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Of interest here is the influence of loading rate on the stability of structures where inertia is taken into
account. The approach currently used in the literature to analyze these stability problems, is the method
of modal analysis that determines the structure’s fastest growing wavelength, which is meaningful only
for cases where the velocity of the perfect structure is significantly lower than the associated character-
istic wave propagation speeds. The novel idea here is to analyze the time-dependent response to pertur-
bations of the transient (high strain rates) states of these structures, in order to understand the initiation
of the corresponding failure mechanisms.

We are motivated by the recent experimental studies of Zhang and Ravi-Chandar (2006) on the high
strain rate extension of thin rings that show no evidence of a dominant wavelength in their failure mode
and no influence of strain-rate sensitivity on the necking strains. In the interest of analytical tractability,
we study the extension of an incompressible, nonlinearly elastic bar at different strain rates. The dynamic
stability of these bars is studied by following the evolution of localized small perturbations introduced at
different times. It is shown that these structures are stable until the static necking strain is reached at
some point. Moreover their failure pattern is dictated by the distribution of defects, the minimum dis-
tance between necks diminishes with increasing strain rate and there is no dominant wavelength mode,
exactly as observed experimentally in Zhang and Ravi-Chandar (2006).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The issue of dynamic stability of structures is an important
engineering problem and as such has drawn considerable atten-
tion. The first investigation in this area appears to be the work of
Koning and Taub (1933), who investigated the influence of inertia
in a simply supported imperfect column subjected to a sudden
axial load. A substantial amount of work followed that investigated
the response of, mainly elastic, structures to impulse or time-
dependent loads. As a result, and due to the many possible defini-
tions for the stability of time-dependent systems, the term dynamic
stability encompasses many classes of problems and different
physical phenomena and has many interpretations, with inertia
being the only common denominator.
In the absence of inertia, the processes of failure by a bifurcation
instability mode in elastic solids and structures is well understood
(e.g. Brush and Almroth, 1975) and a general asymptotic analysis,
termed Lyapunov–Schmidt–Koiter (LSK), has been developed for
their study. The first effort to use the LSK general analysis for the
dynamic stability problem of an elastic structure appears to be
Budiansky and Hutchinson (1964), where the authors proposed
an asymptotic analysis of the time-dependent problem using the
eigenmodes of the static problem.

Another idea, popular in fluid mechanics, has also been adopted
for the dynamic stability analysis of solids with more general con-
stitutive laws under high rates of loading, according to which one
seeks the solid’s fastest growing eigenmode, or the wavelength
associated with lowest necking strain. This method has been
repeatedly applied in the study of dynamic stability of elastoplastic
bars and rings under high loading rates where the size of fragments
is of interest (e.g. see Shenoy and Freund, 1999; Sorensen and
Freund, 2000; Guduru and Freund, 2002; Mercier and Molinari,
2003; Zhou et al., 2006; Xue et al., 2008). However, recent
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Fig. 1. Composite image for an electromagnetically expanding Al 6061-O thin ring
test (from Zhang and Ravi-Chandar, 2006), showing the onset and evolution of
necks under high strain rate loading; see reference for detailed interpretation.
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experimental evidence from rapidly expanding electromagneti-
cally loaded metallic rings by Zhang and Ravi-Chandar (2006,
2008) finds no evidence of a dominant wavelength at the necked
pattern of the rings, as seen in the unbroken configuration of the
ring in Fig. 1. Moreover, they find no experimental evidence of
influence of strain rate on the necking strains, which are consistent
with maximum force criterion of a rate independent constitutive
law (Considère criterion).

As explained by these authors, using the fastest growing eigen-
mode to predict the onset of failure is physically meaningful pro-
vided that some characteristic velocity of the principal solution –
e.g. ring expansion rate – is much slower than the speed of propa-
gation of perturbations in the solid or structure at hand. For high
loading rates, commensurate with some characteristic wave prop-
agation speed in the structure, a novel approach to the stability
analysis is required, namely the study of evolution of localized
perturbations.

