain used in the calculations covers completely
a disc of radius δ+, thus ensuring that no perturbation
wave ever reaches any boundary. The initial conditions
are the displacements and velocities of the principal
solution. Instead of prescribing a slightly perturbed ini-
tial displacement or velocity field, we chose the equiva-
lent approach of using an initial imperfection through a
central element with a slightly lower shear modulus, as
detailed in the results section. A special element incor-
porating the constitutive law and time solution algo-
rithm described here is then introduced into a commer-
cial FEM code (ABAQUS) to calculate the results for
this work.

3 Results

This section starts with the constitutive models chosen.
It continues with the study of the evolution of a single
spatially localized perturbation with different ampli-
tudes, followed by the study on interactions of such
perturbations. These results show the stability of the
biaxially strained plate, as long as none of its points
has reached the loss of ellipticity condition and deter-
mine the actual (nonlinear) zone of influence of the
perturbation. The section concludes by investigating
the influence of constitutive law and load orientation
on the size of the minimum and maximum influence
zones.

3.1 Constitutive laws

The analysis presented in Sect. 2 is general; any rate-
independent constitutive law (which can be put in the
form of (2.3)) can be accommodated, provided that
its membrane (plane stress) version loses ellipticity at
some strain level. Results presented here correspond
to the three such models: a hyperelastic (deformation
theory) type model of plasticity, the J2 deformation
theory model of Stören and Rice (1975) and a finite
strain generalization of the J2 flow theory. All models
are fitted to the same power law uniaxial stress-strain
curve and share the same principal solution. Since no
unloading occurs in the perturbed plate prior to reach-
ing a loss of ellipticity, the use of deformation theory
type constitutive models is adequate for analyzing its
stability.

We start with the hyperelastic constitutive model,
which is described by a strain energy W , a function of
the equivalent logarithmic strain εe as follows:

W = E
(
εy

)2[ 1

1 + χ

( εe

εy

)χ+1 + 1

2

(χ − 1

χ + 1

)]
,

⎧⎨
⎩

χ = 1 for εe ≤ εy ,

χ = n for εe > εy ,
(3.1)

where the equivalent strain εe is given in terms of the
principal logarithmic strain components εα:

εe = 2√
3

[
ε21 + ε22 + ε1ε2

]1/2; εα = ln λα , (3.2)
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Dynamic stability of biaxially strained thin sheets... 105

with λi the stretch ratios of the deformation (principal
values of the stretch tensor U, the rotationless part of
the deformation gradient F = R ·U; U = (

FT ·F)1/2).
The above isotropic model is fitted with a piecewise

power law uniaxial stress-strain curve4:

σe

σy
=

( εe

εy

)χ

, (3.3)

where the exponent χ is given in (3.1) and the equiva-
lent stress σe is the Von-Mises stress given in terms of
the principal Cauchy stress σα by:

σe = (
σ 2
1 + σ 2

2 − σ1σ2
)1/2

. (3.4)

Since the principal solution is biaxial straining, the
principal stresses are related to the principal logarith-
mic strains by:

σα = ∂W

∂εα

; σ1 = 2

3
Es

(
2ε1 + ε2

)
,

σ2 = 2

3
Es

(
ε1 + 2ε2

)
, (3.5)

where Es = σe/εe is the secant modulus, Et =
dσe/dεe is the tangent modulus of the equivalent uni-
axial stress-strain curve in which the equivalent stress
and strain are related by: σe = dW/dεe.

When we are no longer along the principal axes of
deformation (as is the case of numerical FEM calcu-
lations) the stress measures and incremental moduli of
this model (see (2.3)) are found by:

Nαβ = ∂W

∂Fαβ

, Lαβγ δ = ∂2W

∂FαβFγ δ

. (3.6)

In addition to the above-presented hyperelastic con-
stitutivemodel used in numerical calculations, for com-
parison purposes two more constitutive models will be
employed for the calculation of influence zones under
different loading orientations: the J2 deformation the-
ory model by Stören and Rice (1975) and the J2 flow
theory model, both in their finite strain version.

