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Abstract

The electromagnetic forming process is a high-velocity manufacturing technique which uses electromagnetic (Lorentz) body forces to
shape sheet metal parts. One of the several advantages of this technique is the considerable ductility increase observed in several metals,
with aluminum featuring prominently among these. Motivated by the quasistatic case, recent work has extended the concept of forming
limit diagrams (FLDs) to model the ductility of electromagnetically formed sheets. This general theory is hereby applied to study the
ductility of freely expanding electromagnetically loaded aluminum tubes. Necking strains are measured in tubes of various geometries
which are loaded by different coils and currents. The experimental results are plotted in principal strain space and show reasonable agree-
ment with the corresponding theoretical FLD predictions, which indicate a 2- to 3-fold increase in the forming limits with respect to the
quasistatic case.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

High-velocity electromagnetic forming (EMF) can be a
flexible and cost-effective alternative to conventional metal
stamping and forming processes. Electromagnetic forming
is accomplished by connecting an actuator (typically a sole-
noid coil consisting of copper windings) in series with a
high-energy capacitor bank. Upon discharging the capaci-
tor, a large current runs through the actuator and induces
currents in the metallic workpiece. The presence of these
induced currents inside the magnetic field of the actuator
results in Lorentz body forces in the workpiece that can
be made to cause plastic deformation. The EMF technique
is particularly attractive for the aerospace and automotive
industries due to several potential advantages over conven-
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tional forming methods: low-cost single-side tooling, high
speed (typical EMF current pulse rise times are on the
order of 20 ls and after electromagnetic launch deforma-
tion may persist for a time on the order of milliseconds)
and precise process control.

The main reason for interest in EMF is the resulting sig-
nificant increase in ductility observed in certain metals,
with aluminum being the most prominent among these.
Experimental work by Balanethiram and Daehn [1,2] with
die impact EMF has resulted in forming limit diagrams
(FLDs) that show dramatic increases (compared to con-
ventional hydroforming) in the ductility of the EMF
formed AA6061-T4, thus making aluminum alloys possibly
more ductile than conventional mild steel. A theoretical
explanation of this observed increase in formability based
on fully coupled electromagnetic and thermomechanical
modeling of EMF ring free expansion was recently pro-
vided by Triantafyllidis and Waldenmyer [3]. It was shown
that the strain rate sensitivity occurring in aluminum alloys
rights reserved.
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Fig. 1. The weak band model showing band orientation in the reference
configuration.
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at high EMF strain rates is the main mechanism responsi-
ble for the observed higher necking strains of the ring.

Further recent work [4–11] has examined high strain rate
(EMF and non-EMF) free forming limits. Oliveira and
Worswick [9] and Oliveira et al. [10] showed that there
was little increase in ductility due to high EMF strain rates,
and Oosterkamp et al. [12] demonstrated minimal strain
rate sensitivity in aluminum. The work by Oosterkamp
et al. [12] used a split Hopkinson pressure bar to examine
strain rates up to 2 · 103 s�1, with a moderate number of
data points, and reported that apparent strain rate sensitiv-
ity is an artefact and not inherent in the material. However,
other work, such as that by Hu and Daehn [5], indicates that
high strain rate free formability increases, and Vural et al.
[13] and Yadav et al. [14] showed that there was significant
strain rate sensitivity in aluminum. In particular, Vural
et al. [13] used the shear compression specimen technique
(e.g. see [15]) to give extensive data for AA6061-T6 up to
strain rates on the order of 104 s�1. These data show distinct
strain rate sensitivity above 103 s�1. Also, several of the
above-mentioned recent investigations [4,5,7,8,11] show
theoretically that inertial effects can delay instability. These
investigations also point to the fact that the physical dimen-
sions of the sample affect strains to instability and rupture.

A question that naturally follows is how to apply the
work in modeling the ring experiment to more complicated
EMF structures to allow comparison with experiments and
further investigate formability mechanisms. The consistent
approach must involve, as in the ring work [3], the fully cou-
pled electromagnetic and mechanical modeling of the actu-
ator and the workpiece. This is a computationally intensive
process that requires the development of sophisticated algo-
rithms for the solution of a dynamic finite strain thermo-
plasticity boundary value problem coupled (in view of the
driving Lorentz body forces) to an electromagnetic problem
with moving boundaries. Although this direct approach is
the correct way for accurate calculations of specific EMF
processes (with known part and actuator geometries), the
designer can be helped by some simpler, and considerably
more rapid, calculations that give a reasonable estimate of
the ductility of a given alloy under EMF conditions. With
this requirement in mind, Thomas and Triantafyllidis [16]
have recently proposed a general theory to calculate
EMF-based FLDs, in which the calculation of strains at
the onset of necking in a sheet accounts for the presence
of electric currents and the resulting ohmic heating effect.

