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Of interest here is the influence of loading rate on the stability of structures where inertia is taken into
account, with particular attention to the comparison between static and dynamic buckling. This work
shows the importance of studying stability via perturbations of the initial conditions, since a finite veloc-
ity governs the propagation of disturbances. The method of modal analysis that determines the fastest
growing wavelength, currently used in the literature to analyze dynamic stability problems, is meaning-
ful only for cases where the velocity of the perfect structure is significantly lower than the associated
wave propagation speeds.

As a model structure to illustrate this point we select an elastic ring subjected to external hydrostatic
pressure which is applied at different rates � (appropriately non-dimensionalized with respect to elastic
axial wave speed). The ring’s stability is studied by following the evolution of a localized small perturba-
tion. It is shown that for small values of the applied loading rate, the structure fails through a global
mode, while for large values of the applied loading rate the structure fails by a localized mode of defor-
mation. An analytically obtained localization time tl is found to be a very good estimate of the onset of
instability time at high loading rates.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The issue of dynamic stability of structures is an important
engineering problem and as such has drawn considerable atten-
tion. The first investigation in this area appears to be the work of
Koning and Taub (1933), who investigated the influence of inertia
in a simply supported imperfect column subjected to a sudden ax-
ial load. A substantial amount of work followed that investigated
the response of, mainly elastic, structures to impulse or time-
dependent loads. As a result, and due to the many possible defini-
tions for the stability of time-dependent systems, the term dynamic
stability encompasses many classes of problems and different
physical phenomena and has many interpretations, with inertia
being the only common denominator.

In the absence of inertia, the processes of failure by a bifurcation
instability mode in elastic solids and structures is well understood
(e.g. Brush and Almroth, 1975) and a general asymptotic analysis,
termed Lyapunov–Scmidt–Koiter (LSK), has been developed for
their study. The first effort to use the LSK general analysis for the
dynamic stability problem of an elastic structure appears to be
Budiansky and Hutchinson (1964), where the authors proposed
an asymptotic analysis of the time-dependent problem using the
eigenmodes of the static problem. Alternative methods, based on
upper and lower bounds of the structure’s energy have also been
proposed and the interested reader is referred to Chapter 12 in
Simitses and Hodges (2006) for a well written account of this
approach.

Another idea, popular in fluid mechanics, has also been adopted
for the dynamic stability analysis of solids with more general con-
stitutive laws under high rates of loading, according to which one
seeks the solid’s fastest growing eigenmode. This type of analysis is
also termed the method of frozen coefficients, since the resulting
PDE system of the linearized stability equations become autono-
mous by virtue of ignoring the time-independence of their coeffi-
cients. This method has been repeatedly applied in the study of
dynamic stability of elastoplastic bars and rings under high loading
rates where the size of fragments is of interest (e.g. see Shenoy and
Freund, 1999; Sorensen and Freund, 2000; Mercier and Molinari,
2003). However, recent experimental evidence from rapidly
expanding electromagnetically loaded metallic rings by Zhang
and Ravi-Chandar (2006, 2008) finds no evidence of a dominant
wavelength at the necked pattern of the rings. As explained by
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these authors, using the fastest growing eigenmode to predict the
onset of failure is physically meaningful provided that the loading
rate is much slower than the speed of propagation of perturbations
in the solid or structure at hand. For high loading rates, commen-
surate with some characteristic wave propagation speed in the
structure, a novel approach to the stability analysis is required,
namely the study of evolution of localized perturbations.

In contrast to the above mentioned cases of structures under ra-
pid extension, of particular interest in this work is the influence of
loading rate on the stability of structures under compression that
exhibit an instability even under quasistatic loading. As a model
structure to illustrate these ideas, we select an elastic ring sub-
jected to external hydrostatic pressure which is applied at different
rates � (appropriately non-dimensionalized with respect to elastic
axial wave speed). Of course such a classical topic has been treated
repeatedly in the mechanics literature; following the work of Car-
rier (1945), different linear and nonlinear versions of the ring
dynamical equations of increasing complexity have been proposed
(e.g. Morley, 1961; Goodier and McIvor, 1964; Boresi and Reichen-
bach, 1967; Wah, 1970; Graff, 1971; Simmonds, 1979; Dempsey,
1996) to study their vibrations. The stability of rings subjected to
impulsive or step loadings has also been repeatedly studied (e.g.
Goodier and McIvor, 1964; Lindberg, 1964; Florence, 1968; Ander-
son and Lindberg, 1968a; Lindberg, 1974; Simmonds, 1979;
Lindberg and Florence, 1987; Amabili and Paidoussis, 2003). These
studies rely on modal analysis using Fourier series whose trunca-
tion leads nonlinear amplitude equations and showed that
dynamic buckling is triggered by flexural modes. At leading order,
the dynamics of flexural modes are governed by Mathieu-Hill
equations whose characteristic curves of associated Mathieu
functions delineate boundaries of instability domains within the
control parameter plane of load versus ring’s slenderness. For an
account of dynamic stability problems in rings, the interested
reader is referred to the book Graff (1975) and references quoted
therein.

