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a b s t r a c t

Fiber reinforced elastomers subjected to compressive loads are prone to failure initiated by fiber buckling,
a phenomenon of great technological importance. A 2D bifurcation analysis for an infinite ply-reinforced
elastomer, subjected to constrained bending, is hereby presented for determining the composite’s critical
(i.e. lowest) curvature and associated eigenmode. The study is complemented by a full 3D analysis of the
same composite.

More specifically, the onset of bifurcation analysis is based on the Bloch wave representation of the 3D
eigenmode and the periodic, over a 2D unit cell, principal solution of the infinite, perfect composite sub-
jected to constrained (i.e. its top layer is bonded to an inextensible metallic plate) bending. The critical
curvature and corresponding eigenmode are found by minimizing the lowest bifurcation curvature as
a function of the eigenmode’s wavelengths. These semi-analytical results, based on a 2D Finite Element
Method (F.E.M) representation of the unit cell, are found to be in remarkable agreement with the full 3D
calculations of the corresponding imperfect composite, thus establishing the usefulness of the proposed
analysis. A comparison of the numerical simulation results to some limited experimental data is also
discussed.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Fiber-reinforced polymer matrix composites are widely used in
engineering applications because of their high axial stiffness and
strength-to-weight ratios, when compared to conventional struc-
tural materials. In contrast to their tensile strength, their resistance
to compressive loads is considerably diminished due to fiber buck-
ling. There is an impressive amount of engineering literature deal-
ing with this subject, the review of which is beyond the scope of
this paper.

The work at hand pertains to the special case of fiber-reinforced
elastomer-matrix composites subjected to constrained bending, a
test of interest to the tire industry (see (Orjela et al., 1998;
Schaffers, 1977; Astier and Caillard, 2006)), since it allows the
study of certain tire failure mechanisms. A related application of
technological interest involves composite spring hinges (see (Lopez
Jiménez and Pellegrino, 2012) and references quoted therein),
since compressive axial stresses on the fibers are responsible for
a buckling instability in a plane perpendicular to the plane of bend-
ing, a feature that allows for the imposition of high curvatures in
fiber-reinforced composites without breaking the fibers (a stable

post-bifurcation exists, in contrast to the in-plane compression of
composites that results in kinking). Motivated by the experiments
of Astier and Caillard (2006), a 2D bifurcation analysis for a perfect,
infinite ply-reinforced elastomer, subjected to constrained bend-
ing, is hereby presented for determining the composite’s critical
(i.e. lowest) curvature and associated eigenmode, complemented
by a full 3D analysis of the same composite.

The composite at hand has a regular microstructure with a peri-
odic unit cell. For such cases, and under the additional assumption
of the existence of an energy density (i.e. hyperelastic solids), the
work of Muller (1987) has shown that although a homogenized en-
ergy density function theoretically exists, it is not rank-one convex
and, more importantly, it cannot be explicitly determined. The rea-
son of this difficulty is the development of microstructural buck-
ling in these solids, in patterns that involve an arbitrary number
of unit cells. A connection was discovered between local, also
termed ‘‘microscopic’’, instabilities (microscopic buckling in pat-
terns that repeat over a finite number of unit cells) and the corre-
sponding global, also termed ‘‘macroscopic’’ ones, (buckling pattern
involves an infinite number of unit cells) by Triantafyllidis and
Maker (1985) for an infinite, incompressible, hyperelastic layered
composite under plane-strain. Subsequent work by Geymonat
et al. (1993) established a rigorous connection between the onset
of bifurcation instability and loss of rank-one convexity of the
homogenized moduli in finitely strained periodic hyperelastic sol-
ids of infinite extent. A key idea in this work, which allows one to
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find the onset of the critical buckling load and associated eigen-
mode in an infinite, periodic solid and determine its nature (i.e.
local or global), is the use of the Bloch wave representation
theorem (see (Bloch, 1928)). This theoretical tool has allowed the
study of the onset of failure for structures involving different
types of microgeometries and rate-independent constitutive laws,
from layered composites (see (Triantafyllidis and Maker, 1985;
Nestorovic and Triantafyllidis, 2004)) to honeycomb and cellular
solids (see (Triantafyllidis and Schraad, 1998; Gong et al., 2005;
Michailidis et al., 2009)) and subsequently to finitely strained
porous and fiber-reinforced elastomers (Triantafyllidis et al.,
2006; Michel et al., 2007, 2010).

Unlike typical composites used in engineering applications (e.g.
graphite-epoxy) that have global critical modes and for which the
corresponding Finite Element Method (F.E.M) analyses need only
have an imperfection with wavelength commensurate with overall
structural dimensions (e.g. see (Kyriakides et al., 1995; Vogler
et al., 2000; Drapier et al., 2001)), the application at hand has a
local critical mode with a finite wavelength that needs to be deter-
mined. The current problem is, to best of the authors knowledge,
the first application of the Bloch wave methodology to a full 3D
continuum problem, which has the added complication of a non-
trivial principal solution, due to the presence of bending. Although
some simplified structural models have been proposed for this
problem, in the spirit of the structural fiber buckling model of
Rosen (1965) (e.g. (Francis et al., 2006; Schultz et al., 2007)), the
determination of the structure’s critical curvature and associated
eigenmode follows the continuum approach in Triantafyllidis
et al. (2006), appropriately modified for principal solutions of finite
bending and 3D microstructures. Of course full field micromechan-
ical calculations are always an option, as in Lopez Jiménez and
Pellegrino (2012), but the advantage of the proposed method is
the direct theoretical determination of the critical wavelength.