The present work pertains to the comparison of theoret-
ical simulations based on Thomas and Triantafyllidis [16]
with experimental data obtained from a series of experi-
ments on electromagnetically expanded aluminum alloy
tubes. In Section 2, a brief description of the necking anal-
ysis for EMF-based processes proposed in Thomas and
Triantafyllidis [16] is followed by discussions of the exper-
imental procedure, the selection of material properties for
the AA6063-T6 tube alloy, and a description of the strain
and current density profiles. Following a short description
of the numerical solution algorithm for the onset of neck-
ing problem, the results of four different experiments are
presented, compared to the corresponding theoretical sim-
ulations and discussed in Section 3. Conclusions are given
in Section 4.

2. Problem formulation

The ductility prediction of an electromagnetically free
formed sheet (i.e. by using a process that does not involve
die impact) will be based on a forming limit diagram con-
cept that is widely used in the analysis of conventional (i.e.
purely mechanical) sheet metal forming processes. The gen-
eral theory of the EMF-based FLD has been proposed by
Thomas and Triantafyllidis [16] and is recorded here for
reasons of completeness. The formulation starts with the
‘‘weak band’’ analysis for the localization of deformation
in a biaxially stretched sheet subjected to electric currents.
The section continues with the presentation of tempera-
ture-dependent viscoplastic constitutive models for the
sheet and ends by introducing the strain and current pro-
files adopted for modeling the EMF process.

2.1. Localization of deformation analysis

By ignoring curvature and inertia effects, the sheet is ide-
alized as a thin plate under plane stress conditions, as
depicted in Fig. 1. It is assumed that deformation is local-
ized in a narrow band B with normal N = icosU + j sinU
and tangent S = �i sinU + jcosU in the reference, stress-
free configuration. The quantities in the current configura-
tion are denoted by the corresponding script symbols n, s
and /. The band (B) is distinguished from the sheet (A)
by the presence of an initial imperfection, which is imple-
mented as a discontinuity in the reference configuration,
either of a material or a geometric (thickness) parameter.
The goal is to calculate the deformation gradient FB, stres-
ses rB, currents jB, temperature hB and internal variable
(plastic strain) �p

B inside the band given the knowledge of
the counterpart of those quantities outside the band FA,
rA, jA, hA and �p

A.
A full Lagrangian (reference configuration) formulation

of the problem is hereby adopted. For simplicity only
incompressible materials are considered, which is a realistic
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approximation for metals under high strains. Mechanics
dictates displacement and traction continuity. Displace-
ment continuity across the band gives1

½F B
ab � F A

ab�Sb ¼ 0; ð2:1Þ

while traction continuity across the band implies

N a½PB
ab �PA

ab� ¼ 0; ð2:2Þ

where P is the first Piola–Kirchhoff (P–K) stress. For an
incompressible solid the first P–K stress is related to the
Cauchy stress by

Pij ¼ F �1
ik rkj: ð2:3Þ

Electrical principles require continuity of the current and of
the tangential component of the electromotive force across
the band. Current continuity gives

N a½J B
a � J A

a � ¼ 0; ð2:4Þ
where J is the current density vector in the reference config-
uration. For an incompressible solid J is related to j, its
counterpart in the current configuration, by

J i ¼ F �1
ij jj: ð2:5Þ

Continuity of the tangential component of the electromo-
tive force E across the band requires

Sa½EB
a � EA

a � ¼ 0; ð2:6Þ
where the reference configuration electromotive force E is
related to its current configuration counterpart e by

Ei ¼ ejF ji: ð2:7Þ
Finally, from energy conservation, assuming that adiabatic
heating takes place in the sheet both inside (B) and outside
(A) the weak band (hence no need for indexing the various
field quantities), one has for an incompressible solid

lcp
_h ¼ vre _�p þ EiJ i; ð2:8Þ

where l is the mass density, cp is the specific heat, _h is the
rate of temperature change, re _�p is the plastic dissipation
(re equivalent stress, _�p rate of plastic strain) and v is the
plastic work conversion factor (0 < v < 1).

The above governing equations must be complemented
by the constitutive equations for the sheet, as will be
detailed in the next subsection.