All the above-mentioned works were concerned with the stabil-
ity of ring vibrations and not with their stability at high loading
rates as is the case of interest here. Our investigation is further
motivated by work involving rings high strain-rate using electro-
magnetic loading – since this method avoids propagating waves
– under tension (Gourdin, 1989; Triantafyllidis and Waldenmyer,
2004; Zhang and Ravi-Chandar (2006); Zhang and Ravi-Chandar
(2008)) that study the influence of high loading rate on metal duc-
tility and in particular by experiments in ring and cylinder under
electromagnetic compression by Anderson and Lindberg (1968b)
and Jones and Okawa (1976), since these experiments combine
structural instability with rapid loading. It is the most recent
experimental work of Mainy (2012) that serves as the starting
point for this investigation, and in particular the localized failure
patterns observed (see Fig. 1), which are in marked contrast with
global buckling modes of externally pressurized rings under quasi-
static loading rates. In order to keep essential features such as
buckling under static loading and finite wave speeds for all wave-
numbers, we concentrate on the dynamics of an elastic ring follow-
ing a von Karman – Timoshenko theory allowing for small strains,
moderate rotations, transverse shear and rotational inertia. The
ring’s stability is studied by following the evolution of a localized
small perturbation. It is shown that for small values of the applied
loading rate the structure fails through a global mode, while for
large values of the applied loading rate the structure fails by a
localized mode of deformation. Following Section 1 the presenta-
tion of the work continues with Section 2, where we derive the
equations of motion and outline the numerical scheme for the
solution of these equations. The results are given in Section 3
where we present the linearized analysis of the initial growth/de-
cay of a perturbation followed by numerical calculations of the
evolution of a spatially localized displacement perturbation and a
discussion in Section 4 concludes this work.

2. Formulation

In the first subsection we derive the equations of motion from
Hamilton’s variational principle, from which we deduce the struc-
ture’s Euler–Lagrange equations. The numerical scheme for the
solution of these equations is outlined in the second subsection.

2.1. Equations of motion

We consider a homogeneous linear elastic ring of rectangular
section with thickness h, width a and cross sectional area
A ¼ h� a. The ring has a mid-line radius r and follows small strain
– moderate rotation Timoshenko kinematics described by
~vðhÞ; ~wðhÞ; ~wðhÞ respectively the tangential and normal displace-
ments of the ring’s reference mid-line at point h and the rotation of
the section perpendicular to the mid-line, initially at h (see Fig. 1).

To find the system’s Lagrangian, we need to determine its po-
tential and kinetic energies P and K respectively. The potential en-
ergy P consists of two parts: the stored elastic energy Pint plus Pext

the work potential of the externally applied uniform pressure ~k,
namely

P ¼ Pint þ Pext: ð1Þ

The stored elastic energy Pint is

Pint ¼
Z 2p

0

Z h=2

�h=2
Ee2

hh þ Gc2
rh

� �
dz

( )
ar dh; ð2Þ

where the axial and shear strains ehh and crh are given by

ehh ¼
~v 0 þ ~w

r
þ 1

2
~v � ~w0

r

� �2

þ z
~w0

r
; crh ¼

~v � ~w0

r
� ~w; ð3Þ

with f 0 � @f=@h denoting the h-derivative of the corresponding func-
tion and E;G the material’s Young and shear moduli, respectively.

The kinematic and stress state assumptions leading to (2) and
(3) are that cross-sections perpendicular to the initial middle line
deform as planes, the ring is in the state of an approximate uniaxial
stress rhh ¼ Eehh, strains are small but rotations are moderate and
that shear stress rrh ¼ Gcrh although negligible compared to rhh

does contribute to the ring’s elastic energy.
By inserting (3) into (2) and integrating through the thickness,

the following expression is obtained for the internal energy

Pint ¼
1
2

Z 2p

0
EA

~v 0 þ ~w
r
þ 1

2
~v � ~w

r

� �2
" #2

þ EI
~w0

r

 !2
8<
:

þvG
~v � ~w0

r
� ~w

� �2
)

rdh; ð4Þ

where I ¼ ah3
=12 is the cross sectional moment of inertia and v the

shear correction factor (v ¼ 2=3 for a rectangular section, the en-
ergy expression in (4) being valid for arbitrary cross sections with
appropriate A and I expressions). For the thin rings of interest here,
it is tacitly assumed that the radius of the mid-line r � h.

The work potential Pext of the external pressure loading ~k ap-
plied on the ring equals ~kDS where DS is the change of area due
to deformation ð~v ; ~wÞ enclosed by the ring’s mid-line, which is gi-
ven by e.g. Brush and Almroth (1975)

Pext ¼ ~k
Z 2p

0
~wþ 1

2r
~v2 � ~v ~w0 þ ~v 0 ~wþ ~w2
� �� �

rdh; ð5Þ

where ~k is taken positive when acting inwards (resulting in com-
pressive hoop stresses rhh < 0) in the ring.



Fig. 1. Sequence of images of electromagnetically compressed Al rings by Mainy (2012). Courtesy of Prof. K. Ravi-Chandar, University of Texas Austin.
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Using the same kinematic assumptions as for the derivation of
(3), the tangential _~vh and radial _~v r velocities of an arbitrary mate-
rial point on the ring are

_~vh ¼ _~v þ z _~w; _~v r ¼ _~w ð6Þ

where _f � @f=@~t denotes time-differentiation of the corresponding
function. Consequently the kinetic energy of the ring is

K ¼ 1
2

Z 2p

0

Z h=2

�h=2
q _~v2

h þ _~v2
r

� 	
dz

( )
ar dh; ð7Þ

where q is the mass density of the ring. Using (6) into (7) and again
recalling that r � h when integrating through the thickness, we ob-
tain for the kinetic energy

K ¼ 1
2

Z 2p

0
q A _~v2 þ _~w2

� 	
þ I _~w2

h i
r dh: ð8Þ

The system’s Lagrangian is now determined by

L ¼ K� P ¼ K� ðPint þ PextÞ: ð9Þ

Before proceeding to the application of Hamilton’s principle to
derive the system’s Euler–Lagrange equations, we find it useful
to introduce some dimensionless variables and physically relevant
parameters. Length, time, and stress are non-dimensionalized by
r; r=c and E where c ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
is the ring’s axial wave speed.

