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Nitinol (NiTi) shape memory alloy honeycombs, fabricated in low densities using a new brazing method
[Grummon, D., Shaw, J., Foltz, J., 2006. Fabrication of cellular shape memory alloy materials by reactive
eutectic brazing using niobium. Materials Science and Engineering A 438–440, 1113–1118], recently
demonstrated enhanced shape memory and superelastic properties [Shaw, J. A., Grummon, D. S., Foltz,
J., 2007b. Superelastic NiTi honeycombs: Fabrication and experiments. Smart Materials and Structures
16, S170–S178] by exploiting kinematic amplification of thin-walled deformations. The realization of
such adaptive, light-weight cellular structures opens interesting possibilities for design and novel appli-
cations. This paper addresses the consequent need for design and simulation tools for engineers to make
effective use of such structures by, as a first step, analyzing the multi-scale stability aspects of the super-
elastic behavior of a particular hexagonal, thin-walled, SMA honeycomb under in-plane compression. An
in-depth parameter study is performed of the influence of different material laws on the behavior of hon-
eycombs of finite and infinite extent with perfect and imperfect initial geometries. A finite element-based
simulation is presented that credibly captures the behavior seen in experiments.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Low density cellular solids, particularly metallic ones, are
widely used in engineering applications (Gibson and Ashby,
1997; Ashby et al., 2000), since they can be designed to have high
stiffness-to-mass ratios and desirable energy absorption character-
istics. Cellular structures made from shape memory alloys (SMA’s)
are especially interesting for their potential to deliver superelastic-
ity and shape memory in a light-weight material. While porous
forms of NiTi (Nitinol) have been produced (Li et al., 1999; Lagou-
das and Vandygriff, 2002; Grummon et al., 2002), the difficulty of
joining Nitinol to itself has historically prevented the fabrication
of NiTi-based cellular honeycombs with useful adaptive properties.
Other attempts to fabricate SMA honeycombs have been done by
mechanical fasteners or gluing (Hassan et al., 2004; Okabe et al.,
2008), and a few modeling and design studies, focusing mostly
on stiffness and Poisson ratio, have been performed (Freed et al.,
2008).

An enabling metallurgical bonding method was discovered re-
cently, however, by Grummon et al. (2006), which led to the con-
struction and testing of the first NiTi honeycomb specimens
showing robust properties. Two different cell geometries, hexago-
ll rights reserved.
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).
nal and wavy-corrugated, were produced by shape setting NiTi
strips into corrugated forms, bonding them together at high tem-
perature using a Niobium-based braze, and then heat-treating
the resulting structures at moderate temperature. Compressive
isothermal experiments on the specimens exhibited superelasticity
with over macroscopic 50% strain recovery (Shaw et al., 2007b),
and non-isothermal shape memory experiments demonstrated
stress-free recovery of similar macroscopic strains (Shaw et al.,
2007a).

A low-density cellular architecture made of an SMA has several
advantages. The maximum tensile strain recovery of a monolithic
Nitinol polycrystal is in the range of 5–8% in the low-cycle limit
and less than 2.5% for high cycle loading. These limits can be sub-
stantially amplified structurally by exploiting bending of the thin
walls in an open cell topology. Moreover, thermal inertia, which
tends to dominate the response time of SMA actuators and cause
hypersensitive superelastic rate-dependencies (see, for example,
Shaw and Kyriakides, 1995; Shaw and Kyriakides, 1997; Iadicola
and Shaw, 2004), scales with the material’s volume-to-surface ra-
tio and can thus be potentially reduced by adopting a low-density
architecture. Considering these advantages, the goal of the present
work is to explore in detail the isothermal, superelastic response of
a hexagonal unit cell, to investigate the instabilities of the overall
honeycomb structure under compressive loading–unloading, and
to study the influence of different material properties and imper-
fections at various scales.
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The presentation of the work is outlined as follows. Section 2
presents the kinematic structural model, the material model, and
the methods used to establish the stability of the infinite (using
Bloch waves) and finite (perfect and imperfect) honeycombs.
Section 3 describes the numerical approach and material param-
eters used. Simulation results are presented in Section 4, which
investigates the choice of constitutive model parameters and
then demonstrates the responses of infinite-perfect, finite-perfect
and finite geometrically imperfect honeycomb structures. The
section ends with the selection of material parameters for a fi-
nite element simulation of an experiment on a fabricated SMA
honeycomb. Lastly, summary and conclusions are provided in
Section 5.
2. Modeling

The structural and material models employed in numerical sim-
ulations of in-plane compression are presented in this section. The
first part presents the geometry of the honeycomb structure and
the kinematics of cell wall deformation. The second part describes
the constitutive model for isothermal, superelastic deformations.
The last part describes the methods and criteria to determine sta-
bility of infinite-perfect, finite-perfect and finite-imperfect honey-
comb structures.

2.1. Kinematics

A typical planar section of a perfectly periodic honeycomb, con-
sisting of a regular hexagonal lattice, is shown in the undeformed
(reference) configuration in Fig. 1(a). The cell walls have thickness
t (except for 2t along the X1 direction) and length L. A cutout of a
periodic unit cell is also shown in the figure, which is used for sta-
bility calculations discussed later in Section 2.3. In all simulations
of this paper the aspect ratio of cell wall thickness to length was
fixed at t/L = 1/30, corresponding to one of the hexagonal honey-
combs presented in Shaw et al. (2007b). Upon in-plane mechanical
compression (for now, we consider loading along the X2-axis), the
cell walls deform primarily through bending with some axial load-
ing, so each ligament is idealized as a small strain, nonlinear beam
capable of sustaining arbitrarily large displacements and rotations.
The structural model has already been presented elsewhere (see
t

t
2t

2t

12

34

6 5

L1

L2

X2

L

L

L

Fig. 1. (a) Reference configuration geometry and global coordinates (X1,X2) of the per
magnified view is the periodic unit cell used in stability calculations for the infinite-p
coordinates (x,y), showing displacements (v,w) between reference configuration (AB) an
Triantafyllidis and Schraad, 1998), but for completeness, a brief
description is included below.

Consider an initially straight beam of length l and thickness t as
shown in Fig. 1(b) (with unit out-of-plane width). During loading, a
material point initially at local axial coordinate x on the beam’s
undeformed mid-line (dotted line) moves to a new position on
the deformed mid-line by displacements v(x) and w(x) along the
local tangential (x) and normal (y) directions of the initial configu-
ration, respectively. By adopting the classic Bernoulli–Euler
assumption where cross-sections normal to the undeformed mid-
line remain normal in its deformed counterpart and undergo small
strain extension, the axial strain of a material point with initial lo-
cal coordinates (x,y) is given by

eðx; yÞ ¼ eðxÞ þ yjðxÞ; ð2:1Þ

where the mid-line axial strain e(x) and the bending curvature j(x)
are expressed in terms of the displacements v(x) and w(x) by

e ¼ 1þ dv
dx

� �2

þ dw
dx

� �2
" #1=2

� 1;

j ¼ dw
dx

d2v
dx2 � 1þ dv

dx

� �
d2w

dx2

" #
= 1þ dv

dx

� �2

þ dw
dx

� �2
" #

: ð2:2Þ

The contribution of internal virtual work from each ligament in the
weak form of the equilibrium equations is given by

dWI
l ¼
Z l

0
ðNdeþMdjÞdx; with N�

Z t=2

�t=2
rdy; and M�

Z t=2

�t=2
rydy;

ð2:3Þ

where N(x) and M(x) are the axial force and bending moment resul-
tants, respectively, and r(x,y) is the local axial stress in the cell wall.
The Euler–Lagrange equations corresponding to 2.1, 2.2 and 2.3
have been shown to coincide with the exact equilibrium equations
of the beam in the current configuration, thus making this struc-
tural theory a consistent one (the interested reader is referred to
Triantafyllidis and Samanta (1986), for a detailed discussion).

