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Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated rubbers

whose mechanical properties are altered by the application of external magnetic fields.

Due to their coupled magnetoelastic response, MREs are finding an increasing number

of engineering applications. In this work, we present a combined experimental and

theoretical study of the macroscopic response of a particular MRE consisting of a rubber

matrix phase with spherical carbonyl iron particles. The MRE specimens used in this

work are cured in the presence of strong magnetic fields leading to the formation of

particle chain structures and thus to an overall transversely isotropic composite. The

MRE samples are tested experimentally under uniaxial stresses as well as under simple

shear in the absence or in the presence of magnetic fields and for different initial

orientations of their particle chains with respect to the mechanical and magnetic

loading direction.

Using the theoretical framework for finitely strained MREs introduced by Kankanala

and Triantafyllidis (2004), we propose a transversely isotropic energy density function

that is able to reproduce the experimentally measured magnetization, magnetostriction

and simple shear curves under different prestresses, initial particle chain orientations

and magnetic fields. Microscopic mechanisms are also proposed to explain (i) the

counterintuitive effect of dilation under zero or compressive applied mechanical loads

for the magnetostriction experiments and (ii) the importance of a finite strain

constitutive formulation even at small magnetostrictive strains. The model gives an

excellent agreement with experiments for relatively moderate magnetic fields but has

also been satisfactorily extended to include magnetic fields near saturation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetorheological elastomers (MREs) are solids consisting of a rubber matrix filled with magnetizable particles,
typically sub-micron sized iron particles (see Rigbi and Jilkén, 1983; Ginder et al., 1999). These composites are members of
a wide class of materials, termed ‘‘active materials’’, in virtue of their strong magnetoelastic coupling properties. More
specifically, the application of an external magnetic field changes their mechanical properties, due to changes induced in
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their microstructure. An example is shown in Fig. 1, where the presence of a nondimensional magnetic field h=r0Ms ¼ 1
(with r0 and Ms denoting the initial density and saturation magnetization of the MRE, respectively) leads to an increase –
compared to the absence of a magnetic field – in the stiffness of an MRE sample subjected to pure shear.

Since the mechanical properties of MREs can be altered rapidly and reversibly when subjected to external magnetic
fields, these materials have been proposed and tested for a variety of applications in which it is desirable to continuously
and controllably vary the effective stiffness of a device under different operating conditions. More specifically, MREs have
been manufactured and studied as adaptive engine mounts and tunable shock absorbers (e.g., Ginder et al., 1999). In
dealing with these materials, it has been observed that microstructure plays an important role in their macroscopic
behavior. Motivated by the desire to enhance the magnetomechanical coupling of the resulting MRE composites, different
microstructures have been created by the application of magnetic fields at curing. As one can see in Fig. 1, the particles in
the MRE solid are arranged in a roughly column-like structure, with their orientation given by the vector N, which
coincides with the direction of the magnetic curing field. However, and in spite of several continuum as well as
micromechanically based studies for MRE’s, no combined experimental/theoretical study exists – to the best of the
authors’ knowledge – where an appropriate continuum framework for finite strain magnetoelasticity has been used to
construct and validate an energy density for such solids, thus explaining the purpose of the present work.

Although a literature review of continuum as well as micromechanically based magnetoelasticity is beyond the scope of
the present work, a few comments are helpful to put the present work in perspective and motivate the particular
continuum model used here. While the majority of motivating experiments in MREs are relatively recent (see Jolly et al.,
1996; Ginder et al., 1999, 2002; Bellan and Bossis, 2002; Gong et al., 2005; Coquelle et al., 2006), the continuum
descriptions for the magnetoelastic response of solids go back to the 1950s and 1960s. The modeling approaches adopted
can be broadly classified into two categories: (i) based on the ‘‘direct’’ method which uses conservation laws of continuum
mechanics, e.g., Truesdell and Toupin (1960), Tiersten (1964), Maugin and Eringen (1972a,b), Pao and Yeh (1973), Pao
(1978) and (ii) based on the ‘‘energy’’ method which uses the calculus of variations to extremize an appropriate potential
energy, e.g., Tiersten (1965), Brown (1966), Maugin and Eringen (1972a,b). These approaches were developed indepen-
dently of each other and, as expected, give different results for the Maxwell stresses, interface tractions and body forces
according to the assumptions adopted in each case.

Recently, based on the work of Brown (1966), Kankanala and Triantafyllidis (2004) proposed a new coupled variational
formulation for finite strain magnetoelasticity. By minimizing the model’s generalized potential energy with respect to its
independent variables, one obtains all the appropriate (mechanical as well as magnetic) governing equations and
boundary/interface conditions. Moreover, it is shown by Kankanala and Triantafyllidis (2004) that the direct and
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Fig. 1. Top left shows the schematics of a specimen subjected to simple shear in the presence of a magnetic field. Top right shows an electron micrograph

(courtesy of Dr. John Ginder) of a MRE comprising 25% of iron particles of sizes ranging from 0:5 mm to 5 mm cured in a magnetic field. The application of

a magnetic field during the curing process leads to formation of particle chains aligned with the curing field direction. In the bottom figure are

experimental results showing the influence of the magnetic field on the MRE’s simple shear response.
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variational approaches result in the same set of governing equations. At the heart of this theory is a free energy density
that depends on the magnetization per unit mass M of the material, in contrast to other recent variational formulations
(e.g., Brigadnov and Dorfmann, 2003; Dorfmann and Ogden, 2003), where the magnetic field B is taken as the independent
variable (see also Kovetz, 2000). The reason for choosing the specific magnetization M as an independent variable lies in
the facts that (i) this quantity vanishes outside the material and (ii) is unconstrained, whereas the magnetic field B is
present in the entire space, both inside and outside the solid in question and must satisfy a divergence-free constraint.

In addition to the continuum-based approach, a number of micromechanically based studies have recently appeared on
the same subject. Their purpose has been to provide mean field (i.e., homogenized) theories for the macroscopic behavior
of MRE’s using a wide variety of simplifying assumptions about the local strain and magnetization fields, e.g., Jolly et al.
(1996), Yin et al. (2006) – for particles aligned in chains, Liu et al. (2006) – for inclusions in the dilute limit, Corcolle et al.
(2008) using small strain Hashin–Shtrikman homogenization, Borcea and Bruno (2001) – who use a dipole model as a
fundamental building block for a small strain homogenized MRE model. Due to technical difficulties associated with large
kinematics, the previously mentioned micromechanically based studies are in the small strain context, save for the recent
work by Ponte Castañeda and Galipeau (2011).

The present work uses the theoretical formulation proposed by Kankanala and Triantafyllidis (2004) to determine the
constitutive model for some recent MRE experiments. The composites in question are manufactured in the presence of a
curing magnetic field and their iron particles form chain-like structures, thus requiring an anisotropic formulation for the
energy density. Following this introduction, the description of the experiments is given in Section 2. The continuum model
used for the experiments is presented in Section 3 and the work concludes with a discussion in Section 4. The
micromechanical justification of the nonlinear mechanical response of the MRE at small strains is presented in
Appendix A.