Consequently the Lagrangian is a function of the dimensionless
displacements and section rotation v � ~v=r;w � ~w=r;w � ~w=r
while time-differentiation is now with respect to the dimension-
less time t � ~t=ðr=cÞ. In addition, we define the slenderness
parameter g, the shear factor l and the dimensionless pressure k
as follows

g � I=ðAr2Þ ¼ ðh=rÞ2=12; l � vG=E ¼ 0:5v=ð1þ mÞ;
k � ~kra=ðEAÞ ¼ ð~k=EÞðr=hÞ: ð10Þ

As a result, from (4), (5), (8), (9), (10) and using also the definitions

e � v 0 þw; / � v �w0 ð11Þ

for the dimensionless axial strain and rotation of the ring’s middle-
line, we obtain for the dimensionless potential and kinetic energies,
also denoted P and K by abuse of notation,
P ¼
Z 2p

0
P dh; P � ðeþ /2=2Þ2 þ gðw0Þ2 þ lð/� wÞ2

h i
=2

þ k wþ ðv/þweÞ=2½ �; ð12Þ

K ¼
Z 2p

0
K dh; K � _v2 þ _w2 þ g _w2

h i
=2: ð13Þ

We denote P and K the system’s potential and kinetic energy
densities.

Using now Hamilton’s principle, i.e. by extremizing the action
integral

R T
0 Ldt over time paths with fixed initial and final time val-

ues of the independent variables v ;w and w, we deduce the follow-
ing Euler–Lagrange equations governing respectively the axial,
normal and rotational motion of the ring

€v ¼v 00 � ðlþkÞvþð1þlþkÞw0 þlwþð/2Þ0=2�e/�/3=2;

€w¼�k�ð1þlþkÞv 0 þlw00 � ð1þkÞwþlw0 �/2=2�ðe/Þ0 �ð/3Þ0=2;
€w¼w00 � ðl=gÞðw�vþw0Þ:

8><
>:

ð14Þ

To the above equations initial conditions for v;w;w and _v ; _w; _w must
be added.

Of particular interest here now is the perfect structure’s princi-
pal solution ðv0;w0;w0Þ, i.e. the response of the perfect ring to a
uniform pressure loading at constant rate � (starting at t ¼ 0):
k ¼ � t. Due to axisymmetry of the structure and loading
v0ðh; tÞ ¼ w0ðh; tÞ ¼ 0 while w0ðh; tÞ ¼ w0ðtÞ is according to (14)2

€w0 þ ð1þ �tÞw0 þ �t ¼ 0; ð15Þ

with initial conditions w0ð0Þ ¼ _w0ð0Þ ¼ 0. For pressure levels corre-
sponding to small deformations w0ðtÞ, i.e. such that �t � 1, an
asymptotic solution makes sense for a bounded time domain. To
this end we consider the following expansion for w0ðtÞ

w0ðtÞ ¼ �w1ðtÞ þ �2w2ðtÞ þ �3w3ðtÞ þ � � � ð16Þ

Introducing (16) into (15) and collecting terms of the like order �
leads to the following recursive system

€w1 þw1 þ t ¼ 0 at Oð1Þ; €wn þwn þ twn�1 ¼ 0 at OðnÞ: ð17Þ

Solution of the above system, after taking into account the initial
conditions w0ð0Þ ¼ _w0ð0Þ ¼ 0 yields, up to Oð�3Þ
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w1ðtÞ ¼ sin t � t ð18Þ

w2ðtÞ ¼ �½t sinðtÞ þ ð�t2 � 8Þ cosðtÞ � 4t2 þ 8�=4; ð19Þ

w3ðtÞ ¼ �½ð3t4 þ 33t2 þ 735Þ sinðtÞ þ ð10t3 þ 33tÞ cosðtÞ
þ 96t3 � 768t�=96: ð20Þ

From (18) we see that the leading order approximation shows a
dimensionless 2p�periodic oscillation superimposed to a linear
component for the radial displacement. In Fig. 2, we compare the
exact (numerical) solution of (15) to its asymptotic approximations
given by (16)–(20) up to Oð�3Þ. This shows that, over the interval
t 2 ½0;þ1½, the asymptotic expansion (16) does not converge uni-
formly due the presence of terms which produce oscillations of
increasing amplitude. Notice from Fig. 2 that the time interval of
convergence improves when the order of the expansion is in-
creased. Although improved estimates for the principal solution
could be provided (e.g. based on multiscale asymptotic expan-
sions) the analytic leading order approximation of the principal
solution presented here is useful for finding the characteristic
times for the problem discussed next.