2.2. Constitutive response of metal sheet

Two sets of constitutive equations are required to char-
acterize the material; a set for the mechanical response
relates the stress field and its rate to the strain rate, and a
set for the electrical response relates the electromotive force
to the current density.
1 Here and subsequently Greek indexes range from 1 to 2 while Latin
indexes range from 1 to 3. Einstein’s summation convention over repeated
indexes is implied, unless specified otherwise.
2.2.1. Mechanical response

During an EMF process the material experiences both
high strain rates and high temperatures. Consequently a
temperature-dependent viscoplastic constitutive law is
required to model its stress–strain response.

The mechanical response of an incompressible material
is given in rate form by

r�ij¼Le
ijklD

e
kl þ _pdij; ð2:9Þ

where Le
ijkl are the solid’s elastic moduli, De

ij are the elastic
components of the strain rate tensor, _p is the hydrostatic
pressure rate, dij is the Kronecker delta function (if i = j,
dij = 1, otherwise dij = 0) and r�ij denotes the convected rate
of Cauchy stress, i.e.

r�ij¼ _rij þ Lkirkj þ rikLkj; ð2:10Þ

where Lij is the solid’s velocity gradient. Neglecting, for
simplicity, thermal strains (much smaller than their elastic
and plastic counterparts), one assumes the additive decom-
position of strain rate into an elastic De and plastic Dp part,
namely

Dij ¼ De
ij þ Dp

ij; ð2:11Þ

where, for a viscoplastic solid, the plastic part of the strain
rate is

Dp
ij ¼ _�p ore

orij
: ð2:12Þ

In the above expression �p, the accumulated plastic strain
in the solid, is an internal variable that determines the size
of the material’s current yield surface re and is related to
the solid’s quasistatic uniaxial response r = g(�p,h) by

_�p ¼ _�p
0

re

g �p; hð Þ

� �1=m

� 1

" #
; ð2:13Þ

where m is the solid’s rate-sensitivity exponent and _�p
0 is a

material constant. Experimentally based expressions for
re(rij) and g(�p,h) will be provided subsequently.

At this point some kinematical relations are in order.
The strain rate D and velocity gradient L tensor compo-
nents are expressed in terms of the deformation gradient
F and its rate _F by

Dij ¼
1

2
Lij þ Lji

� �
; Lij ¼ _F ikF �1

kj : ð2:14Þ

The sheet is assumed to be transversely isotropic, which im-
plies that under in-plane deformations

F a3 ¼ 0; ð2:15Þ
while plane stress, in conjunction with transverse isotropy
and Eq. (2.14), implies

ri3 ¼ 0: ð2:16Þ
Incompressibility (Dkk = 0) and pressure insensitivity of
the yield criterion (ore/orkk = 0) result in the plane stress
version of the constitutive equation (2.9), namely



Fig. 2. Schematic representation of the experimental set-up for electro-
magnetic expansion of tubes.
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r�ab ¼ L̂e
abcdDe

cd; ð2:17Þ

where the plane stress elastic moduli L̂e
abcd are given in

terms of their full three-dimensional counterparts by

L̂e
abcd ¼Le

abcd � dabL
e
33cd �Le

ab33dcd þLe
3333dabdcd: ð2:18Þ

The constitutive model for the temperature-dependent,
incompressible viscoplastic model presented thus far re-
quires two additional experimentally obtained pieces of
information to be complete: the rate-independent uniaxial
response r = g(�p,h) and the yield surface re(rij).

The rate-independent uniaxial response adopted in the
calculations is of the form (see [17])

g �p; hð Þ ¼ ry 1þ �
p

�y

� �n

1� h� h0

hm � h0

� �a� �
; ð2:19Þ

where n is the hardening exponent, a the thermal sensitiv-
ity, ry the yield stress, �y = ry/E the yield stain, hm the melt-
ing temperature and h0 the reference temperature. For
isotropic materials that do not exhibit the Bauschinger ef-
fect, i.e. materials that exhibit no difference between their
tensile and compressive responses, the following yield sur-
face criterion (e.g. Barlat et al. [18] and references quoted
therein.) is used

re ¼ jr1 � r2jb þ jr2 � r3jb þ jr3 � r1jb
� 	

=2
h i1=b

; ð2:20Þ

where b is an experimentally determined exponent and ri

are the principal values of the Cauchy stress tensor. The
mechanical constitutive response of the solid is thus com-
pletely determined by Eqs. (2.9)–(2.20). Uniaxial and plane
stress biaxial experiments are employed for the selection of
the material constants used in the subsequent simulations.

2.2.2. Electrical response

The material’s electric constitutive law, i.e. the relation
between current j and electromotive force e, is taken to
be an isotropic Ohm’s law

ei ¼ rji; ð2:21Þ
where the resistivity of the metal r is assumed to be temper-
ature-independent for the temperature range of interest.
The electric constitutive equation is completed in a thin
sheet by

j3 ¼ 0; ð2:22Þ
since the current in the sheet can flow only in its plane.