For the above reasons, we investigate here the evolution of spa-
tially localized perturbations in a nonlinearly elastic bar at arbi-
trary strain rates when inertia is taken into account. Given the
adequacy of a rate-independent constitutive model and the
absence of unloading at any point in the bar until necking strain
is reached – because of the background strain rate of the principal
solution, loading conditions prevail at all points up to Considère
strain – nonlinear elasticity is an adequate model for rate-indepen-
dent elastoplasticity. The problem formulation is given in Section
2, followed by the results in Section 3 and ending with a conclusion
in Section 4. A linearized stability analysis for the case of a visco-
plastic constitutive model is given in the Appendix A.
1 Here and subsequently reference configuration quantities are denoted by an
upper case symbol while their current configuration counterparts are denoted by the
corresponding lower case symbol.

2 The coefficient expð��Þ ¼ k appears in (2.6) because the characteristic speed V
pertains to the reference configuration; the characteristic speed in the current
configuration is ðr;� � rÞ=q½ �1=2.
2. Problem formulation

The problem formulation section starts with the presentation of
the model for the dynamically loaded 1D bar followed by the
description of two different stability criteria: the new one based
on the evolution of a spatially localized perturbation and, for com-
parison, the classical one based on modal analysis to determine the
fastest growing eigenmode. The linearized analysis of the bar sta-
bility problem using these two criteria comes next, followed by a
description of the algorithm used for the calculations of the associ-
ated nonlinear dynamics problem.

2.1. Model

We consider a 1D bar of uniform cross-sectional area A in the
reference and a in the current configuration.1 We further assume
the bar to be incompressible, in which case its logarithmic strain �
is given in terms of the stretch ratio k by:

� � ln k; k � dx=dX ¼ A=a; ð2:1Þ

where X and x are respectively the reference and current configura-
tion axial coordinates of the bar.

The spatially constant 1st Piola–Kirchhoff stress of the bar P
(force/reference area) can be expressed in terms of its Cauchy
stress r with the help of (2.1) by:

P ¼ rða=AÞ ¼ r expð��Þ: ð2:2Þ

The reference configuration equation of motion of the 1D bar is
given by:

@P
@X
¼ q

@v
@t
; ð2:3Þ

where v is the particle velocity of the material point X. Combining
the kinematics (2.1) and stress relations (2.2) with the equation of
motion (2.3) we obtain the following system of governing equations
for the bar in terms of its strain � and particle velocity v:

@�
@t
¼ expð��Þ @v

@X
;

@v
@t
¼ expð��Þ½ðr;� � rÞ=q� @�

@X
;

ð2:4Þ

where r;� � dr=d�; a nonlinear constitutive law rð�Þ is to be subse-
quently satisfied.

The perfect bar is subjected to a uniform stretch rate c � dk0=dt.
Denoting the associated field quantities by a subscript ð Þ0, the prin-
cipal solution of the bar, whose stability is to be investigated here,
is given by:

k0 ¼ 1þ ct; �0 ¼ lnð1þ ctÞ; v0 ¼ cX: ð2:5Þ

Although the 1D bar model introduced above is valid for any
material, discussing the features of the constitutive laws pertaining
to the associated characteristic wave propagation speeds is in
order at this point. The characteristics of the above hyperbolic sys-
tem (2.4) of equations are found by looking for solutions of the
type: � ¼ C�f ðX � VtÞ; v ¼ Cv f ðX � VtÞ where C�; Cv are constants
and f ðzÞ an arbitrary function. It follows from (2.4) that the charac-
teristic speed V of the system is2:

V ¼ expð��Þ ðr;� � rÞ=q½ �1=2
: ð2:6Þ

For as long as r;� � r > 0 disturbances propagate at a finite
speed V given by (2.6). The condition r;� � r ¼ 0, which as seen
from (2.2) corresponds to a maximum force (Considère criterion
dP=d� ¼ 0), signals the onset of necking at the strain that satisfies
this condition. The uniaxial loading curve of most structural metals
does reach a maximum force and hence constitutive laws for which
a realistic strain �m, termed Considère strain or equivalently necking
strain exists such that:

r;�ð�mÞ � rð�mÞ ¼ 0; ð2:7Þ
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will be considered. Once �m has been reached in the bar, an unload-
ing wave can start from this point resulting in the formation of a
neck discontinuity and the bar can no longer deform uniformly as
described in (2.5).

In this work we are interested in the stability of the bar’s prin-
cipal (uniform strain) solution (2.5) for strains � < �m. Since no
unloading occurs in the bar for these strains, the use of a nonlinear
constitutive model characterized by rð�Þ is adequate for analyzing
its stability.