The paper is organized as follows: In Section 2 is presented the
general setting of the 3D problem. Section 3 introduces the princi-
pal solution of the infinite, periodic structure, followed by the 2D
onset of bifurcation analysis based on the Bloch wave representa-
tion of the eigenmode. The F.E.M.-based numerical solution proce-
dure for the 2D model, which determines the critical curvature and
associated eigenmode is given in Section 4. Numerical results from
the full 3D calculations of an imperfect, finite model based on a
homogenized model for the ply proposed by Le Tallec et al.
(2012) plus experimental results are presented and compared in
Section 5. The paper ends with a discussion in Section 6.

2. Problem setting

This section presents the mechanical problem under consider-
ation. It is divided into two parts, starting with the presentation
of the structure’s geometry and experimental set-up and contin-
uing with the description of the general problem setting in 3D.

2.1. Structure’s geometry and experimental set-up

The experiments pertain to the pure bending of a long rubber
slab of initial length L1 with a rectangular cross section of dimen-
sions L2 � ðH � tÞ, where L1 > L2 > ðH � tÞ. A thin metallic plate of
dimensions L1 � L2 � t is glued on the top side of the slab, as de-
picted in Fig. 1. The slab is reinforced by a layer (also termed
‘‘ply’’) of thin metallic cables (also termed ‘‘fibers’’) of radius r, sep-
arated from each other by a constant gap e, at a distance h from the
bottom free edge and running across its entire length. In its unde-
formed, stress-free configuration the structure occupies a volume
X in R3, where material points are identified by their reference
Cartesian coordinates Xi. The structure is periodic along the X2

direction with an L1-long unit cell of cross-section Y of dimensions
e� H, as shown also in Fig. 1.

A state of pure bending is imposed to the structure by applying
opposite moments at the two ends of the structure X1 ¼ �L1=2, as
shown in Fig. 4, whereas all the other boundaries remain free. For
relatively small values of the applied moments, the structure as-
sumes a cylindrical configuration with a generator along the X2

direction as seen in Fig. 2. This is the principal solution of the struc-
ture, which has a stress state independent of X1 and is Y-periodic in
X2 for an adequately large number of fibers, ignoring of course edge
effects along X2 ¼ �L2=2.

Due to the applied pure bending, the metal plate is in tension
and the ply is in compression, which in view of the assumed per-
fect bonding between matrix and fibers, imposes a compressive
stress on the surrounding rubber matrix. The large difference in
stiffness between matrix and fibers destabilizes the composite by
fiber rotation about the X3 direction, leading to an overall buckling
of the structure in the (X1;X2) plane, as seen in Fig. 3.

Finding the critical curvature for the onset of the lateral buck-
ling and the corresponding eigenmode’s wavelength is the object
of the this work, as subsequently detailed.

2.2. General problem setting in 3D

The 3D boundary value problem is presented here by giving the
energy density of the different constituents of the structure and its
essential (kinematic) boundary conditions.

Standard notational conventions apply, with xðXÞ denoting the
position vector of a material point in the current (reference) config-
uration, uðXÞ the corresponding displacement, F the deformation
gradient, C the right Cauchy–Green tensor, E the Lagrangian strain
measure, namely:

u � xðXÞ � X; F � x$; C � FT
� F; E � 1

2
ðC � IÞ: ð1Þ

The structure’s energy EðuÞ is given by:

EðuÞ ¼
Z

X
WðX;EÞdX; ð2Þ

where the domain X is the L1 � L2 � H parallelepiped in R3. It will
be assumed that the rubber matrix, as well as the metallic plate
and steel cables are isotropic, thus making their corresponding en-
ergy density functions W dependent on the invariants of C (or E):

I1 ¼ TrðCÞ ¼ 2TrðEÞ þ 3;

I2 ¼
1
2

TrðC2Þ � TrðCÞð Þ2
h i

¼ 3þ 4TrðEÞ þ 2 TrðE2Þ � TrðEÞð Þ2
h i

;

I3 ¼ detðCÞ ¼ detðI þ 2EÞ:
ð3Þ

Consequently the energy density WðX;EÞ in (2), which is indepen-
dent on X1, takes – depending on the location of the material poin-
tof the material point ðX2;X3Þ on the unit cell – the form:

W ¼WðX;EÞ ¼
WplateðEÞ;
WrubberðEÞ;
WcableðEÞ;

8><
>: ð4Þ

which we specify herein as:

Wrubber ¼ C1 I1 � 3� lnðI3Þð Þ þ C2 I2 � 3� 2 lnðI3Þð Þ þ j
2

ffiffiffiffi
I3

p
� 1

� �2
;

Wcable; Wplate ¼
E

2ð1þ mÞ TrðE2Þ þ m
1� 2m

TrðEÞð Þ2
h i

;

ð5Þ

where C1; C2; j are the constants for the rubber’s compressible
Mooney-type model and E; m are respectively the Young’s modulus
and Poisson ratio of the corresponding metal.
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Equilibrium is obtained by extremizing EðuÞ with respect to the
displacement field u, namely:

E;uðduÞ ¼
Z

X
WF : dFð ÞdX ¼ 0: ð6Þ

To the above equilibrium equations in weak form, we must add the
essential (kinematic) boundary conditions for u. Pure bending can
be achieved by rotating the two end-sections of the slab
(X1 ¼ �L1=2) by an angle h0 ¼ qL1, where q is the curvature im-
posed on the slab (i.e. undeformed fiber’s inverse radius). The two
end faces are kept flat and shear free. The corresponding kinematic
constraint imposed at the two ends is:

uðX1;X2;X3Þ � cosðqX1Þe1 � sinðqX1Þe3½ � ¼ 0; X1 ¼ �L1=2: ð7Þ

The above kinematic condition is also compatible with an X1-inde-
pendent principal solution in the case of a perfect structure with
WðX2;X3;EÞ as discussed in the next section. A schematic diagram
of an ðX1;X3Þ section of the deformed configuration (principal solu-
tion) for a perfect structure is shown in Fig. 4.

One final, but obvious detail: to avoid X2 translation indetermi-
nacy of the solution of (6), (7), the rigid body motion along e2 is
eliminated by constraining the X2-displacement at some point of
the X1 ¼ �L1=2 face.

3. Stability of the infinite perfect structure

This section pertains to the stability of an infinite, perfect
structure subjected to pure bending. By assuming a structure with
X1-independent energy densities, i.e. WðX2;X3;EÞ, and where in
addition we have e� L2, i.e. many unit cells along the X2 direction,
one obtains by ignoring edge effects of the finite structure an

Fig. 1. Reference (stress-free) configuration geometry of the fiber-reinforced rubber slab glued on a thin metal plate and detail of the cross-section Y of its unit cell.

Fig. 2. Principal solution of the fiber-reinforced rubber slab bonded on a thin metal plate and subjected to pure bending. (Photo courtesy of Astier and Caillard (2006)).

Fig. 3. Buckled state of the fiber-reinforced rubber slab bonded on a thin metal plate and subjected to pure bending. (Photo courtesy of Astier and Caillard (2006)).

plate

cable

e1

e3

eθ

er

M M

= X1

0 = L1

Fig. 4. Schematic representation of the principal solution and the kinematic
boundary conditions applied to the structure.
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X2-periodic (and X1-independent) principal solution of (6), (7). The
stability of this principal solution is examined with the help of
Bloch wave representation theory for the 3D eigenmode, which re-
quires the solution of a 2D problem defined on the cross-section of
the unit cell Y (see Fig. 1). A full Lagrangian formulation of the 3D
stability problem is used here, which leads naturally to the consid-
eration of a 2D problem on the reference configuration unit cell Y
set in Cartesian coordinates. The advantage of this approach lies
in the use of Cartesian coordinates, in spite of a cylindrically de-
formed principal solution.

3.1. Principal solution

The structure’s principal solution corresponds to the bending of
a rectangular parallelipiped into a cylindrical tube segment with
axis along e2 (see the corresponding deformed ðX1;X3Þ plane sec-
tion in Fig. 4) and and where the sections X1 ¼ const: deform only
into their own plane, i.e. remain flat. Consequently the displace-
ments u can be written as:

uðX1;X2;X3Þ ¼ RðqX1Þ � uð0;X2;X3Þ; ð8Þ

where R is the rigid body rotation tensor of the plane X1 ¼ const:,
i.e.

R � eh � e1 þ e2 � e2 þ er � e3;

eh � e1 cosðqX1Þ � e3 sinðqX1Þ;
er � e1 sinðqX1Þ þ e3 cosðqX1Þ: ð9Þ

Note that the principal solution displacement uð0;X2;X3Þ is taken to
be X2-periodic:

uð0;X2;X3Þ � pðX2;X3Þ ¼ pðX2 þ ne;X3Þ; n 2 Z: ð10Þ

Consequently, using (9) and (8) into the definition of the deforma-
tion gradient, one obtains:

du$ ¼ RðqX1Þ � A � dp� e1 þ dp;2 � e2 þ dp;3 � e3
� �

;

A � q e1 � e3 � e3 � e1½ �: ð11Þ

Substituting (11) into the equilibrium Eq. (6) and taking (8) into ac-
count, one finally obtains the following characterization of the prin-
cipal solution pðX2;X3Þ:Z

Y
W ;F : A � dp� e1 þ dp;2 � e2 þ dp;3 � e3

� �
dX2dX3 ¼ 0; ð12Þ

over all X2-periodic functions p defined on Y, to which one must add
the kinematic condition:

p � e1 ¼ p1ðX2;X3Þ ¼ 0; ð13Þ

which simply states that the X1 ¼ 0 section remains flat.
Finally an interesting remark is in order. By choosing dp ¼ c e3,

where c – 0 is an arbitrary constant, (12) yields:

N �
Z

Y
W ;F11 dX2dX3 ¼ 0; ð14Þ

where N is the axial force on the section Y (since W ;F11 � P11 is the
corresponding normal component of the first Piola–Kirchhoff
stress).

3.2. Stability of the principal solution

All equilibrium solutions of the (conservative, elastic) struc-
ture with energy Eðq;uÞ in (2) are given by the first functional
derivative of this energy with respect to u, according to (6).
For each value of the applied curvature q, there is a principal
solution:

u
0
ðq; X1;X2;X3Þ ¼ RðqX1Þ � pðq; X2;X3Þ; ð15Þ

where p is the X2-periodic (and X1-independent) equilibrium solu-
tion on the unit cell given by (12) and (13).