All the governing equations that are required for the cal-
culations of the field quantities inside the band, given the
knowledge of their counterpart outside the band, have been
established. The numerical solution procedure of the above-
presented algebraic equations is postponed to Section 3.

2.3. Experimental procedure

Fig. 2 shows a schematic of the set-up for the electro-
magnetic tube expansion experiments. It consists of a
capacitor bank connected to a solenoid actuator placed
inside an aluminum alloy tube. The experiments are con-
ducted using a commercial Maxwell Magneform capacitor
bank with a maximum stored energy of 16 kJ. The energy is
stored in eight capacitors, each with a capacitance of
53.25 lF. The system has a maximum working voltage of
8.66 kV. Both the number of capacitors and charging volt-
age can be adjusted to control the discharged energy. One
Rogowski probe, R1 in Fig. 2, is used to measure the pri-
mary current. A second such probe, R2 in Fig. 2, measures
the aggregate coil current, which is the product of the num-
ber of coil turns and the primary current, combined with
the induced current in the tube.

Fig. 3a shows one of the bare coils fabricated by com-
mercial spring winding from 6.35 mm diameter ASTM
B16 brass wire. Two coils are used in these experiments,
one with four turns (as shown in Fig. 3a) and an otherwise
identical coil with ten turns. Both coils have an outer diam-
eter of 54 mm and pitch of 9.4 mm. The wire is covered
with heat shrink-wrap tubing to provide insulation and
then potted in urethane. Fig. 3b shows the actual experi-
mental configuration with an aluminum alloy tube sample
fitted over the epoxy-coated coil. The tube samples are
AA6063-T6 aluminum alloy with an inner diameter of
57 mm and a wall thickness of 1.75 mm. The outer surface
of each tube is electrolytically etched with a pattern of
2.5 mm diameter circles in order to measure the strain in
the expanded samples.

For each combination of coil and sample size, multiple
samples are expanded with incrementally increasing dis-
charge energies until an energy level sufficient to initiate
necking and/or fracture of the tube is reached. Major
and minor limit strains are then measured from the
deformed circles in areas where necking occurs, labeled
‘‘Unsafe’’, and in areas where no necking or failure is evi-
dent, labeled ‘‘Safe’’. Fig. 4 shows a sample deformed tube
for each of the four possible combinations of tube length
and coil length. The short coil is approximately the same
length, 31.7 mm, as the short tubes; the long coil is about
the same length, 85.1 mm, as the long tubes. In Fig. 4,
tubes (a) and (b) are short while tubes (c) and (d) are long,
and tubes (a) and (c) are deformed using a 4-turn coil while
tubes (b) and (d) are deformed using a 10-turn coil. The
data gathered will subsequently be compared with the
onset of necking calculations described above. Full details
of these experiments are published in Seth [19].



Fig. 3. (a) The bare 4-turn coil. (b) Sample-actuator configuration. The 31.7 mm tall aluminum tube sample is shown fitted around the urethane-coated 4-
turn coil.

Fig. 4. Final configuration showing localized necking of tubes deformed using the experimental EMF setup. (a) 31.7 mm tube deformed with 4-turn coil,
(b) 31.7 mm tube deformed with 10-turn coil, (c) 85.1 mm tube deformed with 4-turn coil and (d) 85.1 mm tube deformed with 10-turn coil.
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In addition, data on the tube material’s uniaxial quasi-
static stress–strain response are gathered using an MTS
machine. Samples are cut from the AA6063-T6 tubes
according to the ASTM tensile sample standard
(0.630 cm wide, 2.54 cm long) by water jet. Tests are con-
ducted at a strain rate of 3.3 · 10�3 s�1, and the uniaxial
quasistatic stress–strain response in Eq. (2.19) (with con-
stant temperature h = h0) is fit with data corresponding
to a sample cut longitudinally from the tube (transverse
samples are omitted since the curvature of the tube requires
substantial straightening, altering the material’s behavior
in the test). Fig. 5 gives a comparison of the experimental
data and analytical fit. The resulting material parameters
are detailed below.
2.4. Selection of material constants

The electromagnetically expanded tubes are made of
AA6063-T6, a tube alloy. However, material constants
required for the determination of the quasistatic FLD are
obtained from experiments using flat sheet blanks. In addi-
tion, an independent measurement of rate and thermal sen-
sitivity parameters, at the strain rates and temperatures of
interest, requires highly specialized equipment that is not
available to us. The strategy adopted to address these issues
is to use uniaxial quasistatic test measurements from
AA6063-T6 to obtain the values of Young’s modulus E,
yield stress ry and hardening exponent n and to rely on
existing independent experiments on a closely related alloy,
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AA6061-T6, for which the remaining required material
parameters have been published. From uniaxial tests on
thin strips cut longitudinally from AA6063-T6 tubes, the
best fit (see Fig. 5) is achieved using the values in Table 1.