2. Experiments

2.1. Sample preparation and description

The MREs used in this study are similar to the ones used and described by Ginder et al. (1999). A brief description is
hereby provided for the sake of completeness, but the interested reader is referred for a more detailed account to
Kankanala (2007). The MREs consist of nearly spherical carbonyl iron particles (ISP, grade S-3700) embedded in natural
rubber, i.e., cis-polyisoprene. The particle sizes range from approximately 0:5 mm to 5 mm and have a volume fraction of
25%. With the aid of the necessary crosslinkers and processing materials, these materials are mixed together on a typical
two-roll mill. The resulting mixture is compression molded into disks in a mold specially designed with a wire coil which
acts as the source of a 0.8 T magnetic field that is applied to the material during the curing process at a temperature of
roughly 150 1C for approximately 15 min.

MRE samples are molded in disks of 60 mm in diameter by 2 mm and 10 mm thicknesses with the applied field during
curing normal to the ends of the disks. Cylindrical samples (4.5 mm radius) for the magnetostriction tests described below
are obtained from the 10 mm thick disks using standard water jet cutting technology. To assess anisotropic effects due to
the chain-like structure of the particles, one set of samples is obtained with the cylinder axis normal to the ends of the
disks (i.e., particle chain orientation parallel to cylinder axis and henceforth referred to as ‘‘parallel sample’’ when
necessary) and the other set with the cylinder axis parallel to the ends of the disks (i.e., particle chain orientation
perpendicular to the cylinder axis and henceforth referred to as ‘‘perpendicular sample’’ when necessary). Samples needed
for the simple shear tests are manually cut out from the 2 mm thick disks into desired specimen sizes.

2.2. Magnetization and magnetostriction

A special dilatometer (see Fig. 2, designed by Ginder et al., 2002) is used to measure the strains in the cylindrical MREs
induced by an externally applied magnetic field. The sample is in contact with the polished lower arm so that a length
change in the specimen results in rotation of the lever about the low-friction sapphire bearings. At the free end of the lever,
a capacitance sensor (Micro-Epsilon Capa NCDT Series 600) is fixed to the lower part of the fixture. As described in the
product manual, the capacitance distance measurement is based on the principle of a parallel plate capacitor. When a
constant AC current flows through the sensor capacitor, the amplitude of the AC voltage at the sensor is proportional to the
distance between the capacitor electrodes. In this regard, the two plate electrodes are formed by the sensor and the
(electrically conducting) lever arm. The capacitance sensor is calibrated so that a relation between voltage change (1 V)
and the displacement of the lever arm is known (0.1 mm). Given the dimensions of the fixture, the length change in the
specimen due to a known displacement at the end of the lever arm is calculated based on simple geometry. The magnetic
field generated by the electromagnet (GMW 5403) is cycled, starting from zero to a maximum value then to a minimum
value and finally back to zero. To ensure reasonable levels of repeatability, data were obtained for at least two cycles. The
applied field near (i.e., o1 mm from the sample boundary) the MRE specimen is measured using a Hall-effect Gaussmeter
(Lakeshore 450). On account of the continuity in the tangential component of the field h at the boundary, this measured
value parallel to the sample component of h just outside the sample may be taken to be the corresponding value just inside
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Fig. 2. Experimental setup to measure the magnetization and magnetostriction of an MRE for different uniaxial preloads.
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the sample (assuming a uniform h throughout the volume of the material). A coil concentric with the specimen is used to
infer the magnetic field in the specimen.

Compressive preloads are applied to the sample by placing weights on the lever-arm. Tensile preloads are applied by
first affixing the bottom end of the sample to the lower part of the fixture and the top end to the lever-arm using a
cyanoacrylate adhesive. A mechanical spring (e.g., McMaster-Carr ‘‘394-11’’, 0.4 gm, 16 mm, with a known force–
displacement relationship) is then placed between the lever-arm and the lower part of the fixture. The compressed
spring pushes against the lever arm which manifests as a tensile preload on the specimen. Note that the compression in
the spring with initial length � 8:5 mm is an order of magnitude less than the length change (� 0:05 mm) in the specimen.
Hence, the change in the tensile preload, due to the change in the spring compression as the lever arm accommodates the
specimen’s length change, is small ðr10%Þ and can be justifiably taken to be approximately constant.

As a consequence of the microstructure shown in Fig. 1, the MRE composite exhibits transversely isotropic symmetry
with respect to the particle chain orientation vector N. Moreover, the MRE has a longitudinal shear modulus
G¼1.0374 MPa associated with the loading shown in Fig. 1, where the shearing direction is normal to the particle chains,
and a magnetization saturation value m0r0Msffi0:45 T with m0 denoting the magnetic permeability in vacuum, r0 the
initial density of the MRE and Ms the saturation magnetization of the MRE.

The nondimensional magnetization M=Ms in response to the nondimensional magnetic field h=r0Ms applied parallel to
the particle chains (hJN) is shown in Fig. 3a. The response is obtained for the conditions of (i) zero external traction
ðs=G¼ 0Þ, (ii) compressive ðs=Go0Þ and (iii) tensile ðs=G40Þ preloads. The response is linear in the nondimensional
applied field range of 9h=r0Ms9r0:3 (approximately) with a magnetic susceptibility of wm ¼m=h¼ 0:5 or a magnetic
permeability, mr ¼ B=h¼ m0ð1þm=hÞffi1:5m0. Saturation in magnetization occurs for nondimensional magnetic fields of
h=r0Ms� 1. The saturation value is reasonable since m0r0Ms ¼ 2 T for Fe and m0r0Msffi0:45 T for the MRE composite while
the volume fraction of the iron particles in the MRE is 25%, as indicated earlier. For dimensionless external prestresses in
the range of �0:192rs=Gr0:192, we observe only a negligible change in the magnetization response. It is also worth
noting that there is no indication of hysteresis in the M2h response.

To evaluate the degree of magnetic anisotropy of the chosen MRE, the nondimensional magnetization response of a
perpendicular sample (hJN) is compared with the response obtained from the parallel sample in Fig. 3b. It is readily seen
that the magnetic susceptibility, wm, drops to 0.1 (or mr ¼ 1:1) for the perpendicular sample from wm ¼ 0:5 (or mr ¼ 1:5) for
the parallel sample. As expected, the saturation of magnetization, which is a material constant, is independent of the
particle chain orientation.

Therefore, two main observations can be made from these experiments: first, the magnetization response is practically
insensitive to the applied prestress, which means that the stress-induced change of interparticle distances has a negligible
effect on the average magnetization of the material. Second, the magnetization response is sensitive to particle chain
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orientation with respect to the direction of the applied magnetic field and especially in the initial, linear range of this
response. The decrease of the initial M2h slope from the parallel to the perpendicular case is attributed to the different
microgeometric particle arrangements which result in different macroscopic magnetization responses. It is also worth
noticing that when the Fe particles reach magnetic saturation, the corresponding microgeometry differences for the two
chain orientations, relatively to the applied magnetic field, are insignificant to the overall saturation magnetization.