The stability of the above solution depends on whether the
principal solution u

0
ðq; XÞ is a local minimum of the structure’s en-

ergy. A sufficient condition for this minimum is a positive lowest
eigenvalue bðqÞ for the stability operator E;uuðDu;DuÞ evaluated
on u

0
ðq; XÞ:

bðqÞ ¼ inf
Durk k¼1

E ;uuðDu;DuÞ ¼ inf
Durk k¼1

FXðDu$Þ;

FXðgÞ �
Z

X

�g : W ;FF : g dX; ð16Þ

where FXðgÞ denotes a bilinear operator on a rank two tensor gðXÞ
defined on X and where the rank four tangent moduli tensor W ;FF

(second derivative of W with respect to F) is evaluated on the prin-
cipal solution.1

The X1-independence and X2-periodicity of the principal solu-
tion u

0
imply the same properties for W ;FF which is evaluated on

u
0
. Consequently it can be shown (by a small modification of the re-

sults in Geymonat et al. (1993)) that the eigenmode of (16) has the
following Bloch wave representation:

DuðX1;X2;X3Þ ¼ expðix1X1 þ ix2X2Þ RðqX1Þ � DpðX2;X3Þ; ð17Þ

where Dp is an X2-periodic function defined in Y and ðx1;x2Þ 2
Rþ � 0;2p=e½ Þ. A numerically more convenient choice uses the
representation:

DuðX1;X2;X3Þ ¼ expðix1X1Þ RðqX1Þ � DqðX2;X3Þ;
DqðX2;X3Þ ¼ expðix2X2Þ DpðX2;X3Þ ð18Þ

from which one finds out the following expression for Du$:

Du$ ¼ expðix1X1ÞRðqX1Þ
� A � Dqþ ix1Dqð Þ � e1 þ Dq;2 � e2 þ Dq;3 � e3
� �

; ð19Þ

where A is defined in (11).
The calculation of the minimum eigenvalue bðqÞ using Du$ in

(19) involves complex numbers. To avoid them we use the decom-
position of Dq into real and imaginary part:

Dq ¼ Dv þ iDw: ð20Þ

Consequently the calculation of bðqÞ requires the use of only real
fields Dv;Dw defined on Y, namely:

bðqÞ ¼ inf
Durk k¼1

F Y ðGvÞ þ F YðGwÞ½ �; ð21Þ

Gv ¼ A � Dv �x1Dwð Þ � e1 þ Dv ;2 � e2 þ Dv ;3 � e3; ð22Þ
Gw ¼ A � Dwþx1Dvð Þ � e1 þ Dw;2 � e2 þ Dw;3 � e3; ð23Þ

subject to the following kinematic coupling constraint between Dv
and Dw which follows from (18) and (20):

Dvðe=2;X3Þ ¼ cosðx2eÞDvð�e=2;X3Þ þ sinðx2eÞDwð�e=2;X3Þ;
Dwðe=2;X3Þ ¼ cosðx2eÞDwð�e=2;X3Þ � sinðx2eÞDvð�e=2;X3Þ:

ð24Þ

Of interest here is the lowest value of curvature q for which the sta-
bility operator E ;uuðDu;DuÞ loses its positive definiteness and the
associated eigenmode in (17), characterized by the values
ðxc

1;xc
2Þ. To this end, we characterize the infimum in (16) as an inf-

imum with respect to all possible wavenumbers ðx1;x2Þ:

bðqÞ ¼ inf
ðx1 ;x2Þ2Rþ� 0;2p=e½ Þ

cðq;x1;x2Þf g ð25Þ

1 NOTE: �g denotes the complex conjugate of g.
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of the minimal eigenvalue cðq;x1;x2Þ defined for a given wave-
number pair ðx1;x2Þ by:

cðq;x1;x2Þ ¼ min
Dvðx2Þ;Dwðx2Þ
kDu$k ¼ 1

F Y q;Gvðq;x1;Dvðx2Þ;Dwðx2ÞÞð Þf

þF Y q;Gwðq;x1;Dvðx2Þ;Dwðx2ÞÞð Þg: ð26Þ

Defining qmðx1;x2Þ as the lowest curvature where we reach a zero
eigenvalue b of the stability operator for a given wavenumber pair
ðx1;x2Þ:

qmðx1;x2Þ ¼ inf
cðq;x1 ;x2Þ¼0

q; ð27Þ

the sought critical curvature is:

qc � inf
ðx1 ;x2Þ2Rþ� 0;2p=e½ Þ

qmðx1;x2Þ: ð28Þ

The above definition for the critical curvature qc leads naturally
to the numerical algorithm for its calculation, as detailed in the
next section.

4. Solution procedure

The numerical algorithm used is presented in this section, start-
ing with the part on the unit cell discretization and corresponding
principal solution, and following with part pertaining to the critical
curvature and associated eigenmode. The calculations use the fi-
nite element software Freefem++ (see http://www.freefem.org/
ff++/).