The remaining parameters are obtained from different
sources. The rate and thermal sensitivity related parame-
ters are based on experiments by Yadav et al. [14,17] and
are given in Table 2.

The mass density, thermal and electrical properties are
obtained from standard references on aluminum (they are
not alloy sensitive) and are given in Table 3. The value of
the plastic work conversion factor v is the same as in Tri-
antafyllidis and Waldenmyer [3].

The remaining parameters to be determined pertain to
the characterization of the yield surface and the size of
the imperfection amplitude n. To this end the band is mod-
eled by a discontinuity in the yield stress, using
rB

y ¼ ð1� nÞrA
y . The yield surface exponent b (see definition

in Eq. (2.20)) is taken as in Barlat et al. [18] for aluminum,
Table 1
Material parameters from AA6063-T6

E = 69 GPa ry = 190 MPa �y = ry/E n = 0.0769

Table 2
Material parameters from AA6061-T6 [17]

_�p
0 ¼ 1000 s-1 m = 0.0870 a = 0.5 h0 = 298 K hm = 853 K

Table 3
Density, specific heat, resistivity of aluminum and conversion factor

l = 2700 kg/m3 cp = 896 J/kg K r = 2.65 · 10�8 Xm v = 0.9

Table 4
Material parameters for FLD of AA6061-T6

b = 8 n = 10�3
and the value of n is then chosen to give the most reason-
able agreement with the available quasistatic FLD experi-
ments on AA6061-T6 by LeRoy and Embury [20], as
shown in Table 4. The parameters given in Tables 1–4 com-
pletely characterize the mechanical, thermal and electric
properties of the model used to run the simulations of
the free expansion experiments of the tubes.

2.5. Strain, strain rate and current density profiles

Calculations of FLDs for strain rate-independent elasto-
plastic solids are frequently based on the simplifying
assumption of proportional strain paths. It is assumed that
�2=�1 ¼ _�2=_�1 ¼ q, where �1/2 6 q 6 1 with the lower limit
corresponding to uniaxial stress and the upper to equibiax-
ial plane stress. The time dependence of strain �1 (or �2) is
irrelevant for predicting FLDs under quasistatic loading of
rate-independent solids. For the time-dependent viscoplas-
tic response of the material in EMF processes, strain his-
tory influences the solid’s response and hence a strain
profile �1(t) is also required (the proportional straining
assumption �2(t) = q�1(t) is still assumed). Determining
the exact strain profile �1(t) requires solution of a coupled
electromagnetic and thermomechanical problem of the
tube plus its actuator coil, a feasible but complicated and
time-consuming task. Such a modeling approach would
be the two-dimensional version of the one-dimensional ring
calculations done by Triantafyllidis and Waldenmyer [3].
In the interest of simplicity, and since a pulse-like strain
rate history is expected for the hoop strains at any height
of the expanding tube, the following sinusoidal-shape
strain rate pulse is assumed

_�1ðtÞ ¼
p�max

8s0

sin
pt
4s0

� �
; _�2ðtÞ ¼ q_�1ðtÞ; ð2:23Þ

where 4s0 is the duration of the strain rate pulse and �max is
the maximum strain in the hoop direction since from Eq.
(2.23)

�1ðtÞ ¼
�max

2
1� cos

pt
4s0

� �� �
: ð2:24Þ

The electromagnetic nature of the problem also requires
knowledge of the time-dependent current density. Again
a sinusoidal pulse current density is assumed in the hoop
direction

j1ðtÞ ¼ J max sin
pt
2s0

� �
; j2ðtÞ ¼ 0; ji ¼ 0 for t > 2s0;

ð2:25Þ
where Jmax is the maximum current density achieved in this
process. Experimental observations, as well as fully cou-
pled electromechanical calculations in the ring problem
[3], show that the time duration of the first (and much lar-
ger) current pulse is approximately half the duration of the
strain rate pulse, thus explaining the reason for the choice
in Eq. (2.25).
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The characteristic time s0, which is half of the measured
duration of the main current pulse, and the maximum den-
sity Jmax are available experimentally, according to Table
5. These parameter values are obtained from electric cur-
rent vs. time traces taken from tube expansion experiments.
An example of one of these traces, here from case (a), is
shown in Fig. 6a. The comparison between experimental
and simulation current traces is shown in Fig. 6b, along
with the dimensionless strain vs. time trace. The energy
used to expand the tube in each configuration is given in
Table 5, and the pulse time s0 and maximum current den-
Table 5
Experimentally determined parameters

Label Tube (mm) Coil Energy (kJ) Jmax (A/m2) s0 (ls)

a 31.7 4-turn 6.72 5.10 · 109 23
b 31.7 10-turn 8.00 4.82 · 109 36
c 85.1 4-turn 7.52 2.50 · 109 16
d 85.1 10-turn 13.92 4.85 · 109 33.5
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Fig. 6. (a) Example of an experimentally measured current vs. time trace
for tube and coil. (b) Comparison of the experimentally determined
current density profile with the simulated current density profile. Simu-
lated dimensionless strain profile also shown in (b). These plots
correspond to a 31.7 mm tube deformed with a 4-turn coil at 6.72 kJ of
energy (case (a)).
sity Jmax used in the corresponding simulation are also
listed accordingly. Also note that from several experiments
performed, only four (labeled a, b, c, d in Table 5) are to be
simulated here.

The final issue to be resolved is the choice of the maxi-
mum hoop strain �max in Eq. (2.24) for simulating the
selected four experiments. The choice adopted stems from
the experimental technique of gradually increasing the
capacitor energy until tube necking and/or failure is
detected. Consequently, for each q a simulation is run with
a certain value of �max for which no necking is detected. A
simple forward marching technique gradually tests larger
values of �max until necking is achieved at 0.99�max. As an
example of the forming speeds that result from this tech-
nique, for case (a) in Table 5 the maximum simulation
strain rate ranges from 4932 s�1 (plane strain) to 8793 s�1

(uniaxial).
3. Results and discussion

The formulation of the EMF localization problem has
been fully defined above. It is now left to detail the numer-
ical algorithm used to solve the governing equations, to
compare the theoretical simulations with the experiments
and to comment on the results.

3.1. Numerical algorithm

The governing equations for the principal solution and
for the localization problem can be cast as a system of
first-order ordinary differential equations (ODEs) _x ¼
f ðx; tÞ. A fourth-order Runge–Kutta algorithm is used
for each case. More specifically, for each path (for given
q), the principal solution requires the solution of a system
of four ODEs

_xA ¼ f ðxA; tÞ; xA � ½rA
1 ; r

A
2 ; �

p
A; h

A�; ð3:1Þ
where r1, r2 are the hoop and axial Cauchy principal stres-
ses, �p is the accumulated plastic strain and h is the temper-
ature of the sheet. For the localization problem along each
path, a much larger system of nine ODEs has to be solved
for each value of the reference localization angle U, namely

_xB ¼ f ðxB; tÞ;
xB � ½F B

11; F
B
12; F

B
21; F

B
22; r

B
11; r

B
12; r

B
22; �

p
B; h

B�; ð3:2Þ

where the t-dependent terms in f(xB, t) are functions of the
principal solution xA(t). Note that jB

i are obtained directly
from Eqs. (2.4)–(2.7) and (2.21). The rate forms of Eqs.
(2.1) and (2.2) are used due to the inherent incremental nat-
ure of plasticity calculations.

For each load path (i.e. given q, s0, Jmax, �max), a value
of the localization angle U is selected in the interval
0 6 U < p/2. Necking is detected when the plastic strain
rate inside the band becomes unbounded. In the numerical
simulations necking is said to occur at tneck, the time when
_�p

B=_�p
A > 10, and �neck � �A

1 ðtneckÞ (the choice of value 10,
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Fig. 8. The localization angle / in the current configuration as a function
of strain ratio q, for the simulation of the 31.7 mm tube deformed with a 4-
turn coil at 6.72 kJ (case (a)).
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although arbitrarily selected, has negligible effect on the
localization strain). The entire U range 0 6 U < p/2 is
scanned using p/180 increments and the critical angle U
is the one minimizing �neck(U). As in the quasistatic case,
U 6¼ 0 for q < 0 while U = 0 for q P 0. Calculation of the
critical angle U will be discussed subsequently.

Two checks on the solution are used to select the step
size Dt. For the quasistatic case an analytical solution is
known for certain values of q. The step size is chosen small
enough that the simulation results match the analytical
solution within a reasonable accuracy (0.001, i.e. forming
limits accurate to within 0.1% true strain). For the rate-
dependent case numerical errors are avoided by decreasing
Dt until the change in solution from an additional decrease
in Dt is within the required accuracy. This approximately
gives Dt/s0 � 5 · 10�5 as the typical time step, to which
adjustments are made as necessary.