As previouslymentioned, all three constitutivemod-
els share the sameuniaxial stress-strain curve and are so
constructed as to have the same response when loaded

4 For a uniaxial stress state ε2 = −ε1/2 and εe = ε; Moreover
εy and σy = Eεy are the yield strain and stress respectively in a
uniaxial loading path.

with fixed principal axes of deformation. Since the cal-
culation of δ− and δ+ (the minimum and maximum)
influence disc sizes for the different constitutive laws
requires the principal solution, the evaluation of the
corresponding incremental moduli are presented below
along the fixed principal axes.

The non-zero components of the plane stress mod-
uli in (2.3) are given below in two groups; the normal
moduli components are:

L1111 = 1

λ21

[4
3
E∗ + (

Et − E∗)(σ1

σe

)2 − σ1

]
,

L1122 = 1

λ1λ2

[2
3
E∗ + (

Et − E∗)σ1σ2

σ 2
e

]
,

L2222 = 1

λ22

[4
3
E∗ + (

Et − E∗)(σ2

σe

)2 − σ2

]
,

(3.7)

where for the J2 deformation theory model as well as
the hyperelastic model in (3.1), (3.2) the normal incre-
mental moduli are the same with E∗ = Es = σe/εe
while for the J2 flow theory model E∗ = E .

The shear moduli components are given by:

L1212 = 1

λ22

[ E∗

3
+ σ2 − σ1

2

]
,

L2121 = 1

λ21

[ E∗

3
+ σ1 − σ2

2

]
,

L1221 = L2112 = 1

λ1λ2

[ E∗

3
− σ1 + σ2

2

]
,

(3.8)

where for the J2 flow theory E∗ = E , for the J2 defor-
mation theory E∗ = Es while for the hyperelastic
model E∗ = Es[(λ21 + λ22)/(λ

2
1 − λ22)](ln λ1 − ln λ2).

The principal stresses σα for all three models are iden-
tical and given by (3.5).

The hyperelastic and J2 deformation theory mod-
els lose ellipticity at realistic strain levels for all load
path orientations ψ (see definition (2.1)) while the
J2 flow theory gives unrealistic results for load ori-
entations ψ > 0 (and hence the need for the defor-
mation theory models used). Moreover, only values
of ψ for which both principal stresses σi are tensile
(σα = ∂W/∂εα > 0) will be investigated, since a com-
pressible membrane stress is unsustainable (thin plate
will immediately buckle).
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106 G. Wen, N. Triantafyllidis

(a) (b) (c)

Fig. 5 Green-Lagrange strain perturbation contours E(χ , τ )

at three different dimensionless times (a) τ = 0.17, (b) τ = 0.35
and (c) τ = 0.52 = τm , where only contours of E ≥ 10−3

are shown in color. The extent of the influence zones χ−(φ, τ )

and χ+(φ, τ ) for the slowest and fastest wave speeds ν− and

ν+ respectively, are also shown in these figures. Results corre-
spond to a hyperelastic constitutive law with a piecewise power
law uniaxial curve (εy = 0.002, n = 0.22) and a loading angle
tanψ = −1/2

3.2 Evolution at a spatially localized perturbation

We start by analyzing the influence of an initial imper-
fection, located at the origin, in the form of a square
domain of size χ = 6 × 10−5 whose shear modulus
is G(1 + ξ), where ξ = 4 is the imperfection ampli-
tude. Equivalently, one could have taken a perturbation
in the principal solution (dimensionless) displacement
field u1(χ , 0) = χ1τ cosψ , u2(χ , 0) = χ2τ sinψ

or in the principal solution (dimensionless) velocity
field ν1(χ , 0) = χ1 cosψ , ν2(χ , 0) = χ2 sinψ . The
shear modulus imperfection used here is equivalent to
an isotropic displacement or velocity field perturba-
tion that would have resulted from a sudden isotropic
dilation/contraction of the perturbed domain at τ = 0.
Hence we use the terms initial imperfection or pertur-
bation indistinguishably.