The magnetostriction strain De versus the applied nondimensional magnetic field h=r0Ms is shown in Fig. 4. In Fig. 4a,
the magnetostriction is plotted for different preloads s=G, which are aligned with the applied magnetic field and the
particle chain ðhJNÞ. In general, the magnitude of magnetostriction increases with the magnitude of the nondimensional
preloads. Elongation strains increase from 0.34% for s=G¼ 0 to about 0.48% for s=G¼�0:288. By comparison, the strains in
the MREs are about double those seen in a magnetostrictive material like Terfenol-D (from 0.15% to 0.2%, Moffett et al.,
1991). Negative strains are seen for all tensile prestresses with saturation strains of about 0.6% for s=G¼ þ0:288. Although
a small amount of hysteresis is present in these experiments, especially near saturation levels, it is ignored in the
subsequent modeling.

Interestingly, the magnetostriction response is not symmetric with respect to the sign of the prestress in Fig. 4a. Notice
that the sample expands ðDe40Þ for zero or negative prestresses ð�0:288rs=Gr0Þ and contracts ðDeo0Þ for adequately
large tensile prestresses ð0:096rs=Gr0:288Þ. This implies a strong nonlinear effect of the applied prestress on the
resulting magnetostriction, which is directly attributed to the purely mechanical response of the MRE. More specifically,
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due to the anisotropy of the MRE induced by the particle chains, a significant tension–compression asymmetry is present
even at relatively small macroscopic strains ð � 225%Þ. In this regard, the constitutive relation between prestrains and
prestresses is nonlinear even at strains in the order of � 225%, which suggests that the range of validity of small-strain
approximations diminishes significantly in the case of initially anisotropic MREs of the type considered here. A
prototypical mechanical model problem is proposed in the Appendix in order to show the effect of the microstructure
on the overall stress–strain response of the MRE, particularly the resulting tension–compression asymmetry at relatively
small macroscopic strains.

In addition to the tension–compression asymmetry of the magnetostrictive experiments in Fig. 4a, one can distinguish
an initial quadratic range of the De2h response, expected at small strains and magnetic fields, followed by a saturation
range at larger magnetic fields. The saturation strain levels are also influenced by prestress with strongest influence
appearing for tensile prestresses. More specifically, we observe that while for zero or negative prestress the De2h response
is monotonic, for adequately large positive prestresses the De2h response goes through a strain maximum before reaching
a saturation level.

In Fig. 4b, we investigate the influence of particle chain orientation with respect to the applied magnetic field for two
different compressive preloads. Notice that the initial curvature of the De2h response increases significantly for the case of
particle chain orientation perpendicular to the applied magnetic field ðh ? NÞ, as also do the corresponding saturation
strains which are three to four times larger (depending on prestress) than those corresponding to the parallel case ðhJNÞ.

Motivated by these observations for both the parallel and perpendicular samples and particularly by the counter-
intuitive results for the magnetostriction (e.g., De40 for no prestress), the authors propose a deformation mechanism,
sketched in Fig. 5, which could explain the previously observed responses. The proposed local deformation mechanism to
Magnetic field parallel to particle chain, �/G ≤ 0 

h h

Near
Saturation

Magnetic field perpendicular to particle chain, �/G < 0 

h h

Near
Saturation

Magnetic field parallel to particle chain, �/G≥ 0.096   

h h

Initial state Apply h

Initial state Apply h

Initial state Apply h

Near
Saturation

Fig. 5. Mechanism of deformation upon application of external magnetic field in a direction parallel and perpendicular to the particle chains and

different prestresses s=G. The direction of the large (green-color) arrows indicates the direction of effective magnetic dipoles, i.e., from south to north

pole. The small (red-color) arrows indicate the direction of motion of the particle due to the magnetic forces. (a) Magnetic field parallel to particle chain,

s=Gr0. (b) Magnetic field perpendicular to particle chain, s=Go0. (c) Magnetic field parallel to particle chain, s=GZ0:096. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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be detailed in the following has its roots in the original work of Klingenberg and Zukoski (1990) (in the context of
electrorheological suspensions) and Lemaire and Bossis (1991) and Bossis and Lemaire (1991) (in the context of magnetic
suspensions), who found that between a pair of particles subjected to a magnetic (or electric) field, there exists a restoring

force which is, in general, non-aligned to the applied magnetic (or electric) field and tends to align the particles with the
applied magnetic (or electric) field so that they form magnetic (or electric) dipoles. Similar observations have also been
made in the more recent work of Borcea and Bruno (2001) in the context of two-particle magnetostatic systems at small
strain.

As sketched in Fig. 5a for s=Gr0, the particles are taken to be somewhat aligned in a staggered configuration. However,
it is important that we do not allow for a perfect alignment of the particles in accord with the electron micrograph shown
in Fig. 1. Then, by application of the field h parallel to the particle chain, the particles become magnetic dipoles with
effective magnetization direction indicated by the large (green-color) arrows that tend to align themselves with the
externally applied magnetic field. The optimal configuration would be the one that the south magnetic pole of a particle on
top approaches the north magnetic pole of the particle below. In order to achieve such a configuration, the particles must
move in a direction almost perpendicular to h, as indicated by the small (red-color) arrows in Fig. 5a. This interparticle
motion leads to a contraction in the direction normal to h and consequently due to matrix incompressibility to an overall
extension of the MRE along h.

The mechanism remains exactly the same in the case of the perpendicular sample with s=Go0, as shown in Fig. 5b.
In fact, in the perpendicular sample, due to the presence of magnetic dipoles with the same directionality as well as the
small interparticle distance normal to the externally applied magnetic field, the repulsive forces of the neighboring
particles are even stronger than in the parallel case. This induces a much more significant motion of the particles in the
direction normal to the applied field h. This is done in order to finally reach a state where pairs of particles are created
forming pair-magnetic dipoles in the direction of the applied field h, while at the same time increasing the distance
between two such neighboring dipoles. This results again in a contraction normal to the applied magnetic field and hence
due to matrix incompressibility in an extension parallel to h. Only this extension is larger in the perpendicular sample
than in the parallel one since the particles are forced to move more in order to form these pair-magnetic dipoles.
Consequently, one obtains a larger magnetostriction for the perpendicular sample than for the parallel one, which is in
Fig. 6. Experimental setup for measuring the simple shear response of an MRE under different magnetic fields.
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accord with the experimental results in Fig. 4b. We should also mention that the previously proposed deformation
mechanism is also present in isotropic MREs, where positive magnetostrictions have been observed for no-prestress
samples (Diguet et al., 2010).

By contrast, if adequately large positive prestresses (e.g., s=GZ0:096) are applied then the interparticle distance
increases and attractive forces between particles appear now in the direction of the applied magnetic field, leading to an
overall compressive magnetostriction, as shown in Fig. 5c. However, as we observe here it is necessary that the particles
are significantly far apart in order to result in an overall negative magnetostrictive response for the MRE.