2.2. Linearized stability analyses

In order to get an analytically tractable way to investigate the
stability of the bar’s uniform strain solution (2.5), we start by
studying the linearized system for the evolution of a perturbation
in (2.4). By defining the strain and particle velocity perturbations
as:

d�ðX; tÞ � �ðX; tÞ � �0ðtÞ; dvðX; tÞ � vðX; tÞ � v0ðXÞ ð2:8Þ

and introducing them to (2.4) one obtains upon linearization about
the uniform strain solution (2.5) the following system:

@dv
@X

¼ expð�0Þ
@d�
@t
þ d�0

dt
d�

� �
;

@dv
@t

¼ expð��0Þ
r;�ð�0Þ � rð�0Þ

q

� �
@d�
@X

:

ð2:9Þ

By eliminating dv from the above system, one obtains the fol-
lowing linear equation for the evolution of the strain perturbation
d�:

@2d�
@t2 þ

2c
1þ ct

@d�
@t
� 1

ð1þ ctÞ2
r;�ð�0Þ � rð�0Þ

q

� �
@2d�
@X2 ¼ 0; ð2:10Þ

to which initial conditions for d� and @d�=@t must be added. A com-
pletely equivalent formulation of the problem could have been
obtained for the particle velocity perturbation dv .

Since perturbations travel at a finite speed Vð�Þ according to
(2.6), it makes sense to follow the evolution of a spatially localized
perturbation, its physical motivation being the appearance at time
t0 of a local defect. We thus consider two different cases: (i) a strain
rate (or equivalently from (2.4) a particle velocity) perturbation
and (ii) a strain perturbation.

2.2.1. Localized particle velocity perturbation
The initial conditions for (2.10) in this case are assumed to be:

d�ðX; t0Þ ¼ 0;
@d�
@t
ðX; t0Þ ¼ dDðXÞ; ð2:11Þ

where dDðXÞ is the Dirac delta function.
Solving analytically for the time-dependent coefficients in the

strain perturbation equation (2.10) is a rather difficult task. Since
we are interested in following the initial evolution of the perturba-
tion near time t0 we can neglect the time-dependence of its coeffi-
cients (method of frozen coefficients). In this case (2.10) with
initial conditions (2.11) becomes analytically tractable and is
solved with the help of a Laplace transform. Using the symbolef ðX; sÞ to denote the Laplace transform with respect to time of
f ðX; tÞ, one obtains:

ðs2 þ bsÞfd� � V2 @
2fd�
@X2 ¼ dDðXÞ; b � 2c

1þ ct0
; ð2:12Þ

which gives the following result for the Laplace transform fd�ðX; sÞ:
fd�ðX;sÞ¼ 1

2V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þbs

p ð1�HðXÞÞexp½ðX=VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þbs

p
�þHðXÞexp½�ðX=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þbs

p
�

h i
;

ð2:13Þ
where HðXÞ is the Heaviside function.
The bar is stable if its initial perturbation in (2.11) decays for

large times. A fast way to investigate the behavior of d�ðX; tÞ as
t�!1 is by use of Abel’s theorem that states:

lim
t�!1

d�ðX; tÞ ¼ lim
s�!0

s½fd�ðX; sÞ�: ð2:14Þ

From (2.13) we obtain:

lim
s�!0

s½fd�ðX; sÞ� ¼ lim
s�!0

s

2V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ bs

p ¼ 0 ¼ lim
t�!1

d�ðX; tÞ ð2:15Þ

and the above results shows that for times near the onset of pertur-
bation time t0 the perturbation decays.

One can also invert the Laplace transform fd�ðX; sÞ to calculate
d�ðX; tÞ, which is a symmetric function of X. For X P 0 one obtains
by inversion of (2.13):

d�ðX;tÞ¼ 1
2V

exp½�ðb=2ÞDt� I0½ðb=2Þtm�H½tf �;

using : Dt� t� t0; tf �Dt�ðX=VÞ; tb�DtþðX=VÞ; tm�
ffiffiffiffiffiffiffiffi
tf tb

p
;

ð2:16Þ

where tf and tb are respectively the forward and backward retarda-
tion times and I0ðzÞ – a monotonically increasing function of its
argument – is the modified Bessel function of order zero that is reg-
ular at the origin (I0ð0Þ ¼ 1). It can be seen that the perturbation d�
spreads over the interval ½�ðt � t0ÞV ; ðt � t0ÞV � with a decreasing
maximum amplitude – which is always located at X ¼ 0 – which
confirms the result of (2.15) that at times near t0 the bar is stable
under a local perturbation.

2.2.2. Localized strain perturbation
The initial conditions for (2.10) in this case are:

d�ðX; t0Þ ¼ dDðXÞ;
@d�
@t
ðX; t0Þ ¼ 0 ð2:17Þ

and hence the Laplace transform of (2.10) with initial conditions
(2.17) gives:

ðs2 þ bsÞfd� � V2 @
2fd�
@X2 ¼ ðsþ bÞdDðXÞ; b � 2c

1þ ct0
: ð2:18Þ

The solution of the above equation is found to be:

fd�ðX; sÞ ¼ ðsþ bÞ
2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ bs

p ð1� HðXÞÞ exp½ðX=VÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ bs

p
�

h
þ HðXÞ exp½�ðX=VÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ bs

p
�
i
: ð2:19Þ

Once again the application of Abel’s theorem shows as in (2.15)
that for times near the onset of perturbation time t0 the perturba-
tion decays.

Inverting fd�ðX; sÞ in (2.19) to obtain d�ðX; tÞ, which is a symmet-
ric function of X, one has for X P 0:

d�ðX;tÞ¼ 1
2V

exp½�ðb=2ÞDt� I0½ðb=2Þtm�þ
Dt
tm

I1½ðb=2Þtm�
� �

b
2

H½tf �þdDðtf Þ
� �

;

ð2:20Þ

where the definitions of tf ; tb; tm are given in (2.16) and
I1ðzÞ ¼ dI0ðzÞ=dz is the modified Bessel function of order one that
is regular at the origin (I1ð0Þ ¼ 0). In contrast to the particle velocity
perturbation case in (2.16) we now have the strain singularity intro-
duced at X ¼ 0 at time t0 splitting in two and propagating at the
wavefronts X ¼ �VDt but with an exponentially decaying strength.

The above linearized perturbation analysis shows that as long
as the perturbation occurs at a time for which the strain in the
bar is less than the Considère strain (�0 < �m or equivalently from
(2.6) the characteristic speed V > 0), the bar is – at least initially,
near t0 – stable to spatially localized perturbations (an arbitrary
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perturbation is obtained by superposition of the Green solutions
given above).
2.2.3. Modal analysis
It is worth noticing that the modal analysis of the perturbation

gives the same linearized result. The proof of this assertion is
straightforward and proceeds as follows: Consider a strain pertur-
bation of the form:

d�ðX; tÞ ¼ a expðikX þ gtÞ; ð2:21Þ

where k is the wavenumber of the perturbation, a its amplitude, g
the corresponding growth rate, and i the imaginary unit. Upon
introducing (2.21) into the perturbation equation (2.10), and ignor-
ing again the time-dependence of its coefficients, one obtains the
following equation for g:

g2 þ 2c
1þ ct0

gþ ðkVÞ2 ¼ 0 ) g

¼ 1
1þ ct0

�c � ½c2 � k2ðr� � rÞ=q�
1=2n o

;

ð2:22Þ

which clearly shows linearized stability for r� � r > 0 since both
roots of (2.22) are either negative or have a negative real part.
2.3. Nonlinear dynamics calculations

If we define the Riemann variables R� ¼ �v þ V�, then
dR� ¼ �dv þ Vd� ¼ 0 on dX ¼ �Vdt. For given initial conditions,
the governing equations (2.4) can be used incrementally to march
in time. However, because V depends on �, the characteristics
should be updated at every time step. In implementing this
method, we divide X-axis into discrete nodes and time into a series
of time steps. Let Xk

i denote the node at i at time-step k. The time
increment at each step is calculated such that the fastest wave
speed from the previous time step satisfies the Courant–Fried-
richs–Levy condition. In addition, Xk

� is the origin of the character-
istic �Vk

�, that arrives at Xkþ1
i , and is located between nodes Xk

i and
Xk

iþ1; similarly, Xk
þ is the origin of the characteristic, Vk

þ, that arrives
at Xkþ1

i and is located between nodes Xk
i�1 and Xk

i . These character-
istics are found by interpolation at time step k; this method is a
variant of the scheme commonly called upwind differencing in
fluid mechanics.