To better visualize the influence of the initial pertur-
bation on the dynamic behavior of the biaxially strained
plate, we plot two different measures of the pertur-
bations: the perturbation in the total Green-Lagrange
strain:

E ≡ ∥∥E(χ , τ ) − E0(χ , τ )
∥∥

=
[(
Eαβ − E0

αβ

)(
Eαβ − E0

αβ

)]1/2
> 0 ,

Eαβ = 1

2

(
FγαFγβ − δαβ

);

E0
αβ = diag

[1
2

((
λγ

)2 − 1
)]

,

(3.9)

and the perturbation in the shear component of the
Green-Lagrange strain, which in view of the absence
of a shear strain component in the principal solution, is
the shear strain component of the perturbed solution:

E12 ≡ ∣∣E12(χ , τ ) − E0
12(χ , τ )

∣∣ = ∣∣E12
∣∣ > 0 .

(3.10)

The influence of the initial perturbation is shown in
Figs. 5 and 6 which depict the evolution of contours
of E and E12 in

[
χ1, χ2

]
space (only the positive

quadrant is shown here due to symmetry). More specif-
ically, the evolution of the strain perturbation due to
an initial imperfection of amplitude ξ = 4 (contours
of perturbations with magnitudes below 10−3 are not
plotted, for visual enhancement of the evolution of the
initial perturbation) for three different dimensionless
times τ (0.17, 0.35 and 0.52 = τm) are depicted in these
figures. Results correspond to a hyperelastic material
with n = 0.22 and εy = 10−3, strained along a loading
path with ψ = −1/2, which corresponds to uniaxial
stressing for small strains.

For the lowest value of τ = 0.17, only a small region
near the origin χ = 0 is affected, while for τ = 0.35
the emergence of a localized band of deformation in
the direction of the loss of ellipticity of the material
(π/2 − φm) is obvious. At the time of onset of loss
of ellipticity, τm the localized deformation band in the
direction π/2−φm is more pronounced. What is worth
mentioning is that the localized deformation appears
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(a) (b) (c)

Fig. 6 Shear strain perturbation contours E12(χ , τ ) at three
different dimensionless times (a) τ = 0.17, (b) τ = 0.35 and (c)
τ = 0.52 = τm , where only contours of E ≥ 10−3 are shown
in color. The extent of the influence zonesχ−(φ, τ ) andχ+(φ, τ )

for the slowest and fastest wave speeds ν− and ν+ respectively,
are also shown in these figures. Results correspond to a hypere-
lastic constitutive lawwith a piecewise power law uniaxial curve
(εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2

(a) (b) (c)

Fig. 7 Green-Lagrange strain perturbation E plotted in polar
coordinates (χ1, χ2) = (ρ cos θ, ρ sin θ) for θ ∈ [0, π/2] and
at different distances ρ from the origin (distance is increasing
by constant ρ = 1.5 × 10−3 and ρ + E(ρ, θ) is plotted in
the y-axis). Results are shown for three different dimensionless
times (a) τ = 0.17, (b) τ = 0.35 and (c) τ = 0.52 = τm . The

extent of the influence zones χ−(τ ) and χ+(τ ) for the slowest
and fastest wave speeds ν− and ν+ respectively are also shown
in these figures. Results correspond to a hyperelastic constitutive
law with a piecewise power law uniaxial curve (εy = 0.002,
n = 0.22) and a loading angle tanψ = −1/2

to propagate in three tongues. This phenomenon can
be explained by the square shape of the initial pertur-
bation domain, where each corner acts as a source. A
static analogue of this phenomenon has been found in
Abeyaratne and Triantafyllidis (1981). Moreover the
width of the localized deformation zone is consider-
ably larger than the size of the initial perturbation due
to the propagation of the signal.

Notice that results in Fig. 5 are similar to those of
Fig. 6, save for the lower values of the perturbation
in the latter compared to the former figure—compared
for the same time—due to the different norm used (the

norm used in Fig. 5 contains perturbations of all strain
components).