2.3. Simple shear

The simple shear response of the MRE specimens is obtained by cutting out two rectangular slabs of dimensions
24 mm�12 mm�2 mm from the elastomer disks mentioned in Section 2.1 and bonding each sample, using a
cyanoacrylate adhesive, between the equipotential plate on one side and the ‘‘tongue’’ of the double-lap shear fixture
on the other side, as shown in Fig. 6.2 The double-lap fixture is attached to a conventional servohydraulic testing machine
(Instron model 1331). The shear stresses are applied in a plane perpendicular to the direction of the particle chain
orientation, the latter being parallel to the direction of the applied magnetic field. The external magnetic field is generated
by a C-frame electromagnet (GMW 3470) mounted around the double-lap fixture, as shown in Fig. 6. An operational
amplifier power supply (Kepco BOP 50-8) is used to drive the electromagnet. The average flux density in the MRE sample
is found by using a sense coil wound (10 turns) around the circumference of the sample and integrating the voltage
induced in the coils using a fluxmeter (Walker Scientific, model MF-3D). The field h in the gap between the equipotential
plates (see Fig. 6) close to the specimen (i.e., � 1 mm from the side) is measured using a Hall-effect Gaussmeter
(Lakeshore 450).

The experimentally observed response of the MRE when subjected to simple shear loading in the absence or in the
presence of a magnetic field parallel to the particle chain orientation is shown in Fig. 7. Notice that the initial longitudinal
shear modulus G appears to be rather insensitive to the presence of a strong magnetic field, while the material becomes
stiffer under the presence of a magnetic field once shear strain increases. It should be pointed out here that the magnetic
field effect on the material’s simple shear response is much less pronounced (of the order of 10% for g¼ 0:15) than in the
previously discussed cases of magnetostriction. This indicates that if maximum magnetoelastic coupling effects are
required in application, shearing is the least effective method to achieve them.

3. Modeling

In this section, we review first the constitutive laws and boundary conditions for magnetoelastic continua. For a
detailed derivation of the governing equations, the reader is referred to the work of Kankanala and Triantafyllidis (2004),
and the references therein. Unless otherwise indicated, all the required field quantities are defined in the current
configuration. We use standard notation with bold letters representing tensors and normal script scalars. In what follows,
general constitutive laws are presented first. Next, the constitutive response of the MRE at small magnetic fields is
analyzed followed by the discussion of the MRE constitutive response at large magnetic fields. Finally, the quasiconvexity
of the proposed energy density is discussed.
2 The test procedure generally utilizes the methods used previously by Ginder et al. (1999) in dynamic simple shear testing.
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3.1. Free energy and general constitutive laws

Of interest here is the determination of the specific free energy bc that best fits the MRE experiments. The general form
of the specific Helmholtz free energy (i.e., per unit mass) is given bybc ¼ bcðC,MÞ, C¼ FT

�F, ð1Þ

where F is the material’s deformation gradient (FT denotes its transpose), C denotes the right ‘‘Cauchy–Green’’ tensor and
M the specific magnetization. Following Kankanala and Triantafyllidis (2004) (c.f. relations (2.42) and (2.44) in that
reference), we have the following expression for the total Cauchy stress r:

r¼ r 2F�
@bc
@C
�FT
þm0ðMhþhMÞ

" #
þm0 hh�

1

2
ðh�hÞI

� �
: ð2Þ

Here, r is the current material density, while it is noted that in vacuum (i.e., r¼ 0), the total stress is non-zero and equals
the Maxwell stress m0½hh�ð1=2Þðh�hÞI�. In addition, the field h is given by

m0h¼
@bc
@M

: ð3Þ

The surface tractions t can be readily obtained from (2) (see (2.48) in Kankanala and Triantafyllidis, 2004) by

t¼ r 2F�
@bc
@C
�FT
þm0Mh�

rm0

2
ðM�nÞ2I

" #
�n, ð4Þ

with n denoting the unit normal to the surface under consideration.
As already pointed out in Section 2, the material under investigation is a transversely isotropic composite since the iron

particles form chains along a certain direction. This implies that the free energy function bc should also depend on the unit
vector N (see Fig. 1), which defines the initial orientation of the particle chains. Thus,bc ¼ bcðC,N,MÞ, N�N¼ 1: ð5Þ

Using the general theory of transversely isotropic functions (Adkins, 1959, 1960; Pipkin and Rivlin, 1959) that depend
on a rank-two tensor, the right Cauchy–Green tensor C, and two vectors, the orientation vector N and the magnetization M,
one obtains that bc is a function of ten independent invariants, namely

I1 ¼ tr C, I2 ¼
1
2½ðtr CÞ2�tr C2

�, I3 ¼ det C,

I4 ¼N�C�N, I5 ¼N�C2
�N,

I6 ¼M�M, I7 ¼M�C�M, I8 ¼M�C2
�M,

I9 ¼ ðM�NÞ
2, I10 ¼ ðM�NÞðM�C�NÞ: ð6Þ

The elastomeric composite under investigation is nearly incompressible, hence use is made of the incompressibility
condition, det F¼ det C¼ 1, which implies that the free energy function is independent of I3, while the current material
density r equals the initial one r0, i.e., r¼ r0. Moreover, motivated by recent results on fiber reinforced polymers (e.g.,
deBotton et al., 2006), we also make the hypothesis that the energy function does not depend on I2 and I5. For additional
simplicity, we also assume that the energy function depends on the invariants in an additive manner, allowing us to use a
free energy function of the form:

r0
bc ¼CðI1,I4,I6,I7,I8,I9,I10Þ ¼

X10

K ¼ 1
Ka2;3,5

CK ðIK Þ: ð7Þ

Consequently, Eqs. (3) and (4) for the field h and traction t, respectively, are given by

r0m0h¼
X10

K ¼ 6

@C
@IK

@IK

@M
ð8Þ

and

t¼ 2F�
X10

K ¼ 1
Ka2;3,5

@C
@IK

@IK

@C
�FT
þm0r0Mhþ p�

m0

2
ðr0M�nÞ2

� �
I

24 35�n, ð9Þ

where the terms @IK=@C and @IK=@M are obtained from (6). In expression (9), p is the Lagrange multiplier associated with
the constraint of incompressibility I3 ¼ 1 and denotes the pressure, which is evaluated from the lateral traction boundary
conditions of the specimen.
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3.2. Constitutive response for small magnetic fields

Finding an energy density C that best fits the experiments reported in Section 2 is done in two steps: first an energy
density function is sought that describes the experiments for relatively small magnetic fields, since for 9h=r0Ms9o0:3 the
M2h response is essentially linear and the De2h response essentially quadratic. For this case only a handful of constants
are fitted to selected tests. The resulting energy density shows excellent agreement with all available test data for small
magnetic fields. The second step pertains to finding an energy density function valid for large magnetization, a task
detailed in the next subsection.

The experiments presented in the previous section involve three different setups; (a) uniaxial stress tests in the
direction of a magnetic field which is aligned with the particle chains, (b) uniaxial stress tests in the direction of a magnetic
field which is perpendicular to the particle chains and (c) simple shear tests where the particle chains are initially aligned
with the applied magnetic field.

