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Abstract

This paper applies the stability theory of crystalline solids presented in the companion paper (Part

I) to the study of martensitic transformations found in shape memory alloys (SMA’s). The focus here

is on temperature-induced martensitic transformations of bi-atomic crystals under stress-free loading

conditions. A set of temperature-dependent atomic potentials and a multilattice description are

employed to derive the energy density of a prototypical SMA (B2 cubic austenite crystal). The

bifurcation and stability behavior are then investigated with respect to two stability criteria

(Cauchy–Born (CB) and phonon). Using a 4-lattice description five different equilibrium crystal

structures are predicted: B2 cubic, L10 tetragonal, B19 orthorhombic, Cmmm orthorhombic, and

B190 monoclinic. For our chosen model only the B2 and B19 equilibrium paths have stable segments

which satisfy both the CB- and phonon-stability criteria. These stable segments overlap in

temperature indicating the possibility of a hysteretic temperature-induced proper martensitic

transformation. The B2 and B19 crystal structures are common in SMA’s and therefore the

simulated jump in the deformation gradient at a temperature for which both crystals are stable is

compared to experimental values for NiTi, AuCd, and CuAlNi. Good agreement is found for the two

SMA’s which have cubic to orthorhombic transformations (AuCd and CuAlNi).
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1. Introduction

The stability theory of crystalline solids using multilattice kinematics has been discussed
in the companion paper Elliott et al. (2004b) (henceforth referred to as Part I), where three
different stability criteria were presented and compared. Here an application of this theory
to martensitic transformations that occur in shape memory alloys (SMA’s) is considered.
As a first step, the focus is on temperature-induced martensitic transformations under
stress-free loading conditions.
Martensitic transformations (MT’s) according to Cohen et al. (1979) are diffusionless

lattice-distortive phase transformations of the crystal. That is, during a martensitic
transformation the atoms of a highly ordered crystal rearrange in a coordinated
manner leading to a new crystalline phase. These transformations are often tempera-
ture-induced and may occur over a wide range of temperatures. The high temperature
phase is called austenite and the low temperature phase is called martensite. In the
materials science literature MT’s are often further subdivided into those which are
reversible (or thermo-elastic) as for SMA’s and those which are irreversible as for
martensitic steels.
Here a somewhat different view is adopted, as proposed in Elliott et al. (2002b), where

MT’s are partitioned into two categories called proper MT’s and reconstructive MT’s.
Proper MT’s are identified by the austenite and martensite crystals having a group-
subgroup symmetry relationship. This has been shown to be a necessary feature for a
material to exhibit a shape memory effect (see Bhattacharya, 2003), since it guarantees that
austenite is a unique configuration to which martensite can revert. Additionally, if high
symmetry austenite and low symmetry martensite configurations are connected by an
infinitesimal deformation, the so-called Ericksen–Pitteri neighborhood (Ericksen, 1978;
Pitteri, 1984; Bhattacharya, 2003), the phase transformation is likely to be reversible upon
cooling or heating in some neighborhood of the transformation temperature. In a
reconstructive MT, by contrast, no group–subgroup relationship exists between the crystal
configurations. Although not considered diffusional, the transformation involves
significant atomic motions with breaking of nearest-neighbor bonds and then bond
reformation (Tolédano and Dmitriev, 1996), often resulting in significant dilatational
changes of the crystal. Reconstructive MT’s exist in many materials, including steel, many
of the pure elements, and ionic compounds such as CsCl, NaCl, and other alkali-halides.
Reconstructive MT’s were successfully simulated in Elliott et al. (2002b), where a set of
temperature-dependent Morse pair-potentials were used to investigate the uniform (affine)
deformation of a bi-atomic B2 crystal structure, and an MT between the cubic B2 and
cubic B1 crystal structures was simulated.
Martensitic transformations have been a subject of active study for many decades. In

1937 L. D. Landau developed a phenomenological theory of phase transitions including
MT’s (see, for example, Dove, 1993). This theory has successfully modeled the properties
of known phase transitions (see, for example, Bruce and Cowley, 1981; Dove, 1993). In
Landau theory the ‘‘free energy’’ of the crystal is expanded as a polynomial function with
temperature-dependent coefficients of an ‘‘order parameter’’ that measures the extent of
transformation. The form of the free energy is constrained to satisfy certain symmetry
relations for the crystal of interest. Phase transformation is assumed to occur at the
temperature where the free energy of the austenite phase becomes equal to the free energy
of the martensite phase.
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Many researchers have developed continuum-level models for SMA’s by working with
mixture theories to describe the material’s behavior. Notable treatments include Tanaka
(1986), Brinson (1993), Sun and Hwang (1993), Boyd and Lagoudas (1994), Patoor et al.
(1996), Levitas (1998), and Hall and Govindjee (2002). One of the first to investigate stress-
induced material instabilities was Ericksen (1975), who considered one-dimensional bars
with non-monotonic stress-strain curves. Others have considered the strain localization
behavior often observed in SMA’s (see, for example, Shaw and Kyriakides, 1995, 1997)
and formulated SMA models based on thermodynamics and a set of postulated kinetic
relations for the propagation of localized transformation fronts. For example, the works of
Abeyaratne and Knowles (1993), Leo et al. (1993), Vainchtein (1999), Ngan and
Truskinovsky (1999), and Shaw (2002) all take this approach in one form or another. Each
of the SMA material models mentioned above addresses some aspects of macroscopic
SMA behavior, but they cannot answer some fundamental questions of material behavior
at the atomic scale, thus motivating the present three-dimensional lattice investigation.

The macroscopic behavior of SMA’s is intimately tied to the fine needle-like martensite
microstructures that develop in these materials, and a large literature now exists to help
explain phenomena at this scale. Successful continuum approaches that take into account
the different martensite variants and their possible spatial arrangements have been
investigated by James (1986), Bhattacharya (1991), Chu and James (1995), Hane and
Shield (1999), Saxena et al. (2003), and Ahluwalia et al. (2004). These methods are based
on a global energy minimization that predicts a sequence of fine microstructures. One of
these energy based methods is reviewed in the recent book by Bhattacharya (2003). Despite
the success of these efforts, their continuum nature leaves many questions regarding the
material’s martensitic transformation unanswerable.

At the molecular scale researchers such as Yu and Clapp (1989), Shao et al. (1996),
Grujicic and Dang (1995), and Kastner (2003), have applied molecular dynamics (MD)
methods to the atomistic study of SMA’s providing valuable insight into the elastic
properties of the SMA, the dynamic behavior of atoms in the crystal, and the mechanisms
leading to initiation and propagation of phase transformation. However, MD simulations
provide information only about stable equilibrium configurations with little indication as
to the material’s behavior away from these states. Additionally, such investigations are
quite computationally intensive. Charlotte and Truskinovsky (2002) have conducted a
complete investigation of finite one-dimensional crystals with next-nearest-neighbor
atomic interactions and discussed the effects of finite size on the equilibrium solutions
and their stability.

At a more fundamental level, researchers including Fukuda et al. (1999) and Huang
et al. (2002) have performed quantum mechanics calculations to determine the total
internal energy (at 0K) associated with the observed SMA crystal structures (phases).
These results provide information about the relative thermodynamic stability of the
phases, but only at 0K.

In our previous work, Elliott et al. (2002b), the material’s continuum energy density is
explicitly derived from a set of phenomenological atomic interaction potentials. This
conveniently brings the problem of finding the equilibrium phases as a function of
temperature into the realm of bifurcation and stability theory. The bifurcation approach to
studying crystal phase transformations has been pioneered by Ericksen (1992), whose
extensive work on the topic has recently been collected in the volume edited by Beatty and
Hayes (2005).
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In contrast to the MD method, a bifurcation and stability analysis systematically
determines both stable and unstable equilibrium configurations, providing additional
information about equilibrium paths connecting different phases. Furthermore, unstable
bifurcating equilibrium paths can eventually become stable away from their initial
bifurcation point. Investigating these materials at the atomic length-scale opens many
possible avenues for further study, such as clarifying the mechanisms responsible for
atomic level instabilities at all length-scales, exploring how MT’s interact with defects,
precipitates, and grain boundaries, and perhaps even understanding atomic scale
mechanisms that identify which alloys can be SMA’s and which cannot.
In the current work the kinematic assumptions made in Elliott et al. (2002b) are relaxed

to allow multilattice shifts (as discussed in Part I) in order to predict proper MT’s of the
type seen in SMA’s. Additionally, the recommended stability criteria of Part I, (phonon
and Cauchy–Born (CB), are employed. Section 2 reviews the multilattice and CB
kinematics concepts. Section 3 presents the bifurcation and stability problem of interest,
outlines the stability criteria from Part I, and discusses the analytical and numerical
techniques to be used. Section 4 investigates a 2-lattice description of the B2 crystal
structure determining all connected equilibrium paths and their stability and shows that
upon cooling short wavelength phonon modes (normal atomic vibration modes) are the
first to become unstable. These unstable modes of deformation lead to the consideration of
a 4-lattice description of the B2 crystal, which is the subject of Section 5. All connected
equilibrium paths and their stability are determined, and a proper MT between the B2 and
B19 crystal structures is predicted and results compare favorably with experimental data
for AuCd and CuAlNi.
2. Crystal structure description and kinematics

An ordered crystalline solid consists of a periodic arrangement of atoms that has
translational symmetry of the crystal at a distance comparable to the atomic separation.
This structure can mathematically be described as a lattice, and the particular arrangement
of atoms within the lattice gives rise to various point and space group symmetries that can
have a profound effect on the microscopic and macroscopic properties of the material (see,
for example, Sands, 1993; Nye, 1985; Miller, 1972).
2.1. Multilattices

An M-lattice (see Fig. 1 for an example of a two-dimensional 4-lattice) consists
of a set of M inter-penetrating ‘‘sub-lattices’’ each of which is positioned relative to an
imaginary ‘‘skeletal lattice’’ (see further, Pitteri and Zanzotto, 2002). Alternatively,
a multilattice may be imagined as a set of ‘‘motifs’’, a collection of atoms, or unit cells,
with some specified arrangement, located at the lattice points of a Bravais-lattice
(skeletal-lattice). The arrangement of atoms about each lattice point is specified by a
set of 3M quantities P½a� a ¼ 0; 1; 2; . . . ;M � 1; called the ‘‘fractional position vectors’’,
as depicted in Fig. 1. A more detailed discussion of the multilattice concept is presented
in Part I.
In either view, each atom in the crystal is uniquely identified by specifying the

sub-lattice a and lattice point ‘. The reference position vector of each atom is uniquely
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Fig. 1. CB kinematics: Lagrangian (upper path) and Eulerian (lower path) description of shifts leading to the

current configuration of a 2-D, 4-lattice crystal.
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defined by1

X
‘

a

� �
¼ X½‘� þ P½a�,

X½‘� � ‘iGi; ‘i 2 Z,

P½a� � Pi½a�Gi; 0pPi½a�o1; a ¼ 0; . . . ;M � 1; ð2:1Þ

where X½‘� is the reference position of the skeletal lattice point ‘, and Z is the set of all
(positive and negative) integers. The label ‘ for the skeletal lattice point is a short-hand
notation referring to the triplet of integers ‘i, P½a� is the fractional position vector for atom
1Unless otherwise specified, Latin indices represent spatial tensor components and Einstein’s summation

convention is employed.
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a, and Gi are the reference lattice vectors (see again Fig. 1). The reciprocal reference lattice
vectors Gi are defined by2

Gi �Gj ¼ di
j (Kroneker delta), (2.2)

and the associated covariant and contravariant components of the metric tensor are

Gij � Gi
�Gj ; Gij � Gi �Gj. (2.3)

2.2. CB kinematics

In this section quasi-uniform deformations that take an M-lattice into another M-lattice
are considered. These deformations can be expressed in terms of CB kinematics
(see Bhattacharya, 2003; Ericksen, 1984; Born and Huang, 1962), consisting of a uniform
deformation F of the lattice vectors and a set of internal shift vectors S½a� corresponding
to translations of the sub-lattices. CB kinematics can be formulated in either of two ways
as shown in Fig. 1, where the upper path corresponds to the Lagrangian formulation,
Eq. (2.4) below, and the lower path represents the Eulerian formulation, Eq. (2.5) below,
of the shift DOFs. In the Lagrangian formulation, the internal shifts S½a� are first applied
to the reference configuration, and then the uniform deformation F is applied to this
intermediate configuration. The current position vector of an atom ‘

a

� �
in this case is

x
‘

a

� �
¼ F � X

‘

a

� �
þ S½a�

� �
, (2.4)

having a component form xi ‘
a

� �
¼ F i

jðX
j ‘
a

� �
þ Sj ½a�Þ, with respect to the reference lattice

basis vectors Gi. In the Eulerian formulation, the uniform deformation is applied first,
followed by the internal shifts:

x
‘

a

� �
¼ F �X

‘

a

� �
þ s½a�. (2.5)

Introducing the current lattice basis vectors

gi � F �Gi, (2.6)

the current position vector Eq. (2.5) has components xi ‘
a

� �
¼ X i ‘

a

� �
þ si½a�, with respect to

gi. That is, the components of the current position vector of atom ‘
a

� �
in the Eulerian

formulation are the sum of its reference position vector components and the current
internal shift components.
These two different forms of CB kinematics Eqs. (2.4) and (2.5) are equivalent, and the

current internal shifts are related to the reference internal shifts by

s½a� ¼ F �S½a�. (2.7)

Each description has its advantages. For example, the Lagrangian formulation Eq. (2.4)
provides a more intuitive description of the current configuration of a deformed crystal
structure, and therefore, it is used in the numerical investigations of Sections 4 and 5. In
2Here, (�) indicates tensor contraction of the corresponding vectors.



ARTICLE IN PRESS
R.S. Elliott et al. / J. Mech. Phys. Solids 54 (2006) 193–232 199
contrast, the Eulerian formulation Eq. (2.5) is better suited for theoretical investigations
due to the absence of coupling between F and s½a�, and was therefore used in the analytical
calculations of crystal stability in Part I.

CB kinematics, Eq. (2.4) or (2.5), include all rigid-body motions of the crystal. For
stability evaluations, however, a set of kinematics for which rigid-body modes have been
eliminated is required. The following additional constraints are added:

F � U; S½0� � 0, (2.8)

where U is the symmetric right stretch tensor. Eq. (2.8)1 eliminates rigid-body rotations
from the CB kinematics and is equivalent to setting R, the rotation part of the polar
decomposition F ¼ R �U, to the identity. Eq. (2.8)2 eliminates rigid-body translations of
the crystal by fixing one of the sub-lattices in space. This restricted form of CB kinematics
represents a total of 3M þ 3 degrees of freedom (DOFs), six DOFs corresponding to the
components of U and another 3M � 3 DOFs for the M � 1 remaining internal shift
vectors S½a�.

3. Problem statement

Stress-free temperature-induced transformations are studied as a first step in modeling
martensitic transformations. In particular, the bifurcation and stability properties of the
prevalent SMA austenite B2 crystal structure (as in NiTi) subjected to temperature changes
are presently considered. The B2 crystal structure is a 2-lattice, consisting of two simple-
cubic sub-lattices arranged so that atoms of one type are symmetrically surrounded by
eight atoms of the second type (see Fig. 2). The material is modeled using temperature-
dependent atomic pair-potentials with CB kinematics. The objective is to determine all
connected equilibrium paths and their stability as a function of temperature, the loading
parameter. Special attention is paid to loss of stability of the high symmetry parent phase
(austenite) in favor of lower symmetry phases (martensite) upon cooling.
3

1

2

S[1]

S[0]=0
S[0]

Fig. 2. B2 cubic crystal structure (2-lattice).
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It is recognized that a ‘‘first principles’’ treatment of finite temperature effects in crystals
involves finding the vibrational energy spectrum and evaluating the statistical sum leading
to a computation of the free energy and entropy. Commonly, a ‘‘mean-field’’ approach,
such as the pseudo-harmonic approximation, is used to obtain a ‘‘renormalization’’ of the
phonon frequencies (vibrational energy spectra) with an explicit dependence on
temperature (Dove, 1993). This is equivalent to a set of ‘‘effective’’, temperature-
dependent, atomic potentials. It is in this spirit that we propose the use of a set of purely
phenomenological temperature-dependent atomic pair-potentials.
3.1. Atomic potentials

A large number of atomic interaction potentials have been developed for use in
molecular-statics and -dynamics simulations. These include relatively simple pair-potential
forms such as the Morse potential, the Lennard– Jones potential, and the Buckingham

potential (Torrens, 1972). More sophisticated potentials, taking account of non-central
forces, include embedded atom potentials, cluster potentials, and cluster functionals (see
Carlsson, 1990, for a recent review).
The general methodology introduced in this paper is applicable to any type of atomic

potential. For computational speed, pair-potentials are used in the numerical results shown
later. Although there are well-known deficiencies associated with the use of pair-potentials,
e.g., the Cauchy relations, they are well suited for illustrative purposes and in certain cases
produce reasonable quantitative agreement with experiments. For example, Girifalco and
Weizer (1959) find that the equation of state and some elastic constants for cubic metals
are accurately predicted with a Morse potential. Additionally, the current work results in
predictions of phase transformation properties that compare favorably with experimental
data as will be discussed in Section 5.1.
The temperature-dependent energy c ‘

a

� �
ðyÞ associated with each atom ‘

a

� �
in the crystal is

c
‘

a

� �
ðyÞ ¼

1

2

X
‘0

a0½ �2O

faa0 r
‘ ‘0

a a0

� �
; y

� �
, (3.1)

where faa0 is the interaction pair-potential between atoms of type a and a0 and the

summation runs over all atoms ‘0

a0

h i
in the crystal O. The ‘‘self interaction energy’’ is

assumed to be zero, i.e., faað0; yÞ � 0. The distance between two atoms ‘
a

� �
and ‘0

a0

h i
is

r
‘ ‘0

a a0

� �
� x

‘0

a0

� �
� x

‘

a

� ����� ����, (3.2)

where k � k is the 2-norm, and the current position of each atom x ‘
a

� �
is given by the

Lagrangian form of the CB kinematics Eq. (2.4). The internal potential energy density per
unit reference volume for the crystal is calculated at a representative unit cell, ‘ ¼ 0,

W
�

ðU;S; yÞ ¼
1

V

XM�1
a¼0

c
0

a

� �
ðyÞ ¼

1

2V

XM�1
a¼0

X
‘0

a0½ �2O

faa0 r
0 ‘0

a a0

� �
; y

� �
, (3.3)
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where S � fS½1�;S½2�; . . . ;S½M � 1�g and V ¼ G1
�ðG2 �G3Þ is the reference volume of one

M-lattice unit cell. Eq. (3.3) represents the internal potential energy associated with atoms
in a single unit cell located at the origin.

3.2. Stress-free equilibrium equations

The stress-free equilibrium equations involve derivatives of the energy density

qW
�

qU
¼ 0;

qW
�

qS½a�
¼ 0; a ¼ 1; 2; . . . ;M � 1. (3.4)

Eq. (3.4)1 is the statement of ‘‘macroscopic’’ stress-free equilibrium with respect to the six
components of U. Eq. (3.4)2 is the statement of inter-sub-lattice equilibrium with respect to
the 3M � 3 components of the internal shift vectors S½a�, a ¼ 1; 2; . . . ;M � 1. As shown in
Part I, together these guarantee ‘‘microscopic’’ force equilibrium for each atom.

For crystals where each atom is located at a point of inversion symmetry (called a
‘‘centrosymmetric’’ crystal), including the B1, B2, and diamond crystal structures, force
equilibrium of each atom is guaranteed under any arbitrary fixed uniform (affine)
deformation F of the crystal (independent of the macroscopic stress generated) as noted by
Born and Huang (1962) and Wallace (1998). This is the configuration for which all internal
shifts S½a� are identically zero. A point of inversion symmetry remains a point of inversion
symmetry under the action of a uniform deformation (see the case of a 2-lattice in Fig. 3). It
can be shown by symmetry arguments that the equilibrium Equations (3.4) for the uniform
deformation DOFs and the internal shift DOFs decouple, a situation that strongly limits
the types of bifurcations that can occur from centrosymmetric crystal structures. In
contrast, the more general case, as in the B19 crystal structure, for example, can have modes
of bifurcation that couple both uniform deformation and internal shifts. Furthermore, an
affine deformation of a non-centrosymmetric crystal may eliminate the possibility of
‘‘microscopic’’ equilibrium of each atom, thereby generating fictitious ‘‘body forces’’ to
G1

G2

g1

g2

Fig. 3. A centrosymmetric 2-lattice crystal retains central inversion symmetry when subjected to any affine

transformation.
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obtain equilibrium. The multilattice description with its internal shifts resolves this problem
and ensures equilibrium can be achieved for each atom regardless of the particular atomic
potential being considered. A proof of this assertion can be found in Part I.
3.3. Stability criteria for crystalline solids

The three stability criteria for crystalline solids that were discussed in Part I are briefly
outlined below (see Part I for more details).
(I)
3The
Homogenized continuum (HC) stability

The HC-stability criterion is the weakest criterion and indicates stability with respect
to all internally equilibrated ‘‘uniform’’ perturbations, i.e., both the rank-one
‘‘uniform’’ perturbations and the ‘‘uniform’’ perturbations that are not rank-one
(such as uniform dilation and biaxial strain). A ‘‘homogenized continuum’’ energy
density is defined as a function only of the uniform right stretch tensor U by
eliminating the internal shift vectors SðU; yÞ using equilibrium Eq. (3.4)2,

W
�

ðU; yÞ �W
�

ðU;SðU; yÞ; yÞ. (3.5)

The crystal’s equilibrium configuration U
o

is considered HC-stable if the resulting
elastic moduli (second derivative of the energy density) are positive definite with

respect to all symmetric tensors dU, i.e., W
�

is a local minimum at the equilibrium
configuration3

dU
q2 W
�

qUqU

������
U
o

dU40; 8 dU ¼ dUTa0. (3.6)

As shown in Part I, HC-stability is strictly weaker than CB-stability, and therefore, it
is not used in the numerical calculations which follow.
(II)
 CB-stability

CB-stability indicates stability with respect to all quasi-uniform perturbations and
contains HC-stability as a special case. Here, both the uniform right stretch tensor U
and the internal shift vectors S½a� are allowed to vary independently, and the crystal is

considered CB-stable if W
�

ðU;S; yÞ is a local minimum, or

dU; dS½ �

q2 W
�

qUqU
q2 W
�

qUqS

q2 W
�

qSqU
q2 W
�

qSqS

266664
377775
U
o

;S
o

dU

dS

" #
40,

8 dU ¼ dUTa0 or dSa0. ð3:7Þ

In the above equation the stability operator is of dimension ð3M þ 3Þ � ð3M þ 3Þ.
Here, the CB-stability criterion is defined in terms of the reference shift vector
perturbations dS rather than the current shift vector perturbations ds, as in Part I.
notation A : B indicates double tensor right contraction defined in component form as AijklBkl .
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These two definitions are equivalent since dS and ds are related by the (strictly)
invertible relationship Eq. (2.7).
(III)
 Phonon-stability

The phonon-stability criterion considers the largest set of perturbations and indicates
stability with respect to bounded perturbations of all wavelengths. It is not complete,
however, since it does not investigate non-rank-one ‘‘uniform’’ perturbations (such as
uniform dilatation and biaxial strain) or the more general quasi-uniform perturba-
tions, which are addressed by CB-stability. In the phonon-stability calculations
equilibrium configurations conform to CB kinematics (quasi-uniform deformation)
but stability is evaluated with respect to all bounded perturbations. All atoms in the
crystal are given their three translational degrees of freedom and the linearized
equations of motion are considered. Taking advantage of the translational symmetry
of the multilattice the corresponding stiffness matrix is block-diagonalized by a block-
Fourier transform resulting in the dynamical matrix K

j
k

k
a a0
� �

, a 3M � 3M matrix
(where M is the number of atoms in the unit cell) for each wave vector k, given by

K
j
k

k

a a0

� �
¼ ðmama0 Þ

�1=2
X
‘02Z3

GjpF
o

pk

0 ‘0

a a0

� �
exp �ik � X

‘0

a0

� �
� X

0

a

� �� �	 

,

(3.8)

where ma is the mass of atom a, Z3 is the set of all lattice points in the infinite crystal,

and F
o

pk
‘
a
‘0

a0

h i
is the stiffness coefficient between atoms ‘

a

� �
and ‘0

a0

h i
. The wave vector k

ranges over values in the unit cell of the reciprocal reference lattice (multiplied by a
factor of 2p)

k 2 fkiG
i
j �ppkiopg. (3.9)

The eigenvalues of the dynamical matrix are real (due to the Hermitian nature of K)
and satisfy the relation

ðoðqÞðkÞÞ2Dbv j k

a

� �ðqÞ
¼
XM�1
a0¼0

Kj
p

k

a a0

� �
Dbv p k

a0

� �ðqÞ
. (3.10)

The squared phonon frequencies ðoðqÞðkÞÞ2 must all be positive for the crystal to be
stable4, i.e.,

ðoðqÞðkÞÞ240
for ka0; q ¼ 1; 2; . . . ; 3M;

for k ¼ 0; q ¼ 4; 5; . . . ; 3M :

(
(3.11)
For ‘‘material stability’’ under soft-device loading conditions, as defined in Part I, the
CB-stability criterion and the phonon-stability criterion must be satisfied. This ensures
stability with respect to all quasi-uniform perturbations (CB) and bounded displacement
perturbations of all wavelengths (phonon).
e acoustic phonons at k ¼ 0 and q ¼ 1; 2; 3 have been excluded since their frequencies are identically zero

rrespond to the rigid-body translation modes of the crystal.
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3.4. Parameters and solution procedures

At this point we are interested in finding all connected equilibrium paths which are
solutions to the set of non-linear algebraic equations (3.4) associated with a particular
choice of DOFs (fixed M-lattice). Thus, CB-stability identifies critical points, and
asymptotic analyses help to enumerate bifurcated paths. In this section, the particular
atomic potentials used in the remainder of this paper are specified. Next, numerical
methods for finding connected equilibrium paths and critical points are discussed. Finally,
details of the numerical evaluation of the stability criteria of Section 3.3 are presented.

3.4.1. Temperature-dependent Morse pair-potentials

The case of temperature-dependent interatomic forces is investigated by Sutton (1989)
where he takes advantage of the anharmonicity (asymmetry) of 0K atomic interactions to
derive temperature-dependent potentials from a knowledge of the phonon frequencies of
the crystal. Others follow a similar approach, including Melker and Ivanov (2000) who
introduce temperature-dependent Morse pair-potentials for hydrogen-hydrogen, carbon–
carbon, and hydrogen–carbon interactions in polymers, and Zarkova (1996) who
introduced a set of Lennard–Jones pair-potentials with temperature-dependent para-
meters. In this last case, a statistical mechanics approach based on excited quantum states
of the particles is used to derive temperature-dependent binding-energy and equilibrium
separation coefficients. The work by Brown et al. (1997) is also interesting, where an
empirical valence conservation principle is used to derive the bond length and bond force
constant as a function of temperature for each bond in a set of 12 different inorganic
compounds.
The material model to be used here is based on central-force Morse pair-potentials that

are temperature-dependent. In Elliott et al. (2002a, b) the atomic bond stiffness of the
Morse potential was made temperature-dependent. Here, instead, it is assumed that the
natural pair equilibrium separation r̂ðyÞ is temperature-dependent as

r̂ðyÞ ¼ r0 þ ryðy� 1Þ, (3.12)

where r0 is the constant reference equilibrium separation, y � T=T0 is a dimensionless
absolute temperature, T0 is the reference temperature taken to be 300K (typical room
temperature), and ry is a constant related to the thermal expansion of the natural atomic
bond length. In this way, the energy of each atomic bond type in the crystal can be
expressed as5

fðr; yÞ � A exp �2B
r

r̂ðyÞ
� 1

� �� �
� 2 exp �B

r

r̂ðyÞ
� 1

� �� �	 

, (3.13)

where A and B are constants associated with binding energy and bond stiffness,
respectively.
The Morse pair-potential is chosen for its exponential form, which rapidly decays

to zero with increasing r. For computational purposes, the summation over all atoms in
Eq. (3.3) is truncated at the boundary of an ‘‘Eulerian sphere of influence’’. The radius of
this sphere is chosen such that the total energy contribution associated with atoms outside
5Subscripts indicating the types of atoms involved in the interaction are suppressed to avoid cumbersome

notation.
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Fig. 4. Three temperature-dependent pair-potentials for the B2 crystal structure at y ¼ 1 and 10 (an exaggerated

temperature, chosen for clarity).

Table 1

Pair-potential parameters used in numerical calculations

Bond r0 ry A B

aa 1 0 1 4

bb 1.060347 0.010 1 7

ab 1.026362 0.005 1 5.5
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the sphere is negligible.6 It is found that the Morse pair-potentials used here require an
influence radius no larger than seven reference lattice spacings to achieve convergence of
the summations in the energy density Eq. (3.3) and of all of its derivatives.

The popular alloy NiTi is chosen as a prototypical SMA. Its austenite phase is the B2
cubic crystal structure for which there are three different types of atomic interactions, two
like-interactions aa and bb and unlike-interaction ab (see Fig. 4). The numerical values of
the bond parameters used in the numerical calculations that follow are given in Table 1.

Dimensionless potentials are created by normalizing parameters with respect to the aa

interaction. The parameters for the like-bonds are chosen to reasonably match elastic
moduli of pure Ni (aa) and pure Ti (bb) individually, although it is not possible to match
all the elastic moduli due to the Cauchy relations arising from the central-force pair-
potentials. This procedure determines the values of Baa and Bbb, and then Bab is set to their
average. A variety of values were investigated for the remaining parameters. The aa bond
is taken to be temperature-independent, raa

y ¼ 0, and the thermal expansion coefficient of
6A cautionary word to those trained in continuum mechanics. One must resist the temptation to use a

Lagrangian sphere of influence and simply sum interactions over a fixed set of atoms in the reference

configuration. Finite deformation of the crystal can cause an incomplete and distorted summation of atomic

interactions in the current configuration. This leads to numerically introduced imperfections that mask bifurcation

points and leads to incorrect interpretations of crystal symmetries.
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NiTi is matched to within a factor of two by the choice of rbb
y . The reference equilibrium

separation rbb
0 is chosen so that the critical point on the B2 equilibrium path occurs near

y ¼ 1, and rab
0 is chosen such that interesting stability behavior occurs. The model is quite

sensitive to the relative values of rbb
0 and rab

0 , so these are reported to seven significant digits
in Table 1. The three bond energies at two different dimensionless temperatures y are
shown in Fig. 4.

3.4.2. Calculation of stress-free equilibrium paths

Once an equilibrium path has been identified (either through inspection of the
equilibrium Eqs. (3.4), an asymptotic analysis about a bifurcation point, or a numerical
search), the associated crystal structure is determined, and a minimal set of DOFs is
identified to describe the equilibrium path. For example, due to the centrosymmetric
nature of the B2 crystal structure, it follows that a stress-free equilibrium path exists for
uniform thermal expansion (principal branch). This is a cubic crystal structure that
requires only a single DOF, the lattice parameter, aðyÞ,

UðyÞcubic ¼ aðyÞI; S½a�ðyÞ ¼ 0; 8a. (3.14)

In general there are m DOFs (mp3M þ 3), and once identified, the corresponding subset
of nonlinear algebraic equations (3.4) is solved using an incremental Newton–Raphson
scheme. It is convenient to introduce the DOF vector u 2 Rð3Mþ3Þ defined by

u � fU;Sg. (3.15)

Riks (1979) method (arc-length following algorithm) and the Newton–Raphson scheme
are used to find points along an equilibrium path and facilitate the crossing of limit-loads
that may be encountered (see Elliott et al., 2002b, for further details). The requirement that
a new solution be found at a specified ‘‘distance’’, Dd, from the most recently found
equilibrium solution, i.e.,

kDuk2 þ ðDyÞ2 ¼ ðDdÞ2, (3.16)

is used to augment the equilibrium equations (3.4).
From the CB-stability criterion critical points are found by detecting zero eigenvalues of

the stability operator q2 W
�

=qu2. The eigen-modes u
ðIÞ

corresponding to zero eigenvalues of
the stability operator are found from

q2 W
�

ququ

�����
c

� u
ðIÞ
¼ 0; I ¼ 1; 2; . . . ;H; (3.17)

where the subscript c indicates evaluation of the derivative at the critical point ðuc; ycÞ, yc is

the critical temperature, uc ¼ u
o
ðycÞ, and H is the multiplicity of the critical point. The type

of critical point (limit-load or bifurcation point) is identified by the following test (see
Triantafyllidis and Peek, 1992):

q2 W
�

quqy

�����
c

� u
ðIÞ a0 limit-load point;

¼ 0 bifurcation point:

(
(3.18)

When a bifurcation point is detected two procedures are invoked. First, a bi-section
method (on Dd) is used to accurately determine the critical temperature and kinematic
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DOFs. Secondly, a Lyapunov–Schmidt–Koiter (LSK) decomposition is performed and the
bifurcation equations are determined. These equations are summarized here, but the reader
is referred to the discussions in Elliott et al. (2002b) and Triantafyllidis and Peek (1992) for
further details. At the bifurcation point each equilibrium path is parameterized by its
bifurcation amplitude parameter x. The path’s deformation vector u and the temperature y
are expanded in powers of x as

uðxÞ ¼ u
o
ðyðxÞÞ þ x

XH
I¼1

aI u
ðIÞ
þ
x2

2

XH
I ;J¼1

aIaJ V
ðIJÞ

þOðx3Þ,

yðxÞ ¼ yc þ xy1 þ
x2

2
y2 þOðx3Þ; kak ¼ 1, (3.19)

where quantities V
ðIJÞ

satisfy

q2 W
�

ququ

�����
c

� V
ðIJÞ

¼ �
q3 W
�

qu qu qu

�����
c

� u
ðIÞ

 !
� u
ðJÞ
;

V
ðIJÞ
� u
ðKÞ
¼ 0;

9>>>=>>>; I ; J;K ¼ 1; 2; . . . ;H; (3.20)

u
o
ðyÞ describes the principal equilibrium path on which the bifurcation point is encountered,

and any convenient norm on a, the tangent7 of the bifurcated path at yc, may be employed.
The lowest-order terms in the asymptotic development are found by corresponding lowest-
order expansion of the equilibrium equations in the null-space of the stability operator,
resulting in

If y1a0 :
XH

J;K¼1

aJaKEIJK þ 2y1
XH
J¼1

aJEIJy ¼ 0; I ¼ 1; 2; . . . ;H;

or

If y1 ¼ 0 :
XH

J;K ;L¼1

aJaKaLEIJKL þ 3y2
XH
J¼1

aJEIJy ¼ 0; I ¼ 1; 2; . . . ;H. (3.21)

If the coefficients EIJK (defined below) are all zero then y1 ¼ 0 and solutions to Eq. (3.21)2
are used; otherwise, solutions to Eq. (3.21)1 are determined. The coefficients EIJK , EIJKL,
and EIJy (I ; J;K ;L ¼ 1; . . . ;H) are related to higher-order derivatives of the energy density

W
�

and are defined by

EIJK �
q3 W
�

qui quj quk

" #
c

u
ðIÞ

i u
ðJÞ

j u
ðKÞ

k,
7Note that when the bifurcation amplitude parameter x is eliminated, the equilibrium path’s displacements uðyÞ
may be quadratic in the nondimensionalized temperature Dy and the aI then actually represent curvatures.
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EIJKL �
q4 W
�

qui quj quk qul

" #
c

u
ðIÞ

i u
ðJÞ

j u
ðKÞ

k u
ðLÞ

l

þ
q3 W
�

qui quj quk

" #
c

u
ðJÞ

j V
ðKLÞ

k þ u
ðKÞ

j V
ðJLÞ

k þ u
ðLÞ

j V
ðJKÞ

k

� �
u
ðIÞ

i,

EIJy �
d

dy
q2 W
�

ðu
o
ðyÞ; yÞ

quiquj

 !" #
c

u
ðIÞ

i u
ðJÞ

j. (3.22)

Practically, Eqs. (3.22) are evaluated numerically and Eq. (3.21) can be solved by
inspection. A ‘‘transcritical’’ (or ‘‘asymmetric’’) bifurcation occurs when y1a0. The system

of H quadratic equilibrium Eqs. (3.21)1 for aI has at most 2H � 1 nontrivial independent
real solutions, each corresponding to an equilibrium path. When y1 ¼ 0, a ‘‘symmetric’’
bifurcation occurs, and Eq. (3.21)2 determines the tangents aI . There are at most

ð3H � 1Þ=2 nontrivial pairs of real solutions (þaI ;�aI ). Each pair of solutions corresponds

to one equilibrium path. The coefficients Eqs. (3.22) and the quantities V
ðIJÞ

are evaluated
numerically and the bifurcation Eqs. (3.21) are solved, providing an initial solution on the
new bifurcation branch that can then be followed by the arc-length procedure.
The stability (CB-stability) in the neighborhood of the bifurcation point of emerging

equilibrium paths is governed, according to the general theory by Triantafyllidis and Peek
(1992), by the signs of the eigenvalues of the matrix B, defined by

If y1a0 : BIJðaÞ � y1EIJy þ
XH
K¼1

aKEIJK ,

or

If y1 ¼ 0 : BIJðaÞ � y2EIJy þ
XH

K ;L¼1

aKaLEIJKL. (3.23)

A transverse bifurcation path has stability matrix given by Eq. (3.23)1 and is CB-unstable in
the neighborhood of the bifurcation point if the matrix B has eigenvalues of both signs. If
all eigenvalues have the same sign, then the path has a change of CB-stability as the critical
point is crossed. A symmetric bifurcation path has stability matrix given by Eq. (3.23)2 and
is CB-stable near the bifurcation point if B is positive definite and CB-unstable otherwise.

3.4.3. Numerical stability calculations

The stability of general CB equilibrium configurations is evaluated numerically by the
CB-stability and phonon-stability criteria as follows:
(I)
 The CB-stability criterion is evaluated directly from the second derivative of the

energy density W
�

ðU;S; yÞ and the eigenvalues are found using the cyclic Jacobi
method (Patel, 1994) for symmetric matrices.
(II)
 The procedure to evaluate phonon-stability is more complicated. The coefficients

F
o

jk
‘
a
‘0

a0

h i
are given explicitly in terms of derivatives of the temperature-dependent
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pair-potentials as

F
o

jk

‘ ‘0

a a0

� �
¼

�2j0a;a0Gjk � 4j00a;a0 xj

‘

a

� �
� xj

‘0

a0

� �� �
‘a‘0;

� xk

‘

a

� �
� xk

‘0

a0

� �� �
;

�
P
‘00a‘0

F
o

jk

‘ ‘00

a a0

� �
; ‘ ¼ ‘0;

8>>>>>>>>><>>>>>>>>>:
(3.24)

where jðr2; yÞ � fðr; yÞ, and j0 and j00 are the respective first and second derivatives

with respect to r2 of the atomic pair-potentials Eq. (3.13). Additionally, the
components of the dynamical matrix, Eq. (3.8), with respect to a Cartesian coordinate
system are

Kjk

k

a a0

� �
¼ AjmAn

kK
m
n

k

a a0

� �
, (3.25)

where the A matrices, given by

Ajm � ej
�Gm; An

k � ek
�Gn, (3.26)

transform the spatial coordinate components (Km
n

k
a a0
� �

) to the orthonormal Cartesian

system ei (Kjk
k

a a0
� �

). Thus, Kjk
k

a a0
� �

are the components of a Hermitian matrix. The

dimensionless atomic masses (normalized with respect to Ni) for Ni (a) and Ti (b) are
ma ¼ 1 and mb ¼ 0:816. The dynamical matrix, Eq. (3.25), is calculated for any given
wave vector k and its eigenvalues are found using the cyclic Jacobi method, modified
for complex Hermitian matrices. Theoretically, stability must be evaluated for a
continuum of wave vectors lying within a single reciprocal lattice unit cell. Practically,
however, a discrete grid of values (size 22� 22� 22) gives robust results, since
sufficient continuity of the dynamical matrix with respect to k components exists.
As was shown in Part I, the phonon frequencies for k and �k are equal. Therefore,
only one half of the reciprocal unit cell is investigated (22� 22� 12 grid). Depending
on the point symmetry of the deformed crystal, a region smaller than half of the unit
cell may be enough to investigate all unique phonon frequencies. Indeed, for
equilibrium configurations with cubic symmetry, only 1=48th of the unit cell needs to
be considered. However, calculations are performed across one entire half of the
reciprocal unit cell to accommodate crystals of any point group symmetry.
4. Numerical results for a 2-lattice

In this section the bifurcation and stability properties of the cubic B2 crystal structure
(space symmetry group Pm3m, see further US NRL Center for Computational Materials
Science, 2004) are investigated. The B2 crystal structure can be described using a primitive
unit cell that contains two different atoms, and therefore a 2-lattice description is
appropriate. Although the choice of M-lattice description for the crystal does not affect the
stability results for an equilibrium configuration, it does restrict the set of equilibrium
configurations that can be found. In the course of an equilibrium path stability
investigation, the phonon-stability criterion may identify a bifurcating equilibrium path
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that is unobtainable with the 2-lattice proposed here. In this case an M-lattice with more
DOFs must be adopted to investigate the new equilibrium path. This is exactly what
happens in the current model and, as discussed in Section 4.3, a 4-lattice model will
ultimately be needed.
The reference fractional position vectors for the atoms are given by

P½a� �
0; a ¼ 0;
1
2
G1 þ

1
2
G2 þ

1
2
G3; a ¼ 1;

(
(4.1)

where Gi � aei are the simple cubic reference lattice vectors of length a (see Eq. (3.14) and
Fig. 2) and ei are a set of orthonormal vectors aligned with the cubic axes. As indicated in
Fig. 2, S½0� is set to zero to eliminate rigid-body translation modes.

4.1. Stress-free equilibrium paths—CB-stability

The above 2-lattice description and the temperature-dependent atomic pair-potentials

of Section 3.4.1 are used to construct a thermo-elastic energy density W
�

ðU;S; yÞ.
The numerical methods of Section 3.4.2 are used to solve the stress-free equilibrium
Eqs. (3.4) to determine all equilibrium paths that are connected (either directly or through
an intermediate path) to the B2 crystal’s thermal expansion path. This results in the
bifurcation diagram of Fig. 5 which shows the U33 component of the right stretch
tensor (with respect to the orthonormal basis ei aligned with the cubic axes) as a

function of dimensionless temperature y, and the dimensionless energy density W
�

=m as a
function of temperature, where m is the reference equilibrium shear modulus of the material
given by

m �
q2 W
�

qU12qU12

�����
ðU¼I; S¼0; y¼1Þ

. (4.2)

In Fig. 5(a) the B2 crystal is shown to be CB-stable (indicated by the solid line) at high
temperatures. At the bifurcation point A (open circle) where y ¼ 0:66 the B2 crystal
becomes unstable (dashed line) and remains unstable for lower temperatures. Point A is a
multiple bifurcation point and an LSK analysis (see Elliott, 2004) determines that three
variants of the tetragonal L10 (space group P4=mmm) crystal structure emerge from this
critical point, only one of which is shown in Fig. 5. The remaining two variants can be
obtained from symmetry considerations. See Appendix A for a more complete description
of the L10 crystal structure. The L10 crystal corresponds to an affine deformation of the B2
crystal structure and accordingly has all of its internal shifts equal to zero (i.e., S ¼ 0). The
LSK results predict that the L10 path crosses the B2 path transversely (y1a0) and is
initially CB-unstable. A comparison between the asymptotic expression (dotted line) for
U33 (Elliott, 2004) and the numerically determined states (filled squares) for the L10 crystal
structure is shown in Fig. 6. The excellent agreement between the analytical and numerical
results provides a useful check on the numerical calculations.
Following the bifurcated L10 equilibrium branch upward from point A in Fig. 5(a) the

L10 path eventually reaches a limit-load in temperature near y ¼ 4:43 (filled circle), after
which it is CB-stable for the remaining segment of the path. The dimensionless energy
densities of the B2 and L10 equilibrium paths are plotted as a function of temperature in
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=m versus dimensionless temperature y.
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Fig. 5(b). The higher symmetry B2 cubic phase and the lower symmetry L10 tetragonal
phase have CB-stable overlapping segments in temperature, and thus, the possibility of a
proper martensitic phase transformation is indicated. At sufficiently high temperatures, the
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B2 crystal structure is the only stable phase. At intermediate temperatures both the B2 and
the L10 crystal structures are stable but below y ¼ 3:98 the L10 branch has lower energy.
For temperatures below y ¼ 0:66 the L10 structure is the only stable phase. The overlap in
stable segments between the two phases at the critical point A and the limit-load near
y ¼ 4:43 indicate that temperature-induced transformations would be hysteretic. It is
worth mentioning at this point that these two crystal structures are, in fact, the austenite
and martensite phases found in the SMA NiAl (see, for example Shao et al., 1996).
However, the final determination of stability for the B2 and L10 branches requires
consideration of phonon-stability, which is included in the next section.
4.2. Stress-free equilibrium paths—phonon-stability

While the above results appear promising, they are not the final conclusion regarding
stability. Fig. 7 shows the same set as in Fig. 5(a) of stress-free equilibrium paths for the 2-
lattice description but with stability now evaluated by the phonon-stability criterion.
Comparing Fig. 7 with 5(a) shows that the two stability criteria produce different results.
The phonon-stability criterion predicts a higher critical temperature (point B, y ¼ 0:97) of
the B2 phase compared to the CB-stability criterion (point A, y ¼ 0:66). The L10
tetragonal path emerges from A and is initially phonon-unstable, in agreement with the
CB-stability criterion, but now it remains phonon-unstable as it crosses the limit-load near
y ¼ 4:43. This is in contrast to the CB-stability results and leaves the B2 crystal as the only
phonon-stable crystal in the entire 2-lattice bifurcation diagram. The difference between
the CB-stability and phonon-stability results illustrates the importance of investigating
bounded perturbations of all wavelengths. Indeed, if the CB-stability criterion is
considered alone, a proper martensitic transformation between the B2 and L10 crystal
structures would be expected to occur, but the phonon-stability results clearly show that no
such transformation would occur.
The differences between CB- and phonon-stability are highlighted by examining the

phonon frequencies along the thermal expansion (principal) path of the B2 crystal
�
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Fig. 7. Calculated 2-lattice stress-free equilibrium bifurcation and phonon-stability diagram showing the U33

component of deformation.
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structure. Although the entire space of k values is investigated numerically, Fig. 8 shows a
conventional plot of phonon frequencies (Dove, 1993), the square-root of the eigenvalues
of Eq. (3.25), at two different temperatures for a specific set of wave vectors k. The
diagram on the left in Fig. 8 depicts selected sets of wave vectors within the first octant
(0pkipp) of the reciprocal lattice unit cell. The point G is the origin and is located at the
body center of the reciprocal unit cell, X is located at the center of the unit cell’s face, M is
a unit cell edge midpoint, and R is a unit cell corner. These sets of wave vectors correspond
to phonon modes oriented along high symmetry directions in the real cubic crystal, and the
associated cyclic phonon frequencies are plotted in Fig. 8.

The B2 phonon dispersion curves for the reference temperature y ¼ 1:0 are displayed in
Fig. 8(a). Note that there are six different branches in this figure corresponding to the three
acoustic branches attached at the origin G and the ð3M � 3Þ ¼ 3 optic branches (for the
current case of M ¼ 2). For simplicity, real phonon frequencies are plotted as positive;
whereas, purely imaginary frequencies are plotted as negative. All of the phonon modes
shown at the reference temperature y ¼ 1 are stable. Fig. 8(b) shows the dispersion curves
for the B2 crystal structure at the lower temperature of y ¼ 0:73 (between Aand B in
Fig. 7) where the CB- and phonon-stability results disagree. Unstable phonon modes now
exist between M and G. Segments of the dispersion curves near point G (k ¼ 0) correspond



ARTICLE IN PRESS
R.S. Elliott et al. / J. Mech. Phys. Solids 54 (2006) 193–232214
to long wavelength phonons; whereas, segments near the other points (X, M, and R)
correspond to short wavelength phonon modes. Note that all long wavelength modes near
G are stable, yet some short wavelength modes near M are unstable. This illustrates the
nature of the discrepancy between the phonon- and CB-stability criteria. The former
investigates bounded perturbations of all wavelengths; whereas, the latter considers only
quasi-uniform perturbations. Therefore, CB-stability is unable to detect the short
wavelength mode that causes the instability at B.
At point B (y ¼ 0:97), two of the phonon frequency branches at M (short wavelength

modes) become zero, called ‘‘soft phonon modes’’ (Dove, 1993), indicating the first
instability upon cooling and the presence of a bifurcation point along the B2 path. As the
temperature decreases from B towards A these dispersion branches near M in Fig. 8
continue to descend and longer wavelength phonons also become unstable. Thus, a finite
wavelength phonon mode exists with zero frequency for each temperature between B and
A. The phonon modes with irrational wavelength, known as ‘‘incommensurate’’ modes
(Dove, 1993) where the wavelength of the perturbation is unrelated to the periodicity of the
crystal, give rise to ‘‘incommensurate bifurcated equilibrium paths’’ that require an infinite
number of DOFs for their description. In contrast, the ‘‘commensurate’’ (or periodic)
phonon modes give rise to ‘‘commensurate bifurcated equilibrium paths’’ that require a
finite number of DOFs for their description.
The straight dashed lines connected to point G in Fig. 8 are the dispersion relations for

the homogenized elastic waves of the HC model discussed in Part I. The slopes of these
lines are determined by the natural frequencies of the mass normalized acoustic tensor AðkÞ
given by

AijðkÞ �
1

r
q2 W
�

qFi
mqF j

n

������
u
o

kmkn, (4.3)

where r is the reference mass density of the crystal. The elastic waves correspond to the
long wavelength acoustic phonon modes (k! 0) as proved in Part I. These asymptotic
results are accurate across a considerable interval near the origin G. In other words, the
crystal behaves as a continuum under both moderate and long wavelength perturbations.
Additionally, the agreement between these two different calculations serves as a
verification of the numerical results.
It is interesting to compare the dispersion curves of Fig. 8 to those of Huang et al. (2002)

which are reproduced in Fig. 9, where a plane-wave pseudopotential variation of density-
functional theory is used to calculate the dispersion curves for B2 NiTi at 0K. There is
considerable qualitative agreement between the current pair-potential calculations and the
more sophisticated calculations of Huang et al. (2002). Both results show instability at M

and similar shapes to the curves, which likely arises from the cubic symmetry of the B2
crystal.

4.3. Critical deformation modes at B

The phonon-stability criterion identifies an infinite number of bifurcation points
(oðkÞ ¼ 0) for temperatures below B (y ¼ 0:97), some of which could potentially have
bifurcating equilibrium paths with stable segments. Only the L10 tetragonal bifurcation
point A is accessible to the 2-lattice description of the B2 crystal and therefore a new
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Fig. 9. Dispersion curves for the B2 cubic crystal structure of NiTi at 0K. (Reprinted figure with permission from

Huang et al., Physical Review B–Condensed Matter, 65, 014108/1–5, 2002. Copyright (2002) American Physical

Society.)
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description is needed with more atoms per unit cell to investigate other bifurcation points
(including B). It is a daunting, if not impossible, task to consider the continuum of points
between A and B, but it seems reasonable to study point B since it represents the onset of
instability upon cooling along the principal branch. The three reciprocal cell-edge
midpoints (symmetry related points M) correspond to wave vectors of

kM1 ¼ pG1
þ pG2; kM2 ¼ pG2

þ pG3; kM3 ¼ pG1
þ pG3. (4.4)

For each of these wave vectors there are six phonon modes, and at point B (y ¼ 0:97) the
frequency for two of these modes is zero. This double eigenvalue corresponds to one
longitudinal phonon mode (with atomic motion along the wave vector) and one transverse
phonon mode (with atomic motion perpendicular to the wave vector). Thus, there are six
simultaneous zero phonon frequencies, two for each of the three above wave vectors at
y ¼ 0:97 (point B). For a comprehensive investigation of this multiple bifurcation point a
16-lattice corresponding to a 2� 2� 2 block of B2 unit cells would need to be considered.
This 51 DOF model would pose a formidable analytical and computational challenge.
However, the three critical wave vectors (4.4) are related by symmetry, and thus, an
analysis of only one of the three (say kM1) is necessary (see Fig. 10(a)).

The two critical eigen-modes (corresponding to Eq. (3.10) with o ¼ 0 and normalized

such that
P

a D bvðiÞ kM1

a

� �
�D bvðiÞ kM1

a

� �
¼ 1, i ¼ 1; 2) are given by

D bvð1Þ kM1

0

� �
¼ 0:482G1 � 0:482G2; D bvð1Þ kM1

1

� �
¼ 0:403G1 � 0:403G2, (4.5)

and

D bvð2Þ kM1

0

� �
¼ 0:482G1 þ 0:482G2; D bvð2Þ kM1

1

� �
¼ �0:403G1 � 0:403G2, (4.6)

where the wavelength of these modes is l ¼
ffiffiffi
2
p

a. The first critical mode, D bvð1Þ kM1

a

� �
, shown

in Fig. 10(b) is a transverse plane wave that shifts every other plane of atoms in a direction
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Fig. 10. Critical perturbation modes associated with critical wave vector kM1: (a) critical wave direction and

wavelength; (b) transverse wave critical mode; (c) longitudinal wave critical mode.
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perpendicular to the wave vector. The second critical mode, D bvð2Þ kM1

a

� �
, shown in Fig. 10(c)

is a longitudinal plane wave where every other plane of atoms parallel to the wave vector
shifts along the wave vector.
The 2-lattice description used so far cannot accommodate these perturbation modes as

equilibrium configurations within the CB kinematics, and therefore, a description based on
a larger unit cell, with more DOFs, must be introduced. Since the rightmost shaded region
in Fig. 10(a) encompasses four atoms (and the wave vector has no component in the out of
plane e3 direction) a 4-lattice description is likely needed to capture this mode within CB
kinematics. Therefore, this larger M-lattice description is needed to follow bifurcated paths
emerging from point B. This suggests a numerical procedure as outlined in the next
section.

4.4. Determining all connected, commensurate equilibrium paths

Whenever the phonon-stability criterion reaches a critical point where the intersecting
equilibrium paths are not expressible under the multilattice description in use, a more
general (larger M) multilattice description is required to investigate these paths. Thus, a
systematic procedure is needed to investigate all commensurate equilibrium paths that are
connected to the principal path. Starting with a chosen M-lattice description, the CB
equilibrium configurations are identified for a single path. Next, all critical points along the
path are classified as limit-loads, CB bifurcation points, or phonon bifurcation points. For
CB bifurcation points the asymptotic analysis of Section 3.4.2 is employed to determine all
emerging new paths. For phonon bifurcation points an investigation of the critical phonon
modes suggests a new M-lattice description and the asymptotic analysis of Section 3.4.2 is
then applied at the phonon bifurcation point to identify new bifurcating CB equilibrium
paths. This procedure is summarized in Table 2.
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5. Numerical results for a 4-lattice

The 4-lattice description of the B2 crystal structure is depicted in Fig. 11(a). The lattice
correspondence between the 4-lattice unit cell (xyz) and the previous cubic frame (123) is
shown in Fig. 11(b). This CB kinematic description has 15 degrees of freedom
corresponding to six components of the uniform right stretch tensor U and nine
components of the three internal shift vectors S½1�;S½2�;S½3�. The reference lattice vectors,
oriented at 45o to the original cubic basis G1, G2, G3, are

Gx ¼ G1 þG2; Gy ¼ �G1 þG2; Gz ¼ G3. (5.1)

The reference position vectors are

X
‘

a

� �
¼ X½‘� þ P½a�,

X½‘� � ‘xGx þ ‘
yGy þ ‘

zGz,

P½0� � 0; P½1� � 1
2
Gx þ

1
2
Gz,

P½2� � 1
2
Gx þ

1
2
Gy; P½3� � 1

2
Gy þ

1
2
Gz, (5.2)

and the current position vectors are given by

x
‘

a

� �
¼ U � X

‘

a

� �
þ S½a�

� �
,

S½a� � Sx½a�Gx þ Sy½a�Gy þ Sz½a�Gz; a ¼ 0; 1; 2; 3; (5.3)

where again S½0� ¼ 0 is enforced to eliminate rigid-body translation modes.
S[1]

S[2]

S[0]

S[0]=0

z

x

y

1

2

3, z

xy

(a) (b)

S[3]

Fig. 11. Four-lattice model: (a) xyz tetragonal coordinate system; (b) 123 cubic coordinate system.
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5.1. Stress-free equilibrium paths—phonon-stability

A stress-free energy density Eq. (3.3) is constructed as discussed in Section 3 with the 4-
lattice description and the interaction potentials Eq. (3.13). The equilibrium equations
(3.4) (where now a ¼ 1; 2; 3) are solved using the methods of Section 3.4.2 and the resulting
bifurcation diagrams are displayed in Figs. 12–16.

The Uzz component of the right stretch tensor (with respect to an orthonormal basis
aligned with the xyz frame) as a function of the dimensionless temperature y is plotted in
Fig. 12(a) for the range 0:3oyo5:5, and Fig. 12(b) provides a magnified view of the region
in the neighborhood of the critical point B. As in the 2-lattice case, the cubic B2
equilibrium path is phonon-stable for high temperatures and phonon-unstable below the
bifurcation point B. The phonon-unstable tetragonal L10 equilibrium path is also shown.
Point B corresponds to a multiple bifurcation point within the 4-lattice CB description,
and an LSK analysis (see Elliott, 2004) determines that four symmetric stress-free
equilibrium paths emerge from B. There are two paths of a B19 orthorhombic crystal
� 

Uzz

0.9

1

1.1

1.2

1 2 3 4 5

B2

Cmmm

� 

Uzz

0.99

1

1.01

0.4 0.6 0.8 1 1.2 1.4

B2B2

B2

B19

Cmmm

L10

L10

L10

L10

Cmmm

B19

B19B19′
B19

Bifurcation
Limit-load
Phonon-stable

(a)

(b)

A B

C

D

A

B

D

Fig. 12. Calculated 4-lattice stress-free equilibrium bifurcation diagrams showing the Uzz component of the

deformation: (a) large temperature range; (b) expanded temperature scale near critical point B.
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structure (only one of which is displayed in the figure) belonging to the Pmma space group
and two paths of a base-centered orthorhombic crystal structure (again only one path is
plotted) belonging to the Cmmm space group. See Appendix A.1 for a description of these
crystal structures and a discussion concerning the number of ‘‘crystallographic variants’’
for each crystal. The LSK results predict that each path emerging from B is symmetric and
CB-unstable in the neighborhood of the bifurcation point (Elliott, 2004). This is confirmed
in Fig. 13, where the asymptotic expression for the internal shift component Sx½2� and the
temperature y along the B19 and Cmmm (see Elliott, 2004) paths are compared to the
numerically determined equilibrium states (squares and triangles, respectively). As can be
seen, the agreement between these calculations and the analytical asymptotic results is
good, but only for a small range of Sx½2� values (note the vertical scale of Fig. 13), and
therefore, the range of validity of the asymptotic expansion is small.
As shown in Fig. 12(a) the Cmmm equilibrium path emerging from B is phonon-

unstable for the entire temperature range shown. The B19 equilibrium path is initially
phonon-unstable and remains phonon-unstable as it traverses a limit-load near y ¼ 4:80.
Eventually it stabilizes for temperatures below the secondary bifurcation point C at
y ¼ 1:25. An LSK analysis (Elliott, 2004) performed at the bifurcation point C reveals the
emergence of a single B190 monoclinic equilibrium path that belongs to the P2=m space
group. Appendix A presents the geometric characteristics of this monoclinic equilibrium
crystal structure. The B190 path bifurcates symmetrically from C and is CB-unstable in the
neighborhood of the bifurcation point. The asymptotically determined internal shift
component Sy½2� near C (see Elliott, 2004) is plotted in Fig. 14 along with the numerically
determined equilibrium states for the B190 crystal structure. The agreement between these
calculations and the analytical asymptotic results is good, but only for a small range of
Sy½2� values. The monoclinic B190 path is found to be phonon-unstable for all temperatures
shown in Fig. 12(a).
In Fig. 12(b) a secondary bifurcation point D on the L10 path at a temperature of

y ¼ 0:76 is identified. An LSK analysis similar to the one performed for point B shows
that a second set of symmetric orthorhombic equilibrium paths (B19 and Cmmm) emerge
from D and they are CB-unstable in the neighborhood of point D. In this case, both the
B19 and Cmmm equilibrium paths remain phonon-unstable for their entire temperature
range.
�

Sx[2] × 10-3

0.97 0.98 0.99 1

-0.25

0

0.25

B2

asymptotic

B19
Cmