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a b s t r a c t

The present work is a detailed study of the connections between microstructural

instabilities and their macroscopic manifestations — as captured through the effective

properties — in finitely strained fiber-reinforced elastomers, subjected to finite, plane-

strain deformations normal to the fiber direction. The work, which is a complement to a

previous and analogous investigation by the same authors on porous elastomers,

(Michel et al., 2007), uses the linear comparison, second-order homogenization (S.O.H.)

technique, initially developed for random media, to study the onset of failure in periodic

fiber-reinforced elastomers and to compare the results to more accurate finite element

method (F.E.M.) calculations. The influence of different fiber distributions (random and

periodic), initial fiber volume fraction, matrix constitutive law and fiber cross-section on

the microscopic buckling (for periodic microgeometries) and macroscopic loss of

ellipticity (for all microgeometries) is investigated in detail. In addition, constraints to

the principal solution due to fiber/matrix interface decohesion, matrix cavitation and

fiber contact are also addressed. It is found that both microscopic and macroscopic

instabilities can occur for periodic microstructures, due to a symmetry breaking in the

periodic arrangement of the fibers. On the other hand, no instabilities are found for the

case of random microstructures with circular section fibers, while only macroscopic

instabilities are found for the case of elliptical section fibers, due to a symmetry

breaking in their orientation.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Failure in composite materials is a fundamental as well as an extremely diverse issue in solid mechanics. Questions
about what constitutes failure, when does failure start and whether it is possible to predict the onset of failure by
investigating the effective (homogenized) properties of the solid, are problems of fundamental interest for all composites.
The infinite variety of matrix materials and microstructures, which result in a multitude of possible failure mechanisms, is
the reason for the problem’s extraordinary diversity. In the interest of (relative) simplicity, and motivated by considerable
recent advances in calculating the effective properties of finitely strained nonlinear solids, attention is focused here on
particle-reinforced elastomers. To further simplify this complex problem, only two-dimensional such elastomers are
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considered here, which can also be viewed as fiber-reinforced elastomers under in-plane loading perpendicular to their
fiber axes. Even this particular class of composites is of considerable practical interest and enjoys a wide range of
technological applications, e.g., car tires, many types of biological tissues and block copolymers with cylindrical
microstructures, just to name a few. A brief review of the relevant literature in finitely strained inclusion-reinforced
elastomers is presented here, with particular emphasis on the associated stability issues for the case of random as well as
periodic microgeometries.

To relate the onset of failure in these composites to their effective properties, one must address the issues of
homogenization and of microstructure stability. On the homogenization front, a considerable effort has been devoted to
predict the effective properties of hyperelastic composites with random microstructures, starting with the work of Hill
(1972). The homogenization of these solids presents serious technical challenges which were addressed in a series of
papers by Ponte Castañeda and co-workers, starting with Ponte Castañeda (1989). From the increasingly accurate
homogenization schemes which have been subsequently devised, of particular interest here are the second-order
homogenization methods originally introduced by Ponte Castañeda (1996, 2002) in the context of small strain nonlinear
elasticity. The first of these methods makes use of a tangent linearization evaluated at the phases averages of the
deformation fields, while the second makes use of generalized secant linearization, additionally taking into account the
covariance of the fluctuations of the deformation field. These techniques have been extended to finite-strain elasticity and
applied to particle-reinforced elastomers by Ponte Castañeda and Tiberio (2000) and by Lopez-Pamies and Ponte Castañeda
(2006a,b). The resulting models are sophisticated enough to account for the evolving microstructure and are thus capable
of predicting a macroscopic material failure in the form of a loss of strong ellipticity (or rank-one convexity) of the
corresponding homogenized behavior.

On the microstructural stability side, an intimate connection was discovered between the onset of microscopic buckling
and the corresponding loss of ellipticity of the incremental moduli in the homogenized solid. This was first shown by
Triantafyllidis and Maker (1985) for an incompressible, hyperelastic layered composite under plane-strain. Subsequent
work by Geymonat et al. (1993) established a rigorous connection between bifurcation instability at the microscopic level
and loss of rank-one convexity of the homogenized moduli in finitely strained periodic elastomers of infinite extent. More
specifically, it was shown that if the wavelength of the bifurcation eigenmode is infinite (compared to the unit cell size),
the corresponding instability of the periodic principal solution can be detected as a loss of ellipticity of the one-cell
homogenized tangent moduli of the solid. Based on these general results, Triantafyllidis and Bardenhagen (1996) defined
the onset-of-failure surfaces in stress and strain space for periodic solids of infinite extent, a concept which was
subsequently applied among other solids to the case of honeycomb by Triantafyllidis and Schraad (1998), of fiber-
reinforced composites under combined normal and shear strains by Nestorović and Triantafyllidis (2004), to three-
dimensional Kelvin foams Gong et al. (2005) and more recently to two-dimensional periodic elastomers with circular
inclusions of variable stiffness-to-matrix ratios by Triantafyllidis et al. (2006).

The present work is a complement to a recent, comprehensive investigation by the same authors on porous elastomers
(Michel et al., 2007), and provides a detailed study of the connections between microstructural instabilities and their
macroscopic manifestations — as captured through the effective properties — in finitely strained fiber-reinforced
elastomers, subjected to finite, plane-strain deformations normal to the fiber direction. The work uses the above-
mentioned second-order homogenization (S.O.H.) technique, to study the onset of failure in periodic fiber-reinforced
elastomers and to compare the results to more accurate finite element method (F.E.M.) calculations. The influence of
different fiber distributions (random and periodic), initial fiber volume fraction, matrix constitutive law and fiber cross-
section on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all
microgeometries) is investigated in detail. In addition, constraints to the principal solution due to fiber/matrix interface
decohesion, matrix cavitation and fiber contact are also addressed, thus giving a complete picture of the different possible
failure mechanisms present in this class of elastomeric composites.

The presentation of the work is organized as follows. Section 2 deals with the general, three-dimensional theoretical
considerations for the effective properties of inclusion-reinforced elastomers, the relation between microscopic
instabilities and macroscopic loss of ellipticity (for periodic microstructures) as well as the definition of the onset-of-
failure surfaces. The description of the loading path and the presentation of the different (two-dimensional) calculation
methods (the second-order homogenization method with associated linear comparison solid, as well as the finite element
method) is given in Section 3. The specific matrix constitutive choices and the results of the calculations for some
representative fiber-reinforced elastomers are presented and discussed in Section 4 followed by the conclusion in Section
5. Finally, the additional constraints on the effective response of these elastomers (fiber/matrix interface decohesion,
matrix cavitation and fiber contact) are addressed in Appendix A while the expressions for the microstructural tensor P,
which is required for the homogenization calculations, are given for different microgeometries in Appendix B.

2. Theoretical considerations

As stated in the Introduction, the goal of this work is to study the instabilities of inclusion-reinforced, elastic solids
subjected to finite-strain loading conditions. Of particular interest here is the microscopic (local) instability information
that can be extracted by investigating the macroscopic (homogenized) properties of fiber-reinforced elastomers and the
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influence of microgeometry and matrix material on the stability of these solids. The concepts introduced in this section are
general and apply to two- or three-dimensional inclusion-reinforced elastomers with arbitrary shape inclusions (with
fibers being a special case of an inclusion) and pointwise rank-one convex inclusion and matrix constitutive laws.

The first subsection deals with the macroscopic properties of inclusion-reinforced elastomers and the related concept of
macroscopic stability, which is based on the fact that the equilibrium solution of a representative volume element (RVE)
under Dirichlet boundary conditions is a local minimizer of the RVE’s energy. This criterion leads to the strong ellipticity of
the homogenized solid’s incremental moduli or, equivalently, to the strict rank-one convexity of the homogenized stored-
energy function.

The second subsection pertains to the stability of periodic inclusion-reinforced elastomers. For solids with periodic
microstructures, a simple unit cell can be easily identified and accurate numerical homogenization calculations can be
accomplished based on this unit cell. The question that naturally arises is whether for a given macroscopic load, the energy
minimizing solution is periodic with period the chosen unit cell, or whether a different energy minimizer exists which is
periodic on a larger cell. To this end, the concept of microscopic stability is introduced, which is based on the examination of
all bounded perturbations in the infinite solid about the periodic equilibrium solution under consideration. The
microscopic stability investigation makes use of the chosen unit cell in conjunction with a Bloch-wave technique.

Following the above stability definitions, the concept of a microscopic and a macroscopic onset-of-failure surface in
macroscopic load space is introduced in the third subsection. For random microgeometries only the macroscopic onset-of-
instability surface can be defined. For periodic microstructures, both onset-of-failure surfaces (i.e., the microscopic and the
macroscopic surfaces) can be found and the former surface lies by definition inside the latter. The microscopic onset-of-
failure surfaces can also be used to characterize the domain in macroscopic load space where the homogenized properties
based on calculations using the chosen unit cell are valid and coincide with the homogenized properties calculated using
an infinite number of cells.

2.1. Macroscopic properties and stability of inclusion-reinforced elastomers

Consider a reinforced elastomer made up of disconnected inclusions that are distributed, either with periodic or random
microstructure, in an elastomeric matrix phase. A specimen of this inclusion-reinforced material is assumed to occupy a
volume O0 in the reference configuration, in such a way that the typical size of the inclusions is much smaller than the size
of the specimen and the scale of variation of the applied loading. Thus, in the homogenization limit (i.e., in the limit as the
size of the inclusions goes to zero), O0 can be identified with a representative volume element (RVE) of the inclusion-
reinforced elastomer.

Some useful notation is in order; the average of a field quantity f, denoted by /fS is defined by

/fS�
1

O0

Z
O0

fðXÞdX: ð2:1Þ

Material points in the solid are identified by their initial position vector X, while the current position vector of the same
point is denoted by x. The displacement of each material point X is denoted by u, such that u� x�X. The deformation
gradient F at X, a quantity that measures the deformation in the neighborhood of X, is defined as

F� xr¼ Iþur, ðFij � @xi=@Xj ¼ dijþ@ui=@XjÞ: ð2:2Þ

The constitutive behavior of the hyperelastic matrix phase, which occupies the subdomain Oð1Þ0 , is characterized by a
stored-energy function W(1) that is a non-convex function of the deformation gradient F. The constitutive behavior of the
inclusion phase, which occupies the subdomain Oð2Þ0 , is described by the stored-energy function W(2) which is also a non-

convex function of the deformation gradient F. Since rigid fiber inclusions are of ultimate interest here, we henceforth
assume W ð2Þ ¼ ZW ð1Þ, where Z40 is a large positive constant (typically of the order of 103).1 Thus, the local energy function
of this two-phase system may be written as

WðX; FÞ ¼
X2

r ¼ 1

wðrÞ0 ðXÞW
ðrÞðFÞ: ð2:3Þ

Here the functions wð1Þ0 , equal to 1 if the position vector X 2 Oð1Þ0 and zero otherwise, and wð2Þ0 , equal to 1 if the position
vector X 2 Oð2Þ0 and zero otherwise, describe the distribution of the two phases in the reference configuration of the
hyperelastic inclusion-reinforced solid. The two phases are related by wð2Þ0 ¼ 1�wð1Þ0 . Henceforth, for simplicity, the matrix-
related symbols w0 and W are used instead of wð1Þ0 and W(1).

The characteristic function w0 may be periodic or random. In the first case, the dependence of w0 on the position vector X
is completely determined once a unit cell D has been specified. In the second case, the dependence of w0 on X is not known
precisely, and the microstructure is only partially defined in terms of the n-point statistics of the system. Here, use will be
made of information up to only two-point statistics in order to be able to take advantage of linear homogenization

1 The generality of this section is not impaired by this assumption, one can consider any W ð2ÞaW ð1Þ , as long as they are both strictly rank-one convex

functions of F.
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estimates that are available from the literature. It is noted that the initial volume fraction of the matrix phase is given by
/w0S, hence the initial volume fraction of the inclusion phase can be defined by f0 � 1�/w0S.

The stored-energy function of each phase will, of course, be assumed to be objective in the sense that W(Qik Fkj)=W(Fij)
for all proper orthogonal Q and arbitrary deformation gradients F. Making use of the polar decomposition Fij=RikUkj, where
U is the right stretch tensor and R is the rotation tensor, it follows, in particular, that WðFÞ ¼WðUÞ. The constitutive relation
of the matrix material is

S¼
@W

@F
ðFÞ, Sij ¼

@W

@Fij
ðFÞ

� �
, ð2:4Þ

where S denotes the nominal stress tensor (the transpose of the first Piola–Kirchhoff stress tensor2). Note that sufficient
smoothness is assumed for W on F. It is also useful to define the local elasticity, or tangent modulus tensor of the matrix
material via

LðFÞ �
@2W

@F@F
ðFÞ, LijklðFÞ �

@2W

@Fij@Fkl
ðFÞ

� �
: ð2:5Þ

It is further assumed that the matrix material is strongly elliptic, or strictly rank-one convex, namely3

BLðFÞ � min
JaJ ¼ JnJ ¼ 1

fainjLijklðFÞaknlg40: ð2:6Þ

The physical meaning of the above requirement is that the material never admits solutions with discontinuous
deformation gradients within the given phase.

Following Hill (1972), under the above-mentioned separation of length scales hypothesis, the effective stored-energy

function fW of the inclusion-reinforced elastomer is defined by4

fW ðFÞ � min
F2KðFÞ

/WðX; FÞS, ð2:7Þ

where K denotes the set of admissible deformation gradients,

KðFÞ ¼ fFjFij ¼ @xiðXÞ=@Xj for X 2 O0,xi ¼ F ijXj for X 2 @O0g:

Note that fW represents the minimum elastic energy stored in the entire RVE when subjected to an affine displacement
boundary condition that is consistent with the average deformation condition /FS¼ F. Moreover, from the definition (2.7)
and the objectivity of W, it can be shown that fW is objective. It is also noted for later reference that fW is quasi-convex, and
therefore, rank-one convex, but not necessarily strictly so, as discussed later.

Consequently, the global or macroscopic constitutive relation for the inclusion-reinforced solid can be shown to be

S ¼
@fW
@F
� eS: ð2:8Þ

where S ¼/SS is the average stress in the inclusion-reinforced elastomer and eS is defined to be the effective stress. From
here on, both /fS and f notations for the average of a field quantity f are employed interchangeably according to
convenience. In analogy with the local elasticity tensor defined in (2.5), the macroscopic (or effective) elasticity tensor is
defined

eLðFÞ � @2fW
@F@F

ðFÞ, ð2:9Þ

where unlike the stress case in (2.8), eLaL .
The macroscopic stability of the solid at F is measured by the effective coercivity constant eBðFÞ, which is defined, in terms

of eLðFÞ, in an analogous way to its local counterpart (2.6), byeBðFÞ � min
JaJ ¼ JnJ ¼ 1

fainj
eLijklðFÞaknlg: ð2:10Þ

According to (2.10), the inclusion-reinforced solid is defined to be macroscopically stable if eBðFÞ40, i.e., if it is strictly rank-
one convex. One of the issues of interest in this work is under what conditions it can lose strict rank-one convexity.

2.2. Microscopic instabilities in periodic inclusion-reinforced elastomers

Consider an inclusion-reinforced elastomer whose periodic, undeformed, stress-free state is used as the reference
configuration. Without loss of generality, the inclusion-reinforced solid can be thought as resulting by periodic repetition

2 The definitions of stress measures adopted follow Malvern (1969).
3 Einstein’s summation convention is adopted with repeated Latin indices summed from 1 to 3 in this section which deals with three-dimensional

solids.
4 Here and subsequently the symbol (ef ) implies effective properties associated with the field quantity f, as opposed to the symbol (f ) which implies

average properties associated with the same field.
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along each coordinate direction of a fundamental building block D (with boundary @D), which is termed the unit cell.
Without loss of generality D is assumed to be a parallelepiped of dimension Li along the direction Xi. Then, the distribution
of the material is characterized by a D�periodic characteristic function:

w0ðX1,X2,X3Þ ¼ w0ðX1þk1L1,X2þk2L2,X3þk3L3Þ, ð2:11Þ

where k1, k2, k3 are arbitrary integers, and L1, L2, L3, the unit cell dimensions.
An objective of this work is to determine the macroscopic properties of the inclusion-reinforced solid and the stability

information they carry. For hyperelastic inclusion-reinforced solids with periodic microstructure, it is known (Braides,
1985; Müller, 1987) that the computation of the effective stored-energy function fW , as determined by relation (2.7),
cannot be simplified further, as a consequence of the lack of convexity of the local stored-energy function W. Recall that, for
a periodic medium, the computation of the effective stored-energy function fW , as determined by relation (2.7), can be
reduced to a computation on the unit cell, provided that the local stored-energy function W be convex (Marcellini, 1978).
Unfortunately, actual elastomers do not have convex energy functions. However, as will be discussed in further detail
below, it is still useful in this context to define the one-cell effective energy function cW via the expression:

cW ðFÞ �min
uu2D#

1

jDj

Z
D

WðX; FþuurÞdX

� �
, ð2:12Þ

where by D# is denoted the set of all D-periodic fluctuation functions uu, i.e., zero-average displacement functions that have
the same values on opposite faces of the unit cell D. Since the macroscopic deformation gradient is given by F, the local
fluctuation field is uui ¼ uiþXi�F ijXj. Attention is focused only on macroscopic deformations F for which such a fluctuation
field, denoted by uuF , exists and corresponds to a stable equilibrium solution of the unit-cell deformation problem:Z

D

@W

@Fij
ðX;FþuuFrÞdui,j dX¼ 0, ð2:13Þ

bD �min
uu2D#

(Z
D

@2W

@Fij@Fkl
ðX; FþuuFrÞuui,juuk,l dX=

Z
D

uui,juui,j dX

)
40, ð2:14Þ

where du is any arbitrary D-periodic fluctuation field. The first of the above equations indicates that uuF is an extremum of
the unit-cell energy cW ðFÞ, and the second that it corresponds to a local minimum of this energy.

Although according to (2.6) the material is at each point strictly rank-one convex, this property does not usually hold for
the homogenized inclusion-reinforced solid (see Abeyaratne and Triantafyllidis, 1984). The search for the macroscopic
deformations F for which the homogenized solid characterized by cW ðFÞ loses its strict rank-one convexity is addressed
next. To this end, one needs to investigate the one-cell homogenized moduli tensor bLðFÞ, defined by

bLðFÞ � @2cW
@F@F

ðFÞ, cW ðFÞ ¼ 1

jDj

Z
D

WðX; FþuuFrÞdX: ð2:15Þ

When an explicit expression for cW exists, the homogenized moduli are calculated by taking the second derivative with
respect to F of cW given in (2.15). For the case of regular microgeometries where the unit-cell problem — as defined in
(2.13) — is solved numerically using an F.E.M. technique, a different calculation strategy, which is based on the interchange
between the homogenization and linearization steps, is employed.

Thus, for a solid with a linearized response characterized by its tangent moduli LðXÞ, where L is a D-periodic function of
X, the homogenized tangent modulus tensor LH is uniquely defined by (see Geymonat et al., 1993)

GijL
H
ijklGkl �min

uu2D#

1

jDj

Z
D

LijklðXÞðGijþuui,jÞðGklþuuk,lÞdX

� �
, ð2:16Þ

where G is an arbitrary second-order tensor. It follows from (2.16) that the components of the homogenized tangent
moduli are given by

LH
pqrs ¼

1

jDj

Z
D

LijklðXÞðdipdjqþ w
pq

i,jÞðdkrdlsþw
rs

k,lÞ dX, ð2:17Þ

where the characteristic functions v
pq
2 D# are D-periodic fluctuations defined byZ

D
LijklðXÞðdipdjqþ w

pq

i,jÞduk,l dX¼ 0, ð2:18Þ

for arbitrary fluctuations du 2 D#. A formal calculation of bL based on (2.15), which makes use of (2.13), shows that (see
Geymonat et al., 1993) the above-defined linearization and homogenization operations commute, and therefore

bL ¼ LH: ð2:19Þ
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It also follows from the same calculations that the characteristic functions v
pq

(defined in (2.18)) involved in the
determination of LH are the F derivatives of the fluctuation functions uuF , namely

v
pq
¼
@uuF
@F pq

: ð2:20Þ

By definition, the one-cell homogenized energy cW requires minimization of the energy over a single unit cell. However,
it is possible that by minimizing the energy over larger domains containing several unit cells, a lower value can be found
for the energy per volume of these larger samples. The corresponding fluctuation fields are periodic over much larger
(possibly infinite) domains kD, where kD denotes a super-cell of dimensions ki Li in each direction. Hence, a fully consistent
definition (see Müller, 1987) of the homogenized energy fW requires the consideration of fluctuations uu that are
kD�periodic. Thus, for a periodic hyperelastic medium, the general expression (2.7) specializes to

fW ðFÞ � inf
k2N3

min
uu2kD#

1

jkDj

Z
kD

WðX; FþuurÞdX

� �� �
: ð2:21Þ

From the definitions in (2.12) and (2.21), one can easily conclude that fW ðFÞrcW ðFÞ. The equality holds when the infimum
is a minimum occurring at k¼ ð1,1,1Þ, i.e., when the one-cell minimizing fluctuation displacement uuF is also the
minimizing fluctuation displacement for any super-cell kD.

For small strains (near F ¼ I), one expects that fW ðFÞ ¼cW ðFÞ, but as the macroscopic strain increases, eventually,fW ðFÞocW ðFÞ. It is always possible to calculate, exactly as well as approximately, the one-cell homogenized energy cW ðFÞ
and the corresponding macroscopic moduli bLðFÞ. However, it is practically impossible to calculate the correct homogenized
energy fW ðFÞ, in view of the infinity of the required domain of its definition (kD with JkJ-1). Therefore, it is important to
establish the region of macroscopic strain space where the one-cell homogenized energy is the correct one (cW ðFÞ ¼fW ðFÞ).
To this end, and in an analogous way to (2.14), one can define the coercivity constant bðFÞ for the infinite domain (O0 ¼ R3):

bðFÞ � inf
k2N3

bkDðFÞ,

bkDðFÞ � min
uu2kD#

Z
kD

@2W

@Fij@Fkl
ðX; FþuuFrÞuui,juuk,l dX=

Z
kD

uui,juui,j

�
dX

�
: ð2:22Þ

As shown by Geymonat et al. (1993), a necessary condition for fW ðFÞ ¼cW ðFÞ is that bðFÞ40. Fortunately, unlike the
computation of fW ðFÞ, the determination of the coercivity constant bðFÞ requires only calculations on the unit cell D, as will
be seen next. Thus, using the Bloch-wave representation theorem, it was proved by Geymonat et al. (1993) that the
eigenmode v corresponding to bðFÞ can always be put in the form

vðXÞ ¼ uuðXÞexpðiokXkÞ, uu 2 D#, x� ðo1,o2,o3Þ, 0ro1L1,o2L2,o3L3o2p, ð2:23Þ

and hence that the coercivity constant bðFÞ is determined from

bðFÞ � inf
x

(
min
uu2D#

(Z
D

@2W

@Fij@Fkl
ðX; FþuuFrÞv

%

i,jvk,l dX=

Z
D

v%

i,jvi,j:dX

))
, ð2:24Þ

with v given by (2.23)1. Here, v% is the complex conjugate of the field v.
The Euler–Lagrange equations and inclusion-matrix interface conditions corresponding to the above eigenvalue

problem (2.24) are

ðLijklðX; FþuuFrÞvk,l�bðFÞvi,jÞ,j ¼ 0, 1LijklðX; FþuuFrÞvk,l�bðFÞvi,jUNj ¼ 0, ð2:25Þ

where N is the outward normal to the inclusion-matrix interface, 1fU denotes jump of the field quantity f across this
interface and the eigenmode v is given in terms of the Bloch representation theorem (2.23). Of course, the same equations
are applicable for the eigenmode corresponding to bkD, defined in (2.22), and also for the eigenmode corresponding to bD,
defined in (2.14).

Of particular interest here is b0ðFÞ, the long-wavelength limit (x-0) of the above expression (2.24), defined as

b0ðFÞ � lim inf
x-0

(
min
uu2D#

(Z
D

@2W

@Fij@Fkl
ðX; FþuuFrÞv

%

i,jvk,l dX=

Z
D

v%

i,jvi,j:dX

))
, ð2:26Þ

which, as will be subsequently discussed, when it vanishes, signals the loss of strict rank-one convexity of the one-cell
homogenized stored energy cW ðFÞ.

The use of lim infx-0 in the above expression merits further explanation. As can be deduced from (2.23), two different
types of eigenmodes are possible in the neighborhood of x¼ 0; the strictly D-periodic ones, for which x¼ 0, and the long-
wavelength modes, for which x-0. The lowest value of the ratio of the two quadratic functionals in (2.26) can occur for
long-wavelength modes, in which case the limit x-0 is a singular one depending on the ratio of the x components, thus
justifying the use of the lim inf in (2.26).
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Finally, and in analogy to the effective coercivity constant defined in (2.10), a macroscopic one-cell coercivity constant bB
is defined by

bBðFÞ � min
JaJ ¼ JnJ ¼ 1

fainj
bLijklðFÞaknlg: ð2:27Þ

With the definition of the three coercivity (also, and equivalently, termed stability constants), bBðFÞ, b0ðFÞ and bðFÞ, for the
macroscopic loading F, the stage has been set for discussing the stability of the periodic inclusion-reinforced solid at that
load level. It follows from the definitions of these three coercivity constants (see Geymonat et al., 1993) that the following
relation holds for arbitrary vectors a and n:

ainj
bLijklðFÞaknlZb0ðFÞJaJ2JnJ2

ZbðFÞJaJ2JnJ2
¼) bBðFÞZb0ðFÞZbðFÞ: ð2:28Þ

More specifically, the above relations indicate that when the one-cell based homogenized energy is the correct one (i.e.,
bðFÞ40 in which case fW ðFÞ ¼cW ðFÞ), the homogenized energy function is strictly rank-one convex. Moreover, microscopic
stability (bðFÞ40, which means from (2.26) that the solid is stable to bounded perturbations of arbitrary wavelength x)
implies macroscopic stability (bBðFÞ40, which means that the corresponding one-cell based homogenized moduli bL are
also strongly elliptic).

Finding the domain in macroscopic strain (F) space for which the material is microscopically stable, i.e., bðFÞ40,
although feasible thanks to (2.24), requires tedious and time consuming calculations since one has to scan using a fine grid
the ð0,2pÞ � ð0,2pÞ � ð0,2pÞ domain in Fourier (x) space. On the other hand, finding the larger domain in the same
macroscopic strain (F) space for which the one-cell homogenized solid cW ðFÞ is macroscopically stable, i.e., bBðFÞ40, is a
rather straightforward calculation since it only requires the determination of the homogenized moduli bLðFÞ at each
macroscopic deformation F. Calculating these two (i.e., the microscopic and macroscopic) stability domains for certain
nonlinear solids with different inclusion-reinforced microstructures is the object of the present work.

An interesting observation about the loss of macroscopic stability is in order, before ending this subsection. It has been
shown by Geymonat et al. (1993) that bBðFÞ and b0ðFÞ always vanish simultaneously, i.e., if b0ðFÞ ¼ 0, then it implies thatbBðFÞ ¼ 0. This means from (2.28) that the onset of a long-wavelength instability (x-0 — the wavelength of the eigenmode
is much larger compared to the unit cell size) is always detectable as a loss of strong ellipticity of the one-cell homogenized
moduli. Therefore, the following remark can be made about the first — in a monotonic loading process which will be
defined subsequently — loss of microscopic stability (bðFcÞ ¼ 0) in a microstructured elastic solid at some critical
macroscopic deformation Fc: if b0ðFcÞ ¼ bðFcÞ, the wavelength of the first instability encountered is much larger than the
unit cell size and hence the instability can be detected as a loss of strong ellipticity of the one-cell homogenized moduli bL
since bBðFcÞ ¼ 0. For the case when b0ðFcÞ4bðFcÞ ¼ 0, the first instability encountered in the loading process has a finite
wavelength, and from that point on the one-cell homogenization may no longer be physically meaningful and hence cW
may not provide useful information about the solid. Henceforth a tedious numerical process that follows the bifurcated
equilibrium solutions is required to determine the response of the solid under the macroscopic strains in the neighborhood
of Fc and beyond.

2.3. Onset-of-failure surfaces

To summarize the discussion in the two previous subsections, the elastomer’s macroscopic stability constant BðFÞ is
defined for the different microgeometries as follows:

BðFÞ �
eBðFÞ random ðeLðFÞ ¼ @2fW=@F@F S:O:H: onlyÞ,bBðFÞ periodic ðbLðFÞ ¼ LH

ðFÞ for F:E:M:, bLðFÞ ¼ @2cW=@F@F for S:O:H:Þ:

8<: ð2:29Þ

The top definition (see (2.10)) is employed for random microgeometries where a S.O.H. second-order homogenization

approximation (explained in the next section) of the effective energy density fW ðFÞ is used. The bottom definition (see
(2.27)) is employed for periodic microgeometries, since a calculation of fW ðFÞ is not feasible in this case. When a F.E.M.
finite element method approach (also explained in the next section) is used, the one-cell homogenized moduli are calculated
using LH

ðFÞ defined in (2.17), while for the S.O.H. approximation the one-cell homogenized moduli are obtained by
differentiating cW ðFÞ (see (2.15)1).

For the periodic microgeometry, the microscopic stability constant bðFÞ is also defined according to (2.24). The stage has
thus been set to introduce the corresponding (i) macroscopic and (ii) microscopic onset-of-failure surfaces in macroscopic
load space. These surfaces are, respectively, defined as the regions in macroscopic load space, where (i) B40, outside
which the solid is unstable since the homogenized energy density is no longer strongly elliptic, and (ii) b40, inside which
the infinite-cell periodic solid is stable and where the one-cell homogenization procedure is valid cW ¼fW .

The parameterization of the loading path in deformation space is needed for the determination of the above-defined
surfaces. A loading path FðlÞ is considered parameterized by a scalar quantity lZ0, termed load parameter, starting at l¼ 0
for F ¼ I, that increases monotonically with increasing applied macroscopic load. In a physically meaningful problem the
solid under investigation is stable in its undeformed, stress-free state, i.e., BðIÞZbðIÞ40 (initially F ¼ I). The macroscopic
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onset-of-failure surface is thus defined by

BðlcMÞ ¼ 0, BðlÞ40, 0rlolcM , BðlÞ � BðFðlÞÞ: ð2:30Þ

In other words lcM is the lowest root of BðlÞ, the macroscopic stability constant defined in (2.10) and evaluated on the load
path FðlÞ. Similarly to (2.30), the microscopic onset-of-failure surface is given by

bðlcmÞ ¼ 0, bðlÞ40, 0rlolcm, bðlÞ � bðFðlÞÞ: ð2:31Þ

In other words lcm is the lowest root of bðlÞ, the microscopic stability constant defined in (2.24) and evaluated on the load
path FðlÞ. From the ordering of the stability constants in (2.28), one obtains

0olcmrlcM , ð2:32Þ

a property which will be used in reducing the calculations required for the microscopic onset-of-failure lines of the
different composites.

The above general definition of the onset-of-failure surfaces requires the selection of a loading path. For the fiber-
reinforced elastomer deformed under plane strain, of interest in this work, a proportional strain path in an appropriate
macroscopic strain space will be subsequently specified.

3. Calculation methods for plane-strain loading of elastomers with cylindrical fibers

The results presented thus far are valid for three-dimensional, inclusion-reinforced elastomers with arbitrary
microgeometry, macroscopic loading and rank-one convex constitutive laws. From this point on, attention is focused on
plane-strain deformations (in the X1�X2 plane) of fiber-reinforced elastomers consisting of cylindrical fibers perpendicular
to the plane of deformation and aligned in the X3 axis direction. The fibers are taken to have initially elliptical cross-section
and initial volume fraction f0. All fiber sections have the same aspect ratio r, where rZ1 is the ratio of the major axis of the
ellipse, initially aligned with the X1 direction, over the minor axis. Two types of fiber distributions (in the reference
configuration) are considered: (a) random statistically isotropic and (b) periodic with (i) square and (ii) hexagonal
arrangements as depicted in Fig. 1.

This section pertains to the load path description and to the calculation methods employed in this study. Following the
description of the load paths adopted, the second subsection presents the second-order variational estimates used in
deriving approximations for the effective properties of the fiber-reinforced elastomer. Finally the third subsection presents
the main assumptions used in the finite element method calculations.

3.1. Loading paths

Note that the applied macroscopic deformation F in this context is entirely characterized by the four in-plane
components: F 11,F 22,F 12,F 21, since the out-of-plane components are fixed: F 13 ¼ F 31 ¼ F 23 ¼ F 32 ¼ 0, and F 33 ¼ 1. For
convenience, the coordinates Xi defining the periodic elastomer’s axes of orthotropy in the reference configuration are

X2

X1

X1

X2

X2

L1

L1

L2 = (√3/2)L1

X1
L2 = L1

Fig. 1. Reference configuration depiction of the various microgeometries investigated: (a) random statistically isotropic and (b) perfect periodic with (i)

square (top) and (ii) hexagonal (bottom) arrangement of cylindrical fibers.
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identified here with the fixed laboratory frame of reference. In the sequel, the components of any tensorial quantity will be
referred to Xi.

5

Two different macroscopic loading paths are considered in strain space. The first corresponds to straining, by a different
amount in each direction, along the two axes of orthotropy of the composite

F 11 ¼ l1 ¼ expðe1Þ, F 12 ¼ 0, F 21 ¼ 0, F 22 ¼ l2 ¼ expðe2Þ, ð3:1Þ

where, li denote the in-plane macroscopic principal stretches and ei the corresponding logarithmic strains. Loadings with
e1þe240 ðe1þe2o0Þ correspond to macroscopic dilation (contraction) of the composite. Within this type of macroscopic
loadings, a load path needs to be selected and parameterized. Here, without loss of generality, attention is restricted to
proportional straining paths in principal logarithmic strain space. More specifically, it is assumed that the ratio of the
principal logarithmic strains ei is fixed, namely

e1 ¼ lcosj, e2 ¼ lsinj: ð3:2Þ

where l is the monotonically increasing load parameter of the process and j is the load path angle.
Given the small compressibility of elastomers, it makes sense to consider loading paths that preserve macroscopic

incompressibility. To this end we further consider loading paths that superimpose a shear strain g to a zero dilation loading
e1þe2 ¼ 0, both with respect to the fixed laboratory axes. More specifically, and because of the composite’s orthotropy, two
generalized macroscopic shear loadings g12 and g21 are considered

g12 : F 11 ¼ l1 ¼ expðe1Þ, F 12 ¼ g, F 21 ¼ 0, F 22 ¼ 1=l1 ¼�expðe1Þ,

g21 : F 11 ¼ l1 ¼ expðe1Þ, F 12 ¼ 0, F 21 ¼ g, F 22 ¼ 1=l1 ¼�expðe1Þ, ð3:3Þ

A linear load path in e1�g macroscopic strain space is again chosen

e1 ¼ lcosj, g¼ lsinj: ð3:4Þ

where l is the monotonically increasing load parameter of the process and j is the load path angle.
The microscopic and macroscopic onset-of-failure surfaces to be computed here are found by marching along (starting

from l¼ 0) all radial paths j 2 ½0,2pÞ in e1�e2 or e1�gij strain space.

3.2. Second-order variational estimates

As stated above, the determination via (2.7) of the effective stored-energy function fW is a difficult problem, especially
for fiber-reinforced elastomers with random microgeometry, where numerical approaches based on detailed
microstructural models become infeasible. Here use will be made of the second-order homogenization theory (S.O.H.) of
Lopez-Pamies and Ponte Castañeda (2006a) to generate estimates for fW and its derivatives for the fiber-reinforced
elastomers considered in this work.

The key concept behind the S.O.H. theory is the construction of suitable variational principles utilizing the idea of a
linear comparison composite (L.C.C.). This homogenization technique, which is exact to second order in the heterogeneity
contrast (hence its name), has the capability to incorporate statistical information about the microstructure beyond the
volume fraction and can be applied to large classes of hyperelastic composites. For brevity, here only the Hashin–
Shtrikman-type (HS-type) estimates specialized to elastomers reinforced with aligned cylindrical fibers are presented; see
Sections 4.3 and 4.4 in Lopez-Pamies and Ponte Castañeda (2006a) for a detailed description of these results.

Thus, the HS-type second-order estimate for the effective stored-energy function of a fiber-reinforced elastomer —

made of a hyperelastic matrix phase with stored-energy function W(1) reinforced by a random distribution of aligned
hyperelastic fibers with stored-energy function W(2) — is given by

fW ðFÞ ¼ ð1�f0ÞW
ð1ÞðbFð1ÞÞþSð1Þij ðFÞ½F ij�f0F

ð2Þ

ij �ð1�f0Þ
bF ð1Þij �þ f0W ð2ÞðF

ð2Þ
Þ: ð3:5Þ

Here, F
ð2Þ

is the average deformation gradient in the fibers and bFð1Þ is a variable that contains information about the
fluctuations of the deformation gradient field in the matrix phase. They are, respectively, determined by the following
nonlinear algebraic equations:

F
ð2Þ

ij ¼ F ij�ð1�f0ÞPijkl½LklmnðF mn�F
ð2Þ

mnÞ�Sð1Þkl ðFÞþSð2Þkl ðF
ð2Þ
Þ�, ð3:6Þ

and

Sð1Þij ð
bFð1ÞÞ�Sð1Þij ðFÞ ¼ Lijklð

bF ð1Þkl �F klÞ: ð3:7Þ

In these expressions, P is an Eshelby-type tensor that contains information about the microstructure in the undeformed
configuration, while L is the modulus tensor of the matrix phase in a suitable L.C.C. that must be obtained from certain
optimality conditions. In particular, for isotropic matrix phases, the tensor L should be taken of the form (see Lopez-Pamies

5 Here and subsequently, Latin indices range from 1 to 2.
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and Ponte Castañeda, 2006b)

Lijkl ¼ Q rmQ jnQ spQ lqRirRksL
�
mnpq, ð3:8Þ

where the proper orthogonal tensors Q and R are defined by the decomposition F ¼R Q A Q
T
, with Aij ¼ diagðl1,l2Þ, L� is

orthotropic with respect to the Xi axis, with non-zero components L�1111 ¼ ‘
�
1, L�2222 ¼ ‘

�
2, L�1212 ¼ ‘

�
3, and L�1122 ¼ ‘

�
4 and where

L�2121 ¼ ‘
�
3 and L�1221 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�1�‘

�
3Þð‘

�
2�‘

�
3Þ

q
�‘�4: ð3:9Þ

Note that, since Q and R can be readily computed from the applied loading F, it is inferred from condition (3.9) that the
modulus tensor L of the matrix phase in the L.C.C. contains four independent unknowns: ‘�1, ‘�2, ‘�3, and ‘�4. The optimal value
of these parameters is determined by the relations

ðbF ð1Þij �F ijÞ
@Lijkl

@‘�a
ðbF ð1Þkl �F klÞ ¼

f0

ð1�f0Þ
2
ðF ij�F

ð2Þ

ij Þ
@Dijkl

@‘�a
ðF ij�F

ð2Þ

ij Þ ð3:10Þ

ða¼ 1,2,3,4Þ, where

D¼ P�1
�ð1�f0ÞL: ð3:11Þ

At this stage, the only variable that remains to be specified is the microstructural tensor P that depends on the size,
shape and orientation of the fibers, as well as on their spatial distribution in the reference configuration. In particular, the
tensor P depends on whether the distribution of the fibers is periodic (Nemat-Nasser et al., 1982; Suquet, 1990a,b), or
random (Willis, 1977; Ponte Castañeda and Willis, 1995). The explicit expressions for P for the three types of
microstructures considered in this work are given in Appendix B.

In summary, Eqs. (3.6), (3.7), and (3.10) constitute a closed system of 12 coupled, nonlinear, algebraic equations for the
12 unknowns formed by the four components of F

ð2Þ
, the four components of bFð1Þ, and the four independent components of

L (denoted by ‘�a). It is possible (see Lopez-Pamies and Ponte Castañeda, 2006b) to solve in closed form Eq. (3.10) for the
components of bFð1Þ in terms of the parameters ‘�a. The resulting expressions can then be substituted into Eq. (3.7) to obtain,
together with (3.6), a system of eight equations for the eight unknowns F

ð2Þ

11 , F
ð2Þ

12 , F
ð2Þ

21 , F
ð2Þ

22 , ‘�1, ‘�2, ‘�3, and ‘�4, which must be
solved numerically.

Having computed all the values of F
ð2Þ

and ‘�a (a¼ 1,2,3,4) for given matrix and fiber stored-energy functions W(1) and
W(2), fiber aspect ratio r, volume fraction f0, and spatial distribution, and loading F, the values of the components of bFð1Þ can
be readily determined from (3.10). In turn, the second-order estimate for the effective behavior of fiber-reinforced
elastomers can be computed, from relation (3.5), using these results. Finally, having determined fW ðFÞ via (3.5), it is
straightforward to compute its second derivative, i.e., the macroscopic elasticity tensor eLðFÞ according to (2.9), in order to
examine the macroscopic stability of the solid via the coercivity constant eBðFÞ defined in (2.10).

3.3. Finite element method

In addition to the above-described, approximate, S.O.H.-based method, a more accurate finite element method (F.E.M.)
approach is also employed to calculate the deformed configuration (i.e., to find uuF ), the one-cell homogenized moduli bL , as
well as the microscopic lcm and macroscopic lcM onset-of-failure loads for the periodic elastomers. The details of the
corresponding F.E.M. algorithm are given in Triantafyllidis et al. (2006). However, for reasons of completeness of the
presentation, a brief description of this algorithm is included here.