3.2.1. Uniaxial stress tests with magnetic field aligned with particle chains

In these tests, the MRE specimen is a cylinder with its symmetry axis along the e1 direction, which is also the initial
particle chains orientation. The specimen is subjected to uniaxial prestressing t and a uniform field h, both in the direction
of the cylinder axis, such that hJN. Denoting by l the stretch ratio along the axial direction e1 and considering the
material’s incompressibility and transverse isotropy, the right Cauchy–Green tensor C, the particle chain orientation N, the
field h and the magnetization per unit mass M take the form:

C¼ l2e1e1þ
1

l
ðe2e2þe3e3Þ, N¼ e1, h¼ he1, M¼Me1: ð10Þ

Making use of (10), we obtain the following relation between M2h from (8), i.e.,

r0m0h¼ 2M
@C
@I6
þl2 @C

@I7
þl4 @C

@I8
þ
@C
@I9
þl2 @C

@I10

� �
, ð11Þ

whereas the axial traction, defined in (9), t¼ se1 at the end section with normal n¼ e1 becomes

s¼ 2
@C
@I1

l2
�

1

l

� �
þ
@C
@I4

l2
þM2 @C

@I7
l2
þ2

@C
@I8

l4
þ
@C
@I10

l2
� �� �

þm0r0M h�
r0M

2

� �
: ð12Þ

In the above expression use has been made of the result for the scalar pressure

p¼�
2

l
@C
@I1

, ð13Þ

obtained from the requirement that the lateral tractions t¼ 0 for n¼ e2 (or equivalently n¼ e3 due to transverse isotropy
and axisymmetry in this case).

Recall that the experimental results show that the overall magnetostriction obtained is small, i.e., 9De951. On the other
hand, the applied prestress s=G (with G denoting the longitudinal shear modulus of the MRE) has a significant nonlinear
effect on the magnetostriction results, as discussed in the context of Fig. 4a. Consequently the influence of the resulting
prestretch, denoted as l0 in the direction e1 (and hence 1=

ffiffiffiffiffi
l0

p
in the directions e2 and e3, respectively due to

incompressibility), is not negligible leading to the following expressions for the stretch ratio along e1

l¼ l0½1þDeþOðDe2Þ�: ð14Þ

By substituting (14) in Eqs. (11) and (12) and by consideration of only first order terms in De, we obtain the expressions
for the initial slope of the M2h response:

@M

@h

				
De ¼ 0,M ¼ 0

¼
m0r0

2

@C
@I6
þl2

0

@C
@I7
þl4

0

@C
@I8
þ
@C
@I9
þl2

0

@C
@I10

� ��1

De ¼ 0,M ¼ 0

ð15Þ

and the initial curvature of the De2h response

@2De
@h2

				
De ¼ 0,M ¼ 0

¼
m0r2

0

2
�2

@C
@I6
þ
@C
@I9
þ2l2

0

@C
@I7
þ
@C
@I10

� �
þ3l4

0

@C
@I8

� �� �


�
1

l0
þ2l2

0

� �
@C
@I1
þ2l2

0

@C
@I4
þ2 l2

0�
1

l0

� �2 @2C
@I1@I1

þ2l4
0

@2C
@I4@I4

" #�1
@M

@h

� �2
9=;

De ¼ 0,M ¼ 0

, ð16Þ

with @M=@h given by (15).
In the above two expressions, the prestretch l0 is evaluated in terms of the applied prestress, s, by considering the

purely mechanical response (i.e., De¼ 0 and M¼0) in (12), i.e., by the nonlinear algebraic equation:

s¼ 2 l2
0�

1

l0

� �
@C
@I1
þl2

0

@C
@I4

� �
De ¼ 0,M ¼ 0

, ð17Þ

thus completing the governing equations for this test.
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3.2.2. Uniaxial stress tests with magnetic field normal to particle chains

In these tests, the MRE specimen is a cylinder with its symmetry axis along the e1 direction, which is perpendicular to
the initial particle chains orientation e2. The specimen is subjected to uniaxial prestressing t and a uniform field h, both in
the direction of the cylinder axis, such that h ? N. Denoting by l and l the stretch ratios along the axial direction e1 and
particle chain direction e2, respectively, and considering the material’s incompressibility, the right Cauchy–Green tensor C,
the particle chain orientation vector N, the field h and the magnetization per unit mass M take the form

C¼ l2e1e1þl
2
e2e2þ

1

l2l
2

e3e3, N¼ e2, h¼ he1, M¼Me1: ð18Þ

Making use of (18), we obtain the following relation between M2h from (8):

r0m0h¼ 2M
@C
@I6
þl2 @C

@I7
þl4 @C

@I8

� �
: ð19Þ

Note that in this case of h ? N, I9 and I10 vanish, since N�M¼ 0.
The corresponding axial traction, defined in (9), t¼ se1 at the end section with normal n¼ e1 becomes

s¼ 2
@C
@I1

l2
�

1

l2l
2

 !
þM2l2 @C

@I7
þ2l2 @C

@I8

� �" #
þMm0r0 h�

r0M

2

� �
: ð20Þ

Considering next the traction-free boundary conditions, t¼ 0 for n¼ e2 and t¼ 0 for n¼ e3, we obtain respectively two
equations for the pressure p:

p¼�
2

l2l
2

@C
@I1
¼�2l

2 @C
@I1
þ
@C
@I4

� �
: ð21Þ

The first of these equations has already been taken into account in (20), while the second will be used to solve for l.
We again use an expansion about small magnetostrictive strains De and �n De but large prestretches l0 and l0 along e1

and e2 (strains along e3 are found from incompressibility), such that

l¼ l0½1þDeþOðDe2Þ�, l ¼ l0½1�nDeþOðDe2Þ�, ð22Þ

where n is the initial poisson ratio along e2, to be determined later in this section.
By substituting (22) in Eqs. (19) and (20), we obtain the following expressions for the initial slope of the M2h response:

@M

@h

				
De ¼ 0,M ¼ 0

¼
r0m0

2

@C
@I6
þl2

0

@C
@I7
þl4

0

@C
@I8

� ��1

De ¼ 0,M ¼ 0

ð23Þ

and the initial curvature of the De2h response

@2De
@h2

				
De ¼ 0,M ¼ 0

¼
m0r2

0

2
�2

@C
@I6
þ2l2

0

@C
@I7
þ3l4

0

@C
@I8

� �� �


� 2 l2
0þ

1�n

l2
0l

2

0

0@ 1A @C
@I1
þ

2ðl4
0l

2

0�1Þð�nl2
0l

4

0þnþl
4
0l

2

0�1Þ

l4
0l

4

0

0@ 1A @2C
@I1@I1

24 35�1

@M

@h

� �2
9=;

De ¼ 0,M ¼ 0

: ð24Þ

In the above expressions, the prestretches l0 and l0 are evaluated by considering the purely mechanical response
(i.e., De¼ 0 and M¼0) in (20) and (21), i.e., by solving the system of two coupled nonlinear algebraic equations

s¼ 2 l2
02�

1

l2
0l

2

0

24 35 @C
@I1

						
De ¼ 0,M ¼ 0

,
1

l2
0l

2

0

@C
@I1
�l

2

0

@C
@I1
þ
@C
@I4

� �24 35
De ¼ 0,M ¼ 0

¼ 0: ð25Þ

By considering the OðDeÞ terms in the second equation of (21), one finds the poisson ratio, n, along e2 to be

n ¼ l2
0l

2

0

@C
@I1
þðl4

0l
2

0�1Þðl2
0l

4

0�1Þ
@2C
@I1@I1

� �


� l2
0l

2

0ðl
2
0l

4

0þ1Þ
@C
@I1
þl4

0l
6

0

@C
@I4
þðl2

0l
4

0�1Þ2
@2C
@I1@I1

þl4
0l

8

0

@2C
@I4@I4

� ��1
)

De ¼ 0,M ¼ 0

, ð26Þ

thus completing the set of equations for this test.