The above-described procedure can be used to perform a full
numerical solution of the dynamic problem. In particular, if a per-
turbation of the type indicated in (2.8) is applied at some time t0 on
a background uniform strain-rate expansion, the spatio-temporal
evolution of the perturbation can be evaluated without resorting
to the frozen coefficient approach of the linear stability analysis
described in Section 2.2. Results from such an analysis of the stabil-
ity are described in the next section.
3. Results

This section starts with the constitutive model chosen and con-
tinues with the definitions of the dimensionless time: s and space:
v variables that are used in plotting the results. The study of the
evolution of a single spatially localized perturbation with different
amplitudes and initial times is presented next, followed by the
study on interaction of two or more such perturbations, leading
to an explanation of the localized failure patterns observed exper-
imentally in Zhang and Ravi-Chandar (2006).
3.1. Constitutive law, non-dimensionalization and perturbation profile

The analysis in Section 2 is perfectly general; any nonlinear con-
stitutive law can be accommodated provided that it has a necking
strain (maximum force). In the results presented here the simplest
such choice will be made, namely a simple power-law relation
between the Cauchy stress r and the logarithmic strain �:

r ¼ K�n; ð3:1Þ

where K is a material constant and n the hardening exponent. In the
subsequent numerical calculations n ¼ 0:22, which is a reasonable
value for the aluminum alloys used in the experiments of Zhang
and Ravi-Chandar (2006). For this particular constitutive choice,
the necking strain �m is found by using (3.1) into (2.7) to be:
�m ¼ n ¼ 0:22.

The profile of the spatially localized numerical perturbations
used in calculations is:

d�ðX; t0Þ or dvðX; t0Þ ¼ a tanhðnX þ fÞ½ Þ � tanhðnX � fÞ�; ð3:2Þ

where a is the amplitude, n is the shape-controlling parameter and
2f is the width of a perturbation localized about X ¼ 0.

In the presentation of results, we use the following dimension-
less quantities for time and length:

dimensionless time : s � ct; dimensionless length : v

� Xc=
ffiffiffiffiffiffiffiffiffi
K=q

p
: ð3:3Þ
3.2. Evolution of spatially localized perturbations

We start by analyzing the evolution of a single spatially local-
ized strain perturbation at v ¼ 0 introduced at a very small (near
yield) strain, i.e. at a dimensionless time s0 ¼ 0:0015 and ampli-
tude a ¼ �0:01 as seen in Fig. 2, which depicts the strain of the
bar as a function of position taken at equal time increments.

The strain perturbation amplitude initially decays, as predicted
by the linearized analysis in Section 2.2. The perturbation then
splits into two parts, each traveling in opposite direction from
the other at a speed that decreases with strain, as expected from
(2.6) and (3.1). In Fig. 2 we also indicate by the asterisk symbol
(�) the shadow cone of the origin �

R �
0 ½ðr;� � rÞ=q�1=2d� that sepa-

rates the perturbed from the unperturbed regions of the bar. The
maximum strain in each one of the localized strain zones subse-
quently increases until the necking strain is reached (at two sym-
metric with respect to the origin locations) and calculation is
stopped.

Notice that the positive amplitude a > 0 strain perturbation
reaches the necking strain slightly earlier than its negative ampli-
tude a < 0 counterpart, as seen by the difference in the strains of
the unperturbed part of the bar. Also observe that the distance
between the two maximum strain locations is smaller in the latter
case and about half the size predicted by the shadow cone.

To better illustrate the evolution of a localized perturbation, we
plot in Fig. 3 the contours in the perturbation of particle velocity
with the same amplitudes, location and initial time as in Fig. 2.

The results depicted in Fig. 3 show that the particle velocity per-
turbation initially decays (its amplitude decreases) as it splits into
two parts that travel with progressively slower speeds. Each one of
these two localized perturbations become pinned in space and sub-
sequently grow in amplitude until the necking strain is reached.

A separate calculation was done by following the evolution of a
single spatially localized velocity perturbation introduced at a very
small strain; the results are similar to those obtained with the sin-
gle spatially localized strain perturbation and are therefore not
shown here.



Fig. 2. Growth of a strain perturbation, starting at s0 ¼ 0:0015, of amplitude a ¼ 0:01 (left) and a ¼ �0:01 (right). The shadow cone – region of influence of the disturbance
calculated from the strain-dependent perturbation speed Vð�Þ – is indicated by the asterisk symbol (�).

