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Abstract

Of interest here is the bifurcated equilibrium solution of a homogeneous, hyperelastic, rectangular block under finite,
plane-strain tension or compression. A general asymptotic analysis of the bifurcated equilibrium path about the principal
solution’s lowest critical load is presented using Lagrangian kinematics. The analysis is valid for any compressible hyper-
elastic material with axes of orthotropy aligned with the block’s axes of symmetry in the reference (stress-free)
configuration.

The general theory is subsequently applied to blocks of different constitutive laws. Results are presented in the form of
bifurcated equilibrium branch’s curvature at the critical load as function of the block’s aspect ratio, since the sign of this
curvature determines the branch’s stability. For small aspect ratios there is agreement with existing structural models,
while for relatively higher aspect ratios some rather counter-intuitive stability results appear, which strongly depend on
the constitutive law.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability of prismatic solids subjected to axial loading is one of the oldest and most classical problems in
structural mechanics. The first investigations by Euler on the buckling of axially compressed elastic columns
(his celebrated ‘‘elastica’’) goes back about three centuries, while the initial investigations by Considère on the
necking of bars subjected to axial tension are already more than a century old.

For a long time, the stability problems of prismatic solids were treated separately for compression and for
tension, following the standard structural mechanics approach: the governing equations for the three-dimen-
sional solid were approximated by one-dimensional (nonlinear) models, the examination of which yielded the
sought stability results. For the technologically interesting case of axially compressed slender beams, their
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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critical load and mode is geometry-dominated and depends essentially on the form of the cross-section and on
the boundary conditions, assuming that the solid’s response is elastic up to critical strain levels. For the case of
bars in tension, their stability is constitutive-dominated and depends essentially on the material response.

With the advent in the early 1950s of nonlinear continuum theories in solid mechanics, it was recognized
that both compressive and tensile instabilities in prismatic bars can be treated within the same theoretical
framework, i.e. as bifurcations from the constant stress principal configuration of the uniaxially loaded pris-
matic solid. The continuum mechanics-based (in two or three dimensions) bifurcation formulation of the axi-
ally loaded prismatic bar allows exact calculations of the problem at hand, which at the slender limit can be
compared to structural approximations. Moreover, for the case of simple cross-sectional geometries (rectan-
gular or cylindrical) analytical solutions are feasible.

The earlier bifurcation calculations for an axially compressed rectangular hyperelastic block in plane-strain
are due to Levinson (1968) and Rivlin and Sawyers (1974), while the most general case is discussed in detail in
the book by Ogden (1984). Subsequent investigations by Hill and Hutchinson (1975) for tension and by
Young (1976) for compression, respectively, addressed the rectangular block’s bifurcation problem for the
more general case of incompressible, rate-independent solids. Moreover, the last two papers include an asymp-
totic analysis for the case of slender blocks, thus allowing comparison with corresponding, long-established,
structural mechanics results.

Intimately linked to the bifurcation of solids is the determination of the post-bifurcated equilibrium paths
and their stability. The pioneering work by Koiter (1945) has addressed this issue for elastic solids and pro-
vided general asymptotic techniques that allow the determination of the bifurcated equilibrium branches and
their stability at the neighborhood of a critical point. Moreover, Koiter’s general asymptotic methodology
also addresses the issue of sensitivity to imperfections, thus linking the behavior of the idealized perfect solid
to its real-life imperfect counterpart. A very readable review article on this topic for the case of simple eigen-
modes is due to Budiansky (1974), while the general case of imperfect solids with multiple eigenmodes has
been presented by Triantafyllidis and Peek (1992). Although it is not the approach followed here, it should
also be mentioned at this point that the deeper reason for the existence of bifurcated solutions in the defor-
mation of nonlinear solids is the loss of symmetries inherent in the corresponding boundary value problems.
This approach started appearing in the more mathematically oriented mechanics literature from the 1970s and
several stability problems have been examined from this viewpoint. The reader interested in this approach is
referred to the work by Healey (1988) for a systematic treatment of the subject from a solid mechanics
perspective.

As mentioned before, bifurcation studies, using two- and three-dimensional continuum mechanics formu-
lations, have already been presented for the case of axially loaded prismatic solids. However (and perhaps due
to the complexity of the required calculations), the general post-bifurcation analysis of this problem for arbi-
trary hyperelastic solids has not appeared in the literature – to the best of our knowledge – thus motivating the
present work. It is worth noticing, that for the more complicated case of elastoplastic solids, numerical as well
as asymptotic post-bifurcation analyses have been presented in the literature. The celebrated work by Shanley
(1947) on the stability of the elastoplastic column should be mentioned at this point for the early works using
the structural approach and the interested reader is referred to the review article by Hutchinson (1974) for
more details on the post-bifurcation problem of elastoplastic solids using the continuum approach.

Of interest here is the post-bifurcation analysis of the axially loaded, homogeneous, compressible, hyper-
elastic rectangular block in plane-strain. The analysis is valid for any hyperelastic material with axes of ortho-
tropy aligned with the axes of symmetry of the block in the reference (stress-free) configuration. More
specifically, Section 2 presents, in full Lagrangian kinematics, the general asymptotic analysis giving the cur-
vature of the bifurcated equilibrium branch, at the critical point, in the macroscopic strain vs bifurcation
amplitude graph. According to general theory (e.g. see the review article of Budiansky (1974)) because of
the symmetry of the boundary value problem and the uniqueness of the eigenmode, the sign of this curvature
determines the branch’s stability, with a positive curvature indicating a stable bifurcated equilibrium path in
the neighborhood of the critical point.

In Section 3 are given the applications of the general theory for three different constitutive laws: compress-
ible neo-Hookean, Gent (which exhibits strain saturation under tension) and Blatz–Ko (which exhibits stress
saturation under tension). Following the determination of the block’s critical load and eigenmode, the main
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results of this work are presented at the end of Section 3 in the form of bifurcated branch’s curvature at the
critical load as a function of the block’s aspect ratio. It is found that for small aspect ratios the results agree
with existing structural models: initially stable bifurcated equilibrium paths for all materials under (bending-
dominating) compression and initially unstable bifurcated equilibrium paths under tension for the Blatz–Ko
solid (which exhibits a maximum force). For relatively higher aspect ratios some counter-intuitive results
appear in compression, where depending on the constitutive law an unstable bifurcated equilibrium path
can appear for relatively moderate aspect ratio blocks. A conclusion is presented in Section 4.

The lengthy analytical calculations required for the post-bifurcated asymptotic expansions about the prin-
cipal solution’s critical point are given in Appendix A. Appendix A also includes a section on the limit behav-
ior of these asymptotic results for the case of slender blocks, thus allowing comparison with structural models.

2. Asymptotic analysis

This section pertains to the application of the general asymptotic theory of Lyapunov–Schmidt–Koiter
(hereinafter referred to as LSK) to the determination of the initial post-bifurcation response of a hyperelastic
rectangular block subjected to plane-strain (tensile or compressive) loading. The first subsection presents the
principal solution and the general asymptotic expansions along the bifurcated equilibrium path of the load
and the displacement field about the critical point. The last two subsections give the outline of the steps
required for the determination of the first and second order coefficients in the bifurcated equilibrium path’s
asymptotic expansions. The corresponding detailed calculations are presented in Appendix A.

2.1. Principal solution and asymptotic expansions for bifurcated paths

The reference configuration of the solid under investigation is its stress-free configuration and the corre-
sponding 2L1 · 2L2 rectangular block is shown in Fig. 1. The block which has an aspect ratio r � 2L1/2L2

is loaded in the x2 direction between two rigid, parallel, flat plates that cannot transmit shear, while the faces
x1 = ±L1 remain traction free.