3.2. Comparison of experimental and theoretical results

The presentation of experimental results and the corre-
sponding theoretical simulations is given in Figs. 7–12.
More specifically the experimentally obtained FLDs for
cases (a)–(d) (see Table 5) plus the corresponding theoreti-
cal simulation results are presented in Figs. 7, 10, 11 and 12
respectively. For comparison purposes the conventional
quasistatic FLDs for the same cases (calculated in the
absence of currents and using much larger pulse duration
times s0) are also plotted in these figures to show the duc-
tility increase due to the EMF process. Additional informa-
tion for the first experiment (case (a)) is provided in Fig. 8
(current configuration localization angle / vs. strain ratio
q) and Fig. 9 (temperatures inside hB and outside hA the
band vs. strain ratio q).

The FLD results for the short tube/short coil combina-
tion (case (a)) are presented in Fig. 7. Notice that the exper-
imental data are all for q < 0 and are clustered about the
uniaxial stress path (q = �1/2), as expected from Fig. 4a,
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Fig. 10. Comparison of simulated and experimental forming limits for an
AA6063-T6 31.7 mm tube deformed using a 10-turn coil and 8 kJ of
energy (case (b)).
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Fig. 7. Comparison of simulated and experimental forming limits for an
AA6063-T6 31.7 mm tube deformed using a 4-turn coil and 6.72 kJ of
energy (case (a)).
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Fig. 11. Comparison of simulated and experimental forming limits for an
AA6063-T6 85.1 mm tube deformed using a 4-turn coil and 7.52 kJ of
energy (case (c)).
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Fig. 12. Comparison of simulated and experimental forming limits for an
AA6063-T6 85.1 mm tube deformed using a 10-turn coil and 13.92 kJ of
energy (case (d)).
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which shows localization at the top and bottom ends of the
short tube. Both the measured and computed results show
a significant increase in ductility in the electromagnetically
expanded AA6063-T6 tube compared to the quasistatic
curve, although the simulation overestimates the forming
limits. Moreover, using Fig. 5 one can observe that uniaxial
quasistatic AA6063-T6 necking and failure occur approxi-
mately at �neck = 0.11. This corresponds to the q = �1/2
quasistatic forming limit in Fig. 7 due to the use of rectan-
gular high aspect ratio (width to thickness) samples in the
uniaxial quasistatic tests (see Section 2.3). This observation
is an experimental confirmation of the ductility increase in
free forming using EMF, which is captured reasonably well
by the present simulation.

The theoretically calculated current configuration criti-
cal angle / vs. the strain ratio q for the short tube/short
coil experiment modeled in Fig. 7 is plotted in Fig. 8.
Notice that similar to the quasistatic case, / is a decreasing
function of q for �1/2 6 q < 0, while / = 0 for q P 0.
Although localization angles are difficult to measure, where
the necking band is visible along the full length of the tube
(case (d), corresponding to q = �1/2), / � 40�.

The theoretically calculated inside hB and outside hA the
band respectively temperatures at localization, as a func-
tion of strain ratio q for the experiment modeled in
Fig. 7, are plotted in Fig. 9. Notice that the necking tem-
perature is minimum for q = 0, as expected from the fact
that the critical strain, �1, is a minimum here. Since s0 is
kept constant for each case, the minimum critical strain
gives the minimum strain rates and lowest flow stresses
and thus the lowest amount of plastic dissipation re _�p. This
dissipation contributes somewhat more thermal energy
than the ohmic effect to the temperature change [3].

Figs. 10–12 show the results from the remaining three
experiments (see Table 5 and also Fig. 4). More specifically
Fig. 10 shows the results for the shorter tube with the
longer coil (case (b)), which shows the largest discrepancy
between theory and experiment. This deviation can be
explained from the fact that the failed tube in Fig. 4b is a
highly distorted toroidal segment, while the assumptions
adopted for the computation of the FLD are based on uni-
formly expanding tubes.

The FLD in Fig. 11 corresponds to the only experiment
with data in the q > 0 region, as expected for case (c), in
Fig. 4c, where failure starts at the middle of the tube.
Experimental points on q = 0 show agreement with theo-
retical predictions, while experimental points for q > 0
show large deviations from theoretical results. This discrep-
ancy is expected from the fact that yield surface parameters
and anisotropy of sheet play a crucial role for the determi-
nation of the q > 0 part of the FLD, and our simulation’s
simplified isotropic yield surface can be improved with a
more sophisticated anisotropic alloy description. More-
over, as with case (a), despite overestimation of the forming
limits, a free formability increase is clearly shown
experimentally.