Fig. 3. Contours showing the normalized particle velocity perturbation following the introduction of a strain perturbation at s0 ¼ 0:0015. of amplitude a ¼ 0:01 (left) and
a ¼ �0:01 (right).
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The influence of the perturbation amplitude a is investigated
next in Fig. 4, which shows that the strain of a bar subjected to
two perturbations localized at v ¼ 0: one with a small amplitude
a ¼ 0:001 (left) and one with a large amplitude a ¼ 0:05 (right).
The strain perturbation is again introduced at dimensionless time
s0 ¼ 0:0015 (same as in the preceding calculations in Figs. 2 and
3) and is plotted as a function of position taken at equal time incre-
Fig. 4. Influence of the initial amplitude of a strain perturbation starting at s0 ¼ 0:0015. N
for a perturbation of small amplitude a ¼ 0:001 (left) while a strongly nonuniform strai
ments. Although the same behavior as in Fig. 2 is observed, namely
the perturbation splits in two parts that subsequently propagate at
decreasing speed but increasing amplitude, the bar with smaller
initial perturbation amplitude necks, i.e. reaches its Considère
strain, significantly later than the one with its larger counterpart;
the strain in the unperturbed part of the bar when necking is
reached for the small amplitude perturbation a ¼ 0:001 is close
otice that a state of almost uniform strain persists almost near the Considère strain
n develops much earlier for perturbations of large amplitude a ¼ 0:05 (right).



Fig. 6. Interaction of two strain perturbations of same amplitude a ¼ 0:01 starting
at s0 ¼ 0:0015. Notice the strain pattern when necking is reached: the distance
between maximum strain locations is shorter than the one in Fig. 2, calculated for a
single perturbation.
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to the necking strain � ¼ 0:22 of the bar, while the strain in the
unperturbed part of the bar when necking is reached for the large
amplitude perturbation a ¼ 0:001 is � ¼ 0:18.

The results in Fig. 4 show the stability of the bar to spatially
localized perturbations up to necking (reaching �m in at least one
location): The smaller the amplitude of the initial perturbation,
the smaller the final maximum amplitude of the perturbation
when necking of the bar is reached. This is a much stronger nonlin-
ear stability result that complements the linearized stability anal-
ysis in Section 2.2.

The influence of the onset of perturbation time is examined in
Fig. 5, which shows the strain profiles of the bar at regular time
intervals, for spatially localized perturbations of amplitude
a ¼ 0:01; one starting earlier at time s0 ¼ 0:015 (left) and the other
starting later at s0 ¼ 0:15 (right). The evolution of the perturbation
starting earlier proceeds like the ones in Figs. 2 and 4, i.e. the ini-
tially localized at v ¼ 0 perturbation splits in two parts that subse-
quently propagate at decreasing speed but increasing amplitude. In
contrast, the evolution of the perturbation that starts later at
s0 ¼ 0:15 does not have sufficient time to split in two but contin-
ues to grow in amplitude until necking is reached at the same loca-
tion it was introduced, i.e. v ¼ 0. In comparing Figs. 2 and 5, we see
that the distance between necking locations is reduced as the time
of initial perturbation gets delayed, as expected from the decreas-
ing shadow cone of the delayed perturbation.

The above results, all of which pertain to a single spatially local-
ized perturbation, suggest the basic mechanism of failure of the bar
under high strain rates: the interaction of perturbations evolving
from different imperfection sites in the bar. The solution to the rap-
idly strained bar with a multitude of statistically distributed and
triggered imperfections leads to a configuration with multiple
necks, as seen in Fig. 1. Therefore, we investigate the interaction
of two or more perturbations placed along the length of the bar.
These results are described next.

The interaction of two spatially localized strain perturbations of
the same amplitude a ¼ 0:01, both starting at s0 ¼ 0:0015, are
shown in Fig. 6. To ensure interaction, the two perturbations in
Fig. 6 are placed at a distance smaller than the final shadow cone
corresponding to a single perturbation starting at s0 ¼ 0:0015,
resulting in four local strain maxima near �m. Notice that the smal-
ler spacing between these strain maxima is lower than the spacing
between the two strain maxima of the single perturbation seen in
Fig. 2. Moreover, the spacing of the two largest strain maxima
exceeds the corresponding spacing for the single perturbation case.