A different way to depict the propagation of pertur-
bation initiated at χ = 0 is presented in polar coordi-
nates in Figs. 7 and 8 which shows respectively E
and E12 as function of the polar angle θ at different
positions ρ incremented by ρ = 1.5 × 10−3 from
the center (χ1 = ρ cosψ , χ2 = ρ sinψ), for the same
material and loading path and at the same three times as
in Figs. 5 and 6. Notice that as time approaches the crit-
ical value τm a localized deformation pattern appears
with maximum at about θ = π/2 − φm (the strain
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(a) (b) (c)

Fig. 8 Shear strain perturbation E12 plotted in polar coor-
dinates (χ1, χ2) = (ρ cos θ, ρ sin θ) for θ ∈ [0, π/2] and at
different distances ρ from the origin (distance is increasing by
constant ρ = 1.5×10−3 and ρ +E(ρ, θ) is plotted in the y-
axis). Results are shown for three different dimensionless times
(a) τ = 0.17, (b) τ = 0.35 and (c) τ = 0.52 = τm . The extent of

the influence zones χ−(τ ) and χ+(τ ) for the slowest and fastest
wave speeds ν− and ν+ respectively are also shown in these fig-
ures. Results correspond to a hyperelastic constitutive law with
a piecewise power law uniaxial curve (εy = 0.002, n = 0.22)
and a loading angle tanψ = −1/2

(a) (b)

Fig. 9 Profile ofGreen-Lagrange strain perturbationE plotted
at different dimensionless times 0 ≤ τ ≤ τm (in increments of
τ = 0.02) at a distance ρ from the origin and for two different
values of polar angle (a) θ = φm and (b) θ = π/2 − φm . The
extent of the influence zones χ−(τ ) and χ+(τ ) for the slowest

and fastest wave speeds ν− and ν+ respectively are also shown
in these figures. Results correspond to a hyperelastic constitutive
law with a piecewise power law uniaxial curve (εy = 0.002,
n = 0.22) and a loading angle tanψ = −1/2

discontinuity at the loss of ellipticity appears in a line
perpendicular to the critical direction n, which forms
an angle φm with the χ1 axis).

A better way to visualize the size of the localized
deformation zone is by plotting the time evolution
0 ≤ τ ≤ τm of perturbation as a function of dimen-
sionless distance from the origin for two different val-
ues of θ : 29◦ = π/2 − φm and 61◦ = φm . The results
for E and E12 are depicted, respectively in Figs. 9
and 10. The blue lines give the influence cone of ν+
while the red lines give the influence cone of ν−. Notice

the pattern of the different tongues of the localiza-
tion zone evolving with time, as expected from Figs. 5
and 6.

These results show that, due to wave propagation,
the width of the localized deformation zones are con-
siderably larger than the width of the initial imperfec-
tion, but also a fraction of the linearized estimate χ−
(influence zone for the slower wave) for the same time,
a phenomenon also observed for the growth of a local-
ized perturbation in the nonlinear bar model of Ravi-
Chandar and Triantafyllidis (2015).
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(a) (b)

Fig. 10 Profile of shear strain perturbation E12 plotted at
different dimensionless times 0 ≤ τ ≤ τm (in increments of
τ = 0.02) at a distance ρ from the origin and for two different
values of polar angle (a) θ = φm and (b) θ = π/2 − φm . The
extent of the influence zones χ−(τ ) and χ+(τ ) for the slowest

and fastest wave speeds ν− and ν+ respectively are also shown
in these figures. Results correspond to a hyperelastic constitutive
law with a piecewise power law uniaxial curve (εy = 0.002,
n = 0.22) and a loading angle tanψ = −1/2

ξ = 0.1

ξ = 4
ξ = 9

(a)

ξ = 0.1

ξ = 4
ξ = 9

(b)

Fig. 11 Influence of the initial amplitude ξ of a localized per-
turbation at χ = 0. Notice that the magnitude of the pertur-
bation (measured by its maximum, at a given time τ , over the
entire plate, i.e. Emax(τ ) ≡ maxχ∈R2 E(χ , τ ) in (a) and
Emax

