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One of the many uses of honeycomb is as core in sandwich plates, producing very high stiffness-
to-weight ratio structures. The macroscopically observed crushing mechanism of these structures has
its origin in instabilities at the local scale. Of particular interest here are the critical (i.e., onset of a buck-
ling-type instability) loads and corresponding eigenmodes of honeycomb under general 3D loading
involving simultaneous axial compression and transverse shear.

Since the critical eigenmodes in honeycomb often involve more than one unit cell, numerical studies
are limited by the size of the domain considered for their analyses. We propose a new theoretical
approach to determine the critical loads and eigenmodes of perfect honeycomb of infinite extent under
general loading conditions based entirely on unit-cell calculations. It combines Bloch wave representa-
tion theorem for the eigenmode with the analytical solution of the linearized von Kármán plate equations
for the walls. The proposed approach uses the fact that the honeycomb walls remain flat in the principal
solution prior to the onset of the first instability and solves analytically the corresponding eigenvalue
problem. Three different geometries are considered: rectangular honeycomb with varying in-plane
aspect ratios, an isotropic-section hexagonal honeycomb, and an anisotropic-section hexagonal
honeycomb (resulting from its manufacturing process).

Several different loading cases are investigated: axial compression under free or fully constrained
lateral expansion, transverse shear and combined axial compression and transverse shear. The results
show that the buckling mode is highly dependent on the type of loading: e.g., laterally unconstrained
axial compression results in local critical eigenmodes, while constraining the lateral expansion leads to
global ones. The addition of transverse shear not only reduces the critical axial strain, but also affects
the wavelengths of the critical eigenmode.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction Failure in honeycomb, and cellular solids in general, is typically
Honeycomb is a prismatic 3D structure resulting by translating
a 2D periodic cellular, planar pattern along its normal direction,
usually referred to as its ‘‘axial’’ direction. Their 2D unit cells are
typically hexagonal but many other cell geometries have been used
in applications. Their low weight-to-stiffness ratios, outstanding
energy absorption characteristics and cost effectiveness make for
their widespread use in technological applications (Gibson and
Ashby, 1997). Applications involve compressive loading either
in-plane or out-of-plane, along the axial direction, as it is typically
the case of sandwich panels, where the honeycomb serves as core
between two flat plates perpendicular to its axis. It is the axial
loading case that is of interest here.
in the form of zones of localized deformation and is due to a bifur-
cation instability initiated at the local level; as it turns out the
highly symmetric cell-periodic mode of deformation (where all
cells deform identically) becomes unstable at some stress level
and a bifurcation mode that breaks this symmetry appears. The
emerging post-bifurcation equilibrium path shows a limit point
in the global force–displacement response and hence a localization
of deformation follows. Unlike the in-plane crushing of honey-
comb, where this bifurcation occurs after substantial bending of
the cell walls (typically in the plastic range of the material’s
response) (Papka and Kyriakides, 1994, 1998; Triantafyllidis and
Schraad, 1998), in the case of axial crushing the first (as the load
increases) bifurcation instability emerges from a principal solution
where the cell walls are flat (Wilbert et al., 2011), a fact that we
exploit in this work to obtain an analytical solution for the
corresponding problem. From the vast literature on the crushing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2013.08.001&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.001
mailto:nick@lms.polytechnique.fr
http://dx.doi.org/10.1016/j.ijsolstr.2013.08.001
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


F. López Jiménez, N. Triantafyllidis / International Journal of Solids and Structures 50 (2013) 3934–3946 3935
of honeycomb, in this paper we mainly refer to work pertaining to
the onset of buckling instabilities of honeycomb under quasistatic
loading conditions.

Realistic modeling of the axial compression of honeycomb that
shows how the initial buckling mode develops into a localized
deformation pattern requires large (i.e., involving many cells)
numerical models, resulting in highly time consuming calculations
even for in-plane simulations (Papka and Kyriakides, 1998, 1999;
Okumura et al., 2002). When axial crushing is considered and 3D
prismatic honeycomb models are used (Aktay et al., 2008; Wilbert
et al., 2011), in addition to the question about the adequate num-
ber of unit cells one also must determine the critical wavelength in
the axial direction. Simulations of experiments do take into ac-
count the size of the specimen and applied boundary conditions.
However, it is important to establish the critical load and corre-
sponding eigenmode for the infinite honeycomb, by ignoring the
influence of boundary conditions.

Calculating the onset-of-instability in a perfectly periodic, fi-
nitely strained, rate-independent solid of infinite extent and thus
finding the lowest critical load and corresponding mode for a given
loading path relies on the Bloch wave representation theorem and
requires modeling of only the smallest unit cell, as shown for the
case of in-plane compression of 2D grillages (Triantafyllidis and
Schnaidt, 1993), 2D honeycomb (Triantafyllidis and Schraad,
1998), 3D Kelvin foam (Gong et al., 2005) and more generally of
arbitrary loading in periodic, two-phase continua (Triantafyllidis
et al., 2006). Fortunately for our case, the investigations of Wilbert
et al. (2011) show that, due to the symmetry of structure and load-
ing, buckling in axially compressed honeycomb emerges from a
principal solution where all cell walls are flat, thus allowing for
an analytical solution to the corresponding bifurcation problem.

Following the motivation for this work in Section 1, the model is
presented in Section 2 using a new theoretical approach to deter-
mine the critical loads and eigenmodes of perfect honeycomb of
infinite extent under general loading conditions based entirely on
calculations involving the smallest unit cell. The method combines
Bloch wave representation theorem for the eigenmode with the
analytical solution of the linearized von Kármán plate equations
for the bi-axially compressed cell walls. The problem is formulated
for three different geometries: rectangular honeycomb with vary-
ing in-plane aspect ratios, an isotropic-section hexagonal honey-
comb, and a realistic anisotropic-section hexagonal honeycomb
where some walls have double thickness due to its manufacturing
process. The principal solution takes into account not only axial
compression but also transverse shear in any orientation with re-
spect to the cell’s principal axes and the possibility of a fully con-
strained lateral expansion, since the corresponding state of stress
and the symmetry of the perfect structure guarantee that the cell
walls are in equilibrium in a configuration where all cell walls
are flat and under uniform in-plane stresses. Results in Section 3
are given for the three different geometry honeycomb under sev-
eral different loading scenarios: axial compression with free or
fully constrained lateral expansion, transverse shear and combined
axial compression and transverse shear. The results show that the
buckling mode is highly dependent on the type of loading and lat-
eral contraint conditions. The addition of transverse shear not only
reduces the critical axial strain, but also affects the wavelengths of
the critical eigenmode. The presentation ends with a discussion in
Section 4.
(a) (b)
Fig. 1. Undeformed configuration of honeycomb investigated here: (a) rectangular
and (b) hexagonal. Definitions of the combined compression and shear loading
strains shown here are given in Eq. (15).
2. Formulation