2.2. Numerical method

Solving the system’s governing equations in (14) is based on a
numerical technique that uses the system’s Hamiltonian. To this
end, since the Lagrangian density of the system L � K � P in (13)
depends on the generalized coordinates ðv ;w;wÞ and their deriva-
tives ð _v ; _w; _wÞ, we can compute the generalized momenta pv ; pw; pw

associated to ðv ;w;wÞ and hence the Hamiltonian density H by

pv ¼
@L
@ _v ; pw¼

@L
@ _w

; pw¼
@L

@ _w
; H¼ pv _vþpw _wþpw

_w�L: ð21Þ

Consequently from (21) and (13) the system’s Hamiltonian density
is

H ¼ ð1=2Þ p2
v þ p2

w þ p2
w=gþ ðeþ /2=2Þ2 þ gðw0Þ2

n
þlð/� wÞ2 þ 2k wþ ðv/þweÞ=2½ �

o
: ð22Þ
Fig. 2. Time evolution of the principal solution w0 for several different loading rates
(from slow to fast rates: � ¼ 0:001;0:01;0:1;0:5f g); exact (numerical) solution and
asymptotic approximations. Notation: numerical solution (thick solid line), first
order asymptotic solution (18) (dotted-dashed line), third order asymptotic
solution (20) (dashed line). Note the superimposed oscillations at slow loading rate.
The equations of motion are obtained in compact form from

@tu ¼ J$uH; ð23Þ

where the state vector u � ðv ;w;w;pv ;pw;pwÞ
T and J the symplectic

structure matrix.
The numerical method used for solving (23) (plus the initial

condition on u at t ¼ 0) is based on a spatial discretization of the
system’s Hamiltonian. Taking the first variation of the space-dis-
cretized Hamiltonian leads to a system of first order ODE’s that
are then solved numerically via a Runge–Kutta method. More spe-
cifically a spatial discretization is considered over a regular N-point
grid in ½0;2pÞ at

hi ¼ ði� 1ÞDh; Dh � 2p=N; i ¼ 1; . . . ;N ð24Þ

resulting in the discretized Hamiltonian HD. In calculating HD from
its density H in (22), one needs space differentiation operators for v 0
and w0 to calculate v 0i ¼ Dijv j and w0i ¼ Dijwj. The differentiation
matrix (e.g. Weideman and Reddy, 2000; Hesthaven et al., 2007)
is chosen to be, for N even,

Dij ¼
0 for i ¼ j;

ð1=2Þð�1Þi�j cot½ði� jÞp=N� for i – j:

(
ð25Þ

Taking the first variation of HD with respect to ith spatial degrees of
freedom z � uðhi; tÞ, we finally have the 6N-dimensional system of
ODE’s

_z ¼ ðJ=DhÞ$zHDðz; tÞ; ð26Þ

which is a non-autonomous system of the type _z ¼ fðt; zÞ. This sys-
tem is integrated using the following implicit midpoint scheme

znþ1 ¼ zn þ Dt f½tn þ Dt=2; ðznþ1 þ znÞ=2�; tn ¼ nDt; ð27Þ

which is solved iteratively at every time step using an error toler-

ance, based on the L2 norm of wðhÞ, given by: kwk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðwiÞ2
q

.

The results obtained here are based on calculations with N ¼ 512
and Dt ¼ 5� 10�3, with a maximum error less that 10�5. Calcula-
tions for Dt ¼ 5� 10�4 give a maximum error less that 10�7. Finer
meshes and lower steps were also used but showed no significant
improvement of the final results, thus justifying our mesh and time
step selection.
3. Results

The first subsection pertains to the linearized analysis of the ini-
tial growth/decay of a perturbation introduced at t ¼ t0. Using
numerical calculations, the second subsection follows the evolu-
tion of a displacement perturbation localized about h ¼ p for
different loading rates �.

3.1. Linearized stability analysis

Assuming a perturbation ðDv ;Dw;DwÞ superposed on the
principal solution ð0;w0;0Þ, the linearized perturbation equations
obtained from (14) are

D€v ¼ Dv 00 � ðlþ kþw0ÞDv þ ð1þ lþ kþw0ÞDw0 þ lDw;

D €w ¼ �ð1þ lþ kþw0ÞDv 0 þ ðlþw0ÞDw00 � ð1þ kÞDwþ lDw0;

gD€w ¼ gDw00 � l ðDw� Dv þ Dw0Þ;

8><
>:

ð28Þ

plus the initial conditions for ðDv ;Dw;DwÞ and their time deriva-
tives at the time of the onset of perturbation t ¼ t0.

Using the method of frozen coefficients, i.e. assuming that the
rate of growth/decay of the perturbation is much higher than the
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loading rate, (28) is considered as a constant coefficient equation,
which admits solutions of the type

ðDv;Dw;DwÞ ¼ ðVðkÞ;WðkÞ;WðkÞÞ exp iðxt þ khÞ½ �: ð29Þ

By introducing (29) into (28) and ignoring the time dependence
of k and w0 we obtain the following dispersion equation relating
x and k

det
lþkþw0þk2�x2 �ikð1þlþkþw0Þ �l

ikð1þlþkþw0Þ 1þkþðlþw0Þk2�x2 �ikl
�l ikl lþgðk2�x2Þ

0
BB@

1
CCA¼0;

ð30Þ

which yields the following bi-cubic polynomial in x2

a6 x6 þ a4 x4 þ a2 x2 þ a0 ¼ 0; ð31Þ

with coefficients

a6 � g

a4 � �g k2ðw0 þ lþ 2Þ þw0 þ ð1þ 1=gÞlþ 2kþ 1
h i

;

a2�gk4½2ðw0þlÞþ1��k2 g½ðkþ1Þðw0þlÞþk2�k�1�
�

�lðw0þ1Þgþg½ðkþ1Þw0þðkþ1Þlþk2þk�þðw0þ2kþ1Þl;

