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Ahmruct-The ~v~p~nt of shear bands in a plate subject to pure bending is analyzed nume~c~ly. For a 
plate with an initial periodic imperfection, the course of shear band development is dctermntcd for three 
material models; an elastic-plastic solid with a rather sharp vertex on its yield surface, an elastic-plastic 
solid with a more blunt vertex on its yield surface and a nonlinear elastic solid. The uniaxial stress-strain 
behavior of these material models is taken to be identical. In each case, the initial imperfection leads to the 
development of surface undulations on both the compressive and tensik sides of the plate and, sub- 
squcntly, shear bands initiate at points of strain concentration induced by these surface undulations. The 
course of shear band development is found to depend on the constitutive law employed to characterize the 
material bcbavior. For the c~tic-plasm solid with the sharper vertex, the effect of additional longer 
wavclcngth ~~~~ is considered. These additional long wavelength imperfections enbancc the 
process of shear band devciopmcnt by focussing the deformation into one or a few shear bands. In pure 
bcndii, the shear bands must propagate into the plate against an adverse deformation gradient so that the 
peak straining within the bands always occurs at the free surface and the shear bands end inside the plate. 

1. INTRODUCTION 

LocaIiition of plastic flow in narrow shear bands is frequently observed in ductile metals 
subject to tensile or compressive loading. The inception of localization has been analyzed for 
several material models, based on a theoretical framework due to Hadamard [ l], Thomas[2] and 
HiR[3]. Such analyses consider a homogeneously deformed solid and determine the state at 
which bifurcation into a localized shear band is first possible. This bifurcation coincides with 
the loss of ellipticity of the governing incremental equations, Hillf3], Rice[4]. 

The growth of a shear band can be analyzed by a str~ghtfo~ard an~ysis[4] in cases where 
the stress state outside the band is homogeneous and the band is assumed to have constant 
width. However, in a solid subject to a non-uniform state of deformation the determination of 
shear band growth requires a much more elaborate analysis. The first loss of ellipticity at a 
point of the material and the corresponding directions of characteristics can be determined 
readily; but the growth of the localized shear deformations and the extent to which shear bands 
extend into neighbori~ elliptic regions of the material is a more complex question. 

Some progress has been made by Tvergaard et al.151 for the plane strain tensile test, in 
which diffuse necking occurs first and subsequently shear bands develop in the non-uniformly 
strained neck region. In [5] it was found that the locations of shear bands were very sensitive to 
the form of small initial surface imperfections. Also, the intensity of the localized shearing 
varied considerably along the bands, which often ended inside the material. The emergence of 
shear bands from a slight material impe~ection inside an otherwise homogeneous body has 
been studied recently by Abeyaratne and Triantafyllidis[6]. Somewhat related to these results 
are the bands found by Knowles and Sternberg[7] and Abeyaratne(81 in the vicinity of the tip 
of a crack in anti-plane shear. 

The present paper considers shear band development in a plate subject to pure bending. 
Interest in this problem stems from various metal forming processes involving bending of sheet 
metal, where bending beyond a certain minimum radius of curvature retative to the plate 
thickness can lead to shear fracture at the surface. The possibility of bifurcation away from the 
cylindrically symmetric fundamental state of pure bending has been studied by 
Triantafyllidis [9] for an incompressible nonlinear elastic solid. The critical bifurcation mode is 
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a surface wave mode, which occurs first in the compressive region, with the shortest possible 
wavelength being critical. Subsequently, if the fundamental unbifurcated state is thought to be 
continued beyond the lirst critical bifurcation point, ellipticity of the governing equations is lost 
at the surfaces. The directions of the ch~cteristics in these hy~r~lic surface regions are 
shown in [S]. However, as soon as the first bifurcation point is reached, the surface waves will 
start to grow, with very little additional overall straining being required to meet the condition 
for shear band inception in small material regions at the wave bottoms, Hutchinson and 
Tvergaard [ lo]. 

The particular material model to be used in the present investigation is the JZ corner theory 
developed by Christoff ersen and Hutchinson [ 1 I], which was also used in studies of the plane 
strain tensile test[5] and surface instabilities[lO], In the total loading regime, for nearly 
proportional loading, the instantaneous moduli are chosen as those of a nonlinear elastic solid (a 
large strain generalization of Jz deformation theory). In the transition regime, for larger 
deviations from proportional loading, the moduli are taken to stiffen smoothly until they 
coincide with those of a liiear elastic solid for stress increments directed along or within the 
yield surface comer. For compa~son purposes some results employing the nonlinear elastic 
constitutive law are also included. 

Bifurcation results based on the nonlinear elastic material model, as in [9], also hold for 52 
corner theory as long as deviations from proportional loading remain inside the total loading 
regime. For the bent plate this requirement is not satisfied since strong deviations from 
propo~ion~ loading occur in the preb~urcation state, However, near the surface regions that 
are most highly stressed and thus most important for ~~urcation proportional loading does take 
place. In addition to this limitation on the validity of the nonlinear elastic bifurcation predic- 
tions, the subsequent growth of shear bands is quite sensitive to details of the vertex 
description, Hutchinson and Tvergaard[12]. In the limiting case of a classical elastic-plastic 
solid with a smooth yield surface, satisfying normality, there is strong resistance to shear band 
locali~tion[l3]. 

2. PROBLEM FORMULATION 
We consider a plate, as depicted in Fig. l(a), of length 2L0 and thickness hot 2Ah0 in the 

initial unstressed state, where ho is the average thickness and 2Ahho is an initial thickness 
inhomogeneity. The plate is subjected to pure bending by rotating its ends through an angle 28 
relative to each other. Plane strain ~nditions are assumed to prevail thought the defor- 
mation history. 

A Lagrangian formulation of the field equations, see, e.g. 114,151, is adopted which has been 
used extensively in previous finite element analyses[ 16-l&10,5,6]. The initial unstressed 
configuration is taken as reference and a material point is identified by its Cartesian coordinates 
xi in the reference state. The reference state metric tensor is denoted by grr, with determinant g, 
while in the current co~ation the metric tensor is G, and the dete~inant is G. The 
Lagrangian strain tensor is given by 

vii = i (Gij - gii) = $(Ui,j + Ui,i + UfiUk,i) 

dkxt 
ho+2Ah, 

I------2L,------i 

(0) 

_- -_ 
/ / . \ 

~ 

Ti 
‘c rt 

8 
28: 2L,K 

(b) 

Fig. 1. (a) The undeformed configuration of a plate, (b) The bent configuration assumed by a perfect plate. 

tLatin indices range from 1 to 3, while Greek indices, which will he employed subsequently, range from 1 to 2. 
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where Y’ are the displacement components on the reference base vectors and ( )., denotes 
covariant differentiation in the reference coordinate system. 

Equilibrium is expressed by the principle of virtual work which, under plane strain 
conditions, is given by 

P%T),~ dA = 
I 

TV& ds. 
A I 

(2) 

Here, A and s denote, respectively, the cross-sectional area and perimeter of the body in the 
reference configuration, P8 are the contravariant components of the Kirchoff stress tensor on 
the embedded deformed coordinates and T” are the components of the nominal traction vector 
on the reference base vectors. 

The contravariant components 7a8 of the Kirchhoff stress tensor are related to the 
corresponding components of the Cauchy stress tensor uoB by 

T’+ = V(G/g) ua6 (3) 

and the nominal traction components on a curve with normal ne in the reference configuration 
are given by 

T” = (Tag + 7% ;)np (4) 

An identity related to the principle of virtual work (2) which will prove useful in the 
subsequent analysis, is 

A 
~~(u:$+u;u;,~)dA= (9 

where 70b and u, are the equilibrium stress and displacement fields at a given stage of the 
deformation history and u$ is any conveniently chosen compatible displacement field. 

Consideration is restricted to deformations symmetrical about the center line of the plate, 
xt = 0 in Fig. l(a), so that only one-half of the plate needs to be considered in the numerical 
solution. The symmetry conditions are expressed by 

u,=O, T'=O at x’=O. (6) 

The top and bottom surfaces of the plate are required to remain traction free so that 

T’=T*=O at x*=-Ago 
T’=T*=O at x*=ft,,+Ab. 

The initial thickness inhomogeneity, Ah,,, is specified by 

&cos~+~2~os~ 1 

(7) 

(8) 

where & and & are imperfection amplitudes and ml and m2 are the corresponding wave 
numbers. 

The edge of the plate x’ = Lo is rotated through an angle 8 relative to the center line x’ = 0 
while remaining shear free. Taking the point about which the line x’ = LO rotates to be x2 = b/2, 
the current Cartesian coordinates, f’ and Z*, of points on this line are related by 

a’-hJ 
- = tan 8. 
g*+ 

(9) 
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Rewriting (9) in terms of the displacement components ua gives the boundary conditions on the 
edge of the plate as 

-u’cote+uZ=-x’+(1/2)kll 
T2cosg+T’sin8=0 0. (10) 

We have chosen to express the first of eqns (10) in terms of the cotangent function, rather than 
in terms of the tangent function in order to avoid numerical difficulties at 8 = 1r/2. Initially, at 
8 = 0 numerical difhculties are avoided by using the first of eqns (10) multiplied by tan 8. 

In interpreting some of the numerical solutions, advantage will be taken of the fact that the 
boundary conditions imposed here on the edges x’ = 0 and x’ = Lo are also the appropriate 
symmetry conditions for a segment of a plate of initial length 2kLo (k = 1,2,3 . . .). The ends of 
the plate are rotated through an angle 2kB relative to each other, while requiring the defor- 
mations to be periodic in the x’direction with period 2L,. Within each segment, (i - l)L, 5 x’ s 
(i + l)Lo, i = - (k - 1) to (k - l), the deformations are presumed symmetric about the midpoint 
xl=&. 

3. CONSTITUTIVE RELATIONS 

The constitutive relation employed here is the J2 corner theory of Christoffersen and 
Hutchinson[ll]. This theory was introduced in order to develop an analytically tractable 
phenomonological theory of plasticity which would incorporate certain features exhibited by 
physical theories of plasticity. Quite generally, in physical models of polycrsytalline aggregates, 
based on single crystal slip, the discreteness of slip systems in each grain leads to the prediction 
of a yield surface vertex at the current loading point, when the yield surface is defined for small 
off set plastic strains[ 191. Calculations carried out for specific polycrystalhne models do exhibit 
yield surface vertices[20,21], although experimental evidence for the formation of such 
vertices is ambiguous and conflicting[22]. 

The significance of vertex formation for bifurcation related phenomena in the plastic range 
has been long appreciated in the context of plastic buckling applications[23,24]. Recently, the 
destabilizing effect of a vertex in tensile bifurcations has been investigated in a variety of 
problems by employing some finite strain generalization of the 52 deformation theory of 
plasticity. When the bifurcation state involves a proportional or nearly proportional loading 
history, deformation theory is an acceptable plasticity theory for analyzing the onset of 
bifurcation. However, even in these problems deformation theory is not an acceptable plasticity 
theory for addressing questions concerning post-bifurcation behavior and imperfection sen- 
sitivity, since strongly nonproportional loading almost always occurs in the post-bifurcation 
regime. In the particular problem considered here, deformation theory is not even an ap- 
propriate plasticity theory for investigating the onset of bifurcation due to the fact that strong 
deviations from proportional loading take place well before the onset of bifurcation. 

In J2 corner theory the instantaneous moduli for nearly proportional loading are chosen to 
be the moduli of JZ deformation theory and for increasing deviation from proportional loading 
the moduli stiffen monotonically until they coincide with the linear elastic moduli for stress 
rates directed along or within the corner of the yield surface. With M& denoting the 
deformation theory compliances and M iiU denoting the linear elastic compliances, the plastic 
compliances of deformation theory are Ciju = I& - Miw so that 

?ji,P = Ciw P. (11) 

Here, lib is the plastic part of the strain rate, %’ are the Jaumann rates of the contravariant 
Kirchhoff stress components and by rate is meant differentiation with respect to some 
monotonically increasing parameter which characterizes the deformation history. 

The yield surface in the neighborhood of the current loading point is taken to be a cone in 
stress deviator space with the cone axis in the direction 

Aij = Sij(c,.pqSmy0)-u2 (12) 

where the stress deviator s” = 7ii - 1/3Gk,~~‘G~j. 
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An angular measure 6t of the stress rate direction relative to the cone axis is defined by 

..I 
cos 9 = C&P(C,,, $+W)_I/Z* (13) 

The stress rate potential at the vertex is given by 

(14) 

The transition function f(e) is unity throughout the total loading range, which is specified by 
OS 8 I es and is identically zero for 0, < 8 s n, where 0, denotes the angle of the yield surface 
cone. In the transition regime, do5 8 s &, f(e) decreases monotonically and smoothly from 
unity to zero in a manner that ensures convexity of the incremental relation. The transition 
function employed here is the same as that employed in [5, lo] and is specified by 

f(e)= ’ .N)[l+ m41 

where 

e(4) = 6 + axtan [UN, d&W &#J) = 2g(4) (16) 

and 

o+seo 
s(d) = ((1 - [(+ ! ed(e. - eo)i3}-*, e. 5 4 5 8, 

(19 

(17) 

with 0. = 0, - 7r/2. Of the transition functions considered in [ 111, this transition function was 
found to most closely duplicate the moduli found in [20] using a self-consistent model of a 
polycrsytalline aggregate. From the potential function (14) the strain rate is found to be 

Inverting (18) gives the moduli Rii“‘(e) relating the Jaumann rate of Kirchhoff stress and the 
strain rate so that 

(19) 