Finally, Fig. 12 corresponds to the long tube/long coil
combination and the corresponding experimental data are
again clustered around the uniaxial stress path q = �1/2,
as expected from Fig. 4d, which shows failure near the
end sections of the tube. This comparison shows the closest
agreement between experiment and simulation, with the
forming limits minimally overestimated.

It should be noted that the theoretical predictions for all
four experiments are predictably close to each other given
the proximity of the values of the strain rates, current den-
sities and characteristic times between the four different
experiments. A critical discussion of the experimental and
theoretical results is given below.

3.3. Comments and discussion

For the free expansion experiments, the main reason for
the increased ductility of aluminum alloys has been shown
[3] to be their strain rate sensitivity at the high rates asso-
ciated with the EMF processes. To this end, it is important
to obtain an accurate constitutive description of the alloy
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that has strain rate as well as temperature sensitivity in its
mechanical response, given the important heating effects
due to the plastic dissipation and the induced currents.
Although it was not possible to measure all the required
constitutive properties of the experimentally used
(AA6063-T6) tube alloy, a careful literature search has
given the remaining properties from reliable, independently
obtained data of a closely related (AA6061-T6) sheet alloy.
Implementing these properties shows an increase in form-
ability due to rate sensitivity in the FLD simulations, which
is confirmed experimentally. However, comparing experi-
ment to simulation shows overestimation to varying
degrees in each forming limit diagram. A more accurate
experimentally based constitutive characterization of the
material is necessary for further investigations.

There are additional limitations to our model. Inertia is
ignored in these necking simulations. In previous unpub-
lished work on ring expansion [21] an increase in ductility
occurred with an increase in ring density (with all other
ring properties remaining the same). More sophisticated
dynamic stability analyses have been carried out for bars
[4] and rings [8] that show how inertia determines the crit-
ical wave number, influencing (delaying) necking. Other
work [5,7,11] has shown similar results, indicating that
inertia should be accounted for in dynamic necking
calculations.

Furthermore, the present work considers only tube free
expansion, while others [6,9,10] have considered different
geometries. Oliveira and Worswick [9] and Oliveira et al.
[10] considered forming aluminum sheet into a rectangular
die opening. No formability improvement in their electro-
magnetically free formed parts was reported. Those
authors showed EMF strains higher than the quasistatic
forming limits but attributed them to strain path changes
after workpiece failure. However, Imbert et al. [6] did show
EMF free forming strains above the traditional quasistatic
limits of their aluminum alloy on safe (no necking or fail-
ure) parts. Those experiments used aluminum sheet free
formed into a circular die opening and indicated that
EMF may enhance free formability. It should be noted that
the electromagnetic process free forming strain rates of Oli-
veira and Worswick [9] and Oliveira et al. [10] are approx-
imately half the rates encountered in the present
experiments, and the aluminum alloy used in these earlier
experiments was AA5754, which is considerably different
from our tube alloy AA6063-T6. Work by Vural et al.
[13] and Yadav et al. [14] showed a distinct alloy-dependent
threshold above which strain rate sensitivity becomes
important, indicating these differences may significantly
influence the experiments.

4. Conclusion

Electromagnetic forming (EMF) processes are known to
increase significantly the ductility of aluminum alloys. The
goal of the present work is a quantitative comparison
between theoretical calculations for the onset of necking
in sheets and the experimental results obtained from the free
expansion of electromagnetically loaded aluminum alloy
tubes on which strain-measuring grids have been etched.
Although a fully coupled electromagnetic and finite strain
thermomechanical analysis is required to accurately model
the tube expansion experiments, considerable insight can
be gained by using the recently proposed [16] electromag-
netic generalization of the forming limit diagram (FLD)
concept to study the ductility of aluminum sheets, as mea-
sured locally in the necked regions of the failed tubes.

In conclusion, and given the approximations inherent in
the FLD concept (essentially the assumed strain and cur-
rent paths which can differ substantially from the actual
ones at the necked zone), there is agreement between the-
ory and experiment, showing that the ductility increases
in free forming due to the use of an EMF process. Most
of the specimens fail near the rims, thus justifying the clus-
tering of the experimental data near the q = �1/2 line of
the FLD. When failure occurs about the midpoint of the
tube’s generator, there is a bigger spread of experimental
points, this time about the q = 0 path. In this case there
is again reasonable correlation between simulation and
experimental data. The present comparison between theory
and experiments shows that the EMF-based FLD concept
is a useful tool to predict ductility limits of metal sheet in
free expansion experiments.
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