a0 �� ðk2 � 1Þ gk4ðw0 þ lÞ � k2 g½ðkþ 1Þðw0 þ lÞ þ k2 þ k�
�n

�lw0g � ðkþ 1Þlw0 � ðk2 þ kÞl
�

The results of (31) showing the lowest x2 root of (31), for t ¼ 0, as a
function of k for different values of the slenderness g are shown in
Fig. 3(a). So, if the perturbation occurs at t ¼ 0 (i.e. w0 ¼ k ¼ 0), it
can be shown that (31) has three positive roots x2 P 0 and hence,
as expected, perturbation of a stress-free ring is stable. It should
also be noted that for k ¼ 1 the dispersion equation has a zero root
x2 ¼ 0, reflecting the fact that k ¼ 1 corresponds to a rigid body
mode of the ring, easily verified since the corresponding strain mea-
sure vanishes. The group velocity cg � dx=dk of the ring at t ¼ 0 is
plotted in Fig. 3(b) for a slenderness g ¼ 10�3 and in Fig. 3(c) for a
slenderness g ¼ 10�4. In the last two figures all three group veloci-
ties are plotted (they correspond to the three different roots of the
bicubic (31)) and represent the axial, bending and shear wave prop-
agation speeds. It is important to notice that all of these speeds are
positive for k > 1 and finite as k�!1, thus justifying the choice of
the Timoshenko model with rotary inertia adopted in this investiga-
tion. Observe that two roots approach the axial wave speed cg�!1,
while the third root approaches the shear wave speed, cg�!

ffiffiffiffilp . As
the pressure increases for t > 0, one of the roots of (31) becomes
(a) (b)

Fig. 3. (a): Effect of slenderness g on the lowest eigenfrequency x as a function of waven
for t ¼ 0 for slenderness g ¼ 10�3 and g ¼ 10�4 respectively. The thin dotted line depicts
negative x2 < 0 for at least a finite range of k, indicating instability
of a perturbation if the range of negative roots x2 < 0 of (31) in-
cludes an integer k P 2, since only finite wavenumbers make sense
for the ring. The influence of dimensionless time on the minimum
eigenfrequency as a function of the wavenumber is plotted in
Fig. 4(a) for a fixed slenderness (g ¼ 10�3). Notice the destabiliza-
tion of the ring as time progresses, as evidenced by the increasing
range of wavenumbers with x2 < 0. The influence of slenderness
on the minimum eigenfrequency as a function of the wavenumber
is plotted inFig. 4(b) for a fixed time (t ¼ 1:4). Observe in this case
the rather counterintuitive stabilizing effect of slenderness; for a
given time, an increase in the slenderness parameter g – i.e. an
increase of the stubbiness of the ring – increases range of wave-
numbers with x2 < 0.

The frozen coefficient analysis (study of the roots of (31)) can
yield some further important information. We can find the time
corresponding to the onset of a static buckling by calculating the
lowest time tb required for a zero root x2, which from solving
a0 ¼ 0 in (31) yields

�w0ðtbÞ ¼ ðk2 � 1Þg ¼ 3g; ðk ¼ 2Þ; ð32Þ

where in the above equation use was made of the fact that for thin
elastic rings jkj; jw0j � 1. The above expression can be rewritten for
the quasistatic loading case where according to (15) w0 	 ��t ¼ �k
as k ¼ ðk2 � 1Þg which corresponds to the buckling pressure of a
quasistatically loaded ring, achieved for the lowest integer value
of k ¼ 2 (Brush and Almroth, 1975). For an instability to occur at
the onset of buckling time tb, we must have low loading rates
�� 1, in which case inertia effects are ignored and a global buck-
ling mode makes sense.

For finite loading rates inertia effects are important and pertur-
bations travel at finite speeds. For such cases, failure occurs by a
localized deformation mode, for which we can estimate, again from
(31), another critical time tl. Since localized deformation modes
correspond to short wavelengths k� 1, the time corresponding
to their onset of instability can be found by investigating the
behavior of the dispersion relation (31) for large values of k, when
the lowest root x2 ¼ 0 . The corresponding critical time tl is found
by setting to zero the highest order in k (k6 term) coefficient of a0

in (31) which yields:

w0ðtlÞ þ l ¼ 0: ð33Þ

Solutions of (33) using the numerical evaluation and the approxi-
mate asymptotic expression of w0ðtÞ plus comparisons with numer-
ical results for the onset of a localized deformation are discussed
subsequently. The intercept of the dotted line in Fig. 2 with the
(c)

umber k at t ¼ 0. (b)-(c): Group velocities cg at t ¼ 0 as a function of wavenumber k
the large wave number limit for shear waves: cg !

ffiffiffiffilp . Shear parameter: l ¼ 0:25.



(a) (b)

Fig. 4. (a): Lowest eigenfrequency (squared: (x2)) dependency on the wavenumber k for different dimensionless times t and a slenderness g ¼ 10�3. (b): Lowest
eigenfrequency (squared: (x2)) dependency on the wavenumber k for different slenderness g at a time t = 1.4. The linearized problem’s growth rates (ix) given by the roots of
(31) corresponding to the frozen coefficient analysis (see Section 3.1). Shear parameter: l ¼ 0:25, loading rate: � ¼ 0:5.