2.2. Constitutive model

Since only isothermal deformations of the SMA honeycomb are
presently considered (consistent with slow superelastic loading–
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fect SMA honeycomb. The honeycomb is compressed along the X2 direction. The
erfect honeycomb. (b) Kinematics of cell-wall deformations with respect to local
d current configuration (A0B0).



Fig. 2. Uniaxial superelastic response of SMA material and associated constitutive
parameters. Subscripts A or M refer to Austenite or Martensite while superscripts
(�)+ or (�)� indicate association with tensile or compressive response, respectively.
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unloading), a small strain, one-dimensional, rate-independent, iso-
thermal, hysteretic, constitutive model is described below. As is
common in SMA modeling, an internal variable formulation is used
to describe the extent of stress-induced phase transformation. The
uniaxial constitutive model employed here has only one internal
variable n 2 [0,1], which represents the martensite phase fraction
at a material point (x,y). Pure austenite (A) and pure martensite,
either tensile M+ or compressive M�, are represented by n = 0 and
n = 1, respectively.1 We note that the constitutive model has similar-
ities to a conventional elasto-plastic constitutive law, but it has
important differences in that the internal field variable is bounded
in our case, unlike plasticity, and the unloading behavior is quite dif-
ferent, leading to superelasticity in our case. Both differences lead to
interesting stability changes in the honeycomb structure, as will be
shown in Section 4, where stability can be lost but then regained
as phase transformation saturates in either direction. Furthermore,
this model can be readily generalized to include temperature-in-
duced transformations and consequent shape memory behavior,
although this is left for future work.

In its simplest form the constitutive law for the local stress,
r(x,y), is

r ¼ Eðe� bþnÞ; for e P 0
Eðe� b�nÞ; for e < 0

�
ð2:4Þ

where e(x,y) is the local fiber strain corresponding to Eq. (2.1) and
n(x,y) is the local fiber martensite phase fraction. The remaining
parameters are material constants, in which, E is the effective uni-
axial elastic modulus2 (phase independent, here) and b+ and b�

are the respective transformation strains (material constants) in ten-
sion and compression3. Allowing different transformation behavior
in compression vs. tension provides the flexibility to capture ten-
sion–compression asymmetry, which is a known phenomenon in
textured SMA polycrystals (Gall et al., 1999). For elastic loading–
unloading the internal variable n remains constant, i.e., _n ¼ 0 (where
(�) denotes the time derivative d()/dt). The onset of phase transfor-
mation during mechanical loading from A ? M occurs at a nucle-
ation strain of eþn in tension (e > 0 and _e > 0) or e�n in compression
(e < 0 and _e < 0). Phase transformation evolves along two-phase
stress paths (see Fig. 2) according to

r ¼

r̂þl ðnÞ; for A! Mþ

r̂þu ðnÞ; for A Mþ

r̂�u ðnÞ; for A M�

r̂�l ðnÞ; for A! M�;

8>>><>>>: ð2:5Þ

where subscripts l and u refer to ‘‘loading” and ‘‘unloading”, respec-
tively, in the sense that ‘‘loading” is associated with the direction
A ? M (either M+ or M�). Phase transformation hysteresis is param-
eterized with material constants DrþA ;DrþM , Dr�A ;Dr�M . Loading and
unloading paths are related by

r̂þl ðnÞ ¼ r̂þu ðnÞ þ ð1� nÞDrþA þ nDrþM
r̂�u ðnÞ ¼ r̂�l ðnÞ þ ð1� nÞDr�A þ nDr�M ð2:6Þ
1 We assume that the temperature is sufficiently high such that M� and M+ never
exist simultaneously at any material point.

2 We have assumed the local stress to be purely uniaxial, so E is to be interpreted as
the Young’s modulus if the ligament out-of-plane depth is small. If the ligament depth
cannot be neglected, as is the case for the actual honeycomb specimen considered
later, it can alternatively be interpreted approximately as the modulus for cylindrical
plate bending, E/(1 � m2), consistent with our 2-D context. In any case, the results in
this work are presented in dimensionless form where stresses have been normalized
by E.

3 From here on, quantities associated with the tensile or compressive behavior are
denoted by a + or � superscript, respectively. Absence of the + or � superscript means
that the parameter applies to both tensile and compressive parts of the constitutive
behavior.
where DrþM Dr�M
� �

is related to DrþA Dr�A
� �

and the loading, unloading
tangent moduli in tension (compression) Eþl ; E

þ
u E�l ; E

�
u

� �
by

DrþM ¼ DrþA þ bþ 1= 1=Eþl � 1=E
� �

� 1= 1=Eþu � 1=E
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Dr�M ¼ Dr�A þ b� 1= 1=E�l � 1=E
� �

� 1= 1=E�u � 1=E
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ð2:7Þ

For simplicity the functions r̂ðnÞ, are chosen such that the tangent
moduli during the loading (El) or unloading (Eu) phase transforma-
tion are material constants.4 Consequently

_n ¼

E�Eþ
l

E
_e

bþ
: if _e > 0; r ¼ r̂þl ðnÞ; and n < 1

E�Eþu
E

_e
bþ

: if _e < 0; r ¼ r̂þu ðnÞ; and n > 0
E�E�l

E
_e

b� : if _e < 0; r ¼ r̂�l ðnÞ; and n < 1
E�E�u

E
_e

b� : if _e > 0; r ¼ r̂�u ðnÞ; and n > 0

8>>>>>><>>>>>>:
ð2:8Þ

All the constants involved in the definition of the constitutive law
are shown in Fig. 2. Specific values of the material constants will
be chosen in Section 4.

2.3. Stability of the SMA honeycomb structure

A deep understanding of the behavior of the SMA honeycomb
structure requires the investigation of its stability. Specifically,
we seek the stability of the principal solutions of the infinite and
finite perfect structures, both having equilibrium solutions where
all unit cells undergo identical (periodic) deformations. The stabil-
ity of the former is studied with the help of Bloch wave represen-
tation theory while the stability of the latter includes the effects of
boundary conditions on the finite structure. Both are key ingredi-
ents to help explain the behavior of the actual finite, imperfect
SMA structure.

Based on the constitutive model formulated, we are interested
in the stability of the principal equilibrium path of a rate-indepen-
dent, yet path-dependent, ‘‘elastoplastic” solid. Following Hill,
1958, the stability of the rate-independent solid considered here
is governed by the criterion of positive definiteness of the qua-
dratic functional5,6
4 When Eþu ¼ Eþl E�u ¼ E�l
� �

the corresponding tangent modulus during phase
transformation is denoted by Eþt E�t

� �
.

5 From here on bold-face symbols denote vectors and matrices while a (�) denotes a
simple contraction (inner product).

6 The superscript (*) denotes complex conjugation of the transpose quantity. The
extension to the complex domain of the quadratic form associated with the stability
of the structure enables the efficient use of the Bloch wave representation theorem.