4.1. Unit cell discretization and principal solution

The starting point for calculating the principal solution dis-
placement field pðX2;X3Þ in (10) is the weak form of the equilib-
rium Eq. (12) subject to (13). The N-node F.E.M. discretization of
the 2D unit cell Y is based on 6-node triangular elements (with
nodes at vertices and mid-points of sides) as shown in Fig. 5. In
the interest of computational simplicity the field db � A � dp is dis-
cretized independently of the field dp (see expression for dF in
(11)), thus resulting in elements with 6 d.o.f. per node (three for
the p components and three for the b components). Linear relation-
ships between db and dp are introduced subsequently, thus reduc-
ing the total number of p-related variables to 3N and then to 2N,
since according to (13) p1 ¼ 0. Periodicity of p (see (10)) couples
the nodes on the left (CL) and right (CR) boundary sides of Y, thus
explaining the common X3 coordinate between the corresponding
nodes in each side. The F.E.M discretization uses 263 elements with
a total of N ¼ 568 nodes.

An incremental Newton–Raphson algorithm, using the curva-
ture q as its loading parameter, is used to find the principal solu-
tion. The corresponding discretized ‘‘stiffness’’ matrix ½KðqÞ�,
based upon the interpolation of the two independent fields b and
p as previously explained, is used in the stability calculations as de-
scribed next. The step size used in finding the principal solution is
Dq ¼ 5� 10�6 rad mm�1 and a tolerance of 1� 10�10 based on the
norm of Dp is used for the convergence resulting in about 5 itera-
tions per step.

4.2. Critical curvature and eigenmode calculation

The starting point for calculating the critical curvature and
corresponding eigenmode is the discretization of the fields Dv
and Dw in the quadratic functional given in (21), which is the
sum of two terms of the type ½G�T ½KðqÞ�½G�. In the latter expres-
sion the linear operator ½G�ðDb;DpÞ is first the F.E.M. discretization
of Gv in (21) with Db � A �Dv �x1Dw; Dp � Dv and next the
F.E.M. discretization of Gw in (21) with Db � A � Dwþx1Dv ;
Dp � Dw. As a result, the quadratic form in (21) can be written
as:

F Y ¼ ½Dq�T ½Ĝðx1Þ�T ½K̂ðqÞ�½Ĝðx1Þ�½Dq�; ½Dq� � ð½Dv �; ½Dw�Þ; ð29Þ

where the discretized stiffness matrix K̂ðqÞ has 6N d.o.f. (recall that
N is the total number of nodes). The last step in the construction
of the matrix corresponding to the quadratic form in (21) is the
x2-dependent relation between the CL;CR sides of the unit cell
boundary values of ½Dv � and ½Dw�. This relation is expressed by
the linear system ½Dq� ¼ ½Ĥðx2Þ�½Dq̂�, where Dq̂ are the independent
degrees of freedom of the system, i.e. the nodal values of Dv ; Dw
(real and imaginary part of Dq defined in (18) and (20)) on all nodes
of the unit cell Y except those on the CR side of its boundary.
Consequently, the discrete version of the functional in (26)
becomes2:

cðq;x1;x2Þ ¼ min
Dq̂k k¼1

½Dq̂�T ½Kðq;x1;x2Þ�½Dq̂�;

½Kðq;x1;x2Þ� � ½Ĥðx2Þ�T ½Ĝðx1Þ�T ½K̂ðqÞ�½Ĝðx1Þ�½Ĥðx2Þ�: ð30Þ

For a given curvature q and pair ðx1;x2Þ 2 Rþ � 0;2p=e½ Þ, the
minimum eigenvalue c of ½K� is calculated by the shifted inverse
power method (e.g. see (Mathews and Fink, 2004)). For
0 6 q < qc; cðq;x1;x2Þ > 0 8ðx1;x2Þ 2 Rþ � 0;2p=e½ Þ.

The algorithm used here consists of finding lowest positive root
qmðx1;x2Þ of c ¼ 0 for each pair ðx1;x2Þ according to (27), result-
ing in a numerical evaluation of the surface qmðx1;x2Þ which is
then used to find qc according to (28). The scanning of the
ðx1;x2Þ domain used xmax

1 ¼ 0:23 rad mm�1 and step sizes
Dx1 ¼ 0:005 rad mm�1, Dx2 ¼ 0:314 rad mm�1 while the curva-
ture was increased by increments Dq ¼ 5� 10�6 rad mm�1. The
algorithm is given below:

Metal plate

Rubber matrix

Steel cable

ΓU

ΓRΓL

ΓD

Fig. 5. Unit cell Y discretization is based on a triangular element mesh with
quadratic polynomial interpolation resulting in 6-node triangular elements.

Table 1
Material constants used in numerical calculations.

Metal plate Rubber matrix Steel cables

Eplate 210 GPa C1 0.9774 MPa Ecable 154.3 GPa
mplate 0.3 C2 0.1086 MPa mcable 0:3

j 1000 MPa

2 NOTE: Since we are only interested in the roots of c, the selection of the norm for
the discretized mode Du is irrelevant, thus motivating the simpler norm choice of
Dq̂k k instead of the one resulting from the definition in (16).
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Algorithm 1. Algorithm to compute the critical curvature and
corresponding eigenmode

Initialize each element of the array qmð:; :Þ to qmax þ 1
for q from 0 to qmax do

Compute the equilibrium using an incremental Newton–
Raphson method ) KðqÞ

for x1 from 0 to xmax
1 do

for x2 from 0 to 2p=e do
if qmðx1;x2Þ > q then

Compute ½Ĝðx1Þ� and ½Ĥðx2Þ�
Build Kðq;x1;x2Þ using expression (30)
Compute cðq;x1;x2Þ defined by (30) using an inverse

power method
if cðq;x1;x2Þ 6 0 then

qmðx1;x2Þ ¼ q
else

Instability already found
end

end
end

end
end
Output: Array qmð:; :Þ

Calculation of the critical eigenmode is a straightforward matter
consisting on obtaining Dv (or Dw), over the entire unit cell, corre-
sponding to ðxc

1;xc
2Þ.