3.2.3. Simple shear tests subjected to a magnetic field along the initial particle chain direction

In the case of simple shear loading with strain g, i.e., with F¼ Iþge1e2, where the reference particle chain direction and
the applied magnetic field are aligned in the e1 direction, one has

C¼ e1e1þe3e3þð1þg2Þe2e2þgðe1e2þe2e1Þ, N¼ e1, h¼ ðh�r0M1Þe1, M¼M1e1þM2e2: ð27Þ
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In the above expressions, use has been made of the continuity of the component of the magnetic field b¼ m0ðhþr0MÞ
along the e1 direction and the component of h along the e2 direction.

Substitution of these expressions in (8) gives the component of the field h in the e1 direction:

mr0ðh�r0M1Þ ¼ 2
@C
@I6

M1þ2
@C
@I7
ðM1þM2gÞþ2

@C
@I9

M1þ2
@C
@I8
½M1ð1þg2ÞþM2gð2þg2Þ�þ

@C
@I10
ð2M1þM2gÞ ð28Þ

and the component of the field h in the e2 direction

0¼ 2
@C
@I6

M2þ2
@C
@I7
½M1gþM2ðg2þ1Þ�þ2

@C
@I8
½M1gðg2þ2ÞþM2ðg4þ3g2þ1Þ�þ

@C
@I10

M1g: ð29Þ

The traction (defined in (9)) on the face with normal n¼ e1 is t¼ se1þte2, where the shear stress t is given by

t¼ 2g @C
@I1
þ
@C
@I7
ð2M1M2þ2M2

2gÞþ
@C
@I10

M1M2þ2
@C
@I8
½M2

1gþM1M2ð3g2þ2ÞþM2
2gð2g

2þ3Þ�þm0r0ðh�r0M1ÞM2, ð30Þ

thus completing the set of equations for the shear tests for large shear strains g.
Specializing the above expressions for small shear strains, i.e., expanding about g¼ 0 and keeping only OðgÞ terms, one

obtains from (29) the following relation between M2 and M1:

M2 ¼�M1
@C
@I7
þ2

@C
@I8
þ

1

2

@C
@I10

� �
@C
@I6
þ
@C
@I7
þ
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@I8

� ��1
( )

g ¼ 0

gþOðg2Þ, ð31Þ

while, the initial shear stress–strain slope becomes
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 !#)
g ¼ 0

: ð32Þ

Notice that the above two equations are valid for arbitrary values of the field h and hence of magnetostriction.

3.2.4. Energy density function for small magnetic fields

The energy density function describing the MRE response for small magnetic fields requires up to second-order terms of
the magnetization field M. Consequently, linear terms of the invariants from I6 to I10 are adequate for our purpose.
However, due to the strong influence of the prestress on the magnetostriction results observed experimentally, nonlinear
terms of the invariants I1 and I4 will be required, leading to the following expression for the energy density:

C¼
G

2
C1

X5

k ¼ 1

d1kðI1�3ÞkþC4

X4

k ¼ 2

d4kðI4�1ÞkþC6
I6

M2
s

þC7
I7

M2
s

þC8
I8

M2
s

þC9
I9

M2
s

þC10
I10

M2
s

( )
: ð33Þ

The evaluation of the coefficients in (33) is carried out with the following sequence:
�
 Using the M2h initial slope in the experimental curve corresponding to the hJN tests for s=G¼ 0 in Fig. 3a, we extract
the coefficient C9.

�
 Using the M2h initial slope in the experimental curve corresponding to the h ? N tests for s=G¼�0:192 in Fig. 3b,

we extract the coefficient C6.

�
 Using the De2h initial curvature in the experimental curve corresponding to the hJN tests for s=G¼ 0 and
s=G¼�0:192 in Fig. 4a, we extract a coupled linear system for the coefficients C7 and C10.

�
 Using the De2h initial curvature in the experimental curve corresponding to the h ? N tests for s=G¼�0:192 in Fig. 4b,

we extract the coefficient C8.

�
 Using the entire t2g curve in Fig. 7 for zero applied nondimensional magnetic field h=r0Ms, we fit the constants, C1 and

d1k (with k¼1,5).

�
 Using the De2h initial curvature in the experimental curve corresponding to the hJN tests for s=G¼ 0:192 in Fig. 4a,

we extract the coefficient C4, whereas the constants d4k (k¼2,4) are obtained using the numerical results presented in
Appendix.

The computed values for these coefficients are

C1 ¼ 1, d11 ¼ 1, d12 ¼�7, d13 ¼ 120, d14 ¼�700, d15 ¼ 3000,

C4 ¼ 0:103, d42 ¼ 1, d43 ¼�21, d44 ¼ 90,

C6 ¼ 0:36, C7 ¼�0:32, C8 ¼ 0:108, C9 ¼�0:12, C10 ¼ 0:075: ð34Þ

Notice in (34) that two of the coefficients, C7 and C9 are negative. Nevertheless, the overall energy density C remains
always positive, since C64C9 (with I9 ¼ I6 for hJN and I9 ¼ 0 for h ? N) and C6þC7CþC8C240 for all C. The constants C4,
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C9 and C10 are non-zero due to the presence of particle chains. Values of these constants depend strongly on details of the
particle chain geometry, which is obtained by varying the curing magnetic fields (see Chen et al., 2007). On the other hand,
when the particles are distributed isotropically in the MRE, all the terms that depend on the orientation vector N should be
set equal to zero, i.e., C4 ¼ C9 ¼ C10 ¼ 0.

Theoretical predictions, based on the energy density of Eq. (33), evaluated for the coefficients in (34), are compared to
experimental results in the case of small to moderate magnetic fields in Figs. 8–10. More specifically, Fig. 8 shows the
comparison between experiments (discrete symbols, for three different prestresses s=G) and theory (continuous straight
lines, in view of the quadratic dependence of the energy density C on magnetization M) for the dimensionless
magnetization M=Ms versus applied nondimensional magnetic field h=r0Ms. The model captures fairly accurately the
different initial slopes of the magnetization versus magnetic field curves for the two different particle chain alignments
(hJN and h ? N) as well as the small influence of prestress on these slopes. It is also worth mentioning that for h ? N, the
M2h response is linear for h=r0Ms up to the value of 0.4, while for hJN deviations of the M2h response from linearity
occur for lower nondimensional magnetic fields h=r0Ms for values of about 0.25.