7 The concept of infimum is needed in view of a potential singularity at (0,0) of
km(x1L1,x2L2), defined in the open domain (0, 2p) � (0, 2p). The value of
km(x1L1,x2L2) as (x1L1,x2L2) ? (0+,0+) depends on the ratio x1L1/x2L2 and one
must consider km along all radial paths near (0,0) to find kc.
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uðk;DuÞ ¼ Du� � KðkÞ � Du; ð2:9Þ

where K is the incremental stiffness matrix of the structure evalu-
ated at an equilibrium solution along the principal path, which is
a function of the scalar parameter k, and Du is any kinematically
admissible generalized displacement perturbation (i.e. contains dis-
placement as well as rotation degrees of freedom).

2.3.1. Stability of the infinite, perfect honeycomb
Making use of the periodicity of the principal solution and using

static condensation to eliminate internal degrees of freedom
(DOFs) of the unit cell, the stability of the infinite structure re-
quires the positive definiteness of the quadratic form defined on
the unit cell

ûðk;DuÞ ¼
X6

i;j¼1

Du�i � KijðkÞ � Duj; ð2:10Þ

where the 4 � 4 stiffness matrix Kij is associated with the general-
ized force perturbation at boundary node i of the unit cell due to
generalized displacement perturbation Duj at boundary node j
(see again Fig. 1(a) for the numbering of the six exterior unit cell
nodes). The stability investigation further requires the Bloch wave
representation theory for the displacement perturbations, since it
probes all wavelengths and directions. This approach simplifies
the problem considerably, since it requires only the incremental re-
sponse of the unit cell. Although the corresponding methodology is
explained in detail in Triantafyllidis and Schnaidt (1993) for rectan-
gular grillages, Triantafyllidis and Schraad (1998) for hexagonal
honeycomb structures and Triantafyllidis et al. (2006) for the con-
tinuum case, a brief description is included here for completeness.

From Bloch wave representation theory the generalized dis-
placement perturbation Du takes the form

DuðX1;X2Þ ¼ exp i x1X1 þx2X2ð Þ½ �pðX1;X2Þ; ð2:11Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

;xI is the wavenumber of the perturbation along the
direction XI, and p(X) is a doubly periodic complex-valued vector
function of the spatial coordinates X1 and X2 with periods equal to
the unit cell dimensions, i.e. p(X1,X2) = p(X1 + m1L1,X2 + m2L2) for
any pair of integers (m1,m2).

From (2.11) one deduces the following relation between the
displacement perturbations at the boundary nodes

Du4

Du5

Du6

264
375¼ 0 0 expð�ix1L1ÞI

0 expðix2L2ÞI 0
expð�ix1L1þ ix2L2ÞI 0 0

264
375 Du1

Du2

Du3

264
375

ð2:12Þ

where 0 and I are 4 � 4 null and identity matrices, respectively. The
above equation can be rewritten in the more concise form

Dub ¼ Aðx1L1;x2L2Þ � Dua ð2:13Þ

where the 12 � 1 vectors Dua,Dub and the 12 � 12 matrix
A(x1L1,x2L2), which relates Dub to Dua, are given in (2.12). Using
the definition for û in (2.9) and the above introduced grouping of
boundary perturbations Duj, j = 1, . . . 6 into the two sets Dua and
Dub, one can rewrite

û ¼ Du�a Du�b
h i KaaðkÞ KabðkÞ

KbaðkÞ KbbðkÞ


 �
Dua

Dub


 �
ð2:14Þ

where the 12 � 12 submatrices Kaa ¼ KT
aa;Kab ¼ KT

ba;Kbb ¼ KT
bb are

formed by grouping the corresponding Kij’s.
Upon substituting (2.13) into (2.14), the stability problem for

the infinite perfect structure reduces to checking the positive def-
initeness of the following quadratic form
û ¼ Du�a � bKðk; x1L1;x2L2Þ � DuabK � Kaa þ Kab � Aþ A� � Kba þ A� � Kbb � A ð2:15Þ

where A* denotes the adjoint of A (i.e. the complex conjugate of its
transpose). From the symmetry properties of Kaa,Kab,Kba,Kbb one
can verify that the stiffness matrix bK is Hermitian (bK ¼ bK�) and thus
has real eigenvalues. This reduces the stability investigation of an
infinite, perfectly periodic structure to that of an equivalent but
simpler problem involving half the boundary of the unit cell.

The case of a perturbation that has LI translational symmetry
along the XI direction, i.e. xILI = 0 for I = 1 or 2, admits from
(2.12) a rigid body translation in the XI direction, i.e. DuiI = const.
for i = 1, . . .6, I = 1 or 2. This case is included in the general numer-
ical algorithm described above by imposing, in addition to (2.12)
the condition Du1I = 0 for I = 1 or 2.

The scalar parameter k is a monotonically increasing ‘‘time-like”
parameter that characterizes the deformed configuration of the
unit cell in the infinite, perfect structure (k = 0 corresponds to
undeformed, stress-free configuration). If, for a given value of
k; bKðk; x1L1;x2L2Þ is positive definite for all dimensionless wave-
numbers (x1L1,x2L2) 2 (0,2p) � (0,2p) the configuration corre-
sponding to k is stable. Consequently for each pair (x1L1,x2L2), a
minimum load km(x1L1,x2L2) may be found at which bK looses po-
sitive definiteness. The critical load kc at which the structure first
looses stability in a monotonically loading process, is the infimum7

(i.e. the highest lower bound) of km over the Fourier domain
(0,2p) � (0,2p).

A remark about the nature of the eigenmode corresponding to
the critical load kc is in order at this point. The surface
km(x1L1,x2L2) might exhibit a singular point at the origin (0,0).
The physical reason for this singularity is the fact that in the neigh-
borhood of (0,0) one finds, by inspecting (2.12) two different types
of modes: (1) the finite wavelength modes for (x1L1,x2L2) = (0,0)
with period one unit cell Du(X) = p(X) and (2) the infinite wave-
length modes for (x1L1,x2L2) ? (0+,0+) that are associated with
nearly uniform modes with respect to the unit cell dimensions.
When the lowest point of the km(x1L1,x2L2) surface is away from
(0,0) the finite wavelength eigenmode requires no special numer-
ical considerations. In the case when the infimum occurs as
(x1L1,x2L2) ? (0+,0+) the critical mode may be a long wavelength
one and another numerical technique is needed. Stability is
checked in this case by the positive definiteness of the structure’s
homogenized incremental moduli (for proof see Geymonat et al.,
1993). Consequently the structure’s stability in the neighborhood
of (x1L1,x2L2) = (0,0) is checked by two different, but complemen-
tary calculations.

A final remark: the methodology discussed here pertains to the
onset of the first instability at kc during the loading of the structure
starting at k = 0 and is based on calculating km(x1L1,x2L2), the
minimum value of k at which bKðk;x1L1;x2L2Þ in (2.15) loses its po-
sitive definiteness. In general the structure might regain its stabil-
ity upon further loading for adequately high values of k > kC. The
corresponding critical load kC, where stability is regained, can be
determined in a similar fashion by finding the supremum (i.e.
the lowest upper bound) of kM(x1L1,x2L2) over (0,2p) � (0,2p)
where kM is the smallest load parameter above whichbKðk;x1L1;x2L2Þ regains positive definiteness for a given
(x1L1,x2L2).
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2.3.2. Stability of the finite honeycomb
The stability of the finite structures, perfect or imperfect, is a

simpler task that depends on checking the positive definiteness
of the entire structure’s tangent stiffness matrix K(k) (see (2.9)).
Since this matrix is always available as part of the incremental
Newton-Raphson procedure, checking for positive definiteness is
a straightforward task that requires the diagonal matrix D of the
LDU decomposition of K. A matrix D with all positive diagonal en-
tries corresponds to a stable structure.