12 (τ ) ≡ maxχ∈R2 E12(χ , τ ) in (b)) decreases, for each

value of τ < τm , with decreasing ξ , thus showing the stability of
the structure as long as it stays in the elliptic domain (non-shaded
area τ < τm in the graphs). Results correspond to a hyperelas-
tic constitutive law with a piecewise power law uniaxial curve
(εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2

To study the stability of the structure under a spa-
tially localized perturbation, we follow the time evo-
lution of the maximum (over the entire domain R

2)
perturbations Emax(τ ) ≡ maxχ∈R2 E(χ , τ ) and
Emax

12 (τ ) ≡ maxχ∈R2 E12(χ , τ ) in Fig. 11.
Notice that for τ < τm the two perturbation norms

decrease as a function of time with decreasing ini-
tial amplitude, showing the stability of the structure
for times prior to the loss of ellipticity (the ellipticity
domain τ > τm is indicated by the shaded area in the
above figures). A similar result has been obtained for
the 1D nonlinear bar model by Ravi-Chandar and Tri-
antafyllidis (2015), who find the stability of spatially

localized perturbations at all times prior to reaching the
bar’s Considère point (maximum force).

All the above calculations correspond to a strain path
with a loading angle tanψ = −1/2 (i.e. uniaxial stress-
ing at small strains). It is of interest to present results
for different loading angles and we choose to show
the influence of the same localized at χ = 0 initial
perturbation (initial imperfection of amplitude ξ = 4)
and the same material (a hyperelastic constitutive law
with a piecewise power law uniaxial curve εy = 0.002,
n = 0.22) in a biaxially strained plate with tanψ = 0
in Fig. 12 and with tanψ = 0 in Fig. 13. Results in
these figures depict the evolution of shear strain E12
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0.12

(a)

0.21

(b)

0.25

(c)

Fig. 12 Shear strain perturbation contours E12(χ , τ ) at three
different dimensionless times (a) τ = 0.12, (b) τ = 0.21 and (c)
τ = 0.25 = τm , where only contours of E ≥ 10−3 are shown
in color. The extent of the influence zonesχ−(φ, τ ) andχ+(φ, τ )

for the slowest and fastest wave speeds ν− and ν+ respectively,
are also shown in these figures. Results correspond to a hypere-
lastic constitutive lawwith a piecewise power law uniaxial curve
(εy = 0.002, n = 0.22) and a loading angle tanψ = 0

0.15

(a)

0.38

(b)

0.45

(c)

Fig. 13 Shear strain perturbation contours E12(χ , τ ) at three
different dimensionless times (a) τ = 0.15, (b) τ = 0.38 and (c)
τ = 0.45 = τm , where only contours of E ≥ 10−3 are shown
in color. The extent of the influence zonesχ−(φ, τ ) andχ+(φ, τ )

for the slowest and fastest wave speeds ν− and ν+ respectively,
are also shown in these figures. Results correspond to a hypere-
lastic constitutive lawwith a piecewise power law uniaxial curve
(εy = 0.002, n = 0.22) and a loading angle tanψ = 1

contours in
[
χ1, χ2

]
space (only the positive quadrant

is shown here due to symmetry).
More specifically, for tanψ = 0 the evolution of the

shear strainE12 due to a localized initial perturbation
at the origin (contours of perturbationswithmagnitudes
below 10−3 are not plotted, for visual enhancement of
the evolution of the initial perturbation) for three differ-
ent dimensionless times τ (0.12, 0.21 and 0.25 = τm)
are depicted in Fig. 12. Results correspond to a hyper-
elastic material with n = 0.22 and εy = 10−3. For this
loading path, one finds that the corresponding angle
at the loss of ellipticity φm = 0, i.e. the characteris-
tic direction at the onset of the loss of ellipticity is the

χ2 axis. Consequently, the localization of deformation
spreads more along this axis, as one can see in Fig. 12c.