This section details the theoretical approach followed in the
present study. Section 2.1 describes the proposed model, which
combines Bloch wave representation theorem and the analytical
solution of the linearized von Kármán plate equation. Section 2.2
gives more details on the loading. Section 2.3 describes the proce-
dure to determine the critical load and corresponding eigenmode
at the onset-of-instability. As a check to our calculations, the ana-
lytical results for the loss of ellipticity of the homogenized struc-
ture are compared for the case of rectangular honeycomb with
the results provided by the Bloch-wave analysis for long wave-
length modes in Appendix A. A finite element model, detailed in
Appendix B, is also used for another independent comparison with
the model’s analytical predictions and eigenmode visualization.
2.1. Model description

Three different geometries are considered: rectangular honey-
comb with a varying in-plane aspect ratio, an isotropic-section
hexagonal honeycomb (all plates with equal thickness) and an
anisotropic-section hexagonal honeycomb (one set of plates with
double thickness, corresponding to the usual manufacturing proce-
dure that uses strips of glue on initially flat plates that are subse-
quently pulled apart), as shown in Fig. 1.

The proposed method deviates from the traditional approach of
numerical determination of the lowest load corresponding to a
local energy minimum of the principal solution. Instead, our ap-
proach makes use of the fact that the honeycomb plates remain flat
in the principal solution prior to the onset of the first instability, as
shown experimentally by Wilbert et al. (2011) for axially com-
pressed Al honeycomb, and solves analytically the corresponding
eigenvalue problem.

The starting point for calculating the critical load and eigen-
mode are the Euler–Lagrange equations resulting from vanishing
of the second variation of the system’s potential energy. In the
experiments by Wilbert et al. (2011) the onset of instability in
axially loaded thin wall honeycomb occurs in the elastic range of
the wall’s response, thus further simplifying our analysis, although
a generalization for thick wall honeycomb requiring elasto-plastic
constitutive modeling is straightforward. In each cell wall, von
Kármán plate theory dictates that the partial differential equation
for the out-of-plane eigenmode component w, expressed in local
coordinates, is:

ðD=tÞD2w� rabw;ab ¼ 0; ð1Þ

where D ¼ Et3= 12 1� m2
� �� �

is the bending stiffness, t is the plate
thickness, E its Young modulus, m its Poisson ratio, and rab is the
in-plane stress of the plate. Here and subsequently Greek indexes
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range from 1 to 2 while Latin ones from 1 to 3. Einstein’s summa-
tion convention is assumed over repeated indexes.

For the in-plane eigenmode components, ua, we have in each
cell wall:

Labcduc;bd ¼ 0; ð2Þ

where Labcd are the components of the plane stress moduli tensor of
the plate:

Labcd ¼
E

1� m2

1� m
2

dacdbc þ daddbc
� �

þ mdabdcb

� �
: ð3Þ

The bifurcation equations (1) and (2) need to be completed with
appropriate boundary conditions at cell wall boundaries of the
RVE, shown for each honeycomb considered in Fig. 2. At this point
we invoke the Bloch wave representation theorem for the eigen-
mode, according to which the eigenmode can be put in the form:

v X1;X2;X3ð Þ ¼ p X1;X2ð Þ exp i x1X1 þx2X2 þx3X3ð Þð Þ; ð4Þ

where v � ðu1;u2;wÞ, p is a periodic function with period the RVE
and the wavenumber x � ðx1;x2;x3Þ with 0 6 x1L1 6 2p,
0 6 x2L2 6 2p and x3 2 R.

Thanks to the Bloch wave theorem and the invariance of the
principal solution along X3, all derivatives with respect to the axial
local coordinate x2, equivalent to the global coordinate X3 (see
Fig. 2), can be substituted as:

@f
@x2
¼ ix3f ; ð5Þ

where f is a field quantity and x3 is the corresponding Bloch wave-
number in X3.

Within each cell wall, and expressed in the corresponding local
system, the partial differential equations transform into ordinary
differential equations with respect to x1:
(a)

(c)

Fig. 2. Representative volume elements (RVEs) for: (a) rectangular, (
w;1111

ðx3Þ4
� 2w;11

ðx3Þ2
þw� r11w;11 þ ix3r12w;1 � ðx3Þ2r22w

ðD=tÞðx3Þ4
¼ 0;

u1;11 þ ix3
1þ m

2
u2;1 � ðx3Þ2

1� m
2

u1 ¼ 0;

1� m
2

u2;11 þ ix3
1þ m

2
u1;1 � ðx3Þ2u2 ¼ 0:

ð6Þ

Solving the above equations yields the following expressions for w
and ua:

w ¼ A1eq1x3x1 þ A2e�q1x3x1 þ A3eq2x3x1 þ A4e�q2x3x1

u1 ¼ B1ex3x1 þ B2e�x3x1 þ B3x1ex3x1 þ B4x1e�x3x1

u2 ¼ B1 þ
3� m

1þ mð Þx3
B3

� �
ex3x1 þ �B2 þ

3� m
1þ mð Þx3

B4

� �
e�x3x1

þ B3x1ex3x1 þ B4x1e�x3x1

ð7Þ

where q1 and q2 can be either real or imaginary constants satisfying
the equation:

q4 � 2þ r11

ðD=tÞðx3Þ2

 !
q2 � ir12

ðD=tÞðx3Þ2
qþ r22

ðD=tÞðx3Þ2
þ 1 ¼ 0:

ð8Þ

The response of each cell wall has therefore 8 unknowns, which
need to be determined applying appropriate boundary and period-
icity conditions that depend on the honeycomb microstructure.

2.1.1. Rectangular microstructure
The rectangular RVE, of aspect ratio r, consists of four plates, see

Fig. 2a, which means that a total of 32 equations are needed. These
are the Bloch wave periodicity conditions, which relate the
kinematics and reaction forces in opposite ends of the RVE, as well
as displacement continuity and force/moment equilibrium in the
(b)

b) hexagonal honeycomb, and (c) local plate coordinate system.
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central nodal line. To avoid lengthy, but straightforward recordings
of the equations, their summary is presented in Table 1.

Bloch wave conditions relating field equations at opposite ends
with same Xi coordinate of the unit cell take the form:

fB ¼ fA exp ix1L1ð Þ f D ¼ fC exp ix2L2ð Þ; ð9Þ

where fN stands for any field quantity evaluated at the node N.
The first 28 equations relate displacements or their derivatives

plate by plate, while in the last four equations all the plates are in-
volved. The derivations of the last four equations are detailed in
what follows:

Equilibrium of forces in the global X1 direction results in:

� Et
1� m2 u

I
1;1 þ ix3mu

I
2

� �

� Et3

12 1� m2ð Þ w
II
;111 � ðx3Þ2 2� mð Þw

II
;1

� �
þ t ix3r

II
12 w

II
þr

II
11w

II
;1

� �

þ Et
1� m2 u

III
1;1 þ ix3mu

III
2

� �
þ Et3

12 1� m2ð Þ w
IV
;111 � ðx3Þ2 2� mð Þw

IV
;1

� �

� t ix3r
IV

12 w
IV
þr

IV
11w

IV
;1

� �
¼ 0; ð10Þ

where all functions are evaluated at the central node at the onset of
instability. Equivalently, for the equilibrium of forces in the global
X2 direction, one has:

Et3

12 1� m2ð Þ w
I
;111 � ðx3Þ2 2� mð Þw

I
;1

� �

� t ix3r
I

12 w
I
þr

I
11w

I
;1

� �
� Et

1� m2 u
II

1;1 þ ix3mu
II

2

� �

� Et3

12 1� m2ð Þ w
III
;111 � ðx3Þ2 2� mð Þw

III
;1

� �
þ t ix3r

III
12 w

III
þr

III
11w

III
;1

� �

þ Et
1� m2 u

IV
1;1 þ ix3mu

IV
2

� �
¼ 0: ð11Þ

Equilibrium of forces in the global X3 direction, due to in-plane
shear, yields:

� E
2 1þmð Þ ix3u

I
1 þ u

I
2;1

� �
� E

2 1þmð Þ ix3u
II

1 þ u
II

2;1

� �

þ E
2 1þmð Þ ix3u

III
1 þ u

III
2;1

� �
þ E

2 1þmð Þ ix3u
IV

1 þ u
IV

2;1

� �
¼ 0:

ð12Þ

Finally, equilibrium of moments around the global X3 axis gives:

� Et3

12 1�m2ð Þ w
I
;11 � ðx3Þ2m w

I
� �

� Et3

12 1�m2ð Þ w
II
;11 � ðx3Þ2m w

II
� �

þ Et3

12 1�m2ð Þ w
III
;11 � ðx3Þ2m w

III
� �

þ Et3

12 1�m2ð Þ w
IV
;11 � ðx3Þ2m w

IV
� �

¼ 0;

ð13Þ
Table 1
Summary of the eigenmode equations for the RVE of the rectangular microstructure.

Bloch wave conditions
Plates I and III – Kinematics ua , w and w;1 4 equations
Plates I and III – Forces ua;b , w;11 and w;111 4 equations
Plates II and IV – Kinematics ua , w and w;1 4 equations
Plates II and IV – Forces ua;b , w;11 and w;111 4 equations

Kinematics at central node
Plates I and III ua , w and w;1 4 equations
Plates II and IV ua , w and w;1 4 equations
Plates I and II ua , w and w;1 4 equations

Equilibrium at central node
Plates I to IV F1, F2, F3 and M3 4 equations
thus completing the set of incremental equilibrium equations for
the central node of the rectangular honeycomb’s RVE.
2.1.2. Hexagonal microstructure
The RVE used to study the hexagonal honeycomb has five

plates, see Fig. 2b, and thus 40 equations are needed. Again to
avoid recording lengthly but straightforward expressions their
summary is presented in Table 2:

The Bloch wave conditions relating field quantities at opposite
ends of the RVE are given again by (9). The force equilibrium in
the global X1 and X2 directions now needs to take into account
the angle of the plates. The contribution of the Jth plate is given by:

F
J

1¼ � Et
J

1�m2 u
J

1;1þ ix3mu
J

2

� �2
4

3
5cosh

J

þ � Eðt
J
Þ3

12 1�m2ð Þ w
J
;111�ðx3Þ2 2�mð Þw

J
;1

� �2
4 þ t

J
ix3r

J
12 w

J
þr

J
11w

J
;1

� �35sinh
J
;

F
J

2¼ � Et
J

1�m2 u
J

1;1þ ix3mu
J

2

� �2
4

3
5sinh

J

þ Eðt
J
Þ3

12 1�m2ð Þ w
J
;111�ðx3Þ2 2�mð Þw

J
;1

� �
� t

J
ix3r

J
12 w

J
þr

J
11w

J
;1

� �2
4

3
5cosh

J
:

ð14Þ

where h
J

is the angle of the Jth plate in the X1 � X2 plane. It should be

noted that the thickness t
J

is the same for all plates in the isotropic-
section honeycomb, but not for the anisotropic-section honeycomb,

where t
III
¼ 2 t

I
¼ 2 t

II
¼ 2 t

IV
¼ 2 t

V
.

2.2. Loading

The applied loading is a combination of axial compression
(along X3 in the global coordinate system), as well as out-of-plane
shear. Two different cases are considered for the lateral expansion:
either the honeycomb is free to expand laterally due to Poisson’s
effect, or this expansion is completely constrained. In the later case
the geometry of the honeycomb in the X1 � X2 plane is fixed (i.e.,
no in-plane strains), which produces in-plane stresses in the cell
walls.

In all cases the applied loading produces a principal solution
where each cell wall (plate) is in a state of uniform in-plane stress
rab. It is convenient to use the global strains applied to the struc-
ture to parameterize the applied loading. The applied strains on
Table 2
Summary of the eigenmode equations for the RVE of the hexagonal microstructure.

Bloch wave conditions
Plates I and V – Kinematics ua , w and w;1 4 equations
Plates I and V – Forces ua;b , w;11 and w;111 4 equations
Plates II and IV – Kinematics ua , w and w;1 4 equations
Plates II and IV – Forces ua;b , w;11 and w;111 4 equations

Kinematics at central nodes
Plates I and II ua , w and w;1 4 equations
Plates I and III ua , w and w;1 4 equations
Plates III and IV ua , w and w;1 4 equations
Plates III and V ua , w and w;1 4 equations

Equilibrium at central nodes
Plates I to III F1, F2, F3 and M3 4 equations
Plates III to V F1, F2, F3 and M3 4 equations
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the structure, expressed in the global coordinate system Xi, see
Fig. 1, are:

�33 ¼ �k;

c31 ¼ k tan a cos h;

c32 ¼ k tan a sin h;

ð15Þ

where k > 0, a describes the axial to shear strain mixity, i.e., tan a
gives the ratio between applied axial and shear strains, and h the
shear orientation, i.e., tan h represents the ratio of the shear compo-
nents along the X1—X2 directions.

The local strains at the Jth plate of a square or isotropic-section
hexagonal honeycomb are:

�
J

22 ¼ �k;

�
J

11 ¼
�mk for free lateral expansion
0 for constrained lateral expansion

�
; ð16Þ

c
J

12 ¼ k tan a cos h� h
J

� �
;

where h
J

is the angle of the plate with respect to the X1 axis. The
expression for c

J
12 in (16) is not valid in the case of the aniso-

tropic-section hexagonal honeycomb (with some walls of double
thickness). In that case the planes initially perpendicular to X3 will,
in general, not remain plane, which introduces a new shear compo-
nent, as seen in Fig. 3. For such a configuration, it can be calculated
that the total local shear in the plates is equal to:

c
I

12 ¼ c
V

12 ¼ k
2k1 þ k2

4
tan a

c
II

12 ¼ c
IV

12 ¼ k
�2k1 þ 3k2

4
tan a

c
III

12 ¼ k
2k1 � k2

4
tan a

ð17Þ

with k1 � cos h� h
I

� �
þ cos h� h

III
� �

and k2 � cos h� h
I

� �
þ

cos h� h
II

� �

2.3. Onset of instability

Once a loading path characterized by k P 0 is defined by the
pair a; hð Þ it is possible to assemble a matrix M k; x1;x2;x3ð Þ,
which represents the eigenvalue system of equations described
in Table 1 or 2. For a fixed x the corresponding minimum buckling
load parameter km x1;x2;x3ð Þ is defined as the lowest k root of:

Det M k;xð Þð Þ ¼ 0 ðfor fixed x ¼ ðx1;x2;x3ÞÞ: ð18Þ
(a)

Fig. 3. Top and side view of the linearly elastic response to transverse shear for: (a
The critical load parameter kc is defined as the infimum of km for all
values of x:

kc ¼ inf
x

km xð Þ: ð19Þ

The function km xð Þ is continuous over all the frequency space ex-
cept at the origin x ¼ 0, since that point corresponds to two differ-
ent types of instability modes. The first type consists of all strictly
periodic eigenmodes. The second case consists of eigenmodes with
wavelengths much larger than the unit cell, x! 0. The presence of
physically very different eigenmodes at the neighborhood of x ¼ 0
explains the possibility of a singularity of km at x ¼ 0, and in case
where the critical load corresponds to x! 0 the use of infimum
in (19).

It has been shown (Geymonat et al., 1993) that if x ¼ dn, with
knk ¼ 1, then:

lim
d!0

km dnð Þ ! kh nð Þ; ð20Þ

where kh nð Þ is the critical load of the homogenized structure, de-
fined as the lowest k root of the corresponding acoustic tensor:

Det Lijkl kð Þnjnl

� �
¼ 0: ð21Þ

This fact can be used to check the validity of the presented ap-
proach. The homogenized incremental moduli of the structure
Lijkl kð Þ can be derived from the incremental moduli of the unit cell,
as detailed in Appendix A.

In practice, the most common procedure to find the value of k at
which M becomes singular is to track the smallest in absolute value
eigenvalue b. The value at which b ¼ 0 yields the critical value of
the loading parameters, km. However, in our case M is complex
and not Hermitian, which introduces two difficulties. First, its
eigenvalues are in general complex, and thus it is not possible to
use the change in sign of the smallest eigenvalue to find the root
of b. Second, the algorithms used to obtain eigenvalues in a general
complex matrix are much less efficient than those available for a
Hermitian matrix.

In view of the non-Hermitian nature of M, its singular value
decomposition (SVD) is currently employed. The SVD of a square
matrix M is a factorization of the form M ¼ UDV, where U and V
are complex unitarian matrixes and D is a diagonal matrix with
nonnegative real values, known as the singular values of M. The
matrix M is singular if at least one of the elements of D is equal
to zero. In practice, the algorithm tracks the value of the smallest
value of D, and looks for values below a certain threshold, b0.
The critical loading parameters is then defined as the value of k
corresponding to the occurence of an entry di of D for which
(b)

) isotropic-section hexagonal RVE and (b) anisotropic-section hexagonal RVE.



Fig. 4. Finite element calculation showing the critical mode for a square honey-
comb under axial compression with free lateral expansion, with L3 ¼ 4L. The color
shows the magnitude of the eigenmode displacement.

Fig. 6. Critical strain as function of aspect ratio for rectangular honeycomb under
axial compression under free (solid line) or constrained (dashed line) lateral
expansion.
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jdijmin 6 vjdijmax. In the numerical calculations reported here the
tolerance parameter is typically taken to be v ¼ 10�5.

A special case should be mentioned, since it affects the numer-
ical stability of the method. It is possible for the Eq. (8) to have
double roots for an specific value of k, for which the general solu-
tion given by (7) is no longer valid. This makes M singular, but that
does not correspond to an instability of the structure.

3. Results

In this section we will use two critical strains to plot results in a
physically meaningful dimensionless way. The first one is the crit-
ical strain of a compressed infinite strip with simply supported
boundary conditions:

�c
strip ¼

p2t2

3 1� m2ð ÞL2 : ð22Þ

The reason for normalizing the critical load parameter in terms of
�c

strip in (22) is the fact that this is the value of the critical strain
for axial compression, a ¼ 0 in (15), of the rectangular honeycomb
with square section and the isotropic section hexagonal
honeycomb.

In the case of transverse shear without axial compression we
will use the critical shear strain of an infinite strip with clamped
boundary conditions (Timoshenko and Gere, 1961):
(a) (

Fig. 5. Rectangular honeycomb under axial compression with free lateral expansion: (a)
function of the aspect ratio.
cc
strip ¼ 1:498

p2t2

1� mð ÞL2 ; ð23Þ

as the closest value of critical shear for the isotropic section hexag-
onal honeycomb, a ¼ p=2 in (15).

In all the analytical results presented here, L3 ¼ L. In numerical
calculations, the value of L3 is specified explicitly in each case.
3.1. Rectangular honeycomb

For a square honeycomb under only axial compression, allow-
ing free lateral expansion, the critical mode corresponds to an anti-
periodic mode with the same out-of-plane and in-plane
wavelengths, with Bloch wave frequencies x1L ¼ x2L ¼ x3L ¼ p.
A finite element calculation of the mode is shown in Fig. 4. In order
to obtain the correct critical buckling load, the size of the model in
each dimension needs to be a multiple of the corresponding critical
wavelength.

The buckling load coincides exactly with that of an infinite sim-
ply supported strip with the same thickness t and width L, given by
(22). The reason is that equal rotation of all plates joined along a
common line is equivalent to a simply supported boundary condi-
tion for each plate. For this reason, the results presented will be
normalized by the buckling load given by (22).

If the aspect ratio r ¼ L1=L2 increases, the critical strain becomes
lower, since it is determined by the wider plate, as seen in the re-
b)

critical compressive axial strain and (b) corresponding eigenmode wavenumbers as



(a) (b)

Fig. 7. Finite element calculation showing the critical mode for a square honeycomb under axial compression with constrained lateral expansion and L3 ¼ 4L: (a) axonometric
and (b) top view. The X1 wavelength of the instability is determined by the computational model size. The color shows the magnitude of the eigenmode displacement.

Fig. 8. Critical strain as a function of its orientation for rectangular honeycomb
under transverse shear with unconstrained lateral expansion for two different
aspect ratios, r ¼ 1 (solid line) and r ¼ 2 (dashed line).
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sults plotted in Fig. 5a. The instability is still an in-plane antiperi-
odic mode, x1L1 ¼ x2L2 ¼ p, but the critical out-of-plane wave-
length increases with r, as shown in Fig. 5b.

If the lateral expansion is constrained, the plates also carry in-
plane stress r11, due to Poisson’s effect. This additional loading
has two effects. First, for a given set of ðx1;x2;x3Þ, the critical
(a)

Fig. 9. Critical axial strain as a function of the shear orientation under combined compr
r ¼ 2.
strain is lower than when lateral expansion is allowed in view of
the presence of the additional compressive stresses r11 < 0. Sec-
ond, a different instability appears. It corresponds to a long wave-
length mode, with Bloch frequencies x1 ¼ x3 ! 0 and x2 ¼ 2p.
The corresponding critical buckling strains as a function of r are
shown in Fig. 6, where the results for the case of free lateral expan-
sion are also plotted for comparison. The difference between the
unconstrained and constrained critical strains is maximized for
r ¼ 1 and decreases monotonically with increasing aspect ratio.
The eigenmode for the geometry with r ¼ 1 is shown in Fig. 7. It
can be independently predicted from the 2D model in Triantafylli-
dis and Schnaidt (1993). As expected from the general theory
(Geymonat et al., 1993), the results coincide with those obtained
analyzing the loss of ellipticity in the homogenized structure in
Appendix A.

The effect of transverse shear loading has been studied for two
different geometries, r ¼ 1 and r ¼ 2. Free lateral expansion is al-
lowed in both cases. The results for only shear loading are shown
in Fig. 8, normalized by the critical load for the infinite strip in (23).

In this case the critical load of the honeycomb is lower than that
of the infinite strip, the reason being that the joints between the
plates rotate, as opposed to the clamped plate boundaries assumed
in the derivation of cc

strip in (23). For the case of a square section
honeycomb (r ¼ 1) the critical strain graph is symmetric about
h ¼ p=4, in view of symmetry of the cross-section (solid line in
Fig. 8). As the aspect ratio increases, the symmetry of the graph
about h ¼ p=4 is destroyed.
(b)

ession and shear for: (a) square honeycomb, r ¼ 1 and (b) rectangular honeycomb,



Fig. 10. Critical eigenmodes for square, r ¼ 1 (solid lines) and rectangular, r ¼ 2
(dashed lines) honeycomb under transverse shear as a function of the shear
orientation.

(a) (b)

Fig. 12. Finite element calculation showing the critical mode for (a) isotropic-
section hexagonal honeycomb with L3 ¼ 4L and (b) anisotropic-section hexagonal
honeycomb with L3 ¼ 3:17L under axial compression with free lateral expansion.
The color shows the magnitude of the eigenmode displacement.
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In the case of combined axial compression and transverse shear,
the presence of shear further destabilizes the cell walls and hence
decreases the critical axial strain, as seen in Fig. 9. Note from Fig. 9a
that for the square section r ¼ 1, the critical axial strain is insensi-
tive to the shear orientation h up to significant values of the axial-
to-shear strain mixity a ¼ p=4, while for the rectangular section
with r ¼ 2 in Fig. 9b, the critical axial strain is a monotonically
changing function of both the shear orientation h and the axial-
to-shear strain mixity a.

The critical wavenumbers corresponding to the transverse
shear loading reported in Fig. 8 are shown in Fig. 10. For both as-
pect ratios the critical eigenmodes are local, but no longer anti-
periodic x1L1 ¼ x2L2 ¼ p. The values of x1 and x2 are symmetric
with respect to p=4, as expected from the symmetry of the square
section r ¼ 1, while x3 is rather insensitive to the value of h. In the
case of r ¼ 2 there is a clear transition in modes when the applied
shear aligns to the direction of the short plate, h ¼ p=2.

The eigenmodes for combined axial compression and transverse
shear are shown in Fig. 11. The values of x1 and x2 increase and
become more sensitive to h as a increases. The values of x3 are
insensitive to h, and decrease slightly as the axial-to-shear strain
mixity a increases.

The critical load and eigenmode calculations reported above for
the rectangular section honeycomb will be repeated below for its
hexagonal section counterpart.

3.2. Hexagonal honeycomb

The critical strain for the axially compressed, isotropic-section
hexagonal honeycomb under unconstrained expansion is
�c

33 ¼ �c
strip, i.e., it is equal to that of a simply supported plate of
(a) (b)

Fig. 11. Critical eigenmodes for square, r ¼ 1 (solid lines) and rectangular, r ¼ 2 (dashe
function of the shear orientation for three different values of the axial-to-shear strain m
the same width, given by (22) and hence x3L ¼ p. The reason is
the same as in the square section honeycomb: equal rotation of
the plates joined along a common line results in zero bending mo-
ment, which is equivalent to simply supported boundary condi-
tions. Due to the hexagonal cell geometry – the global axes X1

and X2 are no longer perpendicular – the mode is in-plane periodic,
with x1L1 ¼ x2L2 ¼ 2p. The FEM-calculated critical mode is plot-
ted in Fig. 12a.

The axially compressed, anisotropic-section honeycomb under
free lateral expansion has a higher critical strain, �c

33 ¼ 1:55�c
strip

due to the presence of the double thickness cell wall. The critical
eigenmode frequencies found for the infinite, perfect, aniso-
tropic-section hexagonal honeycomb are x1L1 ¼ x2L2 ¼ 2p and
x3L ¼ 1:26p and the corresponding FEM-calculated critical mode
is plotted in Fig. 12b. A direct comparison to experimental results
is not meaningful, given the effect of finite size and boundary con-
ditions. Nevertheless, numerical simulations of experiments in
Wilbert et al. (2011) taking into account these effects show that
buckling initiation takes place at �c

33 � 1:5�c
strip, which is very close

to our analytical prediction.
The case of axial compression with constrained lateral expan-

sion can only been studied for the isotropic-section honeycomb.
The current method cannot be used for the laterally constrained
anisotropic-section honeycomb since in-plane equilibrium im-
poses bending of the cell walls in the principal solution, thus pro-
hibiting the use of (1), the cornerstone of our analytical model
presented in Section 2.1. The effect of constraining the lateral
expansion for the axially compressed, isotropic-section honey-
(c)

d lines) honeycomb under combined axial compression and transverse shear, as a
ixity: (a) a ¼ p=8, (b) a ¼ p=4 and (c) a ¼ 3p=8.



(a) (b)

Fig. 13. Finite element calculation showing the critical mode for isotropic-section hexagonal honeycomb under axial compression with constrained lateral expansion and
L3 ¼ 4L: (a) isometric and (b) top view of one of the three equivalent nodes resulting by a p=3, 2p=3 rotation about X3. The color shows the magnitude of the eigenmode
displacement.

Fig. 14. Critical strain as a function of its orientation for isotropic-section (solid
line) and anisotropic-section (dashed line) hexagonal honeycomb under transverse
shear.
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comb is similar to that on its rectangular counterpart: due to the
additional compressive stresses r11, the critical strains are reduced
and a long wavelength mode appears in X3, as depicted in Fig. 13a.

The critical strain is �c
33 ¼ 0:2497�c

strip, and there are three possi-
ble critical eigenmode wavenumbers, ðx1L1;x2L2Þ ¼ ðp;pÞ,
ðx1; L1;x2L2Þ ¼ ðp;2pÞ and ðx1L1;x2L2Þ ¼ ð2p;pÞ, which are re-
lated by a rotation of p=3 radians, due to the symmetry in the
structure. This is better understood if one takes into account that,
in addition to the axis X1 and X2, which are perpendicular to plates
(a)

Fig. 15. Critical axial strain under combined axial compression and transverse shear as
mixity, for: (a) isotropic-section hexagonal honeycomb and (b) anisotropic-section hexa
I and V and plates II and IV, respectively, it is also possible to con-
sider an axis perpendicular to plate III. The critical eigenmode
wavenumber in that axis is uniquely determined by x1 and x2,
such that x1L1 ¼ x2L2 ¼ p yields a value of 2p and the other
two combinations a value of p. The critical modes correspond
therefore to the three possible combinations of p, p and 2p for
the in-plane critical eigenmode wavenumbers. The top view of
one of these eigenmodes in shown Fig. 13b.

The critical strain under transverse shear as function of the shear
orientation is shown for the isotropic-section hexagonal honeycomb
(solid line) and the anisotropic-section hexagonal honeycomb
(dashed line) in Fig. 14. Notice that for the isotropic-section honey-
comb the critical strain is rather insensitive to the load angle h, with
a maximum difference of the order of about 2.5%, while for the aniso-
tropic-section honeycomb the corresponding difference is about
40%, with the lowest critical shear strain appearing near h ¼ p=6.
As expected from the existence of double thickness walls, the critical
strain for the anisotropic-section honeycomb is always higher than
for its isotropic-section counterpart.

For combined axial compression and transverse shear, there is
again a reduction in the critical axial load, as found for the rectangu-
lar honeycomb case. Results of four different axial to shear mixity
angles a ¼ 0, p=8, p=4, 3p=8 have been calculated both for the iso-
tropic-section case in Fig. 15a and the anisotropic-section case in
Fig. 15b. Results are analogous to the ones reported for the rectangu-
lar case in Fig. 9. The critical axial strain of the isotropic-section
hexagonal honeycomb decreases with increasing axial-to-shear
strain mixity but is independent on the shear orientation angle h.
The corresponding values for the anisotropic-section hexagonal
(b)

a function of the shear orientation, for different values of the axial-to-shear strain
gonal honeycomb.



Fig. 16. Critical eigenmodes under transverse shear as a function of the shear
orientation for isotropic-section hexagonal honeycomb (solid lines) and aniso-
tropic-section hexagonal honeycomb (dashed lines).

Fig. 18. Influence of wall thickness on the critical strain under axial compression,
based on a full 3D simulation, for a square (solid line) and an isotropic-section
hexagonal (dashed line) honeycomb. The 2D von Kármán model predictions are
insensitive to wall thickness.
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honeycomb are consistently higher than their isotropic-section
counterparts and as the axial-to-shear mixity increases are progres-
sively more dependent on the shear orientation angle h.

The critical mode wavenumbers for transverse shear as function
of shear orientation are shown in Fig. 16 for both the isotropic-sec-
tion (solid line) and anisotropic-section (dashed line) hexagonal
honeycomb. Notice that the axial wavenumber x3 is practically
insensitive to the shear orientation for both types of honeycomb,
while the in-plane wavenumbers ðx1;x2Þ show more variability.

As in the case of rectangular honeycomb in Fig. 11, the critical
mode wavenumbers for combined compression and shear are plot-
ted in terms of the shear orientation in Fig. 17. As expected, for the
low axial-to-shear strain mixity the wavenumbers are insensitive
to the shear orientation, but as the mixity increases they show a
stronger dependence on the shear orientation, approaching the
transverse shear case results in Fig. 16.

All the results reported here pertain to the lowest critical strain
and associated eigenmode for a perfect rectangular and hexagonal
section honeycomb of infinite extent, calculated for an elastic con-
stitutive response of the cell walls. How the onset of the bifurca-
tion leads to the actual failure mode by localization of
deformation due to plasticity requires a more involved analysis be-
yond the scope of the present work.

3.3. Validity of thin-plate approximation

All calculations in this work are based on a thin plate (von
Kármán theory) assumption as discussed in Section 2. In order to
check the range of validity of the thin-plate approximation, a series
of Bloch wave theory calculations, based on a nonlinearly elastic,
(a) (b)

Fig. 17. Critical eigenmodes for isotropic-section (solid lines) and anisotropic-section (das
shear, as a function of the shear orientation for three different axial-to-shear strain mix
3D unit cell with same Young modulus and Poisson ratio have been
performed on square and isotropic-section hexagonal honeycomb
under axial compression and unconstrained lateral expansion.
The following compressible neo-Hookean constitutive model has
been used for the cell walls:

W ¼ l
2
½ðI � 3Þ � 3 ln J� þ j

2
ðJ � 1Þ2; I � FijFij; J � detðFijÞ; Fij ¼

@xi

@Xj
ð24Þ

where l and j are, respectively, the shear and bulk moduli of the
solid at zero strain. The details of the corresponding continuum,
3D calculation are given in Michel (in preparation). The exact 3D
and approximate 2D critical strain predictions are indistinguishable
for the square section honeycomb with t=L < 0:1, while the isotro-
pic-section hexagonal honeycomb predictions start diverging for
t=L > 0:05 as seen in Fig. 18. Since in the experiments of Wilbert
et al. (2011) the cell walls were t=L ¼ 0:0173, the use of the 2D
von Kármán model in our onset of bifurcation calculations and of
the hyperelastic constitutive model in (24) for the 3D checks are en-
tirely appropriate for the onset of bifurcation modeling of thin
walled honeycomb.