Finally a comment is here in order about the algorithm used,
which essentially consists of finding the level sets c ¼ 0 for each
curvature q over the ðx1;x2Þ domain ð0;xmax

1 � � 0;2p=e½ Þ. This ap-
proach is dictated by computational efficiency since it is much less
time consuming to calculate ½Kðq;x1;x2Þ� based on ½KðqÞ� for each
fixed q on a ðx1;x2Þ grid than recalculating ½KðqÞ� at each value of
q in the range 0;qm½ � for each fixed pair ðx1;x2Þ.

5. Results and discussion

The numerical results leading to the calculation of the critical
curvature and the corresponding eigenmode, obtained via the pro-
cedure outlined in Sections 3 and 4, are hereby compared with
experimental data as well as F.E.M. results of the 3D model.

5.1. Geometry and material properties

The tests are performed on a reinforced rubber/steel plate
assembly which at rest is a rectangular parallelepiped with length
L1 ¼ 300 mm, width L2 ¼ 20 mm and height H ¼ 7:61 mm. The
steel plate has thickness t ¼ 0:4 mm and the elastomer’s reinforc-
ing steel cables have a radius r ¼ 0:3115 mm and are placed at a
distance h ¼ 1:105 mm from the closest free surface and separated
from each other by e ¼ 2:5 mm. The material constants of the con-
stitutive laws (5) for the different components of the specimen are
given below in Table 1.

5.2. Results for the infinite, perfect structure (based on a 2D model of
the unit cell Y)

The solution procedure requires the calculation of the principal
solution (on the unit cell Y) over a range of curvatures q, starting at
q ¼ 0 and proceeding by small increments Dq. It is instructive to
show a corresponding typical stress state, which for the case of a
dimensionless curvature qH ¼ 7:61� 10�4 is depicted in Fig. 6.

More specifically Fig. 6(a) records the out-of-plane axial compo-
nent r11 of the Cauchy stress while Fig. 6(b) records the in-plane

shear component r23 of the Cauchy stress. As expected from the
state of pure bending of the principal solution, the largest compres-
sive axial stress occurs at the cable and the largest tensile axial
stress occurs at the plate, while considerably lower axial stresses
exist in the rubber matrix. Notice that the in-plane shear stresses
r23 are negligible compared to r11, as expected from the several
order of magnitude difference between the shear moduli of the
rubber matrix and steel plate and cables. In addition, principal
solution equilibrium considerations of the unit cell, i.e. a zero total
transverse shear resultant in the ðX2;X3Þ plane, explain the anti-
symmetry of r23 with respect to X3-axis and the negligible shear
force exerted on the cable along that direction.

The numerically calculated surface qmðx1;x2Þ, which is the
minimum onset of bifurcation curvature as a function of the wave-
numbers along the X1 and X2 directions, is shown in Fig. 7.

Notice that the surface qmðx1;x2Þ is symmetric about the
x2 ¼ p=e plane, as expected from the X3-symmetry of the unit cell.
The minimum over ðx1;x2Þ critical curvature qc occurs for the X2-
periodic modes, i.e. for x2e ¼ 0 ðmod 2pÞ. Upon a closer inspection
(see insert in Fig. 7), the critical curvature qc and the associated
wavenumbers xc

1;xc
2 are found to be:

xc
1 ¼ 0:175 rad mm�1; xc

2 ¼ 0 rad mm�1;

qc ¼ 3:36� 10�4 mm�1: ð31Þ

Based on the above results, the critical wavelength in the X1-
direction is Lc

1 ¼ 2p=xc
1 ¼ 34:9 mm. The corresponding instability

mode is plotted in Fig. 8 with the X2 and X3 components superim-
posed on the reference coordinate of each node. The X1 and X3

components of the eigenmode are negligible compared to their
X2 counterpart, as illustrated further by the contour plot of the
X3 component. The eigenmode Dv plotted here is normalized so
that the maximum over Y lateral displacement ðDv2Þmax ¼
1:2 mm. It is worth noticing that the X2 component is by far the
dominant component of the eigenmode, in agreement with exper-
imental observations.

5.3. Results for the finite, imperfect structure (based on the 3D F.E.M.
model)

An imperfect, finite size 3D F.E.M. model is also used to calcu-
late the critical curvature and corresponding mode for the speci-
men used in experiments. A detailed 3D model, with a full
discretization of each individual fiber, would be excessively (and
unnecessarily for our purpose) time consuming. Consequently, an
enriched model of the fiber-reinforced ply, described in Le Tallec
et al. (2012), is used consisting of a layer at the plane of the cable
axes Xcable

3 ¼ h of surface energy Ws
ply and a surrounding rubber

−81.3 N.mm2

26.5 N.mm2

(a) Contours of 11

−1.9 × 10−4 N.mm2

1.9 × 10−4 N.mm2

(b) Contours of 23

Fig. 6. Principal solution contours of the Cauchy stress axial component r11 in (a)
and shear component r23 in (b) plotted on the unit cell Y for a dimensionless
curvature qH ¼ 7:61� 10�4.
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matrix layer, also centered at X3 ¼ h, with a thickness l and an en-
ergy density Wv

ply. The surface energy of the cable layer is given by:

Ws
ply ¼

1
2e

EAðx;1 � d1Þ2 þ GA ðx;1 � d2Þ2 þ ðx;1 � d3Þ2
h in

þ GJðd2;1 � d3Þ2 þ EI ðd1;1 � d3Þ2 þ ðd1;1 � d2Þ2
h io

; ð32Þ

where e denotes the steel cable spacing and diðX1;X2;X
cable
3 Þ the cor-

responding director field. The EA term in the above equation ac-
counts for the axial energy, the GA terms account for the shear
energy, the GJ term for the torsional energy and the EI terms for
the bending energy stored in the cables, where A; J and I are respec-
tively the cross-sectional area, torsional constant and moment of
inertia of each cable.