The rectangular block is made of a hyperelastic, compressible material with a two-dimensional strain ener-
gy W(I1, I2) (usually obtained from its three-dimensional counterpart under plane strain assumptions) where I1

and I2 are the two invariants of the right Cauchy–Green deformation tensor C, namely
x1, u1
2L2

2L1

x2, u2

Fig. 1. Schematic representation of a rectangular block’s plane-strain tension/compression test.



1 He
potent

N. Triantafyllidis et al. / International Journal of Solids and Structures 44 (2007) 3700–3719 3703
I1 ¼ Cii; I2 ¼ det Cij; Cij � F kiF kj; F ij � dij þ ui;j ð2:1Þ
with ui(x1,x2) the displacement components of a material point with reference configuration Cartesian coor-
dinates xi. In (2.1) are also recorded for completeness the definitions of right Cauchy–Green deformation ten-
sor C and the deformation gradient tensor F. Note the adoption in this paper of Einstein’s summation
convention over repeated Latin indexes, which range from 1 to 2, as well as the use of a comma followed
by an index to denote partial differentiation with respect to the corresponding Cartesian coordinate, i.e.
fi � of/oxi.

A displacement control test is considered, both in tension and in compression. The choice of a stiff loading
device is dictated by the presence of a maximum force in the plane-strain tension test for some materials.
Hence, the monotonically increasing with deformation ‘‘load parameter’’ K(K P 0) is chosen to be the abso-
lute value of the block’s engineering strain (relative displacement of the two rigid end plates divided by their
initial distance).

The potential energy E of the solid is a K-dependent functional of the displacement field u
Eðu;KÞ ¼
Z

A
W ðI1; I2ÞdA ð2:2Þ
with A denoting the reference domain of the solid. In addition to the smoothness conditions required for a
finite potential energy E, an admissible displacement field must also satisfy the essential boundary conditions
u2;1ðx1;�L2Þ ¼ u2;1ðx1; L2Þ ¼ 0; u1ð0; 0Þ ¼ u2ð0; 0Þ ¼ 0; j u2ðx1; L2Þ � u2ðx1;�L2Þ j¼ 2L2K; ð2:3Þ
where the second set of constraints eliminate rigid body translations along xi. For each load parameter K, de-
fined as the average strain (absolute value) in the x2 direction, the equilibrium displacement field is found by
extremizing the solid’s potential energy given in (2.2), i.e. by setting to zero the first functional derivative1 of
the potential energy with respect to the admissible displacement field
E ;uðu;KÞdu ¼ 0: ð2:4Þ
One obvious solution to (2.4) is the ‘‘principal solution’’, denoted by u
0ðKÞ, which corresponds to a constant

strain equilibrium of the rectangular block and which is given in terms of the principal stretch ratios ki(K) by
u
0

1ðKÞ ¼ ½k1ðKÞ � 1�x1; u
0

2ðKÞ ¼ ½k2ðKÞ � 1�x2: ð2:5Þ
The principal stretch ratios ki(K) depend on the solid’s constitutive response and the load parameter and are
determined by
P1 ¼
oW
ok1

¼ 0; k2 ¼ 1� K; ð2:6Þ
where the first equation in (2.6) expresses the vanishing of the lateral first Piola–Kirchhoff stress P1 and thus
gives k1 in terms of k2, while the second equation gives k2 in terms of the load parameter K (with sign + for
tension and sign � for compression). To find the principal solution ki(K), the invariants Ii of W in (2.6) must
be expressed in terms of the principal stretch ratios
I1 ¼ ðk1Þ2 þ ðk2Þ2; I2 ¼ ðk1k2Þ2: ð2:7Þ
Notice that in the absence of loading the displacement field vanishes u
0ð0Þ ¼ 0. For small values of the load

parameter, the homogeneous principal solution is stable, i.e. it is also a minimizer of the potential energy sat-
isfying ðEuuduÞdu > 0 for all nonzero admissible displacement fields du. As K increases, it reaches a value Kc

where the principal solution u
0ðKcÞ is no longer a minimizer of the potential energy, but where the energy van-

ishes along a particular direction u
1
, called the ‘‘critical mode’’ which satisfies the first equation in (2.8). At this
re and subsequently, E ;uv; ðE ;uuvÞw; ððE ;uuuvÞwÞz, etc., denote, respectively, the first, second and third Frechet derivatives of the
ial energy E with respect to u which are linear, bilinear and trilinear operators operating on admissible fields v, w and z and so on.
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load, termed the ‘‘critical load’’, for the problem at hand a bifurcated equilibrium branch emerges with tangent
u
1

from the principal solution. As shown in Triantafyllidis and Peek (1992), the presence of a bifurcated branch
at the critical point is guaranteed by the second equation in (2.8)
E ;uu u
0ðKcÞ;Kc

� �
u
1

� �
du ¼ 0; E ;u u

0ðKcÞ;Kc

� �
u
1

� �
¼ 0: ð2:8Þ
For the axially loaded rectangular block problem at hand, the eigenmode u
1

of the bilinear stability operator
E ;uuðu

0ðKcÞ;KcÞ is unique (up to a multiplicative scalar) and hence leads to a simple bifurcation at Kc.
Of interest in this work is the determination of the bifurcated equilibrium path emerging at Kc. Proving the

existence of such a global bifurcated solution is a difficult and highly technical mathematical problem, which is
beyond the scope of this work. It is therefore tacitly assumed that at the neighborhood of each critical point all
the necessary conditions are met (essentially strong ellipticity and strong complementing boundary condi-
tions), which allow for the existence of a bifurcated path (see Healey and Simpson (1998)). The bifurcated
equilibrium path’s displacement can be found analytically using the general LSK asymptotic expansion,
(see Triantafyllidis and Peek (1992)) a power series of the ‘‘bifurcation amplitude parameter’’ n defined as
the projection of bifurcated solution on the eigenmode
n � u� u
0
; u

1
D E

; ð2:9Þ
where by hu,vi is denoted the inner product of two admissible displacement fields u and v. The choice presently
adopted for the inner product is
hu; vi � 1

jAj

Z
A

uivi dA ð2:10Þ
with the justification for this choice postponed for the results section. Here |A| denotes the area of the reference
domain A (and equals 4L1L2). Finally, the unambiguous definition of the bifurcation amplitude in (2.9) re-
quires fixing the norm of the eigenmode. Hence from here on
u
1
; u

1
D E

¼ 1: ð2:11Þ
According to the general theory presented in Triantafyllidis and Peek (1992), the LSK asymptotic expan-
sion for the bifurcated equilibrium path about the critical point Kc is given by
u ¼ u
0ðKÞ þ n u

1 þ n2

2
u
2 þOðn3Þ; K ¼ Kc þ

n2

2
K2 þOðn4Þ: ð2:12Þ
Notice that the asymptotic expansion of K is in terms of even powers of n, due to the symmetry of the prob-
lem (it can be shown with the help of the eigenmode expressions (2.15) below that for all cases analyzed here
ððEc

;uuu u
1Þ u1Þ u1 ¼ 0). The coefficients for the second order terms in the expansion of the displacement and the

load parameter are:
Ec
;uu u

2 þ Ec
;uuu u

1
� �

u
1

� �
dv ¼ 0; hdv; u

1i ¼ 0;

K2 ¼ �
1

3

Ec
;uuuu u

1
� �

u
1

� �
u
1

� �
u
1 þ3 Ec

;uuu u
2

� �
u
1

� �
u
1

dE ;uu=dKð Þc u
1

� �
u
1

;
ð2:13Þ
where in the above equations the superscript ()c denotes evaluation of the operator in question at the critical
point ðu0ðKcÞ;KcÞ.