3. Numerical approach

The model described in the previous section is employed to pre-
dict the response of the SMA honeycomb under a uniaxial com-
pression load–unload cycle along the X2 direction. This section
includes a presentation of selected constitutive parameters, the fi-
nite element discretization used, and a description of the numeri-
cal algorithm.

3.1. Constitutive parameters

Three different types of uniaxial constitutive laws are used in
this study: a symmetric tension–compression law (Model 1), a
more realistic asymmetric law to capture the behavior of textured
polycrystals (Model 2), and a model calibrated to a specific honey-
comb experiment (Model 3). Table 1 provides specific parameters
used as base cases for the parameter study that follows. When
studying the influence of a specific parameter on the SMA honey-
comb response, the values of the parameter that are different from
the base case value appearing in the table will be indicated on the
corresponding response curve.

3.2. Finite element discretization and numerical algorithm

The numerical algorithm employed in the subsequent calcula-
tions is based on the finite element method (FEM) and the discret-
ization of the 1-D beam model given in Eqs. 2.1, 2.2 and 2.3. Our
FEM model was implemented in the research software framework,
FEAP (2005). The approach is a fairly standard incremental proce-
dure; however, a few relevant details are presented here.

Each cell wall was divided into 20 elements of equal length, ex-
cept for the calculations for the special case Et = 0 which required
160 equal length elements to capture the concentration of curva-
ture near the two ends of each deforming ligament. Within each
element, a Hermitian cubic interpolation was used for the displace-
ments v(x),w(x), resulting in four degrees of freedom (DOFs) per
node, i.e. v(xn), v,x(xn), w(xn), w,x(xn). A four point Gauss quadrature
was used for numerical integrations in the x-direction of each ele-
ment. When the principal solution under monotonic loading was of
interest, the through the thickness integrations were computed
analytically (e.g. Figs. 3–5). In subsequent cases when hysteretic
Table 1
Constitutive models.

Model 1 Model 2 Model 3

EA ¼ EþM ¼ E�M 1 1 75 GPa
Eþl 0.05 0.05 11.25 GPa
Eþu 0.05 0.05 10.3646 GPa
E�l 0.05 0.15 15 GPa
E�u 0.05 0.15 16.2766 GPa
b+ 0.0418 0.0418 0.031025
b� �0.0418 �0.02125 �0.0184
eþn 0.006 0.006 0.0035
e�n �0.006 �0.012 �0.007
DrþA 0.002 0.002 0.1875 GPa
Dr�A 0.002 0.002 0.2625 GPa

Fig. 3. (a) Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (d/H) response of the infinite-perfect honeycomb,
based on constitutive Model 1 (right inset), showing the influence of nucleation
strain (en). (b) Contours of phase fraction (n), local strain (e), and local stress (r/E) in
the slanted cell wall (Model 1, en = 0.006). (c) Maximum local tensile strain (emax) as
a function of macroscopic compression (d/H) for the same constitutive laws of 3(a).
solutions were calculated, a 51-point trapezoidal rule with equi-
distant points was used for thickness integrations in the y-direc-
tion. This rather large number of points in the y direction was re-
quired to capture the evolution and precise locations of phase
mixture boundaries.

The elements’ translational degrees of freedom v and w must be
transformed to the global coordinate system to enforce displace-
ment continuity at the junction nodes. It can be shown that the
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rotation angle w satisfies (in local coordinates) tanw = w,x/(1 + v,x).
Of the several choices that one can impose rotation continuity be-
tween adjacent elements at the junction nodes (three kinematic
conditions but four DOFs available) the simplest one is by imposing
continuity of the local derivatives (v,x and w,x), treating these now
as global DOFs, since they still maintain rotary continuity between
adjacent beam elements (see again Triantafyllidis and Schraad,
1998).

An incremental Newton–Raphson procedure was employed to
solve the resulting equations. In all but the final experiment simu-
lations top and bottom displacement boundary conditions were
enforced directly (by reduction of the equilibrium equations) while
lateral edges were unconstrained. For the final simulations of the
actual honeycomb structure a penalty-based contact algorithm
with regularized Coulomb friction was used to capture nonuniform
contact and frictional effects of the platens. The loading increment
was approximately 0.14% macroscopic strain for the infinite struc-
tures stability calculations, while it was occasionally lowered to
help the convergence of the finite sized structures.

4. Results and discussion

The results of several FEM simulations are now presented, pro-
gressing from the infinite-perfect honeycomb to the finite-perfect
honeycomb and then to the finite-imperfect honeycomb. We pro-
ceed incrementally, starting with the infinite-perfect structure,
since the principal path configurations are simple, periodic ones
and the analysis gives one a sense of the ‘‘bulk” (many cell) behav-
ior independent of boundary issues. It is a convenient context to
perform a parameter study of the material law. The finite-perfect
structure cases help to address the added influence of boundary
constraints on the behavior, and the finite-imperfect structure
cases helps to quantify the imperfection sensitivity of the response.
Stability issues and the influence of constitutive parameters are
discussed for each case. The monotonically increasing loading
parameter k of Section 2.3 is taken to be d/H for loading phase
( _d > 0) and 2(d/H)max � d/H for unloading ( _d < 0) where d/H is the
macroscopic strain.

4.1. Principal branch of the infinite, perfect honeycomb

We studied the influence of constitutive parameters on the re-
sponse of the infinite-perfect honeycomb as shown in Figs. 3–8,
where at this point, all deformations were assumed to be cell-peri-
odic. Results are plotted in diagrams of compressive, dimensionless
macroscopic stress F/EA vs. macroscopic strain d/H. The cross-sec-
tional area, A, was taken as the total inclusive reference (initial)
area of the footprint of the envelope of the honeycomb, to obtain
an average-homogenized stress measure. The influence of material
parameters associated with the loading part of the constitutive
law, i.e. en and Et, is presented in Figs. 3–5, while the influence of
the hysteretic part of the constitutive law is investigated in Figs.
6–8. Since all cells deform identically (cell-periodic) in the princi-
pal solution of the infinite-perfect structure, due to the symmetry
of geometry and loading, only a quarter of the unit cell, shown as
an insert in these figures, was required in the calculations. In fact,
only the slanted ligament was needed, since the horizontal cell
walls remained unstressed. The different uniaxial constitutive laws
used are shown as inserts in the corresponding figures.