(a) (b)

Fig. 5. (a): Influence of the time of perturbation onset on the subsequent growth of the perturbation. The vertical dashed line delimitates the localization time tl , which for the
parameter values used here is tl 	 1:53, separating stable from unstable regimes for the initial growth of an imperfection. (b): Time evolution of the radial displacement wðhÞ,
following the introduction of a small localized perturbation at h ¼ p and at time t0 ¼ 1:4. Slenderness: g ¼ 10�3, loading rate: � ¼ 0:5, shear parameter: l ¼ 0:25, perturbation
amplitude: W0 ¼ 0:01, perturbation width: j ¼ 10.
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graphs of w0ðtÞ gives the critical time tl for the various loading
rates �.
3.2. Numerical simulations

Although we are not modeling specific experiments, the dimen-
sionless parameters used for the numerical results presented here
are motivated by the electromagnetically compressed aluminium
thin rectangular section ring experiments of Mainy (2012) where:
E ¼ 70 GPa, G ¼ 26 GPa, q ¼ 2:7� 103 kg m�3; r ¼ 1:5� 10�2 m,
h ¼ 5� 10�4 m, a ¼ 10�3 m, v ¼ 2=3. Correspondingly the longitu-
dinal wave speed is: c ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
	 5� 103 m s�1, the characteristic

time: r=c 	 3� 10�6 s and the slenderness g 	 10�4. No direct
comparison with the loading rate is possible between the linear
pressure loading assumed in our simulations and the pulse loading
resulting from the capacitor discharge in the experiments by
Mainy (2012). An estimate based on the maximum velocity corre-
sponding to the experiments for the 5 kV capacitor charge yield a
dimensionless speed � 	 10�1 while an analogous calculation
based on the calculated maximum pressure rate yield a dimension-
less speed � 	 10�2. As a result we have selected the following val-
ues for the three dimensionless system parameters:

g ¼ 10�4; 10�3; l ¼ 0:25; � ¼ 10�3;10�2;5� 10�1: ð34Þ

In this study, the perturbation is in the form of a localized radial
displacement change at t ¼ t0 centered at h ¼ p

Dvðh;t0Þ¼0; Dwðh;t0Þ¼�W0 exp �j2ðh�pÞ2
h i

; Dwðh;t0Þ¼0;

D _vðh;t0Þ¼0; D _wðh;t0Þ¼0; D _wðh;t0Þ¼0;
ð35Þ

where W0 is the amplitude and j ¼ 10 is the width parameter of
the rapidly decaying perturbation. All other displacement and
velocity components of the initial perturbation are supposed zero.
The influence of the time t0 at the onset of perturbation and the
meaning of the localization time tl introduced in (33) is illustrated
in Fig. 5 for the case of a high loading rate (� ¼ 0:5) for a ring with
slenderness g ¼ 10�3 and a shear parameter l ¼ 0:25. More specif-
ically in Fig. 5(a) we plot the norm of the perturbation

kDwk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðDwiÞ2
q

as a function of time for perturbations with

different onset times t0. Notice that the perturbation amplitude first



(a)

(b)

(c)

Fig. 6. Effect of the loading rate on the stability of an axially compressed ring of slenderness g ¼ 10�3 at three different loading rates (a): slow, with � ¼ 0:001, (b): medium,
with � ¼ 0:01 and (c): high, with � ¼ 0:5. In each case the left figure shows the radial displacement w as a function of h for different times t while the right figure gives the
deformed ring shape at the end of the calculation with the corresponding time and load indicated above the figure. In addition, the axial and shear wave fronts in the left
figures are indicated by blue and red lines respectively. Shear parameter: l ¼ 0:25, perturbation amplitude: W0 ¼ 0:01, perturbation width: j ¼ 10. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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decreases provided that the time of perturbation onset is less
t0 < tl , while the perturbation amplitude increases immediately if
the perturbation occurs at a time t0 > tl.

The evolution of the radial displacement wðh; tÞ for the same
ring perturbed at t0 ¼ 1:4 is plotted in Fig. 5(b), which clearly
shows how the maximum (in absolute value) of the radial displace-
ment initially decays (since t0 < tl) and subsequently splits into
two local maxima that propagating away from the initial perturba-
tion location h ¼ p until the deformation localizes. This illustration
of the decay/growth behavior of an initial perturbation introduced
at different times t0 for a ring under a high loading rate (� ¼ 0:5)
shows that the method of the frozen coefficients gives a reliable



(a)

(b)

(c)

Fig. 7. Effect of the loading rate on the stability of an axially compressed ring of slenderness g ¼ 10�4 at three different loading rates (a): slow, with � ¼ 0:001, (b): medium,
with � ¼ 0:01 and (c): high, with � ¼ 0:5. In each case the left figure shows the radial displacement w as a function of h for different times t while the right figure gives the
deformed ring shape at the end of the calculation with the corresponding time and load indicated above the figure. In addition, the axial and shear wave fronts in the left
figures are indicated by blue and red lines respectively. Shear parameter: l ¼ 0:25, perturbation amplitude: W0 ¼ 0:01, perturbation width: j ¼ 10. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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approximation for the characteristic time tl separating regions of
initial stability/instability for the decay/growth of a perturbation
immediately following its appearance.