4. Conclusions

The present work pertains to the onset of a bifurcation (buck-
ling type) instability in axially compressed and transversally
sheared perfectly periodic honeycomb of infinite extent. The criti-
cal load and corresponding eigenmodes are found analytically
using a Bloch wave representation of the eigenmode by consider-
ing only the smallest unit cell for different rectangular and hexag-
onal geometries, since they are the most frequently used in
applications.
(c)

hed lines) hexagonal honeycomb under combined axial compression and transverse
ity: (a) a ¼ p=8, (b) a ¼ p=4 and (c) a ¼ 3p=8 .
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Due to the symmetry of loading and geometry, all cell walls re-
main flat in the principal solution of the 3D problem at hand. Thus
the onset-of-failure mechanism is fundamentally different from
the one for the in-plane crushing of honeycomb, where the desta-
bilizing bifurcation emerges from a principal solution involving
significant bending of the cell walls. Given the experimental results
in axially compressed thin wall honeycomb by Wilbert et al.
(2011), all calculations reported here are done in the elastic regime
of the cell wall’s response, although a generalization to the case of
thick wall honeycomb that requires plastic constitutive description
is straightforward and easily fits the framework of the present
model.

For the in-plane loading, the bifurcation point is usually close
to the limit load (Triantafyllidis and Schraad, 1998) but even
when a limit load does not exist (Papka and Kyriakides, 1994),
a subcritical bifurcated equilibrium path does provide a maxi-
mum load which finally leads to localization. Consequently for
the in-plane crushing of honeycomb one can have an upper
bound for the critical load of an actual, imperfect, finite-size
structure by looking at its perfect counterpart of infinite extent
(Triantafyllidis and Schraad, 1998).

Simulations for the bifurcation equilibrium in axially crushed
honeycomb (Wilbert et al., 2011) show a stable, supercritical
post-bifurcation equilibrium path that requires additional strain-
ing before reaching a maximum load that appears after the cell
wall material enters the plastic range of its material response. Con-
sequently, and in contrast with the in-plane crushing, the onset-of-
bifurcation results presented here are expected to be lower bounds
for the critical loads of an actual, imperfect, finite-size structure.

The main contribution of this work is, in addition to the evalu-
ation of a lower bound for the critical load, a consistent calculation
of the corresponding eigenmode for the infinite, perfect honey-
comb, thus providing an estimate of a minimum representative
volume needed for numerical calculations in crushing simulations.
It is worth pointing out that the critical eigenmode depends
strongly on the applied load orientation, as expected from past
work (Triantafyllidis and Schraad, 1998; Papka and Kyriakides,
1999; Gong et al., 2005). It should also be mentioned at this point
that in technological applications the plateau for the crushing is of
paramount importance, but unlike the the onset of bifurcation its
calculation requires the evaluation of a complicated post-bifur-
cated equilibrium path where plasticity, contact, friction and
imperfections play a determinant role, thus adding to the appeal
of the – relatively much easier – onset-of-bifurcation calculations
presented here.

All the above work pertains to quasistatic loading conditions;
however the use of honeycomb in shock mitigation is a very impor-
tant technological application of these materials (Zhao and Gary,
1998; Yamashita and Gotoh, 2005; Rahtbun et al., 2006; Radford
et al., 2007); it is worth investigating the onset of instability in
honeycomb under dynamic loading conditions to determine the
role of inertia on the critical load and corresponding eigenmode.
Another important feature of honeycomb is the presence of adhe-
sives, which are necessary for their manufacturing and which are
sensitive to temperature thus altering the failure mode of crushed
honeycomb at higher temperatures. Both topics are currently un-
der investigation by the authors to better understand the very
complex phenomena associated with the onset-of-failure mecha-
nisms in honeycomb.
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Appendix A. Long wavelength critical eigenmode calculation

According to the discussion following (19), km xð Þ has a singu-
lar point in the neighborhood of x ¼ 0, since the neighborhood of
this point contains two physically distinct eigenmodes: the
strictly periodic ones with x ¼ 0 and the eigenmodes with
wavelengths much larger than the unit cell, x! 0. Fortunately,
the lowest root of (18), for the case x! 0, can be found
analytically by calculating the loss of ellipticity of the periodic
structure’s homogenized incremental moduli, as shown by
Geymonat et al. (1993). This remarkable property of infinite,
periodic structures will be used as a nontrivial check to ensure
the validity of our calculations. For simplicity, the method is
applied only to rectangular honeycomb.

The homogenized incremental moduli LijklðkÞ of the principal
solution at a state characterized by the load parameter k of a
three-dimensional structure with periodic unit cell Y, can be calcu-
lated from the point-wise incremental moduli of the unit cell
Lijklðx; kÞ by:

LijklðkÞ ¼
1
jY j

Z
Y

Lmnpqðx; kÞ dimdjn þ vðijÞm;n

� �
dkpdlq þ vðklÞ

p;q

� �
dx1dx2dx3; ðA:1Þ

where vðijÞðxÞ is the fluctuation (i.e., in excess of uniform strain) re-
sponse of the unit cell to an average deformation FðijÞkl ¼ dikdjl of the
unit cell. This response can be obtained from the following varia-
tional statement:Z

Y
Lmnpqðx; kÞ dkpdlq þ vðklÞ

p;q

� �
dvm;ndx1dx2dx3 ¼ 0; ðA:2Þ

which holds for all possible Y-periodic functions dvðxÞ. This proce-
dure has been used to calculate long wavelength instabilities in
two-dimensional composites (Triantafyllidis and Schnaidt, 1993),
porous elastomers (Michel et al., 2007) and fiber-reinforced elasto-
mers (Michel et al., 2010).

For the problem at hand, the principal solution, homogenized
incremental moduli of the unit cell can be expressed as a function
of the plane stress elastic moduli Labcd of the plates, given in (2), as:

LijklðkÞ ¼
1

L1L2L3

XIV
J¼I

Z
AJ

Labcd ua;b
JðijÞ

uc;d
JðklÞ

þ t2

12
w;ab

JðijÞ

w;cd

JðklÞ� �
þ rabw;a

JðijÞ

w;b

JðklÞ� �
tdx1dx2;

ðA:3Þ

where AJ is the area of the Jth plate, AJ ¼ LJL3, L3 is an arbitrary
length in the X3 direction, and the functions

vðijÞðxÞ ¼ ð u
JðijÞ

1ðxÞ; u
JðijÞ

2ðxÞ; w
JðijÞ

ðxÞÞ; J ¼ I; . . . ; IV are obtained from the
variational statement:

XIV
J¼I

Z
AJ

Labcd ua;b
JðijÞ

duc;d

J
þ t2

12
w;ab

JðijÞ

d;cd

J
w

� �
þ rabw;a

JðijÞ

dw;b

J
� �

dx1dx2 ¼ 0; ðA:4Þ

that holds for all Y-periodic functions

dvðxÞ ¼ ðdu
J

1ðxÞ; du
J

2ðxÞ; d w
J
ðxÞÞ; J ¼ I; . . . ; IV .