The influence of the nucleation strain en on the principal solu-
tion under loading, for the case of a symmetric (tension–compres-
sion) uniaxial response, is shown in Fig. 3(a). As expected,
increasing eþn ¼ e�n from 0.002 to 0.010 (centered on the base case
of Model 1, en = 0.006) results in delaying the deviation of the
structure’s response away from the initial, nearly linear regime.
Moreover, while increasing en raises the stress at the onset of the
A ? M transformation, it softens the initial tangent modulus (pla-
teau regime, near 0.1 < d/H < 0.4). The responses then stiffen at lar-
ger macroscopic strains (d/H > 0.5). Limit loads, both local maxima
and minima, are shown by ^ and _, respectively, in the figure. Note
that no such limit load exists for the lowest value of en = 0.002.
Points are also shown where the local maximum tensile strain
has reached 0.025, a commonly imposed limit for high cycle fati-
gue life of Nitinol. This shows the ‘‘strain amplification” achieved
by the thin walled honeycomb, since it occurs at macroscopic
strains near 0.1. The initial softening of the response is due to a
geometric effect of the deforming cell walls which results in the
appearance, above a certain value of en, of a local maximum in
the macroscopic stress–strain response, despite the fact that the
underlying constitutive response of the material is strictly stable,
i.e. E > Et > 0.

Fig. 3(b) shows contours of phase fraction (n), local strain (e),
and normalized local stress (r/E) in the slanted cell wall at four val-
ues of compressive strain (d/H). It shows that transformation is
concentrated at the ends of the ligament, especially in the corners.
The phase fraction and strain have nearly linear distributions
across the thickness, but the stress has a nonlinear distribution,
as one would expect from the constitutive law. We recognize that
the maximum stress at the largest macroscopic compressive strain
shown (d/H = 0.7) is unrealistically large (near 2 GPa for a typical
value of E = 75 GPa), indicating that local plasticity and significant
‘‘locked-in” martensite (not modeled here) would actually exist at
such large macroscopic strains, thereby preventing perfect super-
elasticity upon unloading.

The usual figures-of-merit for honeycombs made of conven-
tional metals are specific stiffness and energy absorption capabil-
ity, but the use of SMAs now allows us to additionally consider
the more ambitious goal of recovering the macroscopic strain after
significant deformation. One should, therefore, consider the mate-
rial’s strain recovery limitations to ensure macroscopic strain
recovery can actually be realized. Fig. 3(c) plots the maximum local
tensile strain (emax), i.e., worst case of all (x,y) points in the struc-
ture, as a function of macroscopic compressive strain (d/H) for the
various parameters of en. With relatively large values of en the max-
imum local strain is roughly tri-linear. For the base case of Model 1
(en = 0.006), the maximum local strain grows linearly until about d/
H = 0.05, then grows more steeply until about d/H = 0.18, and then
levels off at a lower slope. At a maximum local strain of 0.025
(approximate high cycle strain limit for NiTi) the corresponding
macroscopic strain is about 0.094. At a maximum local strain of
0.06 (a reasonable local strain limit for low cycle operation) the
corresponding macroscopic strain is about 0.417, giving a sense
of the strain amplification of the honeycomb structure. Thus,
Fig. 3(c) provides guidelines for the range of macroscopic (global)
strains that can be accommodated by local martensitic transforma-
tion in the SMA material without incurring significant plasticity
that would otherwise impede reverse transformation upon
unloading.

Fig. 3(c) also shows the advantage of an SMA over a conven-
tional metallic (e.g. aluminum) honeycomb. Since the yield strain
for aluminum is typically of the order of 0.002, the maximum
reversible macroscopic strain (elastic range) for an aluminum hon-
eycomb would be, according to Fig. 3(c), less than d/H = 0.02, over
20 times lower than the corresponding value for an SMA honey-
comb of the same geometry (d/H = 0.417). Alternatively, one could
reduce the t/L ratio to keep the conventional honeycomb within its
elastic range, but as noted in Shaw et al. (2007b) this would sacri-
fice stiffness by a factor of over 1000, since the stiffness of the hon-
eycomb scales roughly by (t/L)3, thereby making this an
impractical prospect.
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The influence of the transformation tangent modulus Et on the
perfect structure’s principal loading solution, for the symmetric
uniaxial response is presented in Fig. 4. As expected, increasing
Et/E stiffens uniformly the A ? M transformation regime. However,
it is worth noticing that for Et/E = 0 a maximum exists in the mac-
roscopic stress–strain response soon after the structure deviates
from its linear regime. The load maximum persists even for the
case of the strictly monotonic uniaxial response at Et/E = 0.05, al-
beit at a larger macroscopic strain. Upon further increase to Et/
E = 0.1 the macroscopic stress–strain response is monotonic (no
limit loads), thus implying that the constitutive stiffening over-
comes the geometric softening effect. We should mention here
that, not surprisingly, numerical difficulties were encountered for
the case of Et/E = 0. The deformed shape of the cell involved ex-
treme bending localization at the ends of the slanted wall. The cell
wall’s curvature experienced a sharp change, which required a
higher number of elements (160 elements along the cell wall
length).

The influence of the tensile transformation tangent modulus Eþt
on the infinite-perfect structure’s principal solution under loading,
but for the asymmetric constitutive law (Model 2), is presented in
Fig. 5. The material’s stiffer response in compression E�t =E ¼ 0:15

� �
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Fig. 4. Principal branches of the dimensionless macroscopic compressive stress (F/
EA) vs. compressive strain (d/H) response of the infinite-perfect honeycomb, based
on constitutive Model 1 (right inset), showing the influence of transformation
tangent modulus (Et).
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Fig. 5. Principal branches of the dimensionless macroscopic compressive stress (F/
EA) vs. compressive strain (d/H) response of the infinite-perfect honeycomb, based
on asymmetric constitutive Model 2 (right inset), showing the influence of tensile
transformation tangent modulus (Eþt ).
as compared to tension, resulted in about 25% higher macroscopic
stresses for a given macroscopic strain than occurs for the its sym-
metric counterpart in Fig. 4. Since the bending of cell walls involves
compressive as well as tensile stresses, the higher stiffness of the
compressive transformation zone E�t =E > Eþt =E

� �
as well as its

smaller transformation strain (b� > b+) resulted in a higher macro-
scopic tangent moduli for a given macroscopic strain as seen in
Fig. 5 compared to Fig. 4. Notice that the structure’s macroscopic
stress–strain response shows a limit load only for Eþt =E ¼ 0, but
weaker than in Fig. 4.

The influence of the amplitude of the hysteresis loop Dr for a
symmetric uniaxial material law is presented in Fig. 6, where
unloading for all cases start at macroscopic strains d/H = 0.3, 0.5
and 0.7. Notice that the initial slope of the unloading branch de-
creases as the macroscopic strain at unloading increases, due to
the resulting geometric change of the unit cell. Also notice that
for the smallest amplitude of hysteresis Dr/E = 0.002 the unload-
ing branch starting from the lower strains d/H = 0.3 and d/H = 0.5
converge rapidly to the corresponding unloading branch that starts
at d/H = 0.7. As Dr increases, the discrepancies between the differ-
ent unloading paths progressively increase. Also, hysteresis values
greater than 0.003 eliminate any possibility of limit loads in the
unloading curves.

The influence of the tensile transformation tangent modulus Eþt ,
but for the asymmetric constitutive law (Model 2), is presented in
Fig. 7, where as in Fig. 6, unloadings at d/H = 0.3, 0.5 and 0.7 were
considered. As expected from the results of Fig. 5, an increase in
Eþt =E results in an overall stiffer response, occurring at progres-
sively higher macroscopic stress levels (for the same macroscopic
strains). Notice that, similar to Fig. 6, the initial slope of the unload-
ing branch decreases with increasing strain at unloading but is
independent of Eþt , i.e. unloading branches starting at the same
macroscopic strain are approximately initially parallel to each
other, since the deformed geometries are comparable at this point.