For the case of balanced biaxial stretching, tanψ =
1, the evolution of the shear strainE12 due to an local-
ized initial perturbation at the origin for three different
dimensionless times τ (0.15, 0.38 and 0.45 = τm) are
depicted in Fig. 13. Results correspond to a hyperelas-
tic material with n = 0.22 and εy = 10−3. Due to the
in-plane isotropy of the loading, for this loading path
the corresponding angle at the loss of ellipticity φm is
indeterminate and hence any direction can be a char-
acteristic one. Moreover the influence zones χ−(φ, τ )

and χ+(φ, τ ) for the slowest and fastest wave speeds
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(a) (b)

Fig. 14 Interaction of same amplitude perturbations initially at
a distance (a) h < δ− and (b) h > δ+. Results show contours
of strain perturbation E ≥ 10−3 calculated at the time of loss

of ellipticity τm = 0.52 and corresponding to a hyperelastic
constitutive model with a piecewise power law uniaxial curve
(εy = 0.002, n = 0.22) and a loading angle tanψ = −1/2

ν− and ν+ respectively, are concentric circles, as one
can see in Fig. 13. The localized deformation zones
also appear to grow uniformly in each direction; the
deviation from the perfect disc shape is attributed to
the rectangular shape of the initial imperfection.

3.3 Size of influence zones for various constitutive
laws and loading orientations

In Sect. 2 we have introduced the minimum δ− and
maximum δ+ influence disc sizes (see 2.12 and 2.13).
This information is useful in determining initial spacing
of perturbations that will or will not interact, since in
actual structures one expects a multitude of statistically
distributed defects. To illustrate this point we consider
the interaction of two defects in Fig. 14 that shows
contours of strain perturbation E ≥ 10−3 at the time
of loss of ellipticity τm in a plate with two localized
imperfections of the same size and initial amplitude
spaced at a distance smaller than δ− in a) and at distance
larger than δ− in b).

It appears from Fig. 14a, that when the localized
deformation zones of the two perturbations meet and
interact, the width of the resulting localized deforma-
tion zone is bigger than thewidth of the single localized
imperfection. The failure pattern for the stretched plate
can be explained as resulting from interaction of sta-
tistically distributed such localized defects—inevitable
in reality—as observed experimentally in the tube
expansion experiments of Zhang and Ravi-Chandar
(2010).

δ−[flow]

δ−[hyperelastic]

δ−[deformation]

δ+[deformation] δ+[hyperelastic]

Fig. 15 Minimum δ− and maximum δ+ influence disc sizes,
in dashed and solid lines respectively, as functions of the load
orientation angle ψ for the three different constitutive models
considered, all sharing the same uniaxial stress-strain curvewith
εy = 0.002, n = 0.1

The size of minimum δ− and maximum δ+ influ-
ence discs, which depend on constitutive law and load-
ing path angle can be calculated analytically, based on
(2.12) and (2.13). The following three figures give the
minimum δ− and maximum δ+ influence disc sizes as
functions of the load orientation angle ψ for the three
different plasticity models considered and for three
different power-law hardening exponents, Fig. 15 for
n = 0.1, Fig. 16 for n = 0.22 (typical of Al alloys) and
Fig. 17 for n = 0.40 (typical of steel alloys). Curves in
theψ < 0 range are terminatedwhenone of the stresses
becomes compressive (σ2 < 0) (applicable for the cal-
culation of δ−) or when a finite value of the influence
disc cannot be found (applicable for the calculation of
δ+).
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δ−[flow]

δ−[hyperelastic]

δ−[deformation]

δ+[deformation] δ+[hyperelastic]

Fig. 16 Minimum δ− and maximum δ+ influence disc sizes,
in dashed and solid lines respectively, as functions of the load
orientation angle ψ for the three different constitutive models
considered, all sharing the same uniaxial stress-strain curvewith
εy = 0.002, n = 0.22

δ−[flow]

δ−[hyperelastic]

δ−[deformation]

δ+[deformation] δ+[hyperelastic]