The energy density of the rubber matrix surrounding the cables,
in the ply of thickness l ¼ 0:624mm, is:

Wv
ply ¼

1
1� fc

Wrubber; f c �
A
el
; ð33Þ

where fc is the volumetric fraction of cable in the ply and Wrubber is
given in (5). Numerical values of the cable constants in (32) in the
ply are given below in Table 2, while the rubber matrix properties
are given in Table 1.

The overall dimensions of the 3D specimen in the reference con-
figuration are L1 ¼ 300 mm, L2 ¼ 20 mm and H ¼ 7:61 mm. The

model is subjected to pure bending boundary conditions, which
in addition to the displacement constraints in (7) requires an anal-
ogous set of constraints for the director d.o.f. namely:

d1 ¼ cosðqX1Þe1 � sinðqX1Þe3; d2 ¼ e2;

d3 ¼ sinðqX1Þe1 þ cosðqX1Þe3; X1 ¼ �L1=2: ð34Þ

The resulting 3D F.E.M. model has 5082 nodes for the matrix,
2541 nodes for the plate, and 2541 displacement nodes and 847
rotation nodes for the fiber-reinforced layer. It consists of Q2 ele-
ments for the matrix and Q 2 elements for the cable reinforced
layer.

On a final note we must also mention the introduction of an
imperfection to the 3D model, achieved through a displacement
of the perfect structure’s reference configuration nodal coordinates
by the following amount DX:

DX1 ¼ 0; DX2 ¼ nðH � X3Þ cosðxc
1X1Þ; DX3 ¼ 0; ð35Þ

where n denotes the imperfection amplitude and xc
1 is the critical

wavenumber obtained by Bloch wave analysis (see (31)). The
imperfection used is not a multiple of the eigenmode, but is chosen
as a crude approximation of the critical mode with the same X1

wavelength.
An incremental Newton–Raphson procedure is used for the

numerical solution of the resulting 3D F.E.M. model, for four differ-
ent values of the imperfection amplitude parameter n. The results,
plotted in the form of maximum lateral deviation along X2 direc-
tion, i.e. ðu2Þmax � ðu2Þmin, with the max and min taken on the
X2 ¼ 0 lateral surface, versus dimensionless curvature qH are given
in Fig. 9.

As expected, the maximum lateral deviation of the X2 ¼ 0 sur-
face follows initially the perfect structure by staying close to zero
and increases at the neighborhood of the perfect structure’s critical
curvature; the lower the imperfection amplitude n, the more

Fig. 7. Numerically calculated surface for the minimum onset of bifurcation curvature qmðx1;x2Þ as a function of eigenmode wavenumbers x1 and x2 based on the infinite,
perfect periodic 2D model.

Δv3
−2.4 × 10−3 mm

2.4 × 10−3 mm

Fig. 8. Critical mode Dv depicted by adding its X2; X3 components on the reference
position of each node. The X2 is by far the dominant eigenmode component (the
much smaller X3 component is given by a contour plot). Results are based on the
infinite, perfect periodic 2D model.

Table 2
Material constants for the cables in the ply used in numerical calculations.

EA GA EI GJ

47030 N 18090 N 1140 N mm2 877 N mm2
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abrupt the change, as seen in Fig. 9. The 3D numerical calculations
serve as an independent and reliable proof of the 2D Bloch wave
calculations based on one unit cell.

A plotting of the imperfect (with n ¼ 1:3� 10�5) 3D structure’s
deformation near the critical curvature, at qH ¼ 2:56� 10�3, is
given in Fig. 10. In Fig. 10(a) is plotted the lateral displacement
u2ðX1;X2;0Þ of the bottom surface X3 ¼ 0, while in Fig. 10(b) we
plot contours of the relative radial displacement urðX1;0;X3Þ
on the lateral surface X2 ¼ 0 (defined by: Dur � ðuðX1;0;HÞ�
uðX1;0;X3ÞÞ � ðcosðqX1Þe3 þ sinðqX1Þe1Þ).

As expected from the 2D Bloch wave analysis, the 3D structure
shows a deformation pattern dominated by an X1 wavelength very
close to the one theoretically predicted by the 2D model. Moreover
the buckled pattern in Fig. 10 is essentially a mode in the plane of
the reinforcing ply, with a dominant u2 component, exactly as pre-
dicted by the 2D analysis (see also Fig. 8).

5.4. Experimental results and comparison with theoretical predictions

Three different samples, of identical geometric and material
properties were tested. Critical curvatures, moments and wave-
numbers in X1 direction are given in Table 3 below.