For the matrix material discretization, the F.E.M. calculations use eight node (16 d.o.f.) quadratic interpolation,
isoparametric, quadrilateral elements with a 2�2 Gaussian under-integration scheme to avoid compressibility locking. For
the inclusions, the F.E.M. calculations use six node (12 d.o.f.) quadratic interpolation, isoparametric, triangular elements
with a three-point Hammer under-integration scheme, again to avoid compressibility locking.

The same type of constitutive model is used both for the matrix and the fiber. However, to numerically approximate a
rigid fiber, the stiffness constants describing the fiber are taken several orders of magnitude higher than their matrix
counterparts. More specifically, for the F.E.M. calculations reported here, the fiber-to-matrix ratio of the initial (i.e., at zero
strain) stiffnesses is taken to be mf =mm � Z¼ 103. This choice ensures that the fiber sections rotate as rigid discs, as
evidenced in all the F.E.M. results obtained here.

As an example of the discretization used, the unit cell for the square microgeometry with an initial fiber volume fraction
f0 ¼ p=16� 0:2 and a fiber section aspect ratio r=2 (see the top drawing in Fig. 1b) the mesh has 2096 elements with 5873
nodes (11,746 d.o.f). For the cell of the hexagonal microgeometry with the same initial fiber volume fraction and a circular
section fiber (r=1) (see the bottom drawing in Fig. 1b) a 2112 element mesh with 5929 nodes (11,858 d.o.f.) is used. For the
imperfect 3�3 cell aggregate (see Fig. 12) the mesh has 27,332 elements with 63,125 nodes (126,250 d.o.f.). This
discretization is found to be more than adequate for the accuracy of the numerical calculations, since further mesh
refinement does not result in appreciably different onset-of-failure curves.

The governing equations for the unit-cell deformation problem (2.13) subjected to FðlÞ, defined in (3.1), are solved using
an incremental Newton–Raphson algorithm. A typical step size Dl of the load parameter l, defined in (3.2), is Dl¼ 10�2 for
all paths. Occasionally larger step sizes are employed to shorten calculation time. For most cases three to four iterations are
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required for convergence at each load step and the accuracy criterion required to stop the iterations, based on the residual
nominal stress (S¼ @W=@F) vector’s maximum component norm, is JSJr10�6JSJ. The graphs of the microscopic and
macroscopic onset-of-failure surfaces are calculated using 360 different load path angles (starting with j¼ 0 and
repeating the calculations by increasing each time the path angle by Dj¼ p=180).

Calculations, at each load l, of the one-cell homogenized moduli tensor bLðlÞð ¼ LH
ðlÞÞ are based on (2.17) and (2.18) as

detailed in Triantafyllidis et al. (2006). The thus calculated tensor bLðlÞ is then used to find the macroscopic coercivity
constant bBðFðlÞÞ defined in (2.27) and subsequently the macroscopic onset-of-failure load lcM according to the definition
(2.30). The calculation of the microscopic onset-of-failure load lcm, defined in (2.31), is based on the macroscopic coercivity
constant bðFðlÞÞ and takes advantage of (2.32) to drastically reduce the required calculations.

For each loading path, the determination of the loss of macroscopic ellipticity (i.e., of lcM) is done first. Starting at lcM ,
the load parameter is decreased by steps of �Dl. At each load level, the stability of the infinite perfect structure is
investigated by scanning all wavenumbers ðo1L1,o2L2Þ 2 ð0,2pÞ � ð0,2pÞ according to the algorithm described in
Triantafyllidis et al. (2006) by using a uniform 72�72 grid. If an instability is detected for a certain wavenumber x,
calculations are stopped and the load changed by an additional �Dl. The procedure continues until a stable configuration
is found over the entire Fourier space ð0,2pÞ � ð0,2pÞ. A bisection method is subsequently used to accurately determine the
load at the onset of first bifurcation, (i.e., of lcm).

4. Application to a representative class of fiber-reinforced elastomers

Here are presented the calculations for the in-plane deformations of rigid fiber-reinforced elastomers with different
microgeometries and matrix properties. Following the description of the different matrix constitutive laws used in the
calculations, the results are organized in three groups as follows. The first group, Fig. 2, pertains to the influence of
microgeometry and matrix constitutive law on the macroscopic stress–strain response of the hyperelastic composite under
simple shear along different directions. The second group, Figs. 3 and 4, investigates the influence of microgeometry and
initial fiber volume fraction on the microscopic and macroscopic onset-of-failure curves in neo-Hookean matrix, fiber-
reinforced elastomers under plane strain loading with principal directions aligned with the axes of orthotropy of the
elastomer. Finally the third group, Figs. 5–14, addresses the influence of microgeometry, initial fiber volume fraction, fiber
cross-section, matrix constitutive law and fiber-matrix interface strength on the microscopic and macroscopic onset-of-
failure curves in fiber-reinforced elastomers under plane-strain loading paths that preserve macroscopic incompressibility.

An important general remark about the onset-of-failure curves should be made at this point. For the calculation of the
first — as the load parameter l increases along a given load path FðlÞ — microscopic (at lcm) or macroscopic (at lcM)
instability to be physically meaningful, one must ensure that no other type of failure is encountered along the load path in
question for loads lower than lcm (or lower than lcM in the case that the lower microscopic instability load lcm is not
available). There are several phenomena that can signal some other (than the loss of uniqueness of the one-cell periodic
solution or of the rank-one convexity) type of failure of the fiber-reinforced elastomer, and need to be taken into account.
These phenomena are: (a) cavitation, i.e., the opening of voids in the elastomeric matrix due to the high levels of
hydrostatic tension, (b) decohesion, due to high tensile normal stress at the fiber-matrix interface and (c) fiber contact which
can occur under compression. A detailed discussion of these failure phenomena is presented in Appendix A.

4.1. Matrix material properties

Two different hyperelastic, strictly rank-one convex matrix materials are used here. They are distinguished by their
response in simple shear, the first being linear the other reaching an asymptote at a finite strain. Their energy densities are
given in terms of the following two invariants associated with F

I� FijFij, J� detðFijÞ: ð4:1Þ

The first material is a compressible neo-Hookean solid, with strain energy WðFÞ

W ¼
m
2
½ðI�2Þ�2lnJ�þ

k�m
2
ðJ�1Þ2, ð4:2Þ

where m and k are, respectively, the shear and bulk moduli of the solid at zero strain. The response of this solid in simple
shear is linear, with a unit slope because of the adopted non-dimensionalization for the stress.

The second material used is a compressible Gent solid, with strain energy WðFÞ given by

W ¼�
m
2

Jmln 1�
I�2

Jm

� �
þ2lnJ

� �
þ

k�m
2
�
m
Jm

� �
ðJ�1Þ2, ð4:3Þ

where m and k have the same interpretation as in (4.2) and Jm is a constant related to the solid’s strain saturation. Indeed, as
expected from (4.3), the stresses become infinite as the strains (measured by the first invariant) approach Jm + 2. This
asymptotic behavior is motivated by the reversible elastic range response of natural rubbers which cannot sustain strains
above a certain level without failure. The numerical value Jm=50, which has been used by Michel et al. (2007) is also
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adopted for all the numerical calculations reported in this work. Note that at the limit Jm-1, the Gent energy density in
(4.3) converges to the neo-Hookean energy density in (4.2).

Both neo-Hookean and Gent solids (for m40, Jm40,k4 ½ðJmþ2Þ=Jm�m) are strictly polyconvex, as defined in Ball (1977),
since they are strictly convex functions of I and J, and hence strictly rank-one convex, i.e., they must satisfy (2.6). Finally, it
must be pointed out that upon a linearization of the deformation gradient, the above two laws reduce to the same small
strain, linearly elastic solid with shear and bulk moduli m and k, respectively.

4.2. Macroscopic stress–strain response

Some general remarks applicable to Fig. 2 are first in order. All composites have the same initial fiber volume fraction
(f0 ¼ p=16� 0:2) and the same stress–strain response at zero strain, since the two different matrix laws used have the same
initial shear and bulk moduli (k=m¼ 10). The calculations are done for two different initial microgeometries: (i) hexagonal
and (ii) random polydisperse distributions of fibers with circular sections (aspect ratio r=1). For each microgeometry three
different isochoric loading paths are considered. The first two are simple shear paths g12 and g21 described in (3.3). The
third path consists of isochoric biaxial stretching, a special case of (3.1) where e1þe2 ¼ 0. The latter loading results from
the superposition of two simple shear loadings, a g21 ¼ g=2 and a g12 ¼ g=2, plus some higher order stretching
(of ð1þðg=2Þ2Þ1=2 to be exact) along each axis, where the axes of deformation are fixed but rotated by p=4 with respect to
the Xi axes.

The shear stresses t plotted in Fig. 2 are taken to be the corresponding macroscopic Cauchy stresses s21, s12 and
js22�s11j=2, respectively, where the latter is the shear stress at p=4 with respect to the principal directions of the isochoric
biaxial stretching. The results for the periodic microgeometry are based on F.E.M. calculations (solid lines), while for the
random microgeometry S.O.H. calculations (bullet-marked lines) are used. On the hexagonal microgeometry composite
stress–strain curves, are also marked by solid triangles the loss of ellipticity of the corresponding homogenized moduli, the
onset-of-cavitation in the matrix as well as the onset-of-decohesion, while on the corresponding curves for the random
microgeometry composite the onset-of-decohesion in marked by solid squares (onset-of-cavitation cannot be calculated
for the S.O.H. approximation, while the random microgeometry elastomer with circular inclusions does not loose
macroscopic ellipticity). For explanations on the decohesion and cavitation calculations, see Appendix A.

For small strains all the three different loadings are simple shearing with respect to different axes. Given the isotropy of
the hexagonal microgeometry composite at zero strain, as well as the isotropy of the random microgeometry composite, all
three loading paths start — for either microgeometry composite and for either constitutive law, since the two matrix
materials coincide at zero strain — with the same initial tangent, as seen in Fig. 2. Moreover, as expected from the isotropy

Fig. 2. Influence of microgeometry and matrix constitutive law on the macroscopic dimensionless Cauchy shear stress-shear strain response of fixed

initial fiber volume fraction (f0 ¼ p=16� 0:2) elastomers reinforced with circular section (r=1) fibers: (a) neo-Hookean, and (b) Gent matrix material

(with same shear and bulk moduli). The composites are subjected to three different plane-strain loading paths in simple shear. For the hexagonal

microgeometry, the results are based on F.E.M. calculations and are shown in solid lines, while for the random polydisperse microgeometry, the results

are based on S.O.H. calculations and are shown in bullet-marked lines. Decohesion, cavitation and macroscopic loss of ellipticity are marked by solid

triangles for the hexagonal microgeometry composites while decohesion for the random microgeometry composites is marked by solid squares.
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of the random microgeometry composite, there is no difference in its response for the g21 and g12 loading paths at all strain
levels.

For the hexagonal microgeometry, after a strain g� 0:2, the stress–strain paths start diverging: g12 has the softest
(almost linear) response, g21 shows initially the stiffest response while e1 ¼�e2 lies between the other two. Such a
behavior is expected since the two gij paths corresponds to shearing rotated at 7p=4 with respect to isochoric biaxial
stretching path and the hexagonal microgeometry composite is no longer isotropic at finite strains. The g12 and e1 ¼�e2

paths have slopes that increase monotonically with the applied strain, while the g21 path slope starts decreasing and
crosses the e1 ¼�e2 path at g� 1:25 and the g12 path at even higher strains. This large stiffness variation of the periodic
composite’s stress–strain response under the g21 simple shear is due to the evolution of the microstructure; particles along
rows parallel to the shearing direction periodically get aligned and then misaligned, as discussed by Lahellec et al. (2004)
and Brun et al. (2007). Note that because of this effect, the neo-Hookean matrix composite’s slope of the stress–strain path
for g21 is almost zero for strains of g 2 ½1:6,1:8� approximately, as seen in Fig. 2a.

For the random, isotropic, polydisperse composite the stress–strain paths are always monotonic (almost linear) and lie
below the response of the corresponding hexagonal composite. The approximate S.O.H. model predicts a somewhat stiffer
response for the e1 ¼�e2 as compared to the gij paths (the response for g21 and g12 is identical, due to the isotropy of the
random, polydisperse composite), consistently with the F.E.M. predictions for the hexagonal composite. The differences
between the e1 ¼�e2 and g12 responses are small even for high strains for the neo-Hookean random composite (see Fig. 2a)
and almost non-existent for the corresponding random Gent case (see Fig. 2b).

The macroscopic stress–strain response of the neo-Hookean and Gent composites are very similar, with the latter being
somewhat stiffer compared to the former at higher strains as expected from the corresponding response of the two matrix
materials. It is also worth noticing that up to failure by cavitation (see Appendix A), there is no discernible influence of the
matrix material in the response of the composite, thus justifying the choice adopted herein to do most of the ensuing
calculations for neo-Hookean matrix composites. The matrix constitutive law issue will be revisited subsequently,
providing more supporting evidence for the neo-Hookean material choice, when its influence on the onset-of-failure
curves is investigated in Fig. 13.

4.3. Onset-of-failure curves for neo-Hookean composites loaded along orthotropy axes

The influence of fiber volume fraction, microgeometry and matrix material compressibility on the failure curves of
fiber-reinforced elastomers subjected to plane-strain loading with principal directions aligned with the axes of orthotropy
of the composite, as described in (3.1) and (3.2), is presented next in Figs. 3 and 4. All results in this subsection are
calculated using a neo-Hookean matrix material and fibers with circular cross-section (r=1).

Fig. 3. Influence of initial fiber volume fraction (f0) on the onset-of-failure curves in (a) macroscopic strain space and in (b) dimensionless macroscopic

stress space for neo-Hookean matrix (k=m¼ 10), hexagonal microgeometry composites, reinforced with circular section fibers (r=1) and loaded under

plane-strain, along the X1, X2 directions. Macroscopic loss of ellipticity is depicted by solid lines, matrix cavitation by dashed lines, fiber decohesion by

dot–dash lines and fiber contact by dotted lines. Results are based on F.E.M. calculations.
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The onset-of-failure curves for the periodic hexagonal microgeometry, obtained by F.E.M. calculations, are presented in
Fig. 3. More specifically, in Fig. 3a are plotted, in principal logarithmic strain space, the curves for the macroscopic onset-of-
failure (loss of ellipticity of the homogenized moduli, solid lines), the onset-of-cavitation in the matrix (dashed lines), and
the onset-of-decohesion at the fiber-matrix interface (dot–dash lines). The locus of strains corresponding to fiber contact, a
straightforward geometric calculation, are also marked (dotted lines). The same results, plotted in dimensionless stress
space — principal nominal stress over shear modulus (Sii=m) — are presented in Fig. 3b.

The macroscopic onset-of-failure curves in strain space in Fig. 3a are similar to the ones calculated by Nestorović and
Triantafyllidis (2004) for the same matrix material, but for a slightly different microgeometry — diagonal, instead of the
present hexagonal fiber arrangement — and for slightly different values of the material constants. The macroscopic and
microscopic onset-of-failure curves are always coincident, which means that when a bifurcation type instability is
encountered along a radial loading path, its characteristic wavelength is much larger than the unit cell size.

There are two loading zones in biaxial contraction along which no bifurcation instability is detected prior to fiber
contact. These zones are centered about the hydrostatic compression of the composite during which the fibers approach
each other at the same rate. The corresponding deformation paths, found from geometric considerations when three
adjacent fibers are equidistant, are e1 ¼ e2 and e1 ¼ e2þ0:5lnð3Þ and are easily visualized by joining the corresponding
corner points of the different f0 fiber contact curves in Fig. 3a. For paths about the hydrostatic compression loading of the
(initially isotropic) hexagonal microgeometry composite, the principal (unit-cell-periodic) solution is found to be stable all
the way up to fiber contact. One possible explanation is the (almost) isotropic hydrostatic compression of the circular
section fiber, hexagonal composite is not that different from the corresponding deformed state of its random, polydisperse
counterpart which has been shown to never lose ellipticity (Lopez-Pamies and Ponte Castañeda, 2006b).

Notice the absence of bifurcation type instabilities in the biaxial extension zone and in parts of the mixed loading
quadrants (i.e., e1e2o0), roughly above the simple shear line e1 ¼�e2, in the deformation region which corresponds to a
macroscopic dilation of the composite (e1þe240). The composite’s overall dilation implies dilation of the compressible
matrix, thus leading to cavitation. Prior to cavitation the maximum normal stress at the fiber/matrix interface reaches the
magnitude of the shear modulus, thus signaling decohesion, according to the definition adopted (dc � ðsnn=mÞmax = 1, see
Appendix A). Decohesion always precedes cavitation along each radial path and both these phenomena occur at
macroscopic strains at least an order of magnitude lower than the strains for the onset of the macroscopic loss of ellipticity
of the composite.

As the initial fiber volume fraction f0 increases, the macroscopic loss of ellipticity occurs at lower macroscopic strains
and the corresponding curves recede towards the origin while keeping the same overall shape. The decrease of
macroscopic instability strains for higher fiber volume fractions is expected, since instability is driven by compressive
stresses in the ligaments; as the ligaments become thinner with increasing fiber volume fractions, the same compressive
stress levels are reached for lower overall macroscopic strains and instabilities occur earlier. However, unlike the loss of
ellipticity instabilities which dominate the contraction part of the macroscopic strain space, the decohesion and cavitation
instabilities occurring in the dilation part of the same space depend on the local stress fields reaching a critical value and
hence are relatively insensitive to the initial fiber volume fraction.

The results of the same calculations are plotted in macroscopic, dimensionless principal stress space in Fig. 3b. Unlike the
strain plot in Fig. 3a, the macroscopic stresses corresponding to the onset of macroscopic loss of ellipticity are not increasing
monotonically with the initial fiber volume fraction, neither do the corresponding stresses vary as much. The critical
macroscopic stresses for the onset-of-cavitation and decohesion are, for the reason previously explained, almost insensitive
to f0. Notice that no fiber contact curves are shown in Fig. 3b, since the corresponding stresses are infinitely large.

Calculations reported in Fig. 4a correspond to the same composites as in Fig. 3a, except that here the composite has a
square, instead of a hexagonal, microgeometry. The same line drawing convention as Fig. 3a is used here for plotting the
different onset-of-failure curves. Moreover, and in addition to the F.E.M. results (solid lines), results from S.O.H.
calculations for the same composites are also presented (bullet-marked lines).

Again, the macroscopic onset-of-failure curves in strain space are very similar to the ones calculated by Nestorović and
Triantafyllidis (2004) for the same microgeometry and matrix material, but for slightly different values of the material
constants. Roughly speaking and similarly to the hexagonal microgeometry, a long-wavelength bifurcation is the first
instability encountered under macroscopic contraction (e1þe2o0), while a decohesion, followed by a cavitation are the
instabilities encountered under macroscopic dilation (e1þe240). The strains for the loss of ellipticity are, once again, an
order of magnitude higher than the strains at decohesion and cavitation. However, unlike the hexagonal microgeometry,
for square microgeometries a macroscopic loss of ellipticity always occurs along loading paths in biaxial compression
before reaching fiber contact. The reasons for the decrease in critical strains with increasing initial fiber volume fraction in
the macroscopic contraction part of the strain space and the corresponding insensitivity of the decohesion and cavitation
curves in the macroscopic dilation part of the strain space, have already been explained in discussing Fig. 3a.

The S.O.H. predictions for cavitation6 and loss of ellipticity are qualitatively consistent with the corresponding F.E.M.
results. Thus, cavitation is observed in the dilation region and loss of ellipticity in the contraction region. The S.O.H.

6 While no information of the local deformation can be computed with the S.O.H, the average deformation gradient in the matrix phase can be readily

computed. The S.O.H. cavitation predictions in Fig. 4 are based on such an average measure.
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predictions agree remarkably well with the F.E.M. calculations in the macroscopic dilation region, where results are
insensitive to f0. However, the S.O.H. predictions for loss of ellipticity under contraction conditions are much delayed
(i.e., they correspond to much larger strains) compared to the corresponding F.E.M. results — so much so that fiber contact
takes place before the loss of ellipticity predicted by the S.O.H. when the loading is sufficiently close to the hydrostatic
compression axes. This deficiency with the S.O.H. predictions — which gets worse with increasing volume fraction — can
be attributed at least in part to the lack of accuracy of the Hashin–Shtrikman-type estimates used for the linear comparison
composite. Such estimates can handle only approximately interaction effects among the fibers through two-point
interactions, which are insufficient to model accurately strongly nonlinear phenomena such as those occurring when the
fibers start getting close to each other; note that under highly compressive conditions the composite starts behaving as a
composite with a high concentration of fibers.

All calculations reported thus far, correspond to neo-Hookean matrix composites with a compressibility ratio k=m¼ 10.
The influence of matrix material compressibility on the onset-of-failure curves for the square microgeometry composite
with circular section fibers (r=1) and an initial fiber volume fraction (f0 ¼ p=16� 0:2) is presented in Fig. 4b. As expected,
results are similar to the ones presented in Fig. 4a, with the first failure encountered in the macroscopic contraction region
being a macroscopic loss of ellipticity and a decohesion followed by cavitation being the failures encountered in the
macroscopic dilation region of the strain space. As the matrix material incompressibility increases, the stable region of the
composite shrinks in strain space; the loss of ellipticity curves become sharper V’s — all anchored about the loss of
ellipticity point for hydrostatic compression at approximately (�0.63, �0.63) — while the onset-of-cavitation curves
approach the zero macroscopic dilation line (e1þe2 ¼ 0). For the most compressible neo-Hookean matrix material
(k=m¼ 1), the criterion of Lopez-Pamies (2009) does not predict cavitation and only a decohesion line exists. Notice also
that the S.O.H. predictions are best for the most incompressible matrix material (k=m¼ 100) and deteriorate with
increasing matrix compressibility. For the most compressible case (k=m¼ 1) the S.O.H. predictions for the onset of the loss
of ellipticity are well into the fiber contact zone of the composite and hence are not shown here.

4.4. Onset-of-failure curves for isochoric loading paths

Next, in Figs. 5–14, we investigate the influence of microgeometry, initial fiber volume fraction, fiber section aspect
ratio, matrix constitutive law and fiber-matrix interface strength for the isochoric loading paths described in (3.3)
and (3.4).

In Fig. 5 are presented the onset-of-failure curves for composite elastomers with a perfectly periodic hexagonal
arrangement of circular section fibers (r=1), an initial fiber volume fraction of f0 ¼ p=16� 0:2 and a neo-Hookean matrix
(k=m¼ 10). More specifically, in Fig. 5a are plotted, in strain space (e1 vs g21 and g12), the curves for the macroscopic

Fig. 4. Influence of (a) initial fiber volume fraction (f0) and (b) matrix compressibility (k=m) on the onset-of-failure curves in macroscopic strain space for

neo-Hookean matrix, square microgeometry composites, reinforced with circular section fibers (r=1) and loaded under plane-strain, along the X1, X2

directions. Macroscopic loss of ellipticity is depicted by solid lines, matrix cavitation by dashed lines, fiber decohesion by dot–dash lines and fiber contact

by dotted lines. Results based on F.E.M. calculations are shown in solid lines while results based on S.O.H. calculations are shown in bullet-marked lines.
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onset-of-failure (loss of ellipticity of the homogenized moduli, in continuum lines), the microscopic onset-of-failure (first
bifurcation, in big dash lines), the onset-of-cavitation in the matrix (small dash lines) and the onset-of-decohesion at the
fiber-matrix interface (dot–dash lines). The locus of strains corresponding to fiber contact are also marked (dotted lines).
The same results, plotted in dimensionless stress space — corresponding nominal stresses over shear modulus (Sij=m) —

are presented in Fig. 5b. The results reported in Fig. 5 are based on F.E.M. calculations.
Unlike the results in the previous subsection, for isochoric strain paths, there is a well ordered sequence of instabilities

for this initially isotropic, periodic composite. Along any given radial loading path, a fiber-matrix decohesion always
occurs first followed by matrix cavitation at about twice the strains of decohesion. Consequently the corresponding
onset-of-failure curves are closed, non-intersecting, simple curves about the origin. Onset of first bifurcation always
occurs after the onset of matrix cavitation, but not for all radial loading paths, as there are significant fan-shaped
zones about the origin in which no bifurcation instability occurs, i.e., the unit-cell-periodic solution is always stable.
For the isochoric biaxial stretching loading paths (j¼ 0,p), the first bifurcation always coincides with a loss of
ellipticity, i.e., the critical mode has a wavelength much larger than the unit cell dimensions. For loading paths with
other orientations, a first bifurcation might occur at a finite wavelength. Local critical modes, i.e., modes involving several
unit cells in each direction, are found for approximately j 2 ½483,503

� [ ½983,1003
� for g21 loading and j 2 ½1163,1273

� for g12

loading.
The fact that a decohesion instability always occurs prior to a matrix cavitation is also reflected in the stress plot of

Fig. 5b, where the corresponding onset-of-failure curves are closed, non-intersecting, simple curves about the origin,
although they look more distorted than their almost elliptical counterparts in strain space. At any rate, the general
conclusion for the hexagonal microgeometry, periodic composite with circular section fibers and a neo-Hookean matrix —

when ignoring the fiber-matrix interface strength — is that it will always fail by matrix cavitation when subjected to a
volume-preserving macroscopic loading path. A microscopic bifurcation or a macroscopic loss of ellipticity instability is
possible at larger strains for some loading paths, always before reaching fiber contact. The fact that a decohesion is found
here to occur prior to cavitation is a result of our interface strength choice and it is possible, as it will be seen later, that
decohesion can occur after cavitation for composites with stronger interfaces.

Fig. 5. Onset-of-failure curves for hexagonal microgeometry, neo-Hookean matrix (k=m¼ 10) composite of initial fiber volume fraction (f0 ¼ p=16� 0:2)

with circular section fibers (r=1), which is subjected to isochoric plane-strain loading: (a) results in macroscopic strain space and (b) in dimensionless

macroscopic stress space. Macroscopic loss of ellipticity is depicted by solid lines, onset of first bifurcation by big dash lines, matrix cavitation by small

dash lines, fiber decohesion by dot–dash lines and fiber contact by dotted lines. Results are based on F.E.M. calculations.
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The results presented in Fig. 6 correspond to a periodic composite with the same matrix material, circular section fibers
and initial fiber volume fraction as in Fig. 5, but with a square (instead of hexagonal) microgeometry. The same line
drawing convention as in Fig. 5a is used here for plotting the different onset-of-failure curves. Moreover, and in addition to
the F.E.M. results (solid lines), results from S.O.H. calculations for the same composites are also presented (bullet-marked
lines). Due to the symmetry of the square microgeometry only g21 loading needs to be considered for this case; had g12

calculations been carried out and the corresponding graphs plotted as in Fig. 5, the curves would have been point-
symmetric with respect to the origin.

The conclusions are fairly similar to the ones obtained for the hexagonal microgeometry, i.e., that along any radial
loading path a decohesion always precedes (at about half the strain) a matrix cavitation instability. A loss of macroscopic
ellipticity follows for paths (j¼ 0,p), but not for simple shearing (j¼ p=2). Also there is a larger, than for the hexagonal
microgeometry, range of loading paths where a first bifurcation precedes the loss of macroscopic ellipticity, found for
approximately j 2 ½533,693

�. Also notice that due to the symmetry of the composite, all corresponding critical points are
symmetric along the e1 axis.

It is worth noticing that the S.O.H. approximation does a fairly good job in predicting the decohesion and loss of
ellipticity strains and stresses, considering the significant initial fiber volume fraction (f0 ¼ p=16� 0:2) of the composite.
The shapes of the S.O.H. curves are similar to the corresponding F.E.M. ones, with the S.O.H. approximation consistently
overpredicting the stresses and strains at the onset-of-failure. Also notice that, like the F.E.M. method, the S.O.H.
approximation predicts decohesion inside the cavitation-safe region in both strain (see Fig. 6a) and stress (see Fig. 6b)
space. Similarly the loss of ellipticity is predicted by the S.O.H. to occur prior to fiber contact for most radial paths;
however, for paths with j 2 ½583,903

� the S.O.H. method predicts a macroscopic loss of ellipticity past fiber contact and the
corresponding part of the failure curve is not shown, for it is physically meaningless.

The influence of the initial fiber volume fraction on the onset-of-failure in periodic composites is considered next in
Fig. 7, where the results correspond to a square microgeometry composite, with the same neo-Hookean matrix material
and initial circular section fibers as the composite in Fig. 6, but with two different initial fiber volume fractions; f0=0.1 in
(a) and f0=0.3 in (b). The same line drawing convention as in Fig. 6a is also used here for plotting the different onset-of-
failure curves.

In comparing Fig. 7a and b and also Fig. 6a, one observes the following trends: increasing of the initial fiber volume
fraction decreases all critical strains (i.e., for first bifurcation, loss of ellipticity, decohesion and cavitation) resulting in a
(rather approximately) self-similar shrinking of the corresponding curves about the origin. This behavior is expected from
the resulting higher strain/stress concentrations between the fibers that result at the higher fiber volume fraction
composites loaded at the same levels of macroscopic strain as their smaller fiber volume fraction counterparts. Although
the sequence for the onset-of-failure phenomena remains the same (decohesion, followed by cavitation, a bifurcation or a

Fig. 6. Onset-of-failure curves for square microgeometry, neo-Hookean matrix (k=m¼ 10) composite of initial fiber volume fraction (f0 ¼ p=16� 0:2) with

circular section fibers (r=1), which is subjected to isochoric plane-strain loading: (a) results in macroscopic strain space and (b) in dimensionless

macroscopic stress space. Macroscopic loss of ellipticity is depicted by solid lines, onset of first bifurcation by big dash lines, matrix cavitation by small

dash lines, fiber decohesion by dot–dash lines and fiber contact by dotted lines. Results based on F.E.M. calculations are shown in solid lines while results

based on S.O.H. calculations are shown in bullet-marked lines.
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loss of ellipticity — depending on the critical eigenmode’s wavelength), the loss of ellipticity curves are much closer to
their cavitation counterparts for the highest value of f0=0.3, as seen in Fig. 7b.

The study of the eigenmodes merits special attention and is presented next. In Fig. 8 is plotted the dimensionless critical
wavenumber ðoiLiÞ

c=2p as a function of the load path angle j, for the square microgeometry, neo-Hookean matrix
(k=m¼ 10) composites with circular section fibers (r¼ 1) studied in Figs. 6 and 7. The dimensionless critical wavenumber
along the X1 direction, ðo1L1Þ

c=2p, is plotted in solid lines, while its counterpart along the X2 direction, ðo2L2Þ
c=2p, is

plotted by dotted lines. Results corresponding to initial fiber volume fractions f0 ¼ 0:1,p=16,0:3 are shown, respectively, in
triangle-marked, circle-marked and square-marked lines. For f0 ¼ p=16� 0:2, we separate by vertical lines the load path
angle range according to the nature of the first instability found: finite, infinite wavelength or no instability at all, with the

Fig. 7. Onset-of-failure curves for square microgeometry, neo-Hookean matrix (k=m¼ 10) composites of different initial fiber volume fractions: (a) f0=0.1

and (b) f0=0.3. In both cases, the fibers have circular sections (r=1) and are subjected to isochoric plane-strain loading. Macroscopic loss of ellipticity is

depicted by solid lines, onset of first bifurcation by big dash lines, matrix cavitation by a small dash lines, fiber decohesion by dot–dash lines and fiber

contact by dotted lines. Results based on F.E.M. calculations are shown in solid lines while results based on S.O.H. calculations are shown in bullet-marked

lines.

Fig. 8. Dimensionless critical wavenumber at the onset of the first bifurcation for square microgeometry, neo-Hookean matrix (k=m¼ 10) composites

with circular section fibers (r=1), as a function of the load path angle (j), for three different initial fiber volume fractions (f0 ¼ 0:1, p=16,0:3). For

f0 ¼ p=16, we separate by vertical lines the load path angle range according to the nature of the first instability found: finite, infinite wavelength or no

instability at all, with the latter shaded in grey. For the same composite, we also show in inserts the fundamental cell of two finite wavelength critical

modes.
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latter shaded in grey. For the same composite, we also show in an insert the fundamental cell of two finite wavelength
critical modes, i.e., for j¼ 553 and 693. The arrows in each mode point to the corresponding critical wavelengths in each
direction. All results are based on F.E.M. calculations.

The most significant feature in Fig. 8 is that the range of loading angles for which a local mode is found (i.e., when the
first bifurcation instability has a finite wavelength), increases as the fiber volume fraction decreases. Thus, while for the
highest fiber volume fraction, f0=0.3, finite wavelength critical modes are possible only for a narrow interval near j¼ 703,
for the lowest volume fraction examined, f0=0.1, finite wavelength critical modes are found for a much wider range of j
and in two different intervals, the larger for jop=2 and the smaller for j4p=2. Another interesting feature is the
remarkable ‘‘richness’’ of the eigenmodes, as evidenced by the fact that for the two smaller fiber volume fractions,
the dimensionless critical wavenumber can reach a wide range of values between 0 and 0.5, which means that the
fundamental cell of the critical mode can be large indeed (e.g., see insert for the critical mode for j¼ 553). This result is in
contrast with the corresponding result for the porous elastomers (see Michel et al., 2007; Bertoldi et al., 2008), where the
local modes found for circular section holes invariably corresponded to ðoiLiÞ

c=2p¼ 0:5, i.e., the fundamental cell for the
critical modes involved at most 2�2 cells.

All calculations thus far pertain to composites with circular fiber sections (r=1). However, it has recently been found by
Lopez-Pamies and Ponte Castañeda (2006b) that the presence of aligned fibers with elliptical cross-section can destabilize
composites, especially for compressive loading aligned with the fiber section’s major axis. This destabilization, detected in
Lopez-Pamies and Ponte Castañeda (2006b) by a loss of ellipticity of the composite’s homogenized moduli, is highly
sensitive to the fiber section’s aspect ratio and is due to a rotation of the fibers about their axes (i.e., about X3) that
alleviates stress concentrations. It is therefore imperative to investigate the influence of the fiber section’s aspect ratio r on
the composite’s onset-of-failure curves, which is the subject of Fig. 9.

The results presented in Fig. 9 correspond to a periodic composite with the same square microgeometry, matrix
material and initial fiber volume fraction as in Fig. 6, but with non-circular fiber cross-sections (r41). More specifically the

Fig. 9. Onset-of-failure curves for square microgeometry, neo-Hookean matrix (k=m¼ 10) composites of initial fiber volume fraction (f0 ¼p=16� 0:2)

with elliptical section (r41) fibers which are subjected to isochoric plane-strain loading. Results in macroscopic strain space are shown for

(a) elliptical section fibers with aspect ratio r=2 and (b) elliptical section fibers with aspect ratio r=3. Macroscopic loss of ellipticity is depicted

by solid lines, onset of first bifurcation by big dash lines, matrix cavitation by small dash lines, fiber decohesion by dot–dash lines and fiber contact by

triangle-marked dotted lines. Also presented by insert in (b) is a zoom of the singularity in the loss of macroscopic ellipticity for loading along a

load path angle j¼ p. Results based on F.E.M. calculations are shown in solid lines while results based on S.O.H. calculations are shown in bullet-marked

lines.
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results in Fig. 9a correspond to elliptical section fibers with aspect ratio r=2, while Fig. 9b pertains to calculations with r=3.
The same line drawing convention as in Fig. 6 is also used here for plotting the different onset-of-failure curves. Due to the
elliptical section fibers, the symmetry arguments used for the calculations in Fig. 6 no longer hold. Consequently both g21

and g12 loadings are considered and Fig. 9 is plotted similarly to Fig. 5.
The decohesion and cavitation curves are still closed simple curves (i.e., an interface decohesion is followed by a matrix

cavitation along any radial loading path direction) in Fig. 9a, but are shifted along the compression direction of the e1 axis.
For tension along the major axis of the fiber’s section (e140), the loss of ellipticity occurs well after matrix cavitation (at
more than twice the strain of cavitation). In contrast, for compression along the major axis of the fiber’s section (e1o0), the
loss of ellipticity appears at slightly higher strains than decohesion and well below the strain required for the matrix to
cavitate (which now occurs at about twice the strain for the loss of ellipticity). Moreover, the loss of ellipticity for
compression along the major axis of the fiber’s section occurs at about �0.25 while for tension is found at about +0.5. This
tension/compression asymmetry can be easily understood from the fact that compressing the elliptical fiber along the
major axis of its section is an unstable deformation mode, since a slight rotation in either direction can alleviate the stress
concentration occurring at the shortest distance between fibers. As a result of this destabilization mechanism for the
elliptical fiber composite, for strains e1o0, a large part for the loss of ellipticity curve lies inside the cavitation-free region
— in contrast to the circular section fiber composite of Fig. 6a.

Also notice that the loss of ellipticity is occurring for a narrow range of loading paths near j� 1103 for the g21 case and
j� 703 for the g12 case. The S.O.H. method misses these two small isolated branches but captures rather well the two loss
of ellipticity branches that intersect the e1 axis. It should also be mentioned at this point that unlike the circular section
fiber cases, no simple geometric calculation can determine the locus of fiber contact in strain space for paths off the e1 axis,
since the rotation of the fibers is non-zero and is dictated by equilibrium. For these paths, as explained in Appendix A, a
numerical method is used, thus explaining the slightly wavy nature of the corresponding curves (triangle-marked dotted
lines) appearing in Fig. 9.

Increasing the fiber section’s aspect ratio to r=3 further distorts the decohesion and cavitation curves (the latter is no
longer closed) and shifts the loss of ellipticity branch in the e1o0 zone closer to the origin, as seen in Fig. 9b. Indeed, by
increasing the aspect ratio, one further destabilizes the e1o0 path and a loss of ellipticity is now found at about e1 ¼�0:12,
prior to fiber contact, which for this path occurs at about e1 ¼�0:14. It is remarkable that addition of a slight amount of
shear (j¼ 1793), induces a rotation of the fiber about its axis and delays considerably the loss of ellipticity, which occurs at
about e1 ¼�0:19, thus explaining the discontinuity of the loss of ellipticity curve near its intersection with the e1o0 semi-
axis, as seen from the insert in Fig. 9b. In contrast to the previous cases studied, for the e1o0 loadings, the loss of ellipticity
is the first instability encountered in the loading process, prior to decohesion and well before cavitation; the latter
instability is not even found for a large range of loading paths, as seen from the open form of the cavitation curve in Fig. 9b.
Finally, it should also be pointed out here that the increase of the aspect ratio results in the substantial improvement of the
loss of ellipticity predictions by the S.O.H. method, as one can see by comparing Fig. 9a and b.

Fig. 10. Dimensionless critical wavenumber at the onset of the first bifurcation for square microgeometry, neo-Hookean matrix (k=m¼ 10) composites

with fiber sections of three different aspect ratios (r=1,2, 3), as a function of the load path angle (j), for an initial fiber volume fraction (f0 ¼ p=16� 0:2).

For r=3, we separate by vertical lines the load path angle range according to the nature of the first instability found: finite, infinite wavelength or no

instability at all, with the latter shaded in grey. For the same composite, we are also showing in insert the fundamental cell of several finite wavelength

critical modes.
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The study of the eigenmodes for the elliptical inclusion composites of Fig. 9 is particularly interesting. In Fig. 10, the
dimensionless critical wavenumber ðoiLiÞ

c=2p is plotted as a function of the load path angle j, for the square
microgeometry, neo-Hookean matrix (k=m¼ 10) composites with initial fiber volume fraction f0 ¼ p=16� 0:2. The
dimensionless critical wavenumber along the X1 direction, ðo1L1Þ

c=2p, is plotted in solid lines, while its counterpart along
the X2 direction, ðo2L2Þ

c=2p, is plotted by dotted lines. Results corresponding to elliptical fiber section aspect ratios r= 1, 2,
3 are shown, respectively, in circle-marked, triangle-marked and square-marked lines (the circular section fiber results are
included for comparison). For r=3, we separate by vertical lines the load path angle range according to the nature of the
first instability found: finite, infinite wavelength or no instability at all, with the latter shaded in grey. For the same
composite, we also show in an insert the fundamental cell of four finite wavelength critical modes, i.e., for j¼ 683 and 1303

for g21 loading and j¼ 993 and 1653 for g12 loading. The arrows in each fundamental cell point to the corresponding critical
wavelengths in each direction. All results are based on F.E.M. calculations.

For radial paths with angles j away from 0 or p, a finite wavelength bifurcation is found to precede the loss of
macroscopic ellipticity for all aspect ratios, as seen in Fig. 10. Notice the considerable increase, compared to r=1, 2, of the
load path angle range for which a local mode is found for r=3. More specifically, for g21 loading a local bifurcation
instability is found for 603ojo703 and for 1283ojo1723, while for g12 loading a local bifurcation instability is found for
993ojo1683. In a large part of these load path intervals, the critical eigenmode is anti-periodic mode along X1 and
periodic along X2 as seen in Fig. 10. Also the small dimensionless wavenumbers found for some load path angles, indicate
critical modes involving large numbers of unit cells, particularly along the X1 direction as seen from the low value of
ðo1L1Þ

c=2p in the interval j 2 ½603,703
� for g21 loading and r=3.

For completeness, one must also look at the fiber rotation — for the principal (unit-cell-periodic) solution branch — as a
function of the load parameter (l), defined in (3.4), for different loading paths (j). The results for the square
microgeometry, neo-Hookean matrix (k=m¼ 10) composite with initial fiber volume fraction (f0 ¼ p=16� 0:2), based on
F.E.M. (solid lines) and S.O.H. (bullet-marked lines) are given in Fig. 11. For the circular section (r=1) fiber case, seen in
Fig. 11a, there is a remarkable agreement between the F.E.M. and S.O.H. results for all loading paths for lo0:25, while for
the simple shear case j¼ p=2 the agreement between the two methods extends all the way for l¼ 1:0.

For the elliptical fiber section (r=2) case seen in Fig. 11b, the S.O.H. approximation does a rather inaccurate job, even for
small values of the load parameter l. It is worth pointing out in Fig. 11 that fiber rotation is not necessarily a monotonically
increasing function of the applied load parameter, as one might naively expect. Notice for example that for g21 loading on a
path with j¼ 303, the rotation is initially in the counterclockwise direction, as expected from the g21 shearing. This
rotation eventually reverses its direction due of course to the isochoric biaxial stretching (e2 ¼�e1) component of the
loading along the principal axes of the composite, which constitutes a shearing at 453 that tends to rotate the fibers in the
clockwise direction (similar results for random systems were discussed in Section 4.5 of Lopez-Pamies and Ponte

Fig. 11. Fiber rotation as a function of the applied stretch ratio (l) at different load path angles (j) for square microgeometry, neo-Hookean matrix

(k=m¼ 10) composite with initial fiber volume fraction (f0 ¼p=16� 0:2) of (a) circular section fibers (r=1) and (b) elliptical section fibers (r=2), which is

subjected to isochoric plane-strain loading. Results based on F.E.M. calculations are shown in solid lines while results based on S.O.H. calculations are

shown in bullet-marked lines.
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Castañeda, 2006b). This isochoric biaxial stretching loading component eventually dominates and the sign of the rotation
changes. The effect is more dramatic for the elliptical inclusion as seen by comparing the fiber rotations for the g21 loading
on a path with j¼ 303 between Fig. 11a and b.

The reason for the inaccuracy in the rotations predicted by the S.O.H. method for the elliptical section fibers is partly
that the interaction effects are very strong for elliptical inclusions at a volume fraction of f0 � 0:20, and the Hashin–
Shtrickman-type approximation cannot capture them accurately. Unpublished calculations at much lower concentrations
by Michel and Ponte Castañeda (2009) do show a much better agreement between the rotations predicted by the F.E.M.
and the S.O.H. methods.

In Fig. 12a, a more detailed investigation of the influence of microgeometry, ranging from perfectly periodic to random,
is presented for various fiber section aspect ratios (r) and fiber volume fractions (f0). In particular, Fig. 12a depicts the loss
of ellipticity curves for square periodic — perfect and imperfect, as explained below — and random microgeometries, neo-
Hookean matrix (k=m¼ 10) composites with an initial fiber volume fraction f0=0.1 and different fiber section aspect ratios
(r). On the other hand, Fig. 12b shows results for composites with the same microgeometries and matrix material as in
Fig. 12a, a fiber section aspect ratio r=3 and different initial fiber volume fractions (f0). Results for the square
microgeometries are based on F.E.M. calculations (solid lines for perfect microgeometry, hollow square-marked lines for
imperfect 3�3 aggregates) and for random, isotropic, polydisperse microgeometries on S.O.H. calculations (bullet-marked
lines). For the square microgeometry with f0=0.1 and r=3, the macroscopic loss of ellipticity is depicted by solid line. The
loss of ellipticity for the random microgeometry composite with f0= 0.1 and r=5 in (a) is depicted by a dotted line. The
random microgeometry composites with f0 ¼ p=16,0:3 and r= 3 in (b) are depicted by dashed and dotted lines,
respectively. For the case of loading along j¼ 0,p, the loss of ellipticity strain (e1) as a function of the fiber section aspect
ratio (r) and as a function of the initial fiber ratio (f0) are presented by inserts in Fig. 12a and b, respectively.

Fig. 12. Influence of (a) fiber section aspect ratio (r) and (b) initial fiber volume fraction (f0), on the loss of ellipticity curves for square and random

microgeometry, neo-Hookean matrix (k=m¼ 10) composites, which are subjected to isochoric plane-strain loading. For the base case (f0=0.1 and r=3) the

macroscopic loss of ellipticity is depicted by solid lines. The loss of ellipticity for the random microgeometry composite with f0=0.1 and r=5 in (a) is

depicted in dotted lines. The random microgeometry composites with f0 ¼ p=16,0:3 and r=3 in (b) are depicted by dashed and dotted lines, respectively.

For the loading path along j¼ p, the critical strain (e1) at the onset of the loss of ellipticity as a function of the fiber section aspect ratio (r) and as a

function of the initial fiber ratio (f0) are presented by inserts in (a) and (b), respectively. Results for square microgeometries — perfect or imperfect — are

based on F.E.M. calculations and shown in solid lines for perfect microgeometry and in hollow square-marked lines for imperfect 3�3 aggregates, while

for random, isotropic, polydisperse microgeometries are based on S.O.H. calculations and shown in bullet-marked lines.
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Starting with Fig. 12a, observe that the loss of ellipticity curve for the perfect square microgeometry composite has a
discontinuity at j¼ p, as expected from the discussion of Fig. 9b, since a small amount of shearing stabilizes the composite
when it is compressed along the major axis of the elliptical fiber’s cross-section (the loss of ellipticity for j¼ p occurs at
about e1 ¼ 0:33). The loss of ellipticity of the corresponding 3�3 imperfect aggregate, which results by a perturbation of a
perfect 3�3 aggregate by randomly moving the centers by a maximum distance 0.125 L1 about their perfect periodic
positions, occurs as expected at higher strains for paths near j¼ 0 and p. However, unlike the jop=2 loading paths,
where the imperfect aggregate always loses ellipticity at higher strains than its perfect counterpart, the imperfect
aggregate can lose ellipticity well before its perfect counterpart for paths with j4p=2. Moreover the loss of ellipticity
curve for the imperfect aggregate shows discontinuities with respect to j for both g21 and g12 loadings, as does its perfectly
periodic counterpart. However, unlike the jop=2 where the geometry imperfection leads to higher critical strains, for
loadings with j4p=2 away from the j¼ p neighborhood, the loss of ellipticity strains for the imperfect composite are,
surprisingly, considerably lower than for the perfect one.

The comparison of the S.O.H. estimate for the random composite with the same matrix material, fiber volume fraction f0

and fiber aspect ratio r as the periodic composites finds a loss of ellipticity for j4p=2 but none for jop=2. The loss of
ellipticity for j4p=2 shows no singularity near j¼ p and corresponds to strains well above those for the loss of ellipticity
of the imperfect aggregate, but surprisingly below those for the corresponding perfect composite along paths away of the
j¼ p neighborhood. Increasing the fiber section’s aspect ratio further destabilizes the composite, as the results for the
random polydisperse composite with to r=5 show in Fig. 12a. In this connection, notice also from the insert that for
random polydisperse composites the loss of ellipticity under isochoric biaxial loading (j¼ 0,p) as a function of r has an
asymptote about r=1.8 below which no loss of ellipticity is found for all values of f0 considered.

Continuing with Fig. 12b, which investigates the loss of ellipticity for the same microgeometry and matrix material
composites as in Fig. 12a, but with different f0 and only for r=3, notice that for the random microgeometry composite, an
increase in the fiber volume fraction from f0=0.1 to 0.3 reduces considerably the loss of ellipticity strains for loading paths
with j4p=2 (no loss of ellipticity is found for loading paths with jop=2). Since for paths with j4p=2, an increase in f0

implies higher compressive stresses between more closely spaced fibers — for the same macroscopic strain — the
corresponding instability occurs at decreasing macroscopic strains, as seen in Fig. 12b. For each f0, the most unstable
loading path occurs when j¼ p, while the presence of additional shearing for paths with jap rotates the fibers about
their axes and lowers compressive stress concentrations, thus leading to higher critical strains as evidenced by the concave
shape of the corresponding curves in Fig. 12b.

There is more information linking the loss of ellipticity to fiber volume fraction for periodic and random polydisperse
composites in the insert of Fig. 12b, which has been calculated for isochoric biaxial loading (j¼ 0,p). It is worth noticing
that for r=3 and j¼ p, the loss of ellipticity for the random and square periodic microgeometries converge to the same
value at the dilute concentration limit, i.e., as f0-0. For the square periodic microgeometry, the loss of ellipticity strain

Fig. 13. Influence of matrix constitutive law on the onset-of-failure curves in macroscopic strain space. A neo-Hookean matrix, shown in unmarked lines,

and a Gent matrix, shown in bullet-marked lines, periodic composite with square microgeometry are considered both with initial fiber volume fraction

(f0 ¼p=16� 0:2) and circular section fibers (r=1), and are subjected to isochoric plane-strain loading. Macroscopic loss of ellipticity is depicted by solid

lines, onset of first bifurcation by big dash lines, matrix cavitation by small dash lines, fiber decohesion by dot–dash lines and fiber contact by dotted lines.

The dimensionless critical wavenumber at the onset of the first bifurcation as a function of the load path angle is presented by insert (only for values of

the load path angle with a finite wavelength critical mode). Results are based on F.E.M. calculations.
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increases without bound for j¼ 0 paths (i.e., for e140) as the dilute concentration limit is approached. For the j¼ p paths
(i.e., for e1o0), only the r=3 loss of ellipticity curve converges to a finite value at the dilute concentration limit, for reasons
just discussed. The corresponding curve for r=1 for e1o0 is the same — due to the composite’s symmetry — with the
curve for e140 and hence the loss of ellipticity strain increases without bound as the dilute concentration limit is
approached.

The influence of matrix constitutive law on the onset-of-failure curves for perfectly periodic, square microgeometry
composites is shown in Fig. 13. A neo-Hookean matrix (solid lines) and a Gent matrix, (bullet-marked lines) composite are
considered both with the same initial fiber volume fraction (f0 ¼ p=16� 0:2) and circular section fibers (r=1), which are
subjected to plane-strain loading preserving macroscopic incompressibility. All results shown in Fig. 13 are based on F.E.M.
calculations. The same line drawing convention as Fig. 5a is used here for plotting the different onset-of-failure curves. The
dimensionless critical wavenumber at the onset of the first bifurcation as a function of the load path angle is presented as
an insert in Fig. 13.

The choice of matrix material makes practically no difference to the onset-of-decohesion and cavitation in either strain
or stress space, as seen in Fig. 13. This observation should come to no surprise in view of the results in Fig. 2 which show
that for the same microgeometry, the difference in the macroscopic response between neo-Hookean and Gent matrix
composites is negligible for strain levels below g� 1:0. This observation also explains why the first bifurcation and loss of
ellipticity results for the two different composites are close for lower strain levels and start deviating from each other at
about the strain levels where their macroscopic response starts being influenced by the matrix material, according to the
results in Fig. 2. The difference between the critical wavelengths at the onset of a bifurcation instability seen in the insert of
Fig. 13 can also be explained by the fact that an onset of bifurcation instability is the critical one for large enough strains, in
the strain range where the matrix material choice starts being important for the composite’s macroscopic response. The
results in Fig. 13 are a final confirmation of the soundness of the choice, made based on the results of Fig. 2, to do most of
the calculations for neo-Hookean matrix composites.

Finally a discussion should be made on the influence of the adopted decohesion criterion which, in all calculations up to
this point has been assumed to be dc � ðsnn=mÞmax ¼ 1. Since, depending on the nature of the fiber-matrix interface, its
strength can vary significantly, the decohesion curves for the base case composite (neo-Hookean matrix (k=m¼ 10) with
initial fiber volume fraction (f0 ¼ p=16� 0:2) and circular section fibers (r=1)), have been calculated by F.E.M. in Fig. 14 for
four different values of dc: for dc ¼ 1 (solid lines), for dc ¼ 2 (bullet-marked lines), for dc ¼ 3 (triangle-marked lines) and for
dc ¼ 4 (square-marked lines). For comparison, all other type onset-of-failure curves have been included in Fig. 14 using the
same line drawing convention employed in this subsection (see corresponding description in Fig. 5).

Notice that by increasing the interface strength, the macroscopic strains at the onset-of-decohesion also increase so that
the corresponding curves are approximately self-similar (homothetic) expansions of the dc ¼ 1 curve about the origin, as
expected from the monotonicity of the material’s constitutive response. So, depending on the magnitude of the interface’s

Fig. 14. Influence of decohesion criterion (dc � ðsnn=mÞmax), depicted by dot–dash lines, for square microgeometry, neo-Hookean matrix (k=m¼ 10)

composites of initial fiber volume fraction (f0 ¼ p=16� 0:2) with circular section fibers (r=1), which are subjected to isochoric plane-strain loading. Solid

lines correspond to dc ¼ 1, bullet-marked lines to dc ¼ 2, triangle-marked lines to dc ¼ 3 and square-marked lines to dc ¼ 4. For comparison purpose are

also shown the macroscopic loss of ellipticity in solid lines, the onset of first bifurcation in big dash lines, the matrix cavitation in small dash lines and

fiber contact in dotted lines. Results are based on F.E.M. calculations.
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strength, decohesion can occur always prior to cavitation for dc r2, after cavitation but before first bifurcation and loss of
ellipticity for dc ¼ 3 or past the loss of ellipticity for most loading path angles j for the case of the strongest interface
dc ¼ 4. Since the strength of the interface can vary considerably (depends on the surface treatment of the fibers), failure by
cavitation remains the critical failure mechanism for this composite, independently of the loading path, for adequately
strong fiber/matrix interface composites.

The above discussion gives a comprehensive picture of the influence of calculation method, microgeometry (fiber
volume fraction, cross-section and distribution), matrix constitutive law and macroscopic load orientation on the
microscopic and macroscopic onset-of-failure in hyperelastic fiber-reinforced elastomers under plane-strain loading
conditions (perpendicular to the fiber axis direction). A synthesis of these results is the object of the discussion presented
in the next section.