A noteworthy feature of the results presented in Fig. 6 is the
near independence of the unloading branch on the structure’s
deformation history, since all three unloading branches converge
to the same curve, after some initial elastic unloading. To further
illustrate the near load-path independence of the principal solu-
tion’s unloading branch, Fig. 8 compares, for the symmetric consti-
tutive law, the unloading paths obtained by reversing the
macroscopic strain at d/H = 0.3, 0.5 and 0.7 to the loading path of
the same structure with an ‘‘elastic” constitutive response that
coincides with the unloading branch of the hysteretic model (see
0
00 1. 0.3 0.40.2 0.6 0.70.5

2

4

6

8

10

δ / H

(10-6)

F
EA

Δσ/E

Δσ/E

0.0055
0.005
0.004
0.003
0.002

0.0055

0.002

ε

σδ

L

H

Fig. 6. Principal branches of the dimensionless macroscopic compressive stress (F/
EA) vs. compressive strain (d/H) load–unload responses of the infinite-perfect
honeycomb, based on hysteretic constitutive Model 1 (right inset), showing the
influence of stress hysteresis (Dr/E). Unloading paths shown start at macroscopic
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insert of Fig. 8). The comparison indeed confirms that the response
during active A M M transformation is nearly independent of the
loading path, i.e. the response eventually tends towards a funda-
mental ‘‘outer-loop” response, consistent with the chosen material
law.

4.2. Stability of the infinite, perfect honeycomb

The next set of calculations, presented in Figs. 9–14 address the
stability of the principal solution of the infinite-perfect structure
under displacement (d/H) control (stiff loading device) for the same
constitutive laws used previously in Figs. 3–8. The full unit cell
(shown as an insert in these figures) was now required to perform
the Bloch wave stability calculations. Stable equilibrium paths are
indicated with a bold line, while unstable paths are drawn with a
thin line. Limits loads are indicated as before with ^ and _. Critical
points, where the stability of the path changes, are shown with
open circles.

The stability of the loading path of the principal (unit cell-peri-
odic) solution of the infinite-perfect structure for a symmetric con-
stitutive response, but with different nucleation strains en, is
shown in Fig. 9. Notice that for sufficiently low en 6 0.001, the prin-
cipal solution is stable for all strains. Interestingly, the case of
en = 0.002 has critical bifurcation points, yet no limit loads. As en in-
creases further, and the corresponding macroscopic tangent mod-
ulus softens, an unstable zone appears. At sufficiently large
strains, however, it restabilizes as transformation saturates and
the increased material stiffness overwhelms the kinematic soften-
ing of the cell. Additionally, note that in each case for en P 0.003
the onset of instability precedes the maximum load, i.e., while
the response still has a positive slope, and then the path regains
stability after the local minimum. The presence of an unstable re-
gion in the principal solution of the infinite-perfect structure has
important implications for the behavior of finite structures, perfect
and imperfect, as will be seen subsequently.

Some comments are in order about the nature of the critical
modes at the two end points of the unstable zones, i.e., at the first
onset of instability and termination of instability along the princi-
pal path. In both cases the critical mode is a long wavelength mode.
Fig. 10 presents an analysis for the case of Model 1 (base case of
Fig. 9), showing the critical macroscopic strain as a function of
dimensionless wavenumbers (x1L1,x2L2), i.e surface
km(x1L1,x2L2) corresponding to the first loss of positive definite-
ness of bK as defined in Section 2.3.1. The onset of instability occurs
at d/H = 0.092 with the minimum load corresponding to wavenum-
bers near the origin, indicating a possible long wave length mode.
The origin (x1L1,x2L2) ? (0,0) is a singularity of the Bloch wave
analysis, so the critical mode shown here does not quite reach
the origin due to the discretization of wave numbers used. Conse-
quently, the long wave length mode was confirmed by a separate
analysis of the homogenized moduli. A similar situation occurs at
the termination of the unstable range at d/H = 0.342, where the
instability mode is again a long wavelength one. At intermediate
strains the path is unstable, as shown in Fig. 9.

These characteristics are typical of the instability of the princi-
pal load path in all cases considered in this paper. The fact that the
eigenmode corresponding to kc is a ‘‘global”, i.e. long wavelength
mode, and not a ‘‘local” one is due to the particular loading orien-
tation and is perhaps not surprising in view of results by Trian-
tafyllidis and Schraad (1998) (same geometry, similar bilinear
constitutive law). Other load orientations would likely exhibit
instability with respect to modes of finite wavelength. Indeed, in
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a series of in–plane crushing experiments of Aluminum honey-
comb, Papka and Kyriakides (1994) compressed the structure along
the X1 direction and found that the corresponding critical mode is a
‘‘local” one, a fact that was verified subsequently by the Bloch wave
analysis of Triantafyllidis and Schraad (1998).

The influence of the tangent modulus Et for the symmetric con-
stitutive law (Model 1) on the stability of the loading path of the
principal solution of the infinite-perfect structure is shown in
Fig. 11. As expected, increasing Et/E results in decreasing the extent
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Fig. 11. Stability of macroscopic compressive stress–strain, (F/EA) vs. (d/H),
responses for the perfect, infinite honeycomb under d/H control, showing the
influence of transformation modulus (Et) using Model 1 as the base case. Note,
multiple changes in stability occur along the response for Et = 0.
of the unstable zone. As seen before, for cases Et/E = 0,0.05 the ex-
tent of instability extends beyond the range of negative slope in the
principal path (between limit loads). Even for the case (Et/E = 0.10),
where the path maintains a positive slope, a significant regime of
instability exists. Despite the risk of belaboring a (perhaps) obvious
point, we wish to emphasize here that monotonicity of the princi-
pal path is clearly not a sufficient criterion for stability.

The results in Fig. 12 demonstrate the stability of the principal
solution for the infinite-perfect structure, but for the asymmetric
constitutive response (Model 2). As expected from the stiffer re-
sponse of the material in compression, the extent of the unstable
zones is considerably smaller compared to corresponding results
in Fig. 11 for the same Eþt =E.

The stability for both the loading and the unloading branches of
the principal solution of the infinite perfect structure is presented
for the symmetric and asymmetric hysteretic constitutive laws,
respectively, in Figs. 13 and 14. The influence of hysteresis Dr/E
(same range as in Fig. 6) on the stability of the loading–unloading
path (using the symmetric Model 1) is presented in Fig. 13. Except
for the highest value Dr/E = 0.0055, instability regions exist in
both the loading and unloading paths. Fig. 14 shows the influence
of Eþt =E on the stability of the principal solution of the infinite per-
fect structure having the same hysteretic, asymmetric constitutive
laws (based on Model 2) as in Fig. 7. In this case only the loading
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the influence of stress hysteresis (Dr/E) for symmetric, hysteretic material.
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paths have unstable regions, while all the unloading paths shown
are stable, even for the case where Eþt =E ¼ 0.

4.3. Response of the finite, perfect honeycomb

Finite element simulations of perfect honeycombs of finite size
are presented in Figs. 15 and 16 to investigate the influence of
boundary conditions. The selected geometry corresponds to the
topology (but with an idealized, perfect geometry) and overall
dimensions of the fabricated specimen used in the isothermal
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experiment of Shaw et al. (2007b), to be presented later in Section
4.5.