Additional simulations were performed for cases in which the
two imperfections were spatially and temporally separated from
Fig. 5. Influence of the time of onset for a perturbation of amplitude a ¼ 0:01. Notice th
the perturbation starting later at s0 ¼ 0:15 (right) results in only one strain maximum.
each other; in all cases, the interaction between the two imperfec-
tions causes a strain pattern in which the eventual spacing
between necks is smaller than in the case of the isolated imperfec-
tion which is activated near zero strain. One final set of simulations
was performed where a number of defects (between 5 and 30)
were distributed at random along the length of the bar; the loca-
tions were determined by a random sequence generator in MAT-
LAB and the amplitude was assigned the range a 2 ½�0:01;0:01�,
determined by another random number sequence. The entire set
of perturbations was again introduced at time s0 ¼ :0015, thus
simulating initial defects. Results of these calculations are depicted
in Fig. 7, with the left figure corresponding to a bar having 10
imperfection sites while on the right the bar has 30 imperfection
sites.

These perturbations also indicate an initial decay, and eventual
growth as the mean strain approaches the Considère strain, �m. The
pattern of eventual neck development from these random pertur-
bations could only set a lower bound for the neck free length in
the following sense: since the bar has potentially a large number
of imperfections, it is the one with the largest amplitude that is
activated as soon as the bar is strained that will form the shadow
cone that will reach first the Considère strain. As seen from the cal-
culations in Fig. 7 the minimum neck spacing is associated with the
non-interacting perturbations of the largest amplitude. Given the
nonlinear nature of the problem, the correct calculation of this
at the perturbation starting earlier at s0 ¼ 0:015 (left) has two strain maxima while



Fig. 7. Influence of randomly distributed perturbations of maximum amplitude a ¼ 0:01 starting near zero strain (s0 ¼ 0:015). On the left the bar has 10 imperfection sites
while on the right the bar has 30 imperfection sites.
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length cannot be done analytically, but can be found numerically
from the evolution of the single perturbation, as discussed in Fig. 2.
4. Conclusion

This work pertains to the influence of loading rate on the stabil-
ity of structures when inertia plays a dominant role. The currently
established approach to study these stability problems is the
method of modal analysis, which determines the structure’s fastest
growing eigenmode. This method supposes that all points in the
structure can be perturbed simultaneously, an assumption that is
not appropriate for cases when the velocity of material points in
the structure are comparable to the associated wave propagation
speeds.

The novel idea here is to analyze the evolution of spatially local-
ized perturbations of the time-dependent, high-strain-rates states
of these structures, in order to understand the initiation of the cor-
responding failure mechanisms. In the interest of (relative) sim-
plicity, we study the high strain extension of a 1D,
incompressible, nonlinearly elastic bar. Using a nonlinear constitu-
tive law makes sense for real structures since no unloading occurs
until a point in the structure reaches the bar’s necking strain �m, at
which point our calculations are terminated. The adequacy of our
constitutive assumption is further supported by the experimental
evidence from Zhang and Ravi-Chandar (2006), who find that the
onset of necking strains is consistent with the maximum force cri-
terion (2.7) and independent of the applied strain rates (no visco-
plasticity effects).

It is shown here that the bar is stable to localized perturbations
as long as all points in the bar have strains below �m. Stability is
established by linearized analysis and also by a full nonlinear anal-
ysis. Both methods show that the maximum amplitude of a spa-
tially localized perturbation decreases with decreasing amplitude
of the initial perturbation, provided of course that no point in the
bar has reached �m. The same linearized stability result is shown
in Appendix A to hold even in the case of viscoplasticity.

Our analysis also provides a consistent explanation for the
necking patterns obtained in the high strain-rate extension exper-
iments of thin rings by Zhang and Ravi-Chandar (2006), which
show the absence of a dominant wavelength, in contrast of the the-
oretical predictions based on modal analysis arguments. The
experimentally observed random spacing between necks is dic-
tated by the presence of inevitable imperfections that are sources
of perturbations for the perfect bar subjected to a given extension
rate. The interactions of these perturbations indicate that the max-
imum distance between necks is the maximum size of the (nonlin-
ear) shadow cone at the onset of necking of any point in the bar
corresponding to a perturbation initiated at the onset of deforma-
tion. Since the distance between the two strain maxima of a local-
ized defect reached at Considère strain diminishes with the strain
at the onset of perturbation (see discussion of Fig. 5), the minimum
distance between necks cannot be found from this model and is
expected to be of the order of the bar thickness thus requiring a
higher geometric dimension analysis for its determination. It is
also noteworthy that since the size of the actual shadow cone of
a localized defect depends on the applied strain rate – see defini-
tion of dimensionless length in (3.3) – the minimum distance
between necks should diminish with strain rate, as observed
experimentally by Zhang and Ravi-Chandar (2006).