Fig. 17 Minimum δ− and maximum δ+ influence disc sizes,
in dashed and solid lines respectively, as functions of the load
orientation angle ψ for the three different constitutive models
considered, all sharing the same uniaxial stress-strain curvewith
εy = 0.002, n = 0.40

As expected, for a given material and load orienta-
tion ψ , both δ− and δ+ are increasing functions of the
hardening exponent n. There is practically no differ-
ence for the minimum influence disc size δ− between
the J2 deformation and hyperelastic theorymodels over
the entire range of load orientations of interest. How-
ever the maximum influence disc size δ+ predictions
for the same two constitutive models coincide only for
a certain range of ψ > 0. As the uniaxial strain is
approached ψ = 0, the stiffer hyperelastic theory pre-
dicts no finite maximum influence disc size δ+, in con-
trast to the J2 deformation theory that predicts finite δ+
for a significant range of ψ < 0.

There is however a significant difference in the pre-
dictions of the much stiffer J2 flow theory that consid-
erably overestimates δ− over the other two constitutive

models (the difference increasingwith increasing hard-
ening exponent n) for the range that a reasonable loss of
ellipticity strain can be found (essentially in the range
ψ ≤ 0) and which does not have a δ− for strain paths
with ψ ≤ 0, given that the J2 flow theory model does
not predict loss of ellipticity for these loadings. Also
notice that the J2 flow theory has no finite δ+ for any
loading.

The difference in the minimum δ− and maximum
δ+ influence disc sizes predicted by the different con-
stitutivemodels (in particular between deformation and
flow theories) is indicative of the difficulty in predict-
ing failure patterns in these structures and their extreme
sensitivity to the constitutive model chosen.

4 Conclusion

This work pertains to the influence of loading rate on
the stability of structures when inertia plays a domi-
nant role. The currently established approach to study
these stability problems is the method of modal analy-
sis, which determines the structure’s fastest growing
eigenmode. This method supposes that all points in the
structure can be perturbed simultaneously, an assump-
tion that is not appropriate for cases when the velocity
of material points in the structure are comparable to the
associated wave propagation speeds.

The novel idea here is to analyze the evolution of
spatially localized perturbations of the time-dependent,
high-strain-rates states of these structures, in order to
understand the initiation of the corresponding failure
mechanisms. Following the recent analysis by Ravi-
Chandar and Triantafyllidis (2015) in 1D bars, we
study the high strain extension of a 2D, incompressible,
elastoplastic (rate-independent) plate. Using a nonlin-
ear constitutive law makes sense for real structures
since no unloading occurs until a point in the struc-
ture reaches the loss of ellipticity condition, at which
point our calculations are terminated.

Using a finite strain deformation theory of plastic-
ity (based on logarithmic strain), we follow the time
evolution of spatially localized perturbations and their
interactions. The nonlinear time evolution of such a
perturbation is studied numerically using FEM and it
is shown that these structures are stable until the time
when the condition for the loss of ellipticity is reached.
An analytical method, based on linearization, is used to
define the size of the influence zone of a point-wise per-
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turbation and we study its dependence on constitutive
laws and loading conditions.

The above approach is useful for the stability analy-
sis of more realistic structures under high strain rates.
As one such example we cite the recent work by Putelat
and Triantafyllidis (2014) on the stability of a pressur-
ized thin ring at high rates, where it is shown that for
small values of the applied loading rate, the structure
fails through a global mode, while for large values of
the applied loading rate the structure fails by a local-
ized mode of deformation, as also found recently in the
experiments of Mainy and Ravi-Chandar (2014). Our
study also shows the sensitivity of the size of minimum
and maximum influence zones with respect to the con-
stitutive model used, and hence the caution needed in
using such calculations to predict failure patterns.

Acknowledgments The authors would like to thank Prof. K.
Ravi-Chandar from the Aerospace Engineering and Engineering
Mechanics Department of the University of Texas at Austin for
many helpful discussions during the course of this work. Finan-
cial support for this project from the Ecole Polytechnique and the
Commissariat à l Energie Atomique et aux Energies Alternatives
(CEA) is gratefully acknowledged.