As shown in Triantafyllidis and Peek (1992), the stability of the bifurcated equilibrium path of the perfect
block in the neighborhood of Kc depends on the sign of K2; if K2 > 0 the bifurcated path is stable, i.e. it min-
imizes the block’s potential energy E in a neighborhood of the critical point, while for K2 < 0 it is unstable near
the critical point. Consequently according to Koiter’s general theory, an imperfect block whose perfect coun-
terpart has K2 < 0 will exhibit a maximum average strain (recall that a displacement control is considered in
the present analysis) lower than Kc and thus lead to a snap-through type instability. On the other hand, a
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K2 > 0 for the perfect block, guarantees a stable equilibrium path of its imperfect counterpart near Kc and
hence allows average strain values exceeding Kc in a quasistatic loading process. The goal of the present paper
is the calculation of K2 for the rectangular block in tension and compression as a function of the aspect ratio r

for different hyperelastic materials.

2.2. Critical load Kc and mode u
1

The determination of the critical load Kc and corresponding eigenmode u
1

for an arbitrary compressible
hyperelastic rectangular block is given in Ogden (1984). However, for reasons of continuity of the presenta-
tion, the equations for these quantities are recorded here. More specifically, using the energy definition in (2.2),
the rectangular block’s eigenvalue problem in (2.8)1 can be rewritten as
Z
A

Lc
ijk‘u

1
i;jduk;‘

h i
dA ¼ 0; Lc

ijk‘ �
o

2W u
0ðKcÞ
� �

oF ijoF k‘
: ð2:14Þ
The solution of the resulting Euler–Lagrange differential equations and corresponding boundary condi-
tions, leads (see Ogden (1984)) to the following expressions for the critical mode u

1
:

S1 :

u
1

1 ¼ v1ðx1Þ cosðp2x2Þ � v1ð0Þ

u
1

2 ¼ �v2ðx1Þ sinðp2x2Þ
p2 ¼ np=L2

8>><
>>:

9>>=
>>;; A1 :

u
1

1 ¼ v1ðx1Þ sinðp2x2Þ

u
1

2 ¼ v2ðx1Þ cosðp2x2Þ � v2ð0Þ
p2 ¼ n� 1

2

� �
p=L2

8>>><
>>>:

9>>>=
>>>;
; ð2:15Þ
where the symbols S1 and A1 designate the symmetric and antisymmetric, with respect to x1, modes. Here n is
an arbitrary integer (to be determined subsequently) while the detailed expressions for vi(x1) are given in
Appendix A. The critical load Kc depends on the material properties through Lc

ijk‘, on the wavenumber n

and on the aspect ratio r and the corresponding derivations are also recorded in Appendix A.

2.3. Second order terms K2 and u
2

The calculation of K2, required to determine the stability of the bifurcated equilibrium solution for the
hyperelastic block, necessitates as an intermediate step the determination of the auxiliary displacement field
u
2
. To this end, from the general variational statement defining u

2
in (2.13)1, one obtains
Z
A

Lc
ijk‘u

2
k;‘ þMc

ijk‘mnu
1

k;‘u
1

m;n

� �
dvi;j

h i
dA ¼ 0; u

1
; dv

D E
¼ 0; Mc

ijk‘mn �
o3W u

0ðKcÞ
� �

oF ijoF k‘oF mn
: ð2:16Þ
Due to the symmetries of the problem and making use of (2.15), it can be shown that the solution of (2.16)
results in the following expression for u

2

u
2

1 ¼ w1ðx1Þ cosð2p2x2Þ þ ~w1ðx1Þ; u
2

2 ¼ w2ðx1Þ sinð2p2x2Þ; ð2:17Þ

where the expressions for wi(x1) and ~w1ðx1Þ are given in Appendix A.

Finally, the determination of K2 from the general theory according to (2.13)3 requires the calculation of the
following quantities: The first term in the numerator of K2 is found with the help of the energy definition in
(2.2) to be
Ec
;uuuu u

1
� �

u
1

� �
u
1

� �
u
1 ¼

Z
A

N c
ijk‘mnpqu

1
i;ju

1
k;‘u

1
m;nu

1
p;q

h i
dA; Nc

ijk‘mn �
o

4W u
0ðKcÞ
� �

oF ijoF k‘oF mnoF pq
: ð2:18Þ
The second term in the numerator of K2 is found with the help of (2.2), and also from (2.13)1 by substituting
dv ¼ u

2
, to have the following two equivalent expressions:
Ec
;uuu u

2
� �

u
1

� �
u
1 ¼

Z
A

Mc
ijk‘mnu

2
i;ju

1
k;‘u

1
m;n

h i
dA ¼ �

Z
A

Lc
ijk‘u

2
i;ju

2
k;‘

h i
dA: ð2:19Þ
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Finally, the denominator of K2 is also found with the help of the energy definition in (2.2) and the definition
of tensor M in (2.16)3 to be
ðdE ;uu=dKÞc u
1

� �
u
1 ¼

Z
A
ðdLijk‘=dKÞcu1 i;ju

1
k;‘

h i
dA; ðdLijk‘=dKÞc ¼ Mc

ijk‘mn du
0

m;n=dK
� �c

: ð2:20Þ
The procedure for calculating Kc, u
1
, u

2
and finally K2 is detailed in Appendix A.

3. Results and discussion

The general theory of the previous section is hereby applied to specific materials. In the first subsection are
introduced three different hyperelastic constitutive laws. The critical loads and modes of the corresponding
rectangular blocks are presented in the second subsection. The third subsection gives the initial (i.e. at the crit-
ical load) curvature of the bifurcated equilibrium paths as function of the rectangular block’s slenderness ratio
for the different materials.

3.1. Material selection

Three different isotropic hyperelastic material models are used in the calculations presented here. The first
model is a compressible neo-Hookean solid, which has the following energy density for plane-strain
deformations
W ðI1; I2Þ ¼ l
1

2
ðI1 � 2� ln I2Þ þ

m
1� m

ðI1=2
2 � 1Þ2

� �
; ð3:1Þ
where l and m are, respectively, the solid’s shear modulus and plane-strain Poisson ratio at zero stress. As
m! 1 the material becomes incompressible, i.e. I2! 1.

The second model, proposed by Gent (1996), is an experimentally based model for natural rubbers, with the
following energy density for plane-strain deformations
W ðI1; I2Þ ¼ l � J m

2
ln 1� I1 � 2

J m

� �
� 1

2
ln I2 þ

m
1� m

� 1

J m

� �
ðI1=2

2 � 1Þ2
� �

; ð3:2Þ
where, in addition to the shear modulus l and plane-strain Poisson ratio m, the material requires a third con-
stant Jm which determines its locking strain in a uniaxial tension experiment. When Jm!1, a simple calcu-
lation shows that the Gent solid in (3.2) reduces to the neo-Hookean solid in (3.1).

The third model, due to Blatz and Ko (1962), is based on experiments in compressible foam rubbers and
has the following energy density in plane-strain
W ðI1; I2Þ ¼ l
1

2

I1

I2

þ I1=2
2 � 2

� �
; ð3:3Þ
The principal solution, i.e. the uniaxial plane-strain response of the rectangular block for the above intro-
duced three different constitutive laws, is calculated with the help (2.6), (2.7) and the results are depicted in
Fig. 2. More specifically the dimensionless Cauchy stress (r2/l) versus logarithmic strain (lnk2) under tension
and compression is plotted in Fig. 2a. The dimensionless first Piola–Kirchhoff stress (P2/l, which is the dimen-
sionless force per unit width applied on the block) versus engineering strain (k2 � 1) under tension is plotted in
Fig. 2b. The response of the compressible neo-Hookean, Gent (for Jm = 50) and Blatz–Ko solids with the
same initial shear modulus (l) and plane-strain Poisson ratio (m = 1/3) is plotted in solid lines, while the
response of an almost incompressible neo-Hookean solid (m = 50/51) is plotted in dotted line. The choice of
the specific value for the plane-strain Poisson ratio of the Gent and neo-Hookean solid (m = 1/3) is dictated
by the value of this constant for the Blatz–Ko material (recall m ¼ �ðdk1=dk2Þk2¼1).

Although near zero strain the response of the three compressible materials is the same, their finite strain
behavior differs significantly. Notice from Fig. 2a that the Blatz–Ko solid has the stiffest response under com-
pression, while the response of the compressible neo-Hookean and Gent solids (both with m = 1/3) is almost
indistinguishable in the compressive range. In tension, the Gent solid has ultimately the stiffest response, while
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μ
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Fig. 2. In (a) is plotted the dimensionless Cauchy stress r2/l vs logarithmic strain �2 of a rectangular block in tension and compression,
while in (b) is plotted the dimensionless Kirchhoff stress P2/l versus engineering strain k2 � 1 of the same block in tension. All four
constitutive laws used have the same initial shear modulus l, while in addition the Gent, the neo-Hookean for m = 1/3 and the Blatz–Ko
materials share the same initial Poisson ratio m = 1/3.
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the Blatz–Ko material is the softest and its Cauchy stress reaches an asymptote. The difference in the uniaxial
response of the block under tension is better appreciated from Fig. 2b, which shows that for large strains, the
force applied on the block behaves almost linearly for the neo-Hookean solid, shows strain locking (i.e. reach-
es an asymptote at a finite strain) for the Gent solid and has a maximum for the Blatz–Ko material at
k2 = 30.75 � 2.28.

A more fundamental difference between the above constitutive laws, is that while the neo-Hookean and
Gent solids are rank one convex at all strains, the Blatz–Ko solid looses its rank one convexity at finite strains.
In other words, the incremental equilibrium equations of the neo-Hookean and Gent are always strongly ellip-
tic, while for the Blatz–Ko solid they exhibit real characteristics at finite strains (see Knowles and Sternberg
(1975)). However, at the neighborhood of the critical load Kc all solids investigated here are shown to satisfy
the strong ellipticity condition (a more detailed discussion on the ellipticity of the constitutive models is given
in Appendix A). Assuming that the strong complementing boundary condition also holds in the same neigh-
borhood (i.e. no surface bifurcations are possible in that vicinity), one expects the existence a bifurcated equi-
librium branch emerging from the critical load Kc. The proof of this branch’s existence requires sophisticated
arguments of functional analysis and the interested reader is referred to Healey and Simpson (1998). The
(assumed) existence of the bifurcated equilibrium branch emerging from the critical load makes possible
the calculation of its curvature K2 about the critical load Kc, which is the main goal of this work and is pre-
sented below in detail.
3.2. Critical loads and modes

The determination of the critical load as a function of the block’s geometry for the above three constitutive
laws, is presented in Figs. 3–6. More specifically, in Figs. 3 and 4 are plotted, for compression and tension,
respectively, the lowest in absolute value bifurcation strains (k2)c � 1 (i.e. the solutions of the bifurcation load
S2 - neo-Hookean ν=50/51

S2 - neo-Hookean ν=1/3

S2 - Gent ν=1/3, Jm=50

A2 - neo-Hookean ν=50/51

A2 - neo-Hookean ν=1/3

A2 - Gent ν=1/3, Jm=50

A2 - Blatz-Ko

S2 - Blatz-Ko

A2 - Blatz-Ko

S2 - Blatz-Ko
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- 
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η

Blatz-Ko (detail)

Fig. 3. Lowest bifurcation strain (k2)c � 1 as a function of the dimensionless wave number g at the onset of bifurcation in a rectangular
block under plane-strain compression for asymmetric and symmetric bifurcation modes for four different constitutive laws.
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Fig. 4. Lowest bifurcation strain (k2)c � 1 as a function of the dimensionless wave number g at the onset of bifurcation in a rectangular
block under plane-strain tension for asymmetric and symmetric bifurcation modes for a Blatz–Ko material.
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Fig. 5. Critical load Kc as a function of the block’s aspect ratio r at the onset of bifurcation in a rectangular block under plane-strain
compression for four different constitutive laws.
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equations (A.6)), as functions of the geometric parameter g for the antisymmetric (A2) and symmetric (S2)
cases. Based on these results, Figs. 5 and 6 record the critical loads Kc of the same blocks as functions of
the slenderness ratios r. This two step approach is necessary to explain the discontinuities, due to mode chang-
es, in some of the Kc vs r curves appearing in Figs. 5 and 6.

For all constitutive laws, the dependence of bifurcation strain (k2)c � 1 on g in blocks under compression is
presented in Fig. 3. Observe that for each constitutive law, the absolute value of the bifurcation strain increas-
es (decreases) for the antisymmetric (symmetric) mode with increasing g, until they both reach the same
asymptotic, material-dependent limit. At this limit, the bifurcation strain corresponds to a high wavenumber
surface bifurcation of the half-space under compression, which is the only mode of instability possible for the
stubby block. At the opposite end, the limit of a slender block (g! 0) all antisymmetric mode curves go
through zero, as expected from the vanishing buckling strain of a thin beam.

The bifurcation strains for the neo-Hookean and Gent solids are always monotonic functions of g. More-
over, there is a near coincidence between the bifurcation strains of the neo-Hookean and Gent solids that have
the same plane-strain Poisson ratio m = 1/3, as expected from their almost identical response in compression,
according to Fig. 2. In contrast to the neo-Hookean and Gent blocks, the antisymmetric and symmetric mode
bifurcation strains for the Blatz–Ko block are no longer monotonic functions of g and cross each other, for the
first time as g increases from zero, at g � 0.6. The monotonicity (nonmonotonicity) of the (k2)c � 1 vs g curves
is the reason for the monotonic (nonmonotonic) critical load Kc vs slenderness r curves of the different mate-
rial blocks, as it will be subsequently discussed.

The dependence of the bifurcation strain (k2)c � 1 on g for Blatz–Ko blocks under tension is presented in
Fig. 4. As for the compression case, the bifurcation strain curves corresponding to antisymmetric (symmetric)
modes reach the same asymptote, which corresponds to a surface instability of the Blatz–Ko half-space under
tension. At the opposite end, the limit of a slender block (g! 0) the symmetric mode curve goes through
(k2)c = 30.75, since the instability of a thin rod occurs at maximum force (see discussion of Fig. 2b). Again,
as for the compressive case, the nonmonotonicity of the (k2)c � 1vs g curve is the reason for the nonmonotonic
critical load Kc versus slenderness r curve of the Blatz–Ko block in tension.
r

Λ
c

=
 (

λ 2
) c
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 1

A1

S2
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A1
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Fig. 6. Critical load Kc as a function of the block’s aspect ratio r at the onset of bifurcation in a rectangular block under plane-strain
tension for a Blatz–Ko material.
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From the results in Figs. 3 and 4 one can find the critical load Kc vs slenderness r relations of the corre-
sponding blocks by evaluating the bifurcation strain (k2)c � 1 for g = r/2, r, 3r/2, r, . . . and then selecting the
critical strain as the lowest absolute value |(k2)c � 1| = Kc. If the minimum occurs for an g that is an integral
(fractional) multiple of the block slenderness r, the corresponding critical mode is symmetric (antisymmetric)
with respect to x1, according to (2.15).

For the neo-Hookean and Gent blocks under compression, according to Fig. 3 the lowest strains always
occur for the antisymmetric A2 mode, whose monotonic dependence on g results in a minimum strain occur-
ring at g = r/2 and hence in a monotonic Kc vs r dependence as seen in Fig. 5. The resulting critical mode has
n = 1 and is antisymmetric with respect to both axes ðA1;A2Þ. For the Blatz–Ko solid under compression, the
critical mode for r < 1.2 is also antisymmetric with respect to both axes ðA1;A2Þ, while for r > 1.2 it becomes
symmetric with respect to x2 axis ðA1;S2Þ. The minimum strain always occurs at g = r/2 and hence the critical
mode has n = 1. The change of mode, expected from the crossing of antisymmetric and symmetric bifurcation
strain curves at g � 0.6 in Fig. 3, is reflected by the discontinuity of the critical load curve in Fig. 5 at r � 1.2.

For the Blatz–Ko blocks under tension according to Fig. 4, the minimum bifurcation strain occurs alter-
natively for symmetric or antisymmetric in x2 modes but always for g = r/2, i.e. for the antisymmetric in x1

mode. Consequently as seen in Fig. 6, the critical load Kc versus slenderness r curve is discontinuous and
changes from an ðA1;S2Þ to an ðA1;A2Þ mode and back each time a discontinuity point is encountered as
g increases from zero in Fig. 4.

The results in Figs. 5 and 6 give for a rectangular block with known material properties and aspect ratio,
the critical load and corresponding eigenmode type, information required to calculate the curvature of the
bifurcated equilibrium path at the critical point, as discussed next.

3.3. Curvature of the bifurcated equilibrium path

Having determined the critical load and corresponding eigenmode for a given block, the stage is set to cal-
culate the curvature K2 of the bifurcated equilibrium path about the critical load Kc. The various components
required for the calculation of K2 in (2.13)3 are outlined in Section 2, while the full details are given in Appen-
dix A.

To avoid numerical difficulties associated with slender blocks (i.e. when r� 1), all calculations reported
here use as block dimensions L1 = 1 and L2 = 1/r. Evaluation of the curvature K2 requires numerical integra-
tions in the interval [0, L1]. To this end the interval [0,L1] is divided into 104 equal subintervals. All integra-
tions required in the x1 direction use a simple trapezoidal rule based on this grid. The eigenmode u

1
and the

second term in the post-bifurcation equilibrium displacement expansion u
2
, which in turn requires the calcula-

tion of the auxiliary functions wi(x1) defined in (A.13), are all evaluated on the same grid. Numerical exper-
iments with denser grids on the interval [0,L1] gave almost identical results (errors of less than 10�4). It is
noteworthy that since all functions involved in the calculations of K2 are separable – i.e. there are products
of an x1 function by a trigonometric x2 function – the integrations in the [0, L2] interval are done analytically.

For the case of compression, the bifurcated equilibrium path’s curvature at the critical load K2/Kc versus
the block’s slenderness r is given in Fig. 7. Notice that, irrespective of the material properties, K2/Kc! 3 as
r! 0. From simple nonlinear beam models – such as Euler’s elastica – it is expected that at the thin beam
limit, the post-bifurcated behavior should be stable (i.e. K2 > 0). What is rather surprising is that the curvature
of the bifurcated equilibrium path at criticality is found to be independent of the constitutive law. A small-
strain, moderate rotation structural beam model that accounts for axial compressibility (see Triantafyllidis
(2006)) does indeed show that K2/Kc! 3 as r! 0 when a displacement-based norm corresponding to
(2.10) is adopted. Furthermore, this result is consistent with the asymptotic result of Budiansky (1974) for
the axially compressed elastica (axial force asymptotics with respect to a slope-based norm are given in
Budiansky (1974) – an asymptotic calculation of the elastica’s end shortening is required in order to allow
the successful comparison of the different slender beam models Triantafyllidis (2006)).

A rather surprising feature of the K2/Kc vs r curves in Fig. 7 is that the post-bifurcated equilibrium solutions
become unstable (i.e. K2 < 0) for moderately stubby beams (at r � 0.43 for the Blatz–Ko block). The reason
for this behavior is to be found in the moment-curvature relation for stubby beams. The post-buckling behav-
ior of the thin beam under compression is stable since the increase in vertical displacement produces higher
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curvature at the end-sections which are compatible with the higher moments at these sections. As the beam
becomes stubbier, the overall shortening of the beam in the bifurcated equilibrium solution, which results
in a curvature increase at the end-sections is no longer sustainable because the moment, as a function of cur-
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r

Fig. 8. Dimensionless curvature at critical load of the bifurcated equilibrium path K2/Kc as a function of the block’s aspect ratio r in a
rectangular block under plane-strain tension for a Blatz–Ko material.
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vature, reaches a maximum. The curvature at which a stubby beam reaches a maximum moment is material-
dependent, thus explaining the different points on the r axis that the K2/Kc curves cross for the different con-
stitutive laws. Given that the Gent solid has the stiffest response, it is not surprising that it is the corresponding
block that looses bifurcated path stability under compression at the highest aspect ratio (r � 0.69).

For the case of a Blatz–Ko block in tension, the bifurcated equilibrium path’s curvature at the critical load
K2/Kc versus the block’s slenderness r is given in Fig. 8. Notice that K2/Kc!�27/2(31/2 � 3�1/4) for the thin
rod limit r! 0. The unstable (K2 < 0) bifurcated equilibrium path for the thin block under tension is expected
since the block, having reached a maximum force at criticality, snaps back by developing a highly strained
neck zone at one end while strains are lowered in the rest of its length. The unstable bifurcated path behavior
near the critical load persists for any aspect ratio. The K2/Kc vs r curve shows bumps near the regions where
the Blatz–Ko block under tension changes eigenmodes at criticality, as seen by comparing Figs. 8 to 6.

The complex calculations leading to the evaluation of K2(r)/Kc(r) for arbitrary r need independent verifica-
tion. To this end, and in addition to the asymptotic calculations done with MATHEMATICA for r! 0, finite
element (FEM) calculations for the rectangular elastic blocks are also performed with ABAQUS using slightly
imperfect initial geometries. For the compressive case, blocks with a vertical mid–line at x1 = fL1 sin(px2/L2)
(instead at x1 = 0 for the perfect block) are considered, where the imperfection amplitude parameter f = 10�3,
thus generating slightly asymmetric blocks in the shape of the relevant – near r = 0 – critical eigenmode in
compression ðA1;A2Þ. Meshes of 20 · 40 bilinear quadrilateral elements (of equal sides L1/10 and L2/20 along
x1 and x2) are used to calculate, with a help of a continuation method, the vertical displacement Vm versus the
horizontal displacement Hm of the top mid-node. By changing the block’s aspect ratio, one finds the value of
the slenderness parameter r above which the Vm vs Hm curve reaches a maximum in Vm, thus indicating cross-
ing of the r axis in the K2/Kc curve in Fig. 7. This way it is possible to independently verify, with an 1% accu-
racy, the results of the corresponding calculations for the compressive case. Using the same mesh but a
different initial geometry, i.e. a straight vertical axis but a slightly varying block thickness 2L1 = 2L1(1 + f)
sin(px2/L2), imperfect block geometries are produced in the shape of the relevant – near r = 0 – critical eigen-
mode in tension ðA1;S2Þ. These FEM calculations using imperfect blocks, show unstable equilibrium paths
past a maximum force, thus independently checking the validity of the stability results for the corresponding
perfect block’s bifurcated equilibrium paths.
4. Conclusion

The bifurcation and stability of axially loaded prismatic solids is a fundamental and much studied problem
in solid mechanics, with the axially loaded rectangular block under plane-strain featuring preeminently among
them. Although the onset of bifurcation for such a finitely strained block is well understood for a wide class of
rate-independent solids, the hyperelastic block’s post-bifurcation response has not been presented to-date,
thus motivating the present work.

Using a Lyapunov–Schmidt–Koiter (LSK) expansion about the principal solution’s lowest critical load,
one can asymptotically construct the corresponding emerging bifurcated equilibrium branch. The sign of
the curvature of this branch at the critical load, determines the branch’s stability. The general theory is sub-
sequently applied to three different constitutive laws: compressible neo-Hookean, Gent (which exhibits strain
saturation under tension) and Blatz–Ko (which exhibits stress saturation under tension). The main results are
presented in the form of bifurcated branch’s curvature at the critical load as a function of the block’s aspect
ratio.

It is found that for small aspect ratios the results agree with existing structural models: initially stable bifur-
cated equilibrium paths for all materials under (bending-dominating) compression and initially unstable bifur-
cated equilibrium paths under tension for the Blatz–Ko solid (which exhibits a maximum force). Remarkably,
at the slender block limit the curvature over critical load tends to a finite limit that – unlike the critical load
itself – is independent of the block’s constitutive law. Moreover, for relatively higher aspect ratios some count-
er-intuitive results appear in compression, where depending on the constitutive law an unstable bifurcated
equilibrium path occurs for relatively moderate aspect ratio blocks, while for the Blatz–Ko blocks the bifur-
cated equilibrium paths are initially unstable for all aspect ratios investigated. The validity of the – rather
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involved – analytical calculations in this work, is verified with asymptotic results for slender blocks and with
finite element calculations for stubby blocks.
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Appendix A

The calculation details for the bifurcation point and the asymptotic development of the bifurcated equilib-
rium path are given in this Appendix. More specifically, the derivations for the critical load Kc and eigenmode
u
1

are given in the first subsection. The second order terms in the bifurcated equilibrium asymptotic expansions
of the load K2 and displacement u

2
are derived in the following subsection. Finally the limiting behavior of the

asymptotic solution for small aspect ratios r is presented in the third subsection of the Appendix.
A.1. Calculation of Kc and u
1

The Euler–Lagrange differential equations of the eigenvalue problem, which result by a standard integra-
tion by parts of the variational equation (2.14), are given by:
Lc
1111u

1
1;11 þ Lc

1122u
1

2;21 þ Lc
1212u

1
1;22 þ Lc

1221u
1

2;12 ¼ 0;

Lc
2112u

1
1;21 þ Lc

2121u
1

2;11 þ Lc
2211u

1
1;12 þ Lc

2222u
1

2;22 ¼ 0
ðA:1Þ
for any point in the reference domain (�L1 6 x1 6 L1, � L2 6 x2 6 L2). The corresponding boundary condi-
tions are:
Lc
1111u

1
1;1 þ Lc

1122u
1

2;2 ¼ 0; Lc
2112u

1
1;2 þ Lc

2121u
1

2;1 ¼ 0; ðx1 ¼ �L1Þ;

u
1

1;2 ¼ 0; u
1

2;1 ¼ 0; ðx2 ¼ �L2Þ;
ðA:2Þ
where the first three equations are natural boundary conditions, while the last results from the kinematic
admissibility condition (2.3). The orthotropy of the incremental moduli tensor L with respect to coordinate
axes is used in the derivation of the above equations. The nonzero components of the incremental moduli eval-
uated on the principal branch according to (2.14)2, are found with the help of (2.1) and (2.7) to be:
Lc
1111 ¼ 4ðk1Þ2½W ;11 þ 2ðk2Þ2W ;12 þ ðk2Þ4W ;22� þ 2½W ;1 þ ðk2Þ2W ;2�;

Lc
2222 ¼ 4ðk2Þ2½W ;11 þ 2ðk1Þ2W ;12 þ ðk1Þ4W ;22� þ 2½W ;1 þ ðk1Þ2W ;2�;

Lc
1122 ¼ Lc

2211 ¼ 4k1k2½W ;11 þ ððk1Þ2 þ ðk2Þ2ÞW ;12 þ ðk1k2Þ2W ;22 þ W ;2�;
Lc

1212 ¼ Lc
2121 ¼ 2W ;1;

Lc
1221 ¼ Lc

2112 ¼ �2k1k2W ;2;

ðA:3Þ
where use is made of the notation W,i � oW/o Ii and W,ij � o2W/oIioIj. It has been shown (see Ogden (1984))
that the above system of differential equations with constant coefficients has separable (in x1 and x2) solutions
of the form given in (2.15). The mode’s x1 dependence is recorded below by giving the expressions for vi(x1).
Two cases S2 and A2 are distinguished, according to the symmetry or antisymmetry of the mode with respect
to the x2 axis:
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S2 :

v1ðx1Þ ¼ Aa sinhðap2x1Þ þ Ab sinhðbp2x1Þ
v2ðx1Þ ¼ AaKðaÞ coshðap2x1Þ þ AbKðbÞ coshðbp2x1Þ

Ab ¼ � ðL
c
1111a� Lc

1122KðaÞÞ coshðap2L1Þ
ðLc

1111b� Lc
1122KðbÞÞ coshðbp2L1Þ

Aa

8>>><
>>>:

9>>>=
>>>;
;

A2 :

v1ðx1Þ ¼ Ba coshðap2x1Þ þ Bb coshðbp2x1Þ
v2ðx1Þ ¼ BaKðaÞ sinhðap2x1Þ þ BbKðbÞ sinhðbp2x1Þ

Bb ¼ � ðL
c
1111a� Lc

1122KðaÞÞ sinhðap2L1Þ
ðLc

1111b� Lc
1122KðbÞÞ sinhðbp2L1Þ

Ba

8>>><
>>>:

9>>>=
>>>;
;

KðxÞ � ½Lc
1111x2 � Lc

1212�=½ðLc
1122 þ Lc

1221Þx�; ðx ¼ a; bÞ:

ðA:4Þ
The constants a and b entering (A.4) are related to the roots of the (biquadratic) characteristic equation of
the system of differential equations (A.1), namely:
ay4 þ 2by2 þ c ¼ 0; y ¼ �ia; �ib; ðA:5Þ
a � Lc
1111Lc

2121; 2b � Lc
1111Lc

2222 þ Lc
1212Lc

2121 � ðLc
1122 þ Lc

2112Þ
2
; c � Lc

2222Lc
1212:
Since the bifurcated solutions of interest are in the elliptic regime of the material response, the characteristic
equation (A.5) evaluated at the critical load cannot have real solutions and hence a > 0; c > 0; b > � ffiffiffiffiffi

ac
p

. The
solution has a; b 2 R if b >

ffiffiffiffiffi
ac
p

, in which case the material is in the EI regime (elliptic-imaginary case since
the roots of (A.5) are purely imaginary ±ia, ±ib). When jbj < ffiffiffiffiffi

ac
p

, the material is in the EC regime (elliptic-
complex case since the roots of (A.5) are complex conjugate d ± ic – i.e. (a,b) = (c + id,c � id)). It should also
be noted that the eigenmode components vi(x1) are always real, since for the EC regime b ¼ a and
Ab ¼ Aa;Bb ¼ Ba (remark is obvious for the EI regime since a; b 2 R).

Substituting (A.4) into the boundary conditions (A.2) and using (A.1) and (A.5), one finds that one of the
following equations must be satisfied at the critical load:
tanhðpagÞ
tanhðpbgÞ

� �e2

¼ a
b

b2 � v
a2 � v

� �
; EI case; ða; bÞ ¼ ½ðb� ðb2 � acÞ1=2Þ=a�1=2

;

sinhð2pcgÞ
sinð2pdgÞ ¼ e2

c
d

v� c2 � d2

vþ c2 þ d2

� �
; EC case; ðc; dÞ ¼ ½ððacÞ1=2 � bÞ=2a�1=2

;

ðA:6Þ
g � p2L1=p ¼ nr or ðn� 1=2Þr; v � ½L
c
2222ðLc

1212Lc
2121 � ðLc

1221Þ
2Þ�

½Lc
2121ðLc

1111Lc
2222 � ðLc

1122Þ
2Þ�
;

where e2 = +1 for the S2 type modes and e2 = �1 for the A2 type modes in (A.4). The critical load Kc for a
given block, i.e. for a given energy density W and aspect ratio r, is the minimum nontrivial root of the two
equations in (A.6), where the minimum is taken over all integers n and for e2 = ±1.
A.2. Calculation of K2 and u
2

The Euler–Lagrange differential equations for u
2
, found from the variational equation (2.16) using integra-

tion by parts, are:
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Lc
1111u

2
1;11 þ ðLc

1122 þ Lc
1221Þu

2
2;12 þ Lc

1212u
2

1;22 ¼ �½ðMc
111111ðu

1
1;1Þ2 þ 2Mc

111122u
1

1;1u
1

2;2

þMc
112222ðu

1
2;2Þ2 þMc

111212ðu
1

1;2Þ2 þMc
112121ðu

1
2;1Þ2 þ 2Mc

112112u
1

1;2u
1

2;1Þ;1
þ 2ðMc

121112u
1

1;1u
1

1;2 þMc
121121u

1
1;1u

1
2;1 þMc

122212u
1

2;2u
1

1;2 þMc
122221u

1
2;2u

1
2;1Þ;2�;

Lc
2121u

2
2;11 þ ðLc

2112 þ Lc
2211Þu

2
1;12 þ Lc

2222u
2

2;22 ¼ �½ðMc
222222ðu

1
2;2Þ2 þ 2Mc

221122u
1

1;1u
1

2;2

þMc
221111ðu

1
1;1Þ2 þMc

221212ðu
1

1;2Þ2 þMc
222121ðu

1
2;1Þ2 þ 2Mc

221221u
1

1;2u
1

2;1Þ;2
þ 2ðMc

211112u
1

1;1u
1

1;2 þMc
211121u

1
1;1u

1
2;1 þMc

212221u
1

2;2u
1

2;1 þMc
212212u

1
2;2u

1
1;2Þ;1�;

ðA:7Þ
for any point in the reference domain (�L1 6 x1 6 L1, �L2 6 x2 6 L2). The corresponding boundary condi-
tions are:
Lc
1111u

2
1;1 þ Lc

1122u
2

2;2 ¼ �½Mc
111111ðu

1
1;1Þ2 þ 2Mc

111122u
1

1;1u
1

2;2

þMc
112222ðu

1
2;2Þ2 þMc

111212ðu
1

1;2Þ2 þ 2Mc
111221u

1
1;2u

1
2;1 þMc

112121ðu
1

2;1Þ2�

Lc
2112u

2
1;2 þ L2121u

2
2;1 ¼ �2½Mc

211112u
1

1;1u
1

1;2 þMc
211121u

1
1;1u

1
2;1

þMc
212221u

1
2;2u

1
2;1 þMc

212212u
1

2;2u
1

1;2�

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ðx1 ¼ �L1Þ;

u
2

2;1 ¼ 0; u
2

1;2 ¼ 0; ðx2 ¼ �L2Þ;

ðA:8Þ
where the first three equations are natural boundary conditions while the last results from the kinematic
admissibility condition (2.3). The components of rank six tensor M, defined in (2.16)3, are calculated in a
straightforward way with the help of (2.1) and (2.7), but due to the resulting cumbersome expressions will
not be recorded here. The orthotropy of the principal solution implies that the only nonzero components
of M are those containing an even number of similar indexes, just like the components of L. This property
has been used in the derivations for u

2
presented here.

Substituting the eigenmode expressions of (2.15) into the system of (A.7) and (A.8) for the boundary value
problem in u

2
, one finds the x2 dependence of u

2
recorded in (2.17). The x1 dependence of u

2
, i.e. the functions

w1(x1), ~w1ðx1Þ and w2(x1), are obtained by introducing the expressions for u
2

in (2.17) into the governing dif-
ferential equations (A.7)
Lc
1111w001ðx1Þ þ 2p2ðLc

1122 þ Lc
1221Þw02ðx1Þ � ð2p2Þ

2Lc
1212w1ðx1Þ ¼ �e1E1ðx1Þ;

Lc
1111 ~w001ðx1Þ ¼ �~E01ðx1Þ;

Lc
2121w002ðx1Þ � 2p2ðLc

2211 þ Lc
2112Þw01ðx1Þ � ð2p2Þ

2Lc
2222w2ðx1Þ ¼ �e1E2ðx1Þ;

ðA:9Þ

E1ðx1Þ � 1
2
½Mc

111111ðv01Þ
2 � 2Mc

111122p2v01v2 þMc
112222ðp2v2Þ2

�Mc
111212ðp2v1Þ2 � 2Mc

111221p2v1v02 �Mc
112121ðv02Þ

2�0

þ 2p2½�Mc
121112p2v1v01 �Mc

121121v01v02 þMc
122212ðp2Þ

2v2v1 þMc
122221p2v2v02�;

~E1ðx1Þ � 1
2
½Mc

111111ðv01Þ
2 � 2Mc

111122p2v01v2 þMc
112222ðp2v2Þ2

þMc
111212ðp2v1Þ2 þ 2Mc

111221p2v1v02 þMc
112121ðv02Þ

2�;
E2ðx1Þ � ½�Mc

211112p2v01v1 �Mc
211121v01v02 þMc

212212ðp2Þ
2v1v2 þMc

212221p2v2v02�
0

þ p2½�Mc
221111ðv01Þ

2 þ 2Mc
221122p2v01v2 �Mc

222222ðp2v2Þ2

þMc
221212ðp2v1Þ2 þ 2Mc

221221p2v1v02 þMc
222121ðv02Þ

2�;
where e1 = +1 for an S1 mode and e1 = �1 for an A1 mode, according to (2.15) and where the functions vi(x1)
are given by (A.4). Note that a symbol followed by a prime denotes ordinary differentiation with respect to x1.
Substitution of the eigenmode u

2
in (2.17) to the boundary conditions (A.8) yields:
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Lc
1111w01 þ 2p2Lc

1122w2 ¼ �e1F 1

Lc
1111 ~w01 ¼ �~E1

Lc
2121w02 � 2p2Lc

2112w1 ¼ �e1F 2

8><
>:

9>=
>; ðx1 ¼ �L1Þ; ðA:10Þ
F 1 � 1
2
½Mc

111111ðv01Þ
2 � 2Mc

111122p2v01v2 þMc
112222ðp2v2Þ2

�Mc
111212ðp2v1Þ2 � 2Mc

111221p2v1v02 �Mc
112121ðv02Þ

2�;
F 2 ��Mc

211112p2v1v01 �Mc
211121v01v02 þMc

212212ðp2Þ
2v2v1 þMc

212221p2v2v02;
where the definitions of e1 and vi(x1) are the same as for (A.9).
The determination of ~w1ðx1Þ from the differential equation (A.9) and boundary condition (A.10) is

straightforward
~w1ðx1Þ ¼ �
1

Lc
1111

Z x1

0

~E1ðyÞdy; ðA:11Þ
where the constant of integration is fixed from the constraint against rigid body displacement in (2.3)2.
Finding wi(x1) is a considerably more complicated task which proceeds as follows: notice that the system of

differential equations for wi(x1) can be decoupled to yield:
aw0000i ðx1Þ � 2bð2p2Þ
2w00i ðx1Þ þ cð2p2Þ

4wiðx1Þ ¼ e1Êiðx1Þ; ði ¼ 1; 2Þ; ðA:12Þ
Ê1ðx1Þ � � E001Lc
2121 þ E02ð2p2ÞðLc

1122 þ Lc
1221Þ þ E1ð2p2Þ

2Lc
2222;

Ê2ðx1Þ � � E002Lc
1111 � E01ð2p2ÞðLc

2211 þ Lc
2112Þ þ E2ð2p2Þ

2Lc
1212;
where the definition of the constants a, b, c is given in (A.5). The solution to the above fourth order ordinary
differential equations with constant coefficients is found, with the help of (A.9), to be:
w1ðx1Þ ¼ Âa sinhð2ap2x1Þ þ Âb sinhð2bp2x1Þ þ e1

Z x1

0

Gðx1 � yÞÊ1ðyÞdy;

w2ðx1Þ ¼ �½ðÂaKðaÞ þ e1JðaÞÞ coshð2ap2x1Þ þ ðÂbKðbÞ � e1JðbÞÞ coshð2bp2x1Þ� þ e1

Z x1

0

Gðx1 � yÞÊ2ðyÞdy;

ðA:13Þ
Gðx1Þ �
1

að2p2Þ
3ða2 � b2Þ

sinhð2ap2x1Þ
a

� sinhð2bp2x1Þ
b

� �
;

JðxÞ � 1

ð2p2Þ
3Lc

1111ða2 � b2Þ
KðxÞ

x
E01ð0Þ þ

2p2

x2
E2ð0Þ

� �
; ðx ¼ a; bÞ;
where the expression for K(x) is defined in (A.4). It should be mentioned here that in deriving the above results
with the help of (A.4), one notices that E1, Ê1, F2 and E2, Ê2, F1 defined in (A.9), (A.10) are odd and even
functions respectively of their argument x1. These properties imply from (A.9), (A.10) that w1 and w2 are
in their turn odd and even functions, respectively, of x1.

Using the above results for wi(x1) into the corresponding boundary conditions in (A.10), one obtains a lin-
ear system for the two unknown constants Âa, Âb, appearing in (A.13), as follows:
P cðaÞ Âa þ P cðbÞ Âb ¼ e1Qc

P sðaÞ Âa þ P sðbÞ Âb ¼ e1Qs

" #
; ðA:14Þ
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P cðxÞ � ½L1111x� L1122KðxÞ� coshð2xp2L1Þ; ðx ¼ a; bÞ;
P sðxÞ � ½L2121xKðxÞ þ L2112� sinhð2xp2L1Þ; ðx ¼ a; bÞ;

Qc � ½L1122½JðaÞ coshð2ap2L1Þ � JðbÞ coshð2bp2L1Þ� �
F 1ðL1Þ

2p2

� L1122

Z L1

0

GðL1 � yÞÊ2ðyÞdy � L1111

2p2

Z L1

0

G0ðL1 � yÞÊ1ðyÞdy;

Qs �� L2121½aJðaÞ sinhð2ap2L1Þ � bJðbÞ sinhð2bp2L1Þ� þ
F 2ðL1Þ

2p2

� L2112

Z L1

0

GðL1 � yÞÊ1ðyÞdy þ L2121

2p2

Z L1

0

G0ðL1 � yÞÊ2ðyÞdy:
Solution of the above system for Âa; Âb completes the determination of wi(x1) and hence of u
2

according to
(2.17). It can be shown that wi(x1), ~w1ðx1Þ and consequently u

2
are always real functions (obvious for the EI

regime and following in the EC regime from the fact that a ¼ b, which implies Âa ¼ Âb).
The determination of K2 follows by substituting the above found functions u

1
and u

2
into (2.13)3. All the

required calculations for arbitrary values of the aspect ratio r, are based on a FORTRAN code written for
this purpose.

A.3. Asymptotic behavior of thin blocks r! 0

The asymptotic calculations for the thin block limiting case (r! 0) are based on the above presented anal-
ysis and use the symbolic manipulator program MATHEMATICA. Recall from the discussion of the initial
post-bifurcation curvature results in Section 3 that the dimensions of the block are: L1 = 1 and L2 = 1/r and
that the eigenmode u

1
is normalized (see 2.11) using the inner product definition in (2.10). The results for com-

pression are given first, followed by the results for tension.
(i) Compression (critical mode A1, A2; critical wavenumber nc = 1)

The asymptotic expressions given below are valid for all three constitutive laws. For the neo-Hookean and
Gent materials the value of Poisson ratio m is arbitrary, while for the Blatz–Ko material the corresponding
expressions are valid for m = 1/3. The asymptotic expressions are given up to the lowest order in the slender-
ness ratio required for the calculation of K2, the post-bifurcation curvature at the critical point.

To calculate K2, one starts with the asymptotic expressions of the stretch ratios ki and vi(x1) (the x1-depen-
dent part of the eigenmode u

1
) at the critical point:
ðk1Þc ¼ 1þ m
12
ðprÞ2 þOðr4Þ; ðk2Þc ¼ 1� 1

12 ðprÞ2 þOðr4Þ;

v1ðx1Þ ¼
ffiffiffi
2
p
þOðr2Þ; v2ðx1Þ ¼ �

x1ffiffiffi
2
p pr þOðr3Þ:

ðA:15Þ
The next piece of information needed are the asymptotic expansions for wi(x1), ~w1ðx1Þ (the x1-dependent
parts of u

2
) given below to their leading order in r
w1ðx1Þ ¼ �
x1

4
ðprÞ2; ~w1ðx1Þ ¼ �

ð1þ mÞx1

4
ðprÞ2; w2ðx1Þ ¼ �

1

4
pr: ðA:16Þ
Introducing these expressions into (2.18), (2.19), (2.20) and (2.13), one obtains to the leading order in r:
Ec
;uuuu u

1
� �

u
1

� �
u
1

� �
u
1 ¼ 9ð1þ mÞ

2ð1� mÞ p
4r3; Ec

;uuu u
2

� �
u
1

� �
u
1 ¼ � 2þ 3mþ m2

2ð1� mÞ p4r3;

dE ;uu=dKð Þc u
1

� �
u
1 ¼ �2ð1þ mÞp2r; K2 ¼ 1

4
ðprÞ2

ðA:17Þ
thus providing an independent confirmation that the limit K2(r)/Kc(r)! 3 as r! 0 is identical to the one
found from the numerical calculations reported in Fig. 7.
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(ii) Tension (critical mode A1, S2; critical wavenumber nc = 1)

The asymptotic expressions given below correspond to the Blatz–Ko material under tension. These expres-
sions are given up to the lowest nontrivial order in r required for the calculation of K2, the post-bifurcation
curvature at the critical point.

To calculate K2, one starts again with the asymptotic expressions of the stretch ratios ki and vi(x1) (the x1-
dependent part of the eigenmode u

1
) at the critical point:
ðk1Þc ¼ 3�1=4 1� 1
2916 ðprÞ2

h i
þOðr4Þ; ðk2Þc ¼ 33=4 1þ 1

972 ðprÞ2
h i

þOðr4Þ;

v1ðx1Þ ¼ x1

9
ffiffiffi
2
p pr þOðr3Þ: v2ðx1Þ ¼

ffiffiffi
2
p
þOðr2Þ:

ðA:18Þ
The asymptotic expansions for wi(x1), ~w1ðx1Þ (the x1-dependent parts of u
2
) are recorded next. For the cal-

culations of K2 in tension, the first two terms in the r-expansions of wi(x1) are required
w1ðx1Þ ¼ 31=4 3x1 �
x3

1

486
ðprÞ2

� �
; ~w1ðx1Þ ¼ 31=4 x1

81
ðprÞ2; w2ðx1Þ ¼ 31=4 � 27

pr
þ x2

1

2
pr

� �
: ðA:19Þ
Upon introduction of the above expressions into (2.18), (2.19), (2.20) and (2.13), one obtains to the leading
order in r:
Ec
;uuuu u

1
� �

u
1

� �
u
1

� �
u
1 ¼ 25

81
ffiffiffi
3
p p4r3; Ec

;uuu u
2

� �
u
1

� �
u
1 ¼ � 4ffiffiffi

3
p p2r;

ðdE ;uu=dKÞc u
1

� �
u
1 ¼ � 31=48

81 p2r; K2 ¼ 33=427
2

ðA:20Þ
thus establishing with a different method that the limit K2(r)/Kc(r)!�27/2(31/2 � 3�1/4) as r! 0 coincides
with the one found in the numerical calculations reported in Fig. 8.
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