The above approach is useful for the stability analysis of more
realistic structures under high strain rates. As one such example
we cite the recent work by Putelat and Triantafyllidis (2014) on
the stability of a pressurized thin ring at high rates, where it is
shown that for small values of the applied loading rate, the struc-
ture fails through a global mode, while for large values of the
applied loading rate the structure fails by a localized mode of
deformation, as also found recently in the experiments of Mainy
and Ravi-Chandar (submitted for publication). However useful,
the 1D model used here has its limitations, thus motivating a
higher geometric dimension analysis of the problem and inclusion
of unloading.
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Appendix A. Stability of a viscoplastic bar

Since the stability analysis of viscoplastic bars under high strain
rates has been frequently studied in the past, it is worth revisiting
this issue to investigate the response of viscoplastic bars to spa-
tially localized perturbations.

Once again we start with the kinematics (2.1), (2.2)and equa-
tions of motion (2.3) to which we add the constitutive law, a
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simple overstress model, thus resulting in the following system of
equations:

expð�Þ @�
@t
¼ @v
@X

;

@½r expð��Þ�
@X

¼ q
@v
@t
;

r ¼ Eð�� �pÞ;
@�p

@t
¼ 1

f
½r� gð�Þ�;

ðA:1Þ

where �p is the plastic part of the strain, f is the viscosity and gð�pÞ
is the hardening function of the accumulated plastic strain.

Introducing into the above equations perturbations about the
uniform rate solution (2.5), one obtains upon linearization:

@dv
@X
¼ expð�0Þ

@d�
@t
þ d�0

dt
d�

� �
;

q
@dv
@t
¼ expð��0Þ ðE� r0Þ

@d�
@X
� E

@d�p

@X

� �
;

@d�p

@t
¼ 1

f
Eðd�� d�pÞ � dg

d�p d�p

� �
;

ðA:2Þ

where all the coefficients of the above equation are evaluated on the
uniform rate solution.

By differentiating the first equation in (A.2) with respect to time
and the second with respect to space to eliminate dv and re-
arranging the third, one obtains the following relation between
d� and d�p:

@2d�
@t2 þ

2c
1þ ct

@d�
@t
� E� r0

qð1þ ctÞ2
@2d�
@X2 þ

E

qð1þ ctÞ2
@2d�p

@X2 ¼ 0;

f
@d�p

@t
� Ed�þ Eþ dg

d�p

� �
d�p ¼ 0:

ðA:3Þ

To the above system, one has to add the initial conditions:

d�ðX; t0Þ ¼ D�0ðXÞ;
@d�
@t
ðX; t0Þ ¼ D�1ðXÞ d�pðX; t0Þ ¼ 0; ðA:4Þ

since in perturbing a viscoplastic solid we cannot directly control
the internal variable d�p (see discussion in Nestorovic et al. (2000)).

As for the case of the linearized stability analysis of the nonlin-
ear bar in Section 2.2, we find it easier to work with the Laplace
transforms of the independent variables fd� and gd�p . In taking the
Laplace transforms of (A.3) together with the initial conditions
(A.4) and eliminating gd�p we obtain the following expression forfd�:
ðs2 þ bsÞfd� � E

qð1þ ct0Þ2
1� r0

E
� E

fsþ Eþ dg=d�p

� �
@2fd�
@X2

¼ ðsþ bÞD�0 þ D�1; b � 2c
1þ ct0

: ðA:5Þ

Similarly to the rate-independent bar case in (2.12) and (2.18),
in order to have time-decaying solutions for the strain perturba-
tion, the coefficient of @2fd�=@X2 in (A.5) must be positive:

1� r0

E
� E

fsþ Eþ dg=d�p

� �
> 0: ðA:6Þ

Since fs > 0, one has from (A.6) the following inequality:

1� r0

E
� E

fsþ Eþ dg=d�p
> 1� r0

E
� E

Eþ dg=d�p

¼ 1
E

r;�ð�0Þ � rð�0Þ½ � > 0; ðA:7Þ

which is satisfied for strains prior to the ones corresponding to
maximum load.
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