The response of the finite size, perfect structure under uniax-
ial compression calculated for a symmetric, hysteretic constitu-
tive law (Model 1) is presented in Fig. 15. The loading device
was modeled as frictionless. The principal solution of the finite,
perfect structure has all cells deforming identically and hence
coincides with the principal solution of the infinite perfect struc-
ture (yet the stress-free lateral edges may have new implications
for stability). For comparison the response of the principal solu-
tion for the infinite-perfect structure is also shown in the same
figure. The macroscopic force–displacement loading–unloading
curves for both (infinite and finite) structures are given in
Fig. 15a. The infinite honeycomb response has unstable seg-
ments during loading and unloading, yet the finite honeycomb
response does not. The responses of the two structures are sim-
ilar, but start diverging on the loading and unloading branches
near the onset of instability of the infinite structure. It is not sur-
prising that the responses of the finite-perfect and infinite-peri-
odic structures coincide again at macroscopic strains well above
or below the strain levels where the paths of the infinite-peri-
odic solution are stable.

A better, quantitative measure of the deviation between the fi-
nite and infinite honeycomb solutions is shown in Fig. 15b. The rel-
ative L2 norm of the two solutions, ku� u#k=ku#k, is plotted
against the macroscopic strain, where

ku#k2 �
Z

cellwalls
v2

#ðxÞ þw2
#ðxÞ

h i
dx;

ku� u#k2 �
Z

cellwalls
ðvðxÞ � v#ðxÞÞ2 þ ðwðxÞ �w#ðxÞÞ2
h i

dx; ð4:1Þ
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and (v,w) and (v#,w#) are the respective displacements of the finite
and infinite (periodic) honeycombs. The integrals over the cell walls
are calculated numerically using the same Gaussian quadrature
used in the equilibrium calculations.

The deviation of the finite honeycomb’s equilibrium path in
Fig. 15b from its periodic counterpart during loading occurs at d/
H = 0.084, (denoted by " in Fig. 15a) which just precedes the first
instability at d/H = 0.092 encountered of the infinite structure.8

The deviation disappears near d/H = 0.624 well after the final bifur-
cation point at d/H = 0.328. Upon unloading, deviation between the
two paths appears at d/H = 0.322 soon after the bifurcation point
at d/H = 0.344 and then disappears at d/H = 0.018 well after the final
bifurcation point at d/H = 0.099.

The deformed configurations of the finite and infinite honey-
combs are shown in Fig. 15b at five different states: points A1,
A2 and A3 on the loading branch (d/H = 0.20,0.30,0.5) and points
B2 and B1 (d/H = 0.30,0.20) on the unloading branch. The numeri-
cal calculations for the hysteretic, finite sample were obtained by a
straightforward incremental algorithm with small step sizes (typ-
ically Dd/H between about 3 � 10�5 and 9 � 10�5). This standard
procedure, without any special modification, was adequate to al-
low the finite structure to take a particular, non-periodic, equilib-
rium path. As can be seen in the magnified view of state A2 in
Fig. 15c the overall shape of the finite honeycomb takes a roughly
trapezoid shape, with cells flattening at the top more than at the
bottom. Of course, other equilibrium paths exist, which are sym-
metry related to the calculated equilibrium path. The presence of
internal variables in the model introduces numerical imperfec-
tions, thus selecting one of the geometrically equivalent paths.
Other equilibrium paths are likely to exist (after all, the periodic
solution has a high number of symmetries), but the ease with
which numerical solutions were found (without any overt imper-
fections included) leads us to believe, although without proof at
this time, that the numerical solution found here is the energeti-
cally preferred path in a continuous loading process of the struc-
ture. Furthermore, the deformed patterns obtained are
reminiscent of the configurations observed in experiments (Shaw
et al., 2007b).

The mechanical response of the finite honeycomb using the
asymmetric constitutive response (Model 2) is presented in
Fig. 16. For comparison purposes the results are overlaid on the
stability results for the corresponding infinite periodic case (from
Fig. 14). As before the finite honeycomb’s force–displacement
curve deviates from its periodic counterpart near the onset of first
instability. However, a deviation of the finite size structure’s re-
sponse from the corresponding periodic results is found on the
unloading path as well. This discrepancy is unexpected, in view
of the stability of the entire unloading path of the infinite, periodic
solution found according to the results in Fig. 14. However, this
mystery can be explained by the presence of the tiny unstable re-
gion on the principal unloading branch of the finite structure (In
fact, this unstable region was not initially detected until a more de-
tailed calculation was performed with very fine increments). Inter-
estingly, the infinite honeycomb response has an unstable segment
during loading but not unloading, yet the finite honeycomb re-
sponse is stable during loading but has this short unstable segment
during unloading.

4.4. Response of finite, imperfect honeycombs

The influence of imperfections on the response of the actual, fi-
nite size structure is shown in Figs. 17 and 18 for the symmetric
and asymmetric constitutive response, respectively. The construc-
8 Instability of the finite-perfect structure precedes the onset of instability of the
infinite counterpart, since it is not laterally constrained.
tion of a ‘‘hypothetical” imperfect structure was achieved by ran-
domly perturbing the location of the internal cell junctions of the
perfect structure. Each node of the perfect specimen was displaced
within a disc of radius Dr = fL (where L is the unit cell side), where
the radius and the angle for the nodal perturbation vector were
chosen randomly in the respective intervals [0,Dr) and [0,2p).

Fig. 17(a) shows the macroscopic stress–strain responses of the
perfect (f = 0) and two imperfect (f = 0.01,0.1) structures. The
paths are similar, undulating about a plateau stress at intermediate
strains, yet all the paths shown are stable everywhere. The figure
reveals little influence of the imperfection for the small imperfec-
tion amplitude (f = 0.01) but more significant deviations from the
perfect responses for the larger amplitude (f = 0.1), especially at
large strains (d/H > 0.5). The same conclusion can be reached from
Fig. 17(b), where the relative deviation between the finite and peri-
odic solution is plotted as a function of macroscopic strain. As ex-
pected, the loading–unloading curve for the smaller imperfection
(f = 0.01) is closer to the perfect case (f = 0) than the corresponding
curve for the larger imperfection (f = 0.1). Fig. 17(b) shows that the
configurations diverge from each other at small macroscopic
strains initially (say, d/H < 0.05), but then tend to converge some-
what toward the perfect case as strains near d/H = 0.1. The largest
differences between the three cases are apparent in Fig. 17(b) upon
unloading (from d/H = 0.7 down to about d/H = 0.2), but then they
converge closely to the perfect case at small strains (d/H < 0.1).

The comparison of the macroscopic stress–strain response of
the finite, perfect (f = 0) and two imperfect (f = 0.01,0.1) structures
for the case of the asymmetric constitutive law (Model 2) is pre-
sented in Fig. 18. Again, all paths shown are stable everywhere,
showing that while the path undulates for much of the path,
imperfections help to suppress the possibility of instability. Consis-
tent with the results of Fig. 17, there is little difference between the
behavior of the perfect (f = 0) and the slightly imperfect (f = 0.01)
structures, and a more apparent difference with the more imper-
fect structure (f = 0.1).