References

Abeyaratne R, Triantafyllidis N (1981) The emergence of
shear bands in plane strain. Int J Solids Struct 17(1113–
1134):00043

Brush D, Almroth B (1975) Buckling of bars, plates, and shells.
McGraw-Hill I, New York

Budiansky B, Hutchinson J (1964) Dynamic buckling of imper-
fection sensitive structures. In: ProceedingsXI international
congress of applied mechanics, Munich

Guduru P, Freund L (2002) The dynamics of multiple neck for-
mation and fragmentation in high rate extension of ductile
materials. Int J Solids Struct 39:5615–5632

Hilber HM, Hughes TJR, Taylor RL (1977) Improved numeri-
cal dissipation for time integration algorithms in structural
dynamics. Earthq Eng Struct Dyn 5(283–292):01372

Jouve D (2015) Analytic study of the onset of plastic necking
instabilities during biaxial tension tests on metallic plates.
Eur J Mech A Solids 50:59–69

KoningC,Taub J (1933) Impact bucklingof thin bars in the elastic
range hinged at both ends. Luftfahrtfosrchung 10:55–64

Mainy A, Ravi-Chandar K (2014) Dynamic buckling of thin
metallic rings under external pressure. Master Thesis,
University of Texas, Austin. http://hdl.handle.net/2152/
ETD-UT-2012-05-5865

Mercier S, Granier N, Molinari A, Liorca F, Buy F (2010) Multi-
ple necking duringt hedynamic expansion of hemisph erical
metallic shells, fromexperiments tomodelling. JMechPhys
Solids 58:955–982

Mercier S, Molinari A (2003) Predictions of bifurcation and
instabilities during dynamic extension. Int J Solids Struct
40:1995–2016

Putelat T, Triantafyllidis N (2014) Dynamic stability of exter-
nally pressurized elastic rings subjected to high rates of
loading. Int J Solids Struct 51:1–12

Ravi-Chandar K, Triantafyllidis N (2015) Dynamic stability of a
bar under high loading rate: response to local perturbations.
Int J Solids Struct 58:301–308

Shenoy V, Freund L (1999) Necking bifurcations during high
strain rate extension. J Mech Phys Solids 47:2209–2233

Sorensen N, Freund L (2000) Unstable neck formation in a duc-
tile ring subjected to impulsive radial loading. Int J Solids
Struct 37:2265–2283

Stören S,Rice JR (1975)Localized necking in thin sheets. JMech
Phys Solids 23:421–441

Xue Z, Vaziri A, Hutchinson J (2008) Material aspects of
dynamic neck retardation. J Mech Phys Solids 56:93–113

Zhang H, Ravi-Chandar K (2006) On the dynamics of necking
and fragmentation-I. real-time and post-mortem observa-
tions in al 6061-O. Int J Fract 142:183–217

Zhang H, Ravi-Chandar K (2008) On the dynamics of necking
and fragmentation-II. effect of material properties, geomet-
rical constraints and absolute size. Int J Fract 150:3–36

Zhang H, Ravi-Chandar K (2010) On the dynamics of necking
and fragmentation-iv. expansion of al 6061-o tubes. Int J
Fract 163:41–65

Zhou F, Molinari J, Ramesh KT (2006) An elastic-visco-plastic
analysis of ductile expanding ring. Int J Impact Eng 33:880–
891

123

http://hdl.handle.net/2152/ETD-UT-2012-05-5865
http://hdl.handle.net/2152/ETD-UT-2012-05-5865

	Dynamic stability of biaxially strained thin sheets under high strain-rates: response to local perturbations
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 The influence zones of a biaxially strained elastoplastic plate
	2.2 Numerical calculations

	3 Results
	3.1 Constitutive laws
	3.2 Evolution at a spatially localized perturbation
	3.3 Size of influence zones for various constitutive laws and loading orientations

	4 Conclusion
	Acknowledgments
	References