Taking into account that, due to symmetry, @f=@x2 ¼ 0 for every
plate, (A.4) yields the following differential equations:

nick1
Highlight



Fig. A.1. Critical buckling strain calculated by Bloch wave analysis (dashed line)
and by loss of ellipticity (solid line) of the homogenized moduli of an r ¼ 2
rectangular section composite with unconstrained lateral expansion.
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ðD=tÞw;1111
JðijÞ

�r11 w;11
JðijÞ

¼ 0;

u1;11
JðijÞ

¼ 0;

u2;11
JðijÞ

¼ 0:

ðA:5Þ

Due to the additional in-plane symmetry of the unit cell, it suffices
to solve for plates I and II, with the displacements depending only
on the local coordinate x1. The response for all possible modes

ð u
JðijÞ

1ðxÞ; u
JðijÞ

2ðxÞ; w
JðijÞ

ðxÞÞ are in the case when r11 ¼ 0:

u
I ð11Þ

1 ¼ x; u
I ð11Þ

2 ¼ 0; w
I ð11Þ ¼ 0; u

II ð11Þ
1 ¼ 0; u

II ð11Þ
2 ¼ 0; w

II ð11Þ ¼ 0;

u
I ð22Þ

1 ¼ 0; u
I ð22Þ

2 ¼ 0; w
I ð22Þ ¼ 0; u

II ð22Þ
1 ¼ x; u
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2 ¼ 0; w
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u
I ð33Þ
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2 ¼ y; w
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II ð33Þ
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II ð33Þ
2 ¼ y; w
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I ð13Þ

2 ¼ 0; w
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II ð13Þ
1 ¼ 0; u
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II ð31Þ
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I ð32Þ
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I ð32Þ ¼ 0; u

II ð32Þ
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2 ¼ 0; u
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1 ¼ 0; u
II ð11Þ

2 ¼ 0;

w
I ð12Þ ¼ �ðL1Þ2

L1 þ L2

x
L1
� 3x2

ðL1Þ2
þ 2x3

ðL1Þ3

 !
;

w
II ð12Þ ¼ ðL2Þ2

L1 þ L2

x
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ðL2Þ2
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u
I ð21Þ

1 ¼ 0; u
I ð21Þ

2 ¼ 0; u
II ð21Þ

1 ¼ 0; u
II ð21Þ

2 ¼ 0;

w
I ð21Þ ¼ �ðL1Þ2

L1 þ L2

x
L1
� 3x2

ðL1Þ2
þ 2x3

ðL1Þ3

 !
þ x;

w
II ð21Þ ¼ ðL2Þ2

L1 þ L2

x
L2
� 3x2

ðL2Þ2
þ 2x3

ðL2Þ3

 !
:

When r11– 0 the only terms that change are:

w
I ð12Þ ¼ 1

C
sin bx

tan bL1=2
� cos bx� 2x

L1
þ 1

� �
;

w
II ð12Þ ¼ 1

C
� sin bx

tan bL2=2
þ cos bxþ 2x

L2
� 1

� �
� x;

w
I ð21Þ ¼ 1

C
sin bx

tan bL2=2
� cos bx� 2x

L2
þ 1

� �
þ x;

w
II ð21Þ ¼ 1

C
� sin bx

tan bL1=2
þ cos bxþ 2x

L1
� 1

� �
;

ðA:7Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�tr11=D

p
and

C ¼ 2
L1
þ 2

L2
� b

tan bL1=2
� b

tan bL2=2
: ðA:8Þ

The corresponding values of LijklðkÞ for r11 ¼ 0 are:

L1111 ¼
Et

1� m2ð ÞL2
; L2222 ¼

Et
1� m2ð ÞL1

; L3333 ¼
Et L1 þ L2ð Þ
1� m2ð ÞL1L2

;

L1313 ¼
Et

2 1þ mð ÞL2
þ r22t

L1
; L3131 ¼ L1331 ¼ L3113 ¼

Et
2 1þ mð ÞL2

;

L2323 ¼
Et

2 1þ mð ÞL1
þ r22t

L2
; L3232 ¼ L2332 ¼ L3223 ¼

Et
2 1þ mð ÞL1

;

L1212 ¼ L2121 ¼ L1221 ¼ L2112 ¼
Et3

L1L2 L1 þ L2ð Þ 1� m2ð Þ :

ðA:9Þ
When r11 – 0 the terms that change are:

L1111 ¼
Et
L2
; L2222 ¼

Et
L1
; L3333 ¼

Et L1 þ L2ð Þ
L1L2

;

L1212 ¼ r11
1
L1
� 2

CL1L2

� �
; L2121 ¼ r11

1
L2
� 2

CL1L2

� �
;

L1221 ¼ L2112 ¼
�2r11

CL1L2
:

ðA:10Þ

According to (21), the loss of ellipticity occurs at the lowest k root
of:

Det LijklðkÞ nj nl
� �

¼ 0; ðA:11Þ

for some unit vector n. It is convenient to parameterize this vector
as:

n1 ¼ sin /ð Þ cos hð Þ; n2 ¼ sin /ð Þ sin hð Þ; n3 ¼ cos /ð Þ: ðA:12Þ

The critical value obtained with this method coincides with that ob-
tained with the theoretical approach presented in this paper when
x ¼ nd, d! 0. The case for r11 ¼ 0 and r ¼ 2, for different values of
/ and h, is shown in Fig. A.1 as an example.

The above calculations provide a nontrivial and completely
independent verification of the accuracy of our Bloch wave numer-
ical calculations, thus adding confidence in the calculations pre-
sented here. It is worth noticing that for the rectangular section
selected, where a local buckling mode is the critical one as seen
in Fig. 5, the long wavelength mode appears at strains that are at
two orders of magnitude higher or more, depending on the orien-
tation n.

Appendix B. Finite element simulations

As an additional method to check the validity of the presented
approach, finite element models of the honeycomb cores consid-
ered were built in Abaqus/Standard, in order to perform analysis
using the BUCKLING command. The models are constructed as a
combination of the unit cells described in Section 2.1, with differ-
ent values of the axial length H, which allows to explore different
values of the out-of-plane wavenumber x3.

The cell walls were modeled using the S4 general shell/plate
element. A regular mesh with square elements was adopted, with
a sufficiently small element size to ensure convergence. The
boundary conditions applied are such that they ensure that the
loading is uniform within all cell walls, while at the same time
being periodic in the three directions, in order to approximate an
infinite structure. This is achieved using the EQUATION command.
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Despite the use of periodic boundary conditions, the FEM model
is limited to instabilities that are exactly periodic, and so it is un-
able to provide the correct value of the buckling load of the infinite
structure. It has been used to compare the critical strain of a finite
number of cases where the size of the FEM model has been chosen
to match the critical eigenmode predictions of the infinite perfect
structure; the errors in the predictions of the corresponding mod-
els were in these cases lower than 0.1%.
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