In Fig. 9, we show the comparison between experiments (discrete symbols for different prestresses) and theory
(continuous lines for the parabolic De2h curves in view of the quadratic dependence of the energy density C on
magnetization M) for the magnetostrictive strain De as a function of the applied nondimensional magnetic field h=r0Ms.
More specifically, the applied nondimensional magnetic field h=r0Ms is parallel to the particle chain orientation in Fig. 9a
and perpendicular in Fig. 9b. Once again the theoretical model, which is fitted using three experiments from the parallel
case shown in Fig. 9a (i.e., s=G¼ 0,70:192 for hJN) and one experiment from the perpendicular case shown in Fig. 9b
(i.e., s=G¼�0:192 for h ? N), predicts the remaining experimental results.
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In Fig. 10, we observe that the model is able to reproduce adequately the entire t2g response in both cases of zero and
non-zero applied magnetic field, even though the initial slope for h=r0Ms ¼ 1 is not very well captured in this case. It
should be mentioned here that in the shear experiment the resulting magnetizations have a moderate magnitude, i.e.,
M1=Ms � 0:6 and M2=Ms � 0:03 and hence the energy density without saturation, defined in (33), is sufficient for the
description of this case.

3.3. Constitutive response for large magnetic fields

In order to account for magnetic saturation, i.e., for the nonlinear part of the M2h curves of the MRE response in Fig. 3
and the non-quadratic part of the De2h curves in Fig. 4, the energy density function (33) needs to be modified. To this end,
in order to better approximate the experimental results at nondimensional magnetic fields h=r0Ms40:5, the energy
function C, defined in (33), is augmented by the following term:

Csat ¼Cþ
G
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The motivation for the last term in bracket is that, in the absence of mechanical interactions, the predicted M2h response
behaves as M�tanhðMÞ, thus giving good fit with experimental observations near magnetic saturation. The additional non-
quadratic I6 and I9 terms in (35) are added to improve the non-quadratic magnetostriction response at larger magnetic
fields (h=r0Ms40:5). In view of this, the function (35) is found to give sufficiently good predictions for the M2h and De2h

experiments up to h=r0 Ms ¼ 1, as shown in Figs. 11 and 12, respectively.
In particular, Fig. 11 compares M2h experimental and modeling curves that include magnetization saturation for

several prestresses s=Gr0. Part (a) corresponds to particle chains oriented along the applied magnetic field ðhJNÞ, while
part (b) compares results from part (a) with results obtained for the case where the particle chains are perpendicular to the
applied magnetic field ðhJNÞ with prestresses s=Go0. The agreement of the model is adequate for the entire range of the
magnetic fields applied, while the saturation part is well described by the functional proposed in (35).

Fig. 12 compares De2h experimental and modeling curves that include magnetization saturation for several prestresses
s=G. Part (a) corresponds to particle chains oriented along the applied magnetic field ðhJNÞ, while part (b) compares results
from part (a) with results obtained for the case where the particle chains are perpendicular to the applied magnetic field
ðhJNÞ with prestresses s=Go0. The model predicts qualitatively the De2h curves in both parts although quantitatively is
less accurate.

3.4. Quasiconvexity of the free energy function

Like in the case of finite elasticity, it is important to investigate the possibility of locally discontinuous solutions
appearing in this coupled problem at adequately large magnetic and mechanical loads. The absence of such discontinuous
solutions is ensured when the solid’s potential energy is ‘‘quasiconvex’’. This property requires that any arbitrary
subregion D � V of the solid with homogeneous (i.e., position independent) properties and under constant strain and
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constant magnetization, has the lowest potential energy compared to all other states with admissible fields that satisfy
Dirichlet conditions at the boundary @D.

Necessary pointwise conditions for the quasiconvexity of the energy function C are derived by Kankanala and
Triantafyllidis (2004) and require that the two following independent inequalities are satisfied:

ðabÞ��
@2C
@F@F

�
@2C
@F@M

�
@2C
@M@M

� ��1

�
@2C
@M@F

( )
��ðabÞZ0, a�

@2C
@M@M

�aZ0, ð36Þ

where a and b are arbitrary real vectors. In the present study, due to the material incompressibility, the vectors a and b are
not independent and they must satisfy the incremental incompressibility constraint:

a�F�1
�b¼ 0: ð37Þ

Given the fact that the MRE under investigation is anisotropic, we expect that it will loose its rank one convexity when
subjected to adequately large compressive stresses even in the absence of magnetization (see Agoras et al., 2009; Lopez-
Pamies et al., 2010). Investigating the entire strain and magnetization space to find when the MRE at hand violates (36) is a
daunting, if not a superfluous task. For the present work, it suffices to find the limits of quasiconvexity for the case of a
uniaxial loading in the direction of the particle chain orientation under a field h parallel to the particle chain. More
specifically, we will establish the lowest stretch ratio lcr and corresponding stress scr=G for which (36)1 (note: (36)2

always satisfied) fails along a loading path given in (10) for different applied fields h.
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In general, any unit vector can be written as a function of two (not uniquely defined) Euler angles, i.e.,

a¼ sin f1 cos f2e1þsin f1 sin f2e2þcos f1e3, ð38Þ

with f1 2 ½0,pÞ and f2 2 ½0;2pÞ. The second vector b must satisfy the incompressibility constraint (37), hence only one
additional Euler angle is needed for its definition. Consequently, for convenience, we define a new vector ~b, which is
perpendicular to a, i.e., a� ~b ¼ 0, by

~b ¼ ðcos f1 cos f2 cos f3�sin f2 sin f3Þe1þðcos f1 sin f2 cos f3þcos f2 sin f3Þe2�sin f1 cos f3e3, ð39Þ

with f3 2 ½0;2pÞ. It should be noted that the previous definition for ~b is not unique since any vector lying on the plane
defined by the normal a (given in (38)) would be appropriate. Subsequently, by setting b¼ F� ~b, one readily satisfies the
constraint (37). It should be noted that in the last definition b does not have a unit magnitude, however this does not affect
our calculations since the sign of (36)1 depends only upon the orientation of the vectors a and b. Then a complete scan is
carried out for 0rf1,f3o2p and 0rf2op using an increment of Df1 ¼Df2 ¼Df3 ¼ p=180.

The results in Fig. 13 show that although the MRE model used in (35) is not quasiconvex, its quasiconvexity is lost for
rather large values of the compressive stress, which are considerably higher than the maximum ones used experimentally
ð9s=G9r0:288Þ. It is also worth mentioning that the compressive stresses required for loss of quasiconvexity diminish with
increasing h, while no loss of quasiconvexity occurs for tensile stresses.

In contrast, the function C given by (35) remains quasiconvex for the entire range of applied deformations (tensile and
compressive) and magnetic fields in the cases of uniaxial stretching where the particle chains are perpendicular to the
applied magnetic field and the applied traction direction, and in the simple shear loading where the particle chains are
initially parallel to the applied magnetic field and perpendicular to the shearing direction.