In J2 comer theory the total loading moduli are taken to be those of some finite strain 
version of small strain 52 deformation theory. As in [5], we empIoy the incremental moduli of a 
nonlinear elastic solid to give the 52 comer theory total loading moduli. The principal axes 
techniques of Hill[25-271 are used to determine the components of the tensor of moduli R on 
the Eulerian principal axes, giving 

3 Es/Et - 1 
+ 1 riy, &jakf - j E ,E 

m 

s I 
@; 1 _ zVs 

3 1 for i = j, k = 1 

R1212 = R212, = R1221 = R21,2 = Gsq q = (a- c2) coth (c, - 42) 

(20) 
where Sij is the Kronecker delta, Q are the logarithms of the principal stretches and a,* = 

tTbe vertex angle 0 which will only appear in this Section is in no way related to the angle 0. through which the plate is 
bent. The notation for vertex parameters employed here conforms with the notation in [I I]. 
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3/2svsii, sir being the Kirchhoff stress deviator on the principal axes. Furthermore, E, is the 
slope of the uniaxial Kirchhoff stress-logarithmic strain curve, ES is the ratio of stress to strain 
on this uniaxial stress strain curve and the parameters V, and G, are defined by 

v, = l/2 + E,/E(v - l/2), G, = EJ2(1+ ~3) (21) 

with E being Young’s modulus and v Poisson’s ratio. With q = 1, (20) and (21) give the.tensor 
of instantaneous moduli for the hypoelastic solid of St&en and Rice[28]. 

In addition to characterizing the response of the .I2 comer theory solid in the total loading 
regime, the nonlinear elastic solid having the incremental moduli (20) will be considered in its 
own right in some of the numerical results to be presented subsequently. The incremental 
relation (20) can be integrated to give the total Kirchhoff stress-logarithmic strain relation as 

(22) 

and a strain energy function Q, = +(er, ~2, ~3) can be constructed for which Ti = a@/aei. As is 
more traditional in nonlinear elasticity theory, this strain energy function can also be expressed 
in terms of the strain invariants [6,29]. 

The uniaxial Kirchhoff stress-logarithmic strain curve is represented by a piecewise power 
hardening law of the form 

r = Ec 7 < cry 

7/uy = (r/e,)N 7 2 uy 
(23) 

where gy is the initial yield (Kirchhoff) stress, ey = q/E, and N is the strain hardening 
exponent. 

For JZ comer theory a more convenient measure of the yield surface angle than fl, is the 
angle & given by 

tan/% =-hn 

The angular measures 0, and BE are related by 

tan BC = q/a tan gC e=[&-l][+]-’ 

(24 

(25) 

and q is defined in (20). Here, the sharpness of the cone angle is limited by employing (24) to 
give gC for ?r/2 5 & 5 (&), and taking PC = (gC), otherwise. 

The components of the moduli R on the embedded deformed coordinates can be computed 
from the components on the principal axes by making use of standard kinematic relations. 
However, the Lagrangian formulation employed in the numerical calculations makes use of the 
relation between the convected rate of the contravariant components of Kirchhoff stress i”@ 
and the Lagrangian strain rate irs given in the form 

The moduli L are obtained from the moduli R appearing in (19) by employing the relation 

(27) 

4.BEHAVIOROFAPERFECTPLATEINPUREBENDING 

We consider the behavior of a perfect (Aho = 0) incompressible plate subject to pure bending 
as imposed by the boundary conditions (6). (7) and (10). The slight degree of compressibility 
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included in the formulation on which the finite element results are based has little effect on the 
overall behavior. 

One possible equilibrium configuration for the incompressible perfect plate is a portion of a 
cylinder as illustrated in Fig. l(b). The principal stretches of a material point at a distance r 
from the current center of curvature of the plate are given by 

Here, K is the curvature of the currently unstretched fiber and the subscripts 1 and 2 denote 
principal values associated with the tangential and radial (through-the-thickness) directions, 
respectively. The current coordinate r of a material point is given in terms of the Cartesian 
coordinate x2 in the reference configuration and the radius of the outer fiber under com- 
pression, r,, via the incompressibility condition 

r2 - r,’ = 2x2h0j(&). (29) 

The angle 8 through which the plate has been bent is given in terms of the curvature K, the 
initial thickness, ha, and the initial length, LO, by 

6 = (&)(b/ho). (30) 

The deformations in this prebifurcation state, given by (28) and (B), are independent of the 
coordinate x’ and are parameter&d by the nondimensional curvature Kho. Here, KhO will be 
chosen as the monotonically increasing parameter characterizing the deformation history. For a 
plate of initial length 2L0, the angle B can be calculated from (30). When 8 = P, i.e. when 
Khg = ah,,/lo, the plate has been bent into a circular cylinder. 

The complete solution for the deformation state, which involves solving for r, as a function 
of the curvature KhO, requires specification of the constitutive law, since the condition that the 
principal stress in the radial direction, u2, vanishes at the outer fibers is used to determine r,. 

For a nonlinear elastic material the general solution for the stress state has been obtained by 
Rivlin[30] and is explicitly given for the nonlinear elastic constitutive law (22), with piecewize 
power law hardening (23). by Triantafyllidis[9]. Integrating the analytical expression for the 
principal stress in the tangential direction, (Jo, given in [9] through the plate thickness gives the 
moment per unit width in the x3-direction, M, i.e. 

(31) 

where r, is the radius of the outer fiber under compression and r, is the radius of the outer fiber 
under tension as shown in Fii. l(b). Figure 2 depicts the moment, M, as a function of the 
curvature, KhO, for N = 0.1 and ur/E = 0.002. The moment reaches a maximum at Kho = 0.48. 

Also shown in Fig. 2 is the moment curvature relation for an elastic-plastic solid with 
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Fig. 2. The moment, M, vs curvature, K~O, relations for incompressibk perfect elastic-plastic aad nonlinear 
elastic plates with N = 0.1 and q/E = 0.002. 
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N = 0.1 and q/E = 0.002. For an incompressible elastic-plastic solid the moment curvature 
relation depends on the uniaxial stress-strain curve, but not on the vertex characteristics, since 
at each material point the stress state is one of plane strain tension or compression with a 
superposed hydrostatic stress. In particular, the moment curvature relation shown in Fig. 2 for 
the elastic-plastic solid holds for the classical smooth yield surface plasticity theory with 
isotropic hardening as well as for the J2 corner theory solid. The elastic-plastic results were 
obtained by a linear incremental method, with an iterative scheme being employed within each 
increment to ensure that az(rc) = 0 as well as u~(rJ = 0. 

Although the stress state at each material point is one of plane strain tension or com- 
pression, strongly nonproportional loading does occur. Initially, the unstretched fiber is at the 
center of the plate. As the curvature increases, the unstretched fiber moves toward the 
compressive side of the plate, as indicated schematically in Fig. l(b), which leads to unloading 
occurring as the unstretched fiber propagates into material that has previously yielded. The 
solutions for the stress and deformation states for the elastic-plastic and nonlinear elastic solids 
coincide prior to the onset of unloading which occurs at K& = 0.083 for u,/E = 0.002 PI. Even 
though unloading initiates quite early in the deformation history the moment vs curvature 
curves in Fig. 2 are indistinguishable to about ~h6 = 0.3. Thereafter, the stiffening effect of 
unloading manifests itself and, for the elastic-plastic solid, a maximum moment is not reached 
until ~h6 = 0.93. This maximum moment is 4.5% higher than the maximum moment attained by 
the nonlinear elastic solid. 

As illustrated in Fig. 3, the strain histories at the most highly strained material points differ 
for the nonlinear elastic solid and the elastic-plastic solid. Plotted in this figure are the principal 
logarithmic strains in the tangential direction, el = In A,, at the outer most fibers, r = r, and 
r = r,, as a function of curvature ~hg. At the outermost compressive fiber, r = r,, cl is negative, 
while at the outermost tensile fiber, t = r,, e1 is positive. For the nonlinear elastic solid, 
el(rC) = - r,(r,)[9]. For the elastic-plastic solid the magnitude of the strain is greater at the 
outermost compressive fiber than at the outermost tensile fiber. 

Bifurcations from this state of pure bending, for the case of nonlinear elastic material 
behavior, have been considered by Triantafyllidis[9]. The bifurcation mode encountered at the 
lowest critical curvature corresponds to a short wavelength surface mode along the compressed 
(r = rc) surface of the plate. At a somewhat higher curvature, a short wavelength surface mode 
along the stretched surfaces (r = rr) of the plate becomes available. For a power hardening 
nonlinear elastic solid, the critical condition for the onset of a surface instability is[lO] 

~(1 -e +) = N. (33) 

With N = 0.1, surface modes become available at el = - 0.202 (compression) and at eI = 0.252 
(tension), corresponding to critical curvatures, Kh), of 0.41 and 0.53, respectively. The critical 
curvature for the compressive surface waves occur prior to the maximum moment while that for 
tensile surface waves occurs after the maximum moment has been achieved. 

0.6 /NONLINEAR ELASTIC 

1: ~_-+““““c 
--- TENSILE SURFACE INSTABILITY 

-NONLINEAR ELASTIC 

_/ELASTIC-PLASTIC 

Fii. 3. The principal logarithmic strain in the tangential direction at the outermost fibers, CI, as a function 
of curvature, rtho, for incompressibk perfect elastic-plastic and nonlinear elastic plates with N = 0. I and 

a,/E = 0.002. 
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At somewhat greater strains the outermost fibers are deformed to the point at which the 
incremental equilibrium equations admit real characteristics, that is. locally these equations 
become hyperbolic rather than elliptic. In the pure bending problem elliptic and hyperbolic 
regimes can coexist in diflerent parts of the plate since the stress state is a function of position 
through the thickness[9]. Also, as exhibited in [9] the characteristics are curved. For the 
nonlinear elastic solid considered here, with power law hardening, the strain at the elliptic- 
hyperbolic interface is given by [ 12) 

C,2 = N(q - N) (34) 

where 9 is defined in (20). With N = 0.1, (34) gives l I = 20.322. As seen in Fig. 3, this strain is 
attained in the outermost fibers when ~hg = 0.69. Note that for the nonlinear elastic solid, 
ellipticity is lost at both the compressive and tensile surfaces at this critical curvature. 

Since unloading occurs in the pure bending solution, Triantafyllidis bifurcation results[9] are 
not directly applicabk for the 52 comer theory solid. Nevertheless, it appears reasonable to 
presume that the critical condition for surface modes as well as for loss of ellipticity is a local 
one, to be satisfied at the surfaces r = r, and r = r,. For the 11 comer theory solid with a 
nonvanishing total loading regime (60 > 0). the critical strains for surface waves and shear bands 
are also given by (33) and (34). Even though the plane strain pure bending solution given by the 
classical smooth yield surface elastic-plastic solid with isotropic hardening coincides with that 
for the J2 comer theory solid, the critical strains corresponding to surface waves and loss of 
ellipticity for the smooth yield surface case are much in excess of those given by (33) and (34) 
since these modes involve a change in loading path from the state of plane strain tension or 
compression. 

As can be seen in Fig. 3, the curvatures at which the surface wave bifurcations and loss of 
ellipticity occur differ from the corresponding curvatures for the nonlinear elastic solid. The 
critical strain for surface waves in compression is reached at ~hg = 0.39 and in tension at 
K~O = 0.54. These critical curvatures differ only slightly from the corresponding critical cur- 
vatures for the nonlinear elastic solid. However, loss of ellipticity in the pure bending state at 
the compressive surface occurs at a smaller curvature, ~hg = 0.60, for the elastic-plastic solid 
than for the nonlinear elastic solid. The loss of eilipticity in the pure bending state at the tensile 
surface is delayed somewhat, to ~hg = 0.72. For the 12 comer theory solid the compressive and 
tensile surface wave bifurcations and the loss of ellipticity at the compressive and tensile 
outermost fibers all occur prior to the attainment of the maximum moment. 

5.NUMERlCALMETHODANDRESULTS 
Let the values of displacements, strains, stresses and tractions corresponding to a known 

approximate equilibrium state be given. The governing equations for prescribed increments of 
traction or displacement are obtained by expanding the principle of virtual work (2) about this 
state, which gives to lowest order, 

where the moduli La@* are those appearing in (26) and ( ’ ) denotes increments of field 
quantities. 

A similar expansion of the displacement constraint along x’ = LO given in (IO) yields 

-riIcotB+li’=--g-+ 
[ 

u’cote-u2-x2+;b . 3 
The incremental principle of virtual work (35) serves as the basis for implementing the 

numerical procedures. The finite element methods used in this study are those employed by 
Tvergaard, Needleman and Lo[51 suitably modified to accommodate the boundary constraint 

(36). 
For a flow theory of plasticity such as J2 comer theory, the equilibrium solution is path 
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dependent and a linear incremental procedure is used for this material model. At each stage of 
the computation the correction terms, the bracketed terms on the right hand sides of (35) and 
(36), are included to prevent drifting of the solution away from the true equilibrium path. For 
the path independent nonlinear elastic solid (35) is solved iteratively by the Newton-Raphson 
method to compute the equilibrium state exactly, within the limits of the chosen discretization. 
As will be shown subsequently, for a nonlinear elastic solid, the angle 8 is not monotonically 
increasing along the equilibrium path. The mixed finite element-Rayleigh-Ritz method, 
Tvergaard[l7], is employed, as in [5], to overcome numerical difficulties associated with this 
phenomenon. 

Identical finite element discretizations are used for both material models. The grids consist 
of quadrilaterals made up of four constant strain triangular subelements which are formed by 
the two diagonals of the quadrilateral. For each quadrilateral static condensation is employed to 
eliminate the nodal degrees of freedom associated with the central node. 

The grid was designed utilizing the prebifurcation solution given in 191. A variable mesh 
spacing in the x2-direction was chosen so that for a perfect incompressible nonlinear elastic 
plate a uniform element thickness would result at the critical curvature for shear bands. 
Furthermore, the length of the elements in the xl-direction was adjusted to ensure, at 
bifurcation into the shear band mode, orientation of the diagonals of the top and bottom rows 
of elements along the most favorable angle for shear bands. Although, as noted in Section 4, the 
critical curvature for shear bands for the elastic-plastic plate differs from that for a nonlinear 
elastic plate, we employed the same mesh in the elastic-plastic calculations as in the nonlinear 
elastic calculations. In any case, due to the presence of the initial thickness imperfection (8), the 
conditions on mesh spacing and orientation at the onset of shear band development discussed 
above are only met approximately for an imperfect plate. Typical undeformed meshes are 
shown in Figs. 10 and 12. 

In all the calculations reported on here, the uniaxial stress-strain behavior of the material is 
characterized by a yield strain, q/E, of 0.002, a Poisson’s ratio, v, of 0.3 and a strain hardening 
exponent, IV, of 0.1 and 32 elements are employed through the plate thickness. 

We first consider a plate with a periodic imperfection in the x’direction, and focus attention 
on the growth of one half-wavelength. The half-wavelength to thickness ratio is 0.301 and the 
initial imperfection is specified by setting m I = 1, 5, = 6 x 10m4 and & = 0 in (8). 

Figure 4 displays the computed moment vs curvature curves for three material models; the 
nonlinear elastic solid, a .I2 corner theory solid with a limiting cone angle, (&)mar, of 135“ and a 
J2 corner theory solid with a more blunt limiting cone angle of 115”. The angle limiting the total 
loading range, r?,,, is taken as 6, = f&/2 - 7r/4 with 0, given by (25). The vertex characterization with 
(Pc)max = 135” was also employed in [5], while Hutchinson and Tvergaard [121 compared the course 
of shear band development in homogeneous plane strain tension for the two vertex charac- 
terizations employed here. 

Plotted in Fig. 4 is the moment, M, calculated from (5) with a suitable choice of u* and 
normalized by a&,‘, against the curvature parameter Khg. For an imperfect plate oh, is defined 
in terms of the angle 8 by (30). The curvature at which the maximum moment, M,,,, is attained 
depends somewhat on the vertex description, with M ,,,= occurring at K~O = 0.77 for the vertex 
with (Bc)max = 115” and at ~h~=0.72 for the vertex with (/3c)max= 135”. In each case the 
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Fig. 4. The moment, M, vs curvature, I&, relations for plates with the initial thickness inhomogeneity 
specified by .$I = 0.0006, ml = I and 22 = 0 in (8), with a half wavelength to initial thickness ratio of 0.301. 
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maximum moment occurs at a signScantly smaller curvature than for the perfect elastic-plastic 
plate depicted in Fii. 2. On the other hand, the moment-curvature relation for the imperfect 
nonlinear elastic plate is virtually identical with the one corresponding to a perfect plate until 
&=0.63. Then the curvature K/I& or equivalently the angle 6, ceases to increase monotonic- 
ally, This nonmonotonic behavior is associated with the formation of shear bands, tlrst on the 
compressive side and then on the tensile side of the plate. 

The development of the deformation pattern is shown in Fig. 5, for the JZ comer theory 
solids, and in Fii. 7 for the nonlinear elastic solid. These figures depict the deformed finite 
element mesh (only the quadrilaterals are shown) for a plate with an initial length, Lo, five times 
the half-wavelength of the initial imperfection. This choice of Lo, Lo = 1.51, is made to facilitate 
comparison with results to be presented subsequently. We reiterate that the periodicity evident 
in these figures is enforced by the computation, since only one half wavelength is analyzed 
numerically. 

In Fig. 5, at a curvature K/I,, = 0.31, there is no evident deviation from the cylindrical 
deformation pattern of a perfect plate. At kho = 0.71, which is somewhat prior to the attainment 
of the maximum moment, surface undulations are visible on both the compressive and tensile 
sides of the plate. The undulations on the compressive side are a bit more evident than those on 
the tensile side as could be anticipated from the fact that compressive surface waves begin to 
grow at a smaller curvature than do tensile surface waves. At this stage, the deformation 
patterns for the two comer descriptions are not visibly different. On the other hand, when 
Kb= 1.02, a shear band pattern is evident in Fig. 5, with noticeably greater shearing for the 
solid with the sharper comer. 

Figure 7 depicts deformation patterns at four stages of the loading history for the nonlinear 
elastic solid. Fiie 7(a) is a stage early in the deformation history and the surfaces of the plate 
still appear cylindirical while Fig. 7(b), K~O = 0.626, is well beyond the curvatures corresponding 
to compressive and tensile surface instabilities and both surface imperfections have been 
activated. At a slightly greater curvature Khg = 0.632, the first snap back of the moment- 
curvature curve has occurred and shear bands have appeared at the compressive side of the 
plate. The final stage shows well developed shear bands on both surfaces, with increasing 
shearing occurring as the curvature decreases. 

Fiies 6 and 8 give a more quantitative picture of shear band development. In these figures 
contours of constant maximum principal strain are plotted in the current deformed configura- 
tion. Fiies 6 and 8 depict the same stages of deformation as shown in Figs. 5 and 7, 
respectively. In these figures only one half the plate is pictured. 

At the smallest curvatures, ~hg = 0.31 in Fig. 6 and phi = 0.30 in Fig. 8, a slight waviness of 
the contours, induced by the presence of the initial thickness imperfection, is evident. When the 
critical strain for surface waves has been passed, the waviness of the strain pattern grows 
rapidly. In Figs. 6&r) and 6(bz) and in Fig. 8(b), the wavelength of the contour line for 0.30 is 
one third the wavelength of the initial imperfection on the compressive side of the plate and is 
equal to the wavelength of the initial imperfection on the tensile side of the plate. 

(b,) (c,) 

to21 (b,) (c,) 

Fii. 5. The deformed mesh at three curvatures for the two vertex characterizations employed here. (a) 
KhO=O.31. (b) Khg=O.71. and (c) KhO= 1.02. The subscript 1 refers to the vertex characterized bv 
(SC)- = 135”and the subscript Z.refers to the vertex char&riid by (B)- = 115”. The initial impel- 
fection is speciiied by & = 0.0006,m1= 1 and & = 0 in (8), with a half wavekngth to initial thickness ratio 
of 0.301. The con@uration shown is for a plate five wavelengths loag, but only one half wavelength was 

analyzed numerically. 
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Fig. 6. Contours of constant maximum principal logarithmic strain in the deformed configuration (one half 
the plate is shown) for the two vertex characterizations employed here. (a) Khg = 0.31, (b) K~O = 0.71 and (c) 
KhO = 1.02. The subscript I refers to the vertex characterized by (pc)mal = 135” and the subscript 2 refers to 
t!re vertex characterized by (&),. = I IS”. The initial imperfection is specified by fr = O.OtM6, ml = 1 and 
fz = 0 in (8), with a half wavelength to initial thickness ratio of 0.301. The configuration shown is for a plate 

five wavelengths long, but only one half wavelength was analyzed numerically. 

Figures 6(c) exhibit the fully developed shear band pattern for the two vertex charac- 
terizations. Although in Fig. 6(cr), corresponding to the more blunt vertex, shear band 
development is significantly retarded compared to that exhibited in Fig. 6(c,), certain qualitative 
features are common to both shear band patterns. For example, the greatest shearing occurs on 
the compressive side of the plate. The course of shear band development for the nonlinear 
elastic solid is quite different from that for the JZ corner theory solids in that once shear bands 
do appear on the tensile side of the plate, relatively little additional growth of the shear bands 
on the compressive side takes place. 

A common feature exhibited by both the & corner theory solids and by the nonlinear elastic 

(b) 

(cl (d) 

F@ 7. The deformed mesh at four curvatures for the nonliiear elastic solid.la) K~O = 0.300, (b) KhO: 0.626, 
(c) &, = 0.632 and (d) Khg = 0.654. The initial imp&&On is specified by gr = O.tXM6, m = I and & = 0 in 
(8), with a half wavelength to initial thickness ratio of 0.301. The co&uration shown is for a plate five 

wavelengths long, but only one half wavelength was analyzed numerically. 



On the development of shear bands in pure bending 133 

-1 

_ 
I 

0 \o 
005 

@5 
,cp -1. _-__< 

;I 

(a) (b) 

Cd) 

Fii. 8. Contours of constant maximum principal logarithmic strain in the deformed configuration (only one 
half the plate is shown) for the nonlinear elastic solid. (al rtho = 0.300, (b) K~O = 0.626, (c) rho = 0.632 and (d) 
rth0=0.654. The inii imperfection is specified by [I= O.ON%, ml = 1 and & =0 in (8). with a half 
wavelength to initial thickness ratio of 0.301. The configuration shown is for a plate five wavelengths long, 

but only one half wavelength was analyzed numerically. 

solid is that not every wave peak on the compressive side of the plate in Figs. 6(b) and 8(b) 
develops into a shear band. 

In the results presented so far, attention has been confined to periodic imperfections and 
periodic deformation patterns. Quite general considerations, Tvergaard and Needleman[31], 
suggest that after the maximum moment has been attained, preferential growth of a localized 
pattern is to be expected. Figures 9-12 illustrate the effect of a long wavelength imperfection 
superposed on a shorter wavelength imperfection. Two imperfections of the form (8) are 
considered with one component having a half-wavelength of L,#. In one case 5, = 0.0015, 
ml = 2, It = - 0.0006, m2 = 5, which gives rise to the minimum thickness cross section occurring 
at x*/Lo = 0.44, while in the other case a larger imperfection giving the minimum cross section 
nearer x’ =O, at x’/Lo=0.17 is specified, namely & = -0.01, m, = 1, f2 =0.0025, m2 =5. In 
each case we confine our attention to the JZ corner theory solid with the sharper of the two 
limiting cone angles considered, (&)max = 135”. A 32 x 48 finite element grid is employed, with 
the conditions on element orientation giving LB/ho = 1.45. 

Figure 9 displays the computed curves of nondimensional moment, A4/ayho2, vs the curvature 
parameter Kho, as defined by (30). For the smaller imperfection the moment curvature relation 
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Fig. 9. The moment, hf. vs curvature. uho, relations for plates with two different imperfections. In each 
case Lo/ho = 1.45 and the constitutive law employed is the JZ comer theory with (&),,,,, = 135”. 
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Undeformed Confsqurofion 

(b) 

Fig. IO. The undeformed configura$on and the deforme_d mesh at four curvatures for I2 corner theory with 
(&)_= 135”. La/Ho= 1.45, and &=O.OOlS, ml =2, h=-0.0006 and ml=5 in (8). (a) u&=0.38, (b) 

Kh0 = 0.62, (c) I&O = 0.83 and (d) uha = 1.01. 

hardly differs from the corresponding one in Fig. 4, despite the presence of a longer wavelength 
imperfection with an amplitude two and a half times greater than the imperfection with m2 = 5. 
The maximum moment occurs at a slightly smaller curvature, K!IO = 0.71 in Fig. 9 as compared 
with K/I,, = 0.72 in Fig. 4, while the value of the maximum moment itself is virtually unaltered. 
However, consistent with the considerations of [31], the moment decreases more rapidly when 
localization occurs, Fig. 9, than when the deformations remain periodic, Fig. 4. For the larger 
imperfection, the location as well as the value of the maximum moment are significantly altered. 

Figures 10-13 depict the deformation patterns at four stages of loading. For comparison 
purposes Figs. 10 and 12 also show the undeformed configurations for each of the 
imperfection patterns considered. The symmetry about x’ = 0 exhibited in Figs. 10 and 12 is 
enforced by the boundary conditions; only one half of the mesh is employed in the com- 
putations. 

(0) (b) 

06 (d) 

Fig. 11. Contours of constant maximum principal logarithmic strain in the deformeg configuration (one half 
the plate is shown) for JZ comer theory with (&LX = 135”. Ldha = 1.45, and h = 0.0015. ml = 2. 52 = 

- 0.0006 and m2 = 5 in (8). (a) K/IO = 0.38, (b) Kh0 = 0.62, (c) Kho = 0.83 and (d) I& = 1.01. 
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(bl 

Fig. 12. The undeformed configuratjon and the deformej mesh at four curvatures for h corner theory with 
(&), = 13s’. L& = 1.45, and [= -0.01, ml = I, 6~ =0.0025 and m2 = 5 in (8). (a) ~h0=0.24, (b) 

Kho = 0.36, (c) I& = 0.46 and (d) K~O = 0.63. 

In Figs. 10 and 11 where results are displayed for the smaller of these two imperfections, the 
first two stages of deformation shown are on the ascending branch of the moment-curvature 
curve and the deformation pattern is nearly periodic with period I& although indications of 
the influence of the longer wavelength imperfection can be seen. The more localized shear band 
pattern that has emerged is evident in the latter two stages shown. The greatest shearing has 
occurred on the symmetry line x’ = 0 at the compressed surface of the plate, even though this is 
not initially the minimum thickness cross section. The contour plots in Figs. 1 l(c) and (d) show 
evidence of regions of shearing induced by the shorter wavelength imperfections that have not 
developed as the deformation have become more concentrated into the pattern favored by the 
long wavelength imperfection. 

The development of the deformation pattern depicted in Figs. 12 and 13 for the larger 
imperfection differs from the previous ones shown. This imperfection is visible in the un- 

(b) 

Fii. 13. Contours of constant maximum principal logarithmic strain in the def_ormed configuration_ (one half 
the plate is shown) for J2 corner theory with (&L = 135”. L&a = 1.45, and &= -0.01, mt = I, 6 = 0.0025 

and m2 = 5 in (8). (a) I& = 0.24, (b) K~O = 0.36, (c) K!IO = 0.46 and (d) ~hg = 0.63. 



136 N. TRIANTAFYLLIDIS ef al. 

deformed mesh shown in Figs. 12 and the long wavelength imperfection clearly manifests itself 
prior to the attainment of the maximum moment. No surface wave development can be 
detected on the compressive side of the plate prior to the formation of shear bands. On the 
contrary, the initial waviness of this surface appears to flatten out somewhat. However, within 
the highly developed shear band evident in Figs. 12(d) and 13(d) there are very short 
wavelength surface oscillations on the compressed surface. 

6. DISCUSSION 

The shear bands exhibited in Figs. 5(c), 10(d) and 12(d) for a strain hardening elastic-plastic 
solid with a vertex on the yield surface are arranged in a pattern which resembles that 
associated with the formation of a plastic hinge. The location, and number, of these “plastic 
hinges” varies but the pattern of shear bands forming the hinge is qualitatively similar in each 
figure. 

The shear bands originate at strain concentrations on the plate surfaces, induced by the 
initial thickness inhomogeneity. Here the short wavelength component of the thickness imper- 
fection (m = 5) plays the primary role in developing these surface strain concentrations. When 
longer wavelength imperfections are present, as in Figs. 10 and 12, their main effect is to favor 
the development of one or more particular plastic hinges. The initial short wavelength surface 
waviness can amplify into a considerable surface roughness prior to shear band development, 
particularly on the compressive side of the plate. However, if the initial imperfection gives a 
more pronounced local thickness reduction, as in Fig. 12, then shear bands can form without 
substantial growth of the surface undulations occurring first. 

The course of shear band development in pure bending can be compared with that found in 
plane strain tension specimens with initial thickness inhomogeneities by Tvergaard et al. [S]. In 
plane strain tension[5], as here, the shear bands intersect the free surface at points of strain 
concentration induced by the initial thickness imperfections. However, in plane strain tension, 
due to diffuse necking, the most intense straining prior to shear band formation occurs in the 
interior of the specimen. For the JZ corner theory solid, this leads to intense shearing taking 
place in the interior of the specimen and in certain circumstances, permits internal shear bands 
unconnected to the free surfaces to form[5]. On the other hand, in pure bending, the shear 
bands must propagate inward against an adverse deformation gradient. The peak straining 
within the shear bands always occurs at the free surfaces. Furthermore, due to this deformation 
gradient the shear bands exhibited here are clearly curved compared with the essentially 
straight shear bands found in [5]. The shear bands end inside the material, although as can be 
seen in the contour plots, Figs. 6, 8, 11 and 13, their presence has an effect on strain contours 
still in the elliptic regime. 

The present results show a significant dependence of the course of shear band development 
on the constitutive law employed to characterize the material behavior. The two vertex 
characterizations employed here were also employed by Hutchinson and Tvergaard [ 121 in their 
study of shear band development in plane strain tension. For the sharper vertex, (Pc)max = 135”, 
all straining eventually localized in the shear band, while the more blunt vertex, (fic)max = 115”, 
led to a saturation of localized deformation within the shear band with the most critical initial 
orientation except for a very large imperfection[12]. For the more blunt vertex localization did 
occur with small imperfections although in shear bands not in the initial orientation optimal for 
bifurcation and at a somewhat higher strain level. The difference between these vertex 
descriptions manifests itself when the deviation from proportional loading is such that total 
loading no longer takes place. During the initial phases of surface wave growth, even up to 
KhO = 0.71 in Figs. 5 and 6, the deviation from proportional loading, at the surfaces, is not great 
enough for there to be a large difference between the response of these two J2 corner theory 
solids. However, shear band development necessitates large deviations from proportional 
loading and in Figs. 5 and 6 shear band development is visibly retarded for the solid with the 
more blunt vertex. For the classical elastic plastic solid with a smooth yield surface the 
response to a change in loading path is so stiff that shear bands would not form at the strain 
levels encountered here. 

The response of the nonlinear elastic solid is more complex than that of either J2 corner 
theory solid. As the shear bands form on the compressive side of the plate, the curvature 
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decreases as shown in Fig. 5. This “snap-back” in curvature is analogous to, but more 
complicated than, that found for a nonlinear elastic solid by Tvergaard et al.[S] in plane strain 
tension. Due to the adverse deformation gradient, the shear band growth on the compressive 
side of the plate is limited. Straining continues on the tensile side of the plate under increasing 
curvature. Subsequently, with the formation of shear bands on the tensile side of the plate the 
second “snap-back” of curvature is encountered. 

The shear band pattern that develops in the nonlinear elastic solid, Figs. 7 and 8, con- 
sequently differs from those shown for the Jr comer theory solids in Figs. 5 and 6. Considering 
the “soft” response of the nonlinear elastic solid to a change in loading path there is relatively 
little penetration of the shear bands on the compressive side of the plate into the center. On the 
other hand, comparing Figs. 6 and 8, the nonlinear elastic solid exhibits greater straining along 
the tensile surface. These features are related and are associated with the stress relaxation that 
occurs outside the shear bands with increasing deformation in the bands. 

For all cases considered, in which the deformation pattern is required to remain periodic, 
the concentration of deformation into the shear bands occurs rather slowly. An additional long 
wavelength imperfection significantly enhances the concentration of deformation into shear 
bands as can be seen by a comparison of Figs. 5 and 6 with Figs. 10 and 11, even though the 
long wavelength imperfection itself does not appear to grow substantially. Somewhat beyond 
the maximum moment a localized deformation pattern rather than a periodic one is preferred, 
as discussed by Tvergaard and Needleman[31] in the context of localization of buckling 
patterns. In more general situations than the pure bending problem considered here, when shear 
bands must propagate against an adverse deformation gradient, this mechanism which focusses 
the deformation into one or a few shear bands may enhance shear band growth significantly. 

As in the plane strain tension problem considered by Tvergaard et al.[5] the question arises 
as to the relationship between the discretized problem we have solved and the corresponding 
continuum problem. In [5], the importance of an appropriate mesh orientation for resolving 
shear bands was discussed. Since the shear bands in [5] were essentially straight lines, a near 
optimum mesh orientation could be employed across the specimen. Here, due to the curvature 
of the shear bands induced by the strongly nonuniform pre-shear band deformation state an 
optimum grid orientation throughout the plate is not feasible. Undoubtedly, this leads to some 
mesh induced shear band broadening as discussed by Tvergaard et al. [5]. Mesh induced or not, 
the finite width of the shear bands precludes a direct comparison of the shear band orientations 
here with the characteristic curves shown in the surface hyperbolic regimes in pure bending by 
Triantafylhdis [9]. 

In one respect, at least, the relation between the present discretized results and the 
underlying continuum results is less problematical than in [5]. For the Jr comer theory solid, it 
was found in [5] that the core of the neck continued to deform after shear band formation and 
internal shear bands could form in this region. In the discretized problem the separation of 
these internal bands was set by the mesh spacing whereas in the continuum problem there is no 
natural length scale to set a minimum width of bands or a minimum separation between bands. 
In pure bending due to the adverse deformation gradient there is no tendency for such internal 
bands to form. This problem of material dependent length scales does, however, arise in 
another guise. Intense surface oscillations occur where the shear bands meet the free surface 
on the compressive side of the plate. Here, the minimum possible wavelength of these 
oscillations is set by the mesh spacing, whereas in a real material some natural length scale 
would limit this wavelength. By way of contrast, on the tensile side of the plate the surface and 
a deep relatively wide depression forms. On the tensile side there is no tendency for a surface 
undulation with the shortest wavelength permitted by the mesh to form. 

The present results suggest that in pure bending of a plate made of a material prone to shear 
band development, the notch-like protuberances on the compressive side of the plate would 
serve as likely failure initiation sites. In practice, pure bending is rarely, if ever, encountered. If 
the compressive strain at the free surface is reduced, either by the restraint arising from contact 
with a die surface or by a combination of imposed bending and stretching, the growth of these 
very short wavelength oscillations would be expected to be retarded, and fracture may occur 
first on the tensile side. In fact, surface shear fractures observed on the tensile side of bent 
plates [ IO], subsequent to the development of surface waviness, seem to agree with the shear 
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band development determined in the present study. A combination of bending and stretching 
would likely enhance the growth of the surface depressions on the tensik side. 

Acknowledgments-This work was supported by the U.S. National Science Foundation through Grand ENG7616421. The 
computations reported on here were carried out on tlte Brown University, Division of Engineering, VAX-1 l/780 computer. 
The acquisition of this computer was made possible by grants from the U.S. National Science Foundation (Grant 
ENG7~19378), the General Electric Function and the Digita! Equipment Corporation. 

REFERENCES 

1. J. Hadamard, Lccons sur !a Propagation dcs Ondes et fes Equations de L’Hydrodynamique Paris (1903). 
2. T. Y. Thomas, Pfastic Flow and Fractwe of Solids. Academic Press, New York fl%l). 
3. R. Hill, Accekration waves in solids. f. Meek Pkys. So&h ItI, f (1962). 
4. 1. R. Rice, The localixation of plastic deformation. Pm. l4fh Jnt. Congr. 77tmr. and App!. Mach. (Edited by W. T. 

Koiter), p. 207. North-Holland, Amsterdam (1976). 
5. V. Tvcraaard. A. Needleman and K. K. Lo. Flow localization in the mane strain tensile test. I. Mech Phys. Solids, 

29, I IS (1981) 
6. R. Abtyaratne and N. T~~t~yltidis, On the emergence of shear bands in plane strain. ~~e~a!s Res. Lab. Rep. 

MRL E-125. Brown University, July (I!?@). Aiso Id. 1. Solids & Structures (in press). 
7. J. K. Knowles and E. Sternberg. Discontinuous deformation gradients near the tip of a crack in finite anti-plane shear: 

an example. J. Elasticity 10, 8i(l980). 
8. R. Abeyaratne, Discontinuous deformation gradients away from the tip of a crack in anti-plane shear. J. Elasticity 10, 

255 (1980). 
9. N, T~ant~yllidis, Bifurcation phenomena in pure bending. J. Me& Phys. Solids 28,221 (1980). 

IO. J. W. Hutchinson and V. Tvergaard, Surface instabilities on statically strained plastic solids. Jnt. i. Meek. Sri. 22. 339 

(1980). 
Il. J. Christoffersen and J. W. Hutchinson, A class of phenomenologica! comer theories of plasticity. 1: Mech. Phys. 

Solids 27,465 (1979). 
12. J. W. Hutchinson and V. Tvergaard, Shear band formation in plane strain. Znt. I. solids Structures, I?, 451 (1981). 
13, J. W. Rudnicki and J. R. Rice, Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. 

Mech. Phys. Solids 23,371 (1975). 
14. B. Budiansky, Remarks on theories of solid and structural mechanics. Problems of Hydrodynamics and Continuum 

mechanics, p. 77. Society for Industrial and App!ied Mathematics (!%9). 
IS. A. E. Green and W, Zema, ~eor~ica! ~!asticify. Oxford University Press (1968). 
16. A. Needleman, A numerical study of necking in circular cylindrical bars. 3. Mech. Phys. Sofids 20, I I1 (1972). 
17. V. Tvergaard, Effect of thickness inhomogeneities in internally pressurized elastic-plastic spherical shells. J. Mech. 

Pkys. Solids 24,291 (1976). 
18. A. Needleman and V. Tvergaard, Necking of biaxia!!y stretched elastic-plastic circular plates. I. Me&. Phys. solids 

25, IS9 (1977). 
19. R. Hill, The essential structure of constitutive laws for metal composites and polycrystals. J. Mech. Phys. Solids IS, 79 

(1967). 
20. J. W. Hutchinson, Elastic-plastic behavior of polycrystalline metals and composites. Proc. Roy. Sac. London A318, 

247 (1970). 
21. T. H. Lin, Physical theory of plasticity. Ado. Appf. Me&. Ii, 255 (1971). 
22. S. S. Hecker, Experimental studies of yield phenomena in biaxially loaded metals. Constitutiue Equations in 

Viscopfasticity AMD Vol. 20, p. 1, ASME (1976). 
23. S. B. Batdorf, Theories of plastic buckling. J. Aeronaut. Sci. 16,405 (1949). 
24. J. W. Hutchinson, Plastic buckling. Adu. Appf. Mech. 14,67 (1974). 
25. R. Hill, Some aspects of the increment! behaviour of isotropic elastic so!iis after finite strain. P~b!ems in ~~kanics: 

Deformation of Solid Bodies, p. 459. Leningrad (1969). 
26. R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain. Proc. Roy. Sot. Land. A314.457 (1970). 
27. R. Hill, Aspects of invariance in solid mechanics. Ada Appf. Mech. 18, I (1978). 
28. S. Storen and J. R. Rice, Localized neckinn in thin sheets. J. hfech. Plus. Solids 23,421 (1975). 
29. N. Trian~yl~~is, Bend&g effects in sheet-me&! fling. Ph.D. T!tesis. Brown University (I~). 
30. R. Rivlin, Large elastic deformations of isotropic materiais VI, further results in the theory of torsion, shear and 

flexure. Phil. Trans. Roy. Sot. Land. A242, 173 (1949). 
31. V. Tvergaard and A. Needleman, On the localization of buckling patterns, J. Appl. Mech. 47,613 (1980). 