5. Discussion and conclusions

The above work is a complement to a previous and analogous investigation by the same authors on porous elastomers
(Michel et al., 2007), and provides a detailed study of the connections between microstructural instabilities and their
macroscopic manifestations — as captured through their effective properties — in finitely strained fiber-reinforced
elastomers, subjected to finite, plane-strain deformations normal to the fiber direction. The work uses the powerful
second-order homogenization (S.O.H.) technique, initially developed for random media, to study the onset of failure in
fiber-reinforced elastomers with various initial fiber volume fractions, fiber distributions and cross-sections. Perfect and
imperfect periodic as well as random fiber distributions are investigated. For the periodic microgeometries these
approximate results are compared to more accurate finite element method (F.E.M.) calculations.

Two different types of loading were investigated: biaxial, along the axes of orthotropy of the composite, and isochoric,
which preserves the macroscopic incompressibility of the slightly compressible composites investigated here. For the
biaxial loading case, only perfectly periodic composites with circular section fibers are considered. The macroscopic onset-
of-failure curves in strain space are similar to the ones calculated by Nestorović and Triantafyllidis (2004) for the same
matrix material, for square and for diagonal (instead of the present hexagonal) fiber distribution and for slightly different
values of the material constants. It is found that for loading paths corresponding to macroscopic contraction, the
macroscopic and microscopic onset-of-failure curves, although highly sensitive to the fiber volume fraction and
distribution, but considerably less to matrix compressibility, are always coincident. In contrast, for loading paths
corresponding to macroscopic dilation, failure is essentially set by matrix cavitation and is insensitive to either fiber
volume fraction or fiber distribution. Approximate calculations for the square microgeometry composites based on the
S.O.H. method always overpredict the strains at the onset of matrix cavitation and the loss of macroscopic ellipticity.
However they capture the shape of the corresponding curves rather faithfully, even for relatively large fiber volume
fractions, while their predictions get closer to the corresponding F.E.M. results as the fiber volume fraction decreases.

For loading paths preserving macroscopic incompressibility, the composite’s stability behavior is even more
complicated. For composites with periodic microgeometries and circular fibers, macroscopic instabilities are found in
sectors about j¼ 0 and j¼ p (recall that j¼ 0 corresponds to isochoric biaxial loading with tension along the X1 axis,
while j¼ p corresponds to isochoric biaxial loading with compression along the same axis). However, microscopic
instabilities take place before the macroscopic ones for a limited range of loadings along paths with a significant shear
component. The distance between these microscopic and macroscopic onset-of-failure curves increases with an increasing
amount of shear. For all the fiber volume fractions investigated (f0r0:3), the microscopic and macroscopic onset-of-failure
curves lie always outside the cavitation curve, although these curves approach each other with increasing fiber volume
fraction. The critical modes at the onset of bifurcation present a special interest, since for certain load paths one can find
modes involving a large number of unit cells in both directions!

The stability phenomena associated with elliptical section fibers are even richer. For periodic fiber distributions,
microscopic and macroscopic onset-of-failure curves are found for both compression (j¼ p) and tension (j¼ 0) along the
major axis of the fiber’s elliptical section. The instability in the neighborhood of (j¼ p) is due to the rotation of the fibers
along their axes, which alleviates strain concentration. In contrast the instability about (j¼ 0) is due to the appearance of
eigenmodes with lower symmetry than the initial one, i.e., eigenmodes with fundamental cells larger than the unit cell of
the composite’s stress-free configuration. This observation is consistent with the results of Lopez-Pamies and Ponte
Castañeda (2006a) for composites with random distributions of aligned fibers, and helps explain why a loss of ellipticity
branch going through j¼ p can still be found, albeit at higher strains than the periodic square case with the same fiber
volume fraction, while no such branch exists though j¼ 0. Moreover in a rather large neighborhood of j¼ p, and for the
elliptical sections considered, the loss of ellipticity for both the periodic as well as the random microgeometry occurs prior
to matrix cavitation. At this point one should also mention a rather surprising result for the stability of an imperfect
composite, obtained from its perfect square microgeometry counterpart by a small perturbation of the fiber centers but not
of their orientation. It is found that for loading paths with compression along the fiber section’s major axis, near j¼ p but
with jap, the imperfect aggregate loses its stability prior to its perfect counterpart, while the reverse situation exists for
loading paths with tension along the fiber section’s major axis, for the entire branch going through j¼ 0. In this
connection, we should also mention the recent numerical simulations of Moraleda et al. (2009) for composites with
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random distributions of perfectly aligned fibers. While these simulations also gave fairly good agreement with the
theoretical estimates of Lopez-Pamies and Ponte Castañeda (2006b), these authors did not observe loss of ellipticity for
these materials, in contrast with the results of the present work for periodic and perturbed distributions of aligned fibers.
Last but not least in the long list of interesting new phenomena, for the fiber sections with the highest aspect ratio (rZ3)
the loss of macroscopic ellipticity curves have singularities in the neighborhood of j¼ p, due to the dramatic change of the
corresponding principal solution for even a small amount of shear.

In addition to the onset of macroscopic and microscopic instabilities, constraints to the principal solution due to fiber/
matrix interface decohesion, matrix cavitation and fiber contact have also been addressed, thus giving a complete picture
of the sequence at which the different failure mechanisms occur in this class of elastomeric composites. In fact, these
instabilities are expected to dominate for the fiber-reinforced elastomers, except for loadings involving significant
compression of the fibers, when such fibers have sufficiently large aspect ratio and stiffness leading to the development of
macroscopic instabilities at relatively small macroscopic strains.

We have investigated here the rich stability behavior of a rather large class of fiber-reinforced elastomeric composites.
However we feel that this is only the beginning, since many more questions have risen from this investigation. For
example, the very intriguing relation between the stability of the perfect and corresponding imperfect microgeometry
composites requires the calculation of post-bifurcated solutions for a proper explanation, in the spirit of Koiter’s
imperfection sensitivity theory. Although the exact nature of the matrix constitutive law is not important for elastomers, as
our comparison between neo-Hookean and Gent matrix calculations has shown, this need not be the case for non-
elastomeric materials. And of course there is the issue of stability of these composites under a full three-dimensional
loading, which adds to the list of future investigation directions based on the present work.
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Appendix A. Constraints on the onset-of-failure curves

As mentioned in Section 4, there are criteria other than the loss of uniqueness or of rank-one convexity that can signal
failure of the fiber-reinforced elastomer. These are (a) decohesion at the fiber/matrix interface, (b) cavitation at the matrix
due to the presence of large hydrostatic tension and (c) fiber contact.

A.1. Fiber/matrix interface decohesion

Fiber/matrix decohesion is modeled here via a stress-based criterion. More specifically, whenever along any arbitrary
loading path

min
x2G
fdcmm�niðxÞsijðxÞnjðxÞg ¼ 0, ðA:1Þ

decohesion ensues. In the above expression, n is the unit vector normal to the fiber/matrix interface G in the deformed
configuration, r is the Cauchy stress, each evaluated at a point x on the boundary of the fiber’s cross-section, dc is a scalar
indicating the strength of the interface and mm is the shear modulus of the matrix phase in the ground state.

Since all calculations are done in a Lagrangian setting, the field quantities in (A.1) must be expressed in terms of their
reference configuration counterparts. The Cauchy stress tensor r is related to the first nominal stress tensor S via the
relation:

sij ¼
1

detF
SikFjk: ðA:2Þ

Furthermore, from Nanson’s relation, the unit normal vector n in the deformed configuration and the element area da are
related to their reference configuration counterparts N and dA via

nj da¼ detFNiF
�1
ij dA: ðA:3Þ

Making use of (A.2) and (A.3), the condition (A.1) can then be rewritten in the undeformed configuration.
Within the context of the S.O.H. estimates utilized in this work, the deformation — and therefore the stress — is

uniform in the fibers. This allows to simplify considerably the evaluation of criterion (A.1), since the decohesion criterion
can be rewritten entirely in terms of the constant deformation gradient field F

ð2Þ
inside the fibers given by expression (3.6).

For the F.E.M. calculations the criterion (A.1) is evaluated numerically, over all interface elements, in the reference
configuration with the help of (A.2) and (A.3).
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A.2. Matrix cavitation

It is well known (see, e.g., Gent and Lindley, 1959) that under loading conditions with a sufficiently large hydrostatic
stress component, elastomers may exhibit cavitation. In order to account for this phenomenon, we presently make use of
an approximate criterion recently proposed by Lopez-Pamies (2009) for the onset of cavitation in compressible isotropic
hyperelastic solids under general plane-strain loading conditions. The criterion states that for a hyperelastic material with
stored-energy function W(I,J), cavitation will occur at a material point whenever along a given loading path the
deformation at that point first satisfies the condition:

2
@W

@I
ðI,JÞ�

@W

@J
ðI,JÞ ¼ 0: ðA:4Þ

The general criterion (A.4) applied to the neo-Hokean matrix chosen here (4.2) specializes to

1þ J�
k
m�1

� �
JðJ�1Þ ¼ 0: ðA:5Þ

Note that this condition depends only on the dilatational part of the deformation, as measured by J, and not on the
distortional part I. In addition, relation (A.5) is seen to depend on the parameters m and k only through the ratio k=m, which
measures the compressibility of the matrix.

The S.O.H. does not provide estimates for the pointwise deformation and stress fields and therefore cannot be utilized to
inquire for the onset of cavitation in the matrix. Matrix cavitation can only be calculated by the F.E.M. which gives deformation
fields at all the integration points in each element. The cavitation results presented here are based on the average deformation
gradient of each element, since this method gives results that are not very sensitive to the chosen mesh.

A.3. Fiber contact

The loading of the elastomeric composites considered here may result into adjacent fibers coming into contact, leading
to a percolating network of stiff fibers. Finding the strain combination in macroscopic strain space that leads to fiber
contact is straightforward in the case of periodic composites but intractable for the random ones.

Fiber contact results are only given for the F.E.M. calculations in periodic elastomers. Exact expressions can be derived
(assuming perfectly rigid fibers) for arbitrary loading in the case of circular section fibers (r=1). For the square
microgeometry case, contact occurs when

min
e1 ,g
fexpð2e1Þ, g2þexpð�2e1Þ,ðg�expðe1ÞÞ

2
þexpð�2e1Þg ¼

4f0

p : ðA:6Þ

For the hexagonal case, contact occurs when

min
e1 ,g

expð2e1Þ,
3

expð2e1Þ
,
3

4
g� expðe1Þffiffiffi

3
p

� �2

þexpð�2e1Þ
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p

expðe1Þ

 !2

þexpð2e1Þ

24 358<:
9=;¼ 2

ffiffiffi
3
p

f0

p
: ðA:7Þ

For isochoric loading with ga0 and elliptical fibers (r41), an approximate numerical calculation is needed, due to
unknown fiber rotation which depends on the unit cell’s equilibrium solution. The approximate contact criterion adopted
is that contact occurs when the smallest distance between adjacent fibers dmin falls below a critical length, i.e.,
dminr0:005L1, where L1 is the X1 dimension of the unit cell in the reference configuration. The choice of the tolerance
parameter 0.005 is dictated by the requirement of a less than 1% error in the contact conditions for the no rotation case
g¼ 0, where this condition can be calculated exactly from geometry (assuming again perfectly rigid fibers).

Appendix B. Expressions for the microstructural tensor P

In this appendix, we provide explicit expressions for the (in-plane) components of the tensor P, which serve to
characterize the three types of microstructures (in the reference configuration) considered in this work: (i) periodic square,
(ii) periodic hexagonal, and (iii) random isotropic distribution of aligned fibers with initially elliptical cross-section.

B.1. Periodic rectangular distribution

The microstructural tensor P for a rectangular distribution of fibers with elliptical cross-section may be written as (see,
e.g., Suquet, 1990a,b)

Pijkl ¼
1

pð1�f0Þ

Xþ1
p ¼ �1

Xþ1
q ¼ �1

�fp ¼ q ¼ 0g

ðLimknxmxnÞ
�1xjxl

J2
1 2

ffiffiffiffiffiffiffi
pf0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v
p2þvq2

r !
1

v
p2þvq2

, ðB:1Þ
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where x1 ¼ p, x2 ¼ocq, and v¼oc=of . In these expressions, J1ð�Þ stands for the Bessel function of first kind, while oc and
of denote, respectively, the aspect ratio of the rectangular unit cell and the aspect ratio of the fibers — that is, oc ¼ L1=L2

and of ¼ r in Fig. 1b. Thus, for the square distribution oc ¼ 1, whereas for the hexagonal distribution oc ¼ 2=
ffiffiffi
3
p

.

B.2. Random isotropic distribution

The microstructural tensor P for the random isotropic distribution of aligned fibers with elliptical cross-section may be
expressed as (see, e.g., Ponte Castañeda and Willis (1995))

Pijkl ¼
r

2pð1�f0Þ

Z 2p

0

ðLimknxmxnÞ
�1xjxl

r2x2
1þx

2
2

dy�
f0

2pð1�f0Þ

Z 2p

0
ðLimknxmxnÞ

�1xjxl dy, ðB:2Þ

where x1 ¼ cosy and x2 ¼ siny.
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Brun, M., Lopez-Pamies, O., Ponte Castañeda, P., 2007. Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int. J.

Solids Struct. 44, 5953–5979.
Gent, A.N., Lindley, P.B., 1959. Internal rupture of bonded rubber cylinders in tension. Proc. R. Soc. A 249, 195–205.
Geymonat, G., Müller, S., Triantafyllidis, N., 1993. Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-

one convexity. Arch. Ration. Mech. Anal. 122, 231–290.
Gong, L., Kyriakides, S., Triantafyllidis, N., 2005. On the stability of Kelvin cell foams under compressive loads. J. Mech. Phys. Solids 53,

771–794.
Hill, R., 1972. On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. A 326, 131–147.
Lahellec, N., Mazerolle, F., Michel, J.C., 2004. Second-order estimate of the macroscopic behavior of periodic hyperelastic composites: theory and

experimental validation. J. Mech. Phys. Solids 52, 27–49.
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