4. Conclusions

In this work, we present a combined experimental and theoretical study of the macroscopic response of a particular
MRE consisting of a rubber matrix phase with spherical carbonyl iron particles. The MRE specimens used in this study are
cured in the presence of strong magnetic fields leading to the formation of particle chain structures and thus to an overall
transversely isotropic response of the composite. The MRE samples are tested experimentally under uniaxial stresses as
well as under simple shear in the absence or in the presence of magnetic fields and for different initial orientations of their
particle chains with respect to the mechanical and magnetic loading direction.

Our experiments show that the initial orientation of the particle chains has a significant effect on both the magnetization and
the magnetostriction responses of the MRE. Moreover, we observe a strong dependence of the magnetostriction on the applied
prestress, while no effect of prestress is detected on the magnetization response. More specifically, for zero or compressive
prestresses the experimentally measured magnetostriction leads to an overall elongation of the MRE. In contrast, by switching the
sign of the prestress to a sufficiently large tensile value, we observe a change in the sign of the magnetostriction leading to an
overall contraction of the MRE along the applied magnetic field direction.

These counterintuitive effects are attributed to two important mechanisms. The MRE elongation at zero or negative prestress
along the applied magnetic field direction is explained by the presence of the restoring force between a pair of particles that are
non-aligned with the applied magnetic field, a mechanism originally suggested by Klingenberg and Zukoski (1990) in the context
of electrorheological suspensions and later by Lemaire and Bossis (1991) and Bossis and Lemaire (1991) in the context of
magnetic suspensions. The nonlinear dependence of the magnetostriction on the applied prestress is attributed to the strong
tension–compression asymmetry of the purely mechanical constitutive response of the MRE even at relatively small macroscopic
strains (in the order of 2–5%) which is a direct consequence of the particle chain microstructure.
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Using the theoretical framework introduced by Kankanala and Triantafyllidis (2004) for finitely strained MRE’s, we
model the experimentally measured initial magnetization slopes and initial magnetostriction curvatures with the help of a
transversely isotropic energy function which depends on seven invariants (out of the maximum ten that are theoretically
available), two purely mechanical and five magnetomechanical ones, in an additive manner. In order to capture the
inherent nonlinear tension–compression asymmetry of the MRE present even at relatively small macroscopic strains, a
nonlinear dependence of the energy function on the two mechanical invariants is adopted. The remaining terms of the
energy density, which have a quadratic dependence on the magnetization, are calculated from a subset of the
magnetization and magnetostriction experimental data. The constructed energy density is found to accurately predict
the remaining experimental initial magnetization slopes and initial magnetostriction curvatures. The same experimentally
obtained energy density is able to model the simple shear response in the absence or in the presence of a magnetic field.

The above-mentioned additive energy function is then augmented with a non-quadratic term on the magnetization in order to
model the magnetization saturation response of the MRE. The corresponding energy density function is found to be adequate
when compared with the existing experimental results at large magnetic fields. The quasiconvexity of the proposed energy
function is also checked along the loading paths considered in the experiments. It is found that only in the case where the particle
chains are aligned with the magnetic field and the specimen is subject to compression along the same direction, the material
violates the quasiconvexity conditions and the MRE sample is prone to localization of deformation. However, the computed
critical loads for the violation of quasiconvexity are considerably larger than the experimentally applied ones, which is in accord
with the experimental observations that show no evidence of localized deformations.

The present experimental/theoretical investigation for MREs subjected to coupled mechanical and magnetic loading
gives an excellent agreement with experiments up to relatively moderate magnetic fields and is satisfactorily extended to
include magnetic fields near saturation. The work shows the adequacy of the anisotropic, finite strain continuum
formulation for the description of these materials. The study also demonstrates the importance of microgeometry in the
macroscopic magnetoelastic coupling response of the composite. Given the need in applications to produce MREs with
strong magnetoelastic coupling, it is desirable to build (a) microscopic models to study these coupling mechanisms in
detail and (b) mean-field (i.e., homogenization) models to investigate more efficiently the influence of matrix properties,
particle distribution and shape on the macroscopic magnetomechanical response of these composites. On the practical
side, mean field theories are a valuable tool to optimize coupling properties (e.g., Kuo et al., 2010; Corcolle et al., 2009) in
these materials. Studies in these directions are currently under way by the authors.
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Appendix A. Mechanical response for particle chain reinforced elastomers

In order to assess the effect of the particle chain microgeometry on the macroscopic mechanical constitutive response
of the MRE, we carry out the following numerical (FEM) calculations. A cylindrical unit-cell is introduced as an
approximation to a hexagonal-cross-section unit-cell of a periodic neo-Hookean elastomer where the rigid spherical
inclusions are aligned in parallel chains, as shown schematically in Fig. 14. This allows the reduction of a three-
dimensional geometry to an axisymmetric one, provided that the loads applied preserve the axisymmetric character of the
problem (see Gărăjeu et al., 2000).

In the FEM simulations a single spherical particle is placed at the center of the unit cell, as shown in Fig. 14. By adjusting
the magnitude of Hc for a given cell ratio Hc=Rc and particle radius Ri, we obtain the experimentally relevant particle
volume fraction of f ¼ 25%.

Next, we consider a nearly incompressible neo-Hookean matrix phase (shear modulus G and bulk modulus k¼ 105G),
while the particle is modeled as rigid by imposing zero displacement conditions at the interface between the particle and
the matrix phase. The unit cell is subjected to uniaxial stretching with stretch ratio l along the symmetry axis-Z, such that
the displacement field u can be split into a homogeneous part and a correction un, i.e.,

uR ¼ ðl
�1=2
�1ÞRþun

RðR,ZÞ, uZ ¼ ðl�1ÞZþun

ZðR,ZÞ, ðA:1Þ

where R, Z denote the reference cylindrical coordinates in an attempt to model as closely as possible the overall
incompressibility of the composite material. In order to approximate as closely as possible the periodicity met in a cylinder
with hexagonal cross-section, we impose the following boundary condition on the outer boundaries of the unit cell
(Gărăjeu et al., 2000):

un

RðR¼ Rc ,ZÞ ¼ un

ZðR,Z ¼HcÞ ¼ 0: ðA:2Þ
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The geometrical interpretation of this boundary condition is that the unit cell remains a cylinder with a circular cross-
section and an average strain given by (10)1, as described in Section 3.2.1.

Fig. 15 shows normalized tensile stress s=G as a function of the applied stretch ratio l for several cell aspect ratios
Hc=Rc ¼ 1:4,1:5,1:6,2. It is clear from this figure that as Hc=Rc decreases, the particles become more aligned yielding a
transversely isotropic overall response along the Z-direction. More interestingly, as we decrease the interparticle distance
in the chain (by reducing Hc=Rc), the response of the material becomes very nonlinear even at small stretch ratios
l¼ 1:02�1:05 (i.e., strains 2–5%) exhibiting a strong tension–compression asymmetry. This tension–compression
asymmetry has been shown to be crucial in capturing the nonlinear effect of the prestress on the magnetostriction
response of the MRE, as described in the main text (see Figs. 4 and 9 and relevant discussion). In addition, the Hc=Rc ¼ 1:4
curve in Fig. 15 has been used to extract the d4k (with k¼2,4) constants used in the definition of the free energy function (33).
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