Notice that the critical wavenumber is insensitive to experi-
mental variation between the three different cases while critical
curvatures show a max deviation of 8%. Taking the average value
of the three experiments and comparing to the 2D Bloch wave cal-
culations for the infinite, perfect model and to the 3D calculations
for the finite, imperfect model, we end up with the following com-
parison shown in Table 4.

As expected the analytical results are very close, given the con-
sistency of the modeling approach and the small difference in crit-
ical moments and wavenumbers due to the presence of
imperfections in the 3D model. What is rather remarkable is the
agreement with the experimental results, given the variability of
geometry and material properties in the experiments as well as
the strong non-uniformity of the strain fields involved.

6. Conclusion

The work presented here pertains to the stability of a fiber-rein-
forced elastomer (where a row of equally spaced, parallel cables is
concentrated in one ply), subjected to constrained (due to an inex-
tensible metallic plate bonded on one side) pure bending. The
problem is solved in two different ways: one which assumes that

Fig. 9. Maximum lateral deviation of X2 ¼ 0 surface as a function of the dimensionless curvature for different values of the imperfection amplitude, based on the finite,
imperfect 3D model.

−1.7 mm 1.7 mm

(a) Bottom surface (X3 = 0) lateral u2 displacement

0 mm 0.27 mm

(b) Lateral surface (X2 = 0) relative radial Δur displacement

Fig. 10. Deformation of the 3D imperfect (n ¼ 1:3� 10�5) model at a curvature
qH ¼ 2:56� 10�3, showing in (a) the displacement field u2 on the reference
configuration’s bottom surface ðX3 ¼ 0Þ and in (b) contours of the radial displace-
ment ur on the deformed configuration’s lateral surface ðX2 ¼ 0Þ.

Table 3
Experimental results.

Critical moment
(N mm)

Critical curvature
(mm�1)

Wavenumber xc
1

(rad mm�1)

Exp. A 3:50� 103 3:175� 10�4 0.167

Exp. B 4:00� 103 3:322� 10�4 0.167

Exp. C 4:24� 103 3:484� 10�4 0.167

Table 4
Comparison of results from two different theoretical models and experiments.

Critical
curvature
(qcH)

Critical
moment
(N mm)

Critical mode
xc

1 (rad mm�1)

2D Bloch wave analysis 2:557� 10�3 4:09� 103 0.175

3D F.E.M. simulation 2:557� 10�3 4:18� 103 0.178

Experiment 2:528� 10�3 3:91� 103 0.167
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the plate is perfect, infinite and admits a principal solution that is
periodic over a 2D unit cell Y, and the other using an imperfect, fi-
nite plate in 3D. Of interest is the plate’s critical curvature, i.e. the
lowest curvature where a bifurcated equilibrium path can be
found, and the associated eigenmode.

The results for the perfect, infinite plate require calculations
on the F.E.M. discretized 2D unit cell Y, which make use of the
Bloch wave representation theorem for the eigenmode. For the
finite plate, the critical curvature and eigenmode are calculated
approximately using different amplitude imperfections of critical
wavelength and a full 3D F.E.M. discretization of the entire plate,
with the added simplification of a homogenized model for the
ply (developed in Le Tallec et al. (2012)). The critical curvature
predictions based on the 2D model are found in excellent
agreement with those based on its 3D counterpart, providing
an independent verification of the calculations. Although few
experiments were conducted, the critical curvature and eigen-
mode are in good agreement with the calculations-based
predictions.

The main purpose of this work is to demonstrate the power of a
theoretical method to accurately determine the critical load and
corresponding eigenmode in a class of technologically interesting
problems (i.e. problems involving bending in finitely strained fi-
ber-reinforced composites), information that previous work on this
subject can only establish approximately either by numerical
experiments or by using simple structural models. More specifi-
cally, we show how the Bloch wave representation theorem can
be used in solving the onset of bifurcation problem at hand by
analyzing just the minimum representative domain of the bent
structure’s principal solution.

There are several novel features here, compared to previous
applications of this technique (e.g. (Triantafyllidis et al., 2006;
Michel et al., 2007, 2010)): (a) the application of the Bloch wave
representation theory to solve a full 3D problem (b) the use of a full
Lagrangian reference-configuration formulation with Cartesian
coordinates that avoids the use of cylindrical coordinates that
one might have been tempted to use based on the cylindrical con-
figuration of the principal solution and (c) the associated numerical
algorithm that introduces auxiliary variables in order to speed the
critical curvature calculations. The methodology presented here
can be used for the solution of any bending problem for a fiber-
reinforced elastomer. It has the advantage of a direct determina-
tion of the critical eigenmode of the structure, which is more reli-
able than simple structural models (e.g. (Francis et al., 2006)) and
thus constitutes a useful ingredient for the 3D calculations of the
critical curvature since it can avoid numerical experimentation
involving large scale 3D models (e.g. (Lopez Jiménez and
Pellegrino, 2012)).

The problem also opens interesting new questions on the stabil-
ity of the bifurcated solution found; the 2D Bloch wave analysis
presented here pertains to the onset of bifurcation while the com-
plementing 3D numerical calculations indicate a stable post-bifur-
cated solution. Numerical simulations on the similar problem by
Lopez Jiménez and Pellegrino (2012) also show a stable post-bifur-
cated solution (moment continuously increasing with curvature)
while their experiments show otherwise due to damage, thus mak-
ing the post-buckling behavior of these composites a worthy topic
for further investigation.
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