4.5. Response of the fabricated nitinol honeycomb

Finally, we turn to superelastic simulations of an actual SMA
honeycomb. All the above presented results pertain to various ide-
alized SMA structures. The following results are calculated for the
actual SMA honeycomb specimen shown in Fig. 19(a), having over-
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all in-plane dimensions 40.6 � 21.5 mm with 4-1/2 �7 cells, out-
of-plane depth 5.2 mm, and nominal ligament thickness
t = 0.1 mm, except for the double layer bonds at the horizontal
lands. The uniaxial macroscopic stress–strain response to several
compressive load cycles is shown in Fig. 19(b) (data redrawn from
Fig. 5 of Shaw et al. (2007b)). The actual geometry of the specimen
in Fig. 19(a) was digitized as accurately as possible and was dis-
cretized by up to 20 beam elements per ligament. The cell liga-
ments of the SMA honeycomb specimen are noticeably curved,
especially at the junctions, thus requiring more finite elements to
accurately capture the initial geometry.

The local stress–strain behavior of the as-fabricated honeycomb
walls is, unfortunately, not directly available at this time, and this
would be challenging task to obtain for a number of reasons. The post
heat-treated properties are likely different from the virgin NiTi strip
material used in their construction, so one would want properties of
wall samples excised from the honeycomb. One could only hope to
get tensile data, not compression data, since buckling would be dif-
ficult to avoid. Obtaining accurate bending data on such small spec-
imens would also be difficult, and while potentially useful for local
bending moment-curvature behavior, the true stress–strain behav-
ior could still only be inferred indirectly. Furthermore, the specimen
in the experiment exhibited noticeable shakedown behavior (as is
commonly seen in uniaxial experiments of Nitinol, at least for initial
loading cycles), and some permanent strain existed as the strain
increments were increased. Nevertheless, experimental work to
independently obtain meaningful material property data on individ-
ual ligaments will be pursued in the future.

Consequently, we chose cycle 6 of Fig. 19(b), taken to 30% strain,
to simulate and performed several trial simulations with different
material laws to calibrate Model 3. We recognize that our uniaxial
constitutive model contains a large number of parameters that can
be used to fit the specimen’s response, so no claim is made currently
that Model 3 is necessarily the optimal one. Considering the reason-
able agreement with both the mechanical response and the defor-
mation pattern observed in Fig. 20, however, indicates that it is a
credible one. Furthermore, Model 3 has certain expected features
of NiTi behavior, namely asymmetric tension–compression behavior
with lower transformation stresses and larger transformation
strains in tension vs. compression, yet both having positive tangent
moduli consistent with material that has experienced some shake-
down cycling. Overall, we believe we can proceed with some confi-
dence to investigate the effects of boundary conditions and
geometric imperfections.
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Another ‘‘sticky” issue is the potential effects of platen-honey-
comb friction at the top and bottom of the specimen, so friction
was included in the simulations. A friction coefficient of l = 0.3
was chosen such that the response of the finite, imperfect honey-
comb reasonably matched the experimental results. This value is
considered realistic for the dry, steel platens used. The same model
was simulated frictionless, in order to quantify the effect of friction
as well as to be comparable to the finite sample results presented
earlier. A frictional or standard contact algorithm was used for the
two cases, respectively, since the actual honeycomb top and bottom
surfaces were not precisely planar, causing some cells to contact the
platens before others at the initiation of loading. This was the cause
of the concave curvature and delayed upturn in the experimental re-
sponse near d/H = 0.01, as settling occurs between the honeycomb
top/bottom ends and the platens. After this ‘‘slack” was exhausted
the structure stiffened to a roughly linear response up to about d/
H = 0.05.

The case of l = 0.3 results in quite satisfactory agreement with
the experimental response as seen in Fig. 20(a). Not surprisingly,
the presence of friction acts to stiffen the overall response as shown
in the three responses of finite, imperfect honeycombs. The response
of the infinite-perfect honeycomb is also shown for comparison,
being the stiffest of the structures considered. Obviously, the pres-
ence of imperfections is a strong effect, softening the response con-
siderably compared to the perfect case. All cases were stable for their
entire paths for this choice of constitutive law (Model 3). The case of
l = 0.3 for the finite, imperfect honeycomb fits the experimental re-
sults very well, except for a minor deviation near d/H = 0.2 during
loading. Similarities are also apparent in Fig. 20(b) between the sim-
ulated (l = 0.3) and experimental configurations near the maximum
strain, d/H = 0.3. The overall shapes are roughly trapezoidal with
cells flattened at the top, although the distortion is somewhat more
severe in the experiment. Notice that the center cell in the bottom
row is relatively undeformed in both cases. Overall, we consider
the agreement between the simulation and experimental results to
be quite satisfactory.

5. Summary and conclusions

The recently discovered method for bonding NiTi strips has en-
abled the fabrication of thin-walled SMA honeycomb, preserving
the shape memory and superelastic properties of the material.
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The high surface area per mass cellular architecture results in
remarkable enhancement (over the monolithic case) of the macro-
scopic superelastic and shape memory effect, as recent experi-
ments on SMA honeycomb specimens have shown.

In this paper we presented an in-depth numerical study of the
response of hexagonal SMA honeycombs subjected to large macro-
scopic strain, isothermal compression of varying amplitudes. Sim-
ulation and stability analyses were performed using a standard
incremental algorithm in a finite element-based simulation tool
with large displacement, small strain (nonlinear) kinematics, and
an isothermal superelastic SMA material model. The study showed
how key parameters of the local uniaxial constitutive law, such as
nucleation strain, phase transformation tangent modulus, and hys-
teresis amplitude, influence principal responses of the bulk honey-
comb (of infinite extent) and finite honeycombs with initially
perfect and imperfect geometries. An investigation of the stability
of the periodic unit-cell solution for the infinite structure using
Bloch waves provided a key to understanding the response of finite
size specimens, which showed interesting transitions from regular
(almost periodic) deformations to localized cell deformations and
then back to regular patterns upon continuous loading (or unload-
ing) paths. We found that bifurcation points at the onset kc and ter-
mination kC of instability, i.e., the critical points of an unstable
region in the primary path of the cell-periodic solutions, were asso-
ciated with long wavelength modes for all cases considered, while
intermediate unstable equilibrium points were associated with an
array of finite wavelength modes. These rather remarkable poten-
tial changes of stability of the macroscopic response – due to the
SMA’s inherent softening during stress-induced phase transforma-
tion and then stiffening upon phase saturation – has important
implications, since they can cause equilibrium solutions to deviate
from the periodic, or nearly periodic, configurations for significant
portions of their loading path.

Finally, we demonstrated that our simulation tool can be well
calibrated to experimental results, using a material model that
captures the uniaxial tension–compression asymmetry (necessary
to properly capture the dominate bending effects of cell walls)
and modeling some frictional effects at the loading platens. Be-
side capturing the overall mechanical response, the simulation
tool presented has obvious utility to capture deformed configura-
tions to identify worst case stresses/strains. This helps to quantify
the local-to-global strain amplification (structural performance)
and determine potential failure locations (structural reliability).
Although the present investigation pertains to specific cell geom-
etry and load direction, the rich behavior demonstrated can be
potentially altered by changing the load orientation and cell
geometry, thus opening new avenues for interesting design prob-
lems and novel applications of such light-weight, cellular, adap-
tive structures. We look forward to using the simulation tool in
design optimization and performance predictions of other honey-
comb cell geometries and loading directions in the future, as well
as generalizing the material model to include thermo-mechanical
coupling to capture loading rate effects and the shape memory
effect.
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