It is worth noticing that the time tb at which a quasistatic buck-
ling instability would have occurred (see discussion of (32)) is
tb ¼ 3g=� ¼ 6� 10�3, well below the critical time tl 	 1:53 corre-
sponding to this high loading rate of � ¼ 0:5. As expected, a pertur-
bation of a ring loaded at a high rate is initially stable for pressures
well above the static buckling pressure, which is calculated by
ignoring the speed of propagation of the perturbation. The influ-
ence of loading rate � on the stability of the axially compressed ring
is presented in Fig. 6 for a ring with slenderness g ¼ 10�3 (value
used for the stability calculations of the previous Fig. 5) and in
Fig. 7 for a ring with slenderness g ¼ 10�4 (value representing



(a)

(b)

(c)

HOOP ENERGY BENDING ENERGY SHEAR ENERGY

Fig. 8. Local vs. global instability of the externally pressurized ring, according to the applied loading rate. The color scale refers to the value of the hoop, (axial) bending and
shear elastic energy densities, respectively. (a): Evolution of deformation for an externally pressurized ring at a low loading rate � ¼ 0:001. (b): Evolution of deformation for
an externally pressurized ring at a medium loading rate � ¼ 0:01. (c): Evolution of deformation for an externally pressurized ring at a high loading rate � ¼ 0:5. The black line
corresponds to the ring position at t ¼ tl . Slenderness: g ¼ 10�3, shear parameter: l ¼ 0:25, perturbation amplitude: W0 ¼ 0:01, perturbation width: j ¼ 10.
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the very thin rings used in the experiments by Mainy (2012)). In
each figure we give results for rings subjected to three different
loading rates (� ¼ 0:001;0:01;0:50), all sharing the same shape
initial perturbation (given by (35), with W0 ¼ 10�2; j ¼ 10) and
introduced at the onset of loading (t0 ¼ 0). As shown in Fig. 6 we
first observe that, independently of the loading rate, the initial dis-
turbance splits in two and generates axial (faster) and shear
(slower) wavefronts propagating at speeds c ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
and



(a)

(b)

Fig. 9. Time evolution of the elastic potential energy components: axial Pa , bending Pb and shear Ps . The onset of instability is characterized by the maximum of the axial
energy indicated by the black arrows. The following sharp drop of the axial energy is accompanied by a sharp increase of the bending and shear energies. In (a): Time
evolution of the different internal energy components for a ring with slenderness g ¼ 10�3. In (b): Time evolution of the different internal energy components for a ring with
slenderness g ¼ 10�4. Results are given for � ¼ 10�3 (left column) � ¼ 10�2 (middle column) and � ¼ 0:5 (right column). Shear parameter: l ¼ 0:25, perturbation amplitude:
W0 ¼ 0:01, perturbation width: j ¼ 10.
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c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
vG=q

p
, respectively. At the smallest loading rate � ¼ 0:001,

these waves have time to travel along the entire ring circonference
before triggering a global buckling mode, as seen in Fig. 6(a). On
the contrary, at the highest loading rate � ¼ 0:5, we observe a local-
ization of deformation in finite time, before the disturbance has the
time to travel across the entire ring as seen in Fig. 6(c). Interest-
ingly, the disturbance propagates and grows in amplitude before
it localizes in the form of a short wavelength fold whose amplitude
continues to increase. At intermediate loading rates, a combination
between these local and global modes of structural buckling is
found to create a ring of uneven but symmetrical shape with folds
of different wave lengths as seen in Fig. 6(b).

The thinnest ring response for g ¼ 10�4, as depicted in Fig. 7 is
somehow different from its thicker counterpart of Fig. 6. Qualita-
tively the loading rate � has little effect on the deformation process
of the ring. The propagative phase of the disturbance is very much
reduced. Instead we observe a stationary wave packet whose max-
imum amplitude of its envelop grows with time. What propagates
in this case, at the bending wave speed, is the wave packet envelop
border. Further insight regarding the dominant mode of instability
of the ring and the time of its onset is provided from monitoring
the different components of the elastic potential energy Pint de-
fined in (4), respectively the axial Pa, bending Pb and shear Ps con-
tributions to the ring’s elastic potential energy defined below

Pa � ð1=2Þ
Z 2p

0
ðeþ /2=2Þ2 dh; Pb � ð1=2Þ

Z 2p

0
g ðw0Þ2 dh;

Ps � ð1=2Þ
Z 2p

0
l ð/� wÞ2 dh: ð36Þ

The different types of instability mechanisms that appear at low
and high loading rates and the relation between the onset of
instability and the different components of the internal energy
stored in the ring are illustrated in Fig. 8, where we present the
space–time evolution of both the ring’s deformed shape and the
three different components of the internal energy density taken at
equally spaced time intervals. At low loading rate, the elastic waves
have time to travel around the ring several times and result in the
global structural buckling failure mode, as seen in Fig. 8(a). Con-
versely, at high loading rate, the ring motion occurs over a time
scale dictated by the wave propagation and result in a localized fail-
ure mode before the perturbation has the time to travel across the
entire ring, as seen in Fig. 8(c). Moreover, the same figure shows
that the maximum of the axial energy travels at the longitudinal
wave speed whereas the maxima of bending and shear energies
travel at the bending wave speed until tl is reached. From that point
on, the maxima of the bending and shear energies stop propagating
and the dynamic local buckling localization occurs.

In Fig. 9, we compare the time evolution of the three compo-
nents Pa;Pb and Ps of the internal energy. Notice that the evolution
of the axial strain energy is non-monotonic for slow loading rates
but becomes monotonic as the loading rate increases, followed
by a fast drop once the absolute maximum has been reached. At
leading order, the increase is governed by the unperturbed radial
displacement w0, as we have Pa ¼ pðw0Þ2 þH:O:T:. The drop is
monotonic at the highest loading rate and is oscillatory at lower
loading rates, as seen in Fig. 9. Importantly, our numerical results
show that both the local and global modes of instability are de-
tected when Pa reaches its absolute maximum. We define the cor-
responding time as the critical time sc for the onset of dynamic
instabilities and compare it with the previously defined onset of
localization time tl.

Regarding now the bending and transverse shear energies, they
start to increase at a low rate slightly before the absolute



Fig. 10. Comparison of the loading rate dependence of the onset of localization time
tl , defined by Eq. (33) and the numerically calculated critical time sc corresponding
the absolute maximum of the axial energy Pa. The solid line represents the solution
of (33) computed with the leading order asymptotic approximation (18). The
critical time of maximum hoop potential energy sc is also computed numerically for
several values of � and for two different values of the slenderness: g ¼ 10�3 (points
marked by þ) and g ¼ 10�4 (points marked by �). Note the good agreement
between tl and sc for loading rates � > �c , where �c characterizes the lower bound of
rates for which a localized instability mode dominates. We define the critical
loading rate �c 	 0:039 (dashed line) as the loading rate above which the internal
shear energy increases more rapidly than its bending counterpart. Note the
discrepancy between the frozen coefficient criterion and the maximum axial energy
at slow loading rate. Shear parameter: l ¼ 0:25, perturbation amplitude:
W0 ¼ 0:01, perturbation width: j ¼ 10.
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maximum of Pa is attained. Then, during the phase of unstable ring
deformation, the growth rate of Pb and Ps becomes large: there is
an energy transfer of the axial elastic energy towards the bending
and shear elastic energies. Moreover, we note that the relative in-
crease in the bending and transverse shear energies depends on
the loading rate. For small � the bending energy is the first to rise
sharply while at high loading rates the shear energy rises sharply
ahead of the bending energy. We propose to define the loading rate
at which this transition occurs as the critical loading rate �c . At low
rate � < �c the structure becomes unstable via global structural
(buckling type) modes for t > sc . At high rate � > �c the structure
becomes unstable via localized deformation modes for t > sc . Fi-
nally, in Fig. 10 we show the loading rate � dependence of the onset
of localization time tl, defined by Eq. (33) and of the numerically
calculated critical time sc corresponding the absolute maximum
of the axial energy Pa. The solid line represents the solution of
(33) computed with the Oð1Þ asymptotic approximation (18). The
critical time for reaching the maximum hoop potential energy sc

is also computed numerically for several values of � and for two
different values of the slenderness: g ¼ 10�3 (points marked by
þ) and g ¼ 10�4 (points marked by �). Note the good agreement
between tl and sc for loading rates � > �c , where �c characterizes
rates for which a localized instability mode dominates and their
divergence for loading rates � < �c .
4. Conclusion

As a model structure to study the influence of inertia and load-
ing rates on the stability of a structure that becomes unstable even
at static loads (structures with buckling modes), we study an
elastic ring subjected to external hydrostatic pressure applied at
different rates � (appropriately non-dimensionalized with respect
to elastic axial wave speed). Unlike existing analyses of this phe-
nomenon that are based on modal analysis to find the fastest
growth rate – a method that is only meaningful for slow loading
rates in view of characteristic wave speeds present in the structure
– the ring’s stability is studied by following the evolution of a
localized small perturbation. It is shown that for small values of
the applied loading rate the structure fails through a global (buck-
ling-type) deformation mode, while for large values of the applied
loading rate the structure fails by a localized mode of deformation.
The term ‘‘failure’’ is being used rather loosely in this paper to
describe the dramatic departure from the uniform deformation
pattern of the ring and not its destruction.

Using a frozen coefficient analysis to approximate the instanta-
neous dispersion relation of traveling perturbations, we have de-
fined analytically an onset of localization time tl that determines
when a localized mode of instability can occur in the structure as
time evolves. A more detailed study of the numerical calculations
shows that the onset of an instability is triggered when the maxi-
mum of the axial energy is reached at a numerically calculated
time sc; for global (buckling type) modes bending energy domi-
nates and the bending energy increases faster than the shear en-
ergy as the instability progresses. The situation is reversed for
localized type modes of instability, where shear energy increases
much more rapidly than its bending counterpart. The critical load-
ing rate at which this crossover occurs �c is found numerically. An
important result of this work is that the analytically obtained local-
ization time tl is a very good estimate of the onset of instability
time sc for loading rates � > �c.

The approach used in the present study is based on spatially
localized initial perturbations of the structure. The obvious ques-
tion to ask is what would the response be in the case of equivalent
initial imperfections, as for example in the work by Budiansky and
Hutchinson (1964), which is motivated by the quasistatic case. Pre-
liminary calculations by Wen and Triantafyllidis (2013) show the
same qualitative response, i.e. same critical times for the onset of
instability but different final deformation patterns when the same
geometrically localized mode is used either as initial perturbation
or as initial imperfection in the rapidly loaded ring problem.

This work presents a new approach for investigating the dy-
namic stability of structures that exhibit instabilities even under
static loadings. Since real-life structures of engineering interest ex-
hibit plasticity, the next step in this work is to apply the ideas
introduced here to elastoplastic structures. Eventually the influ-
ence of different types of dynamic loading (i.e. step, pulse) need
to be considered as well as a more realistic modeling of the electro-
magnetic loading conditions, investigation that are currently under
way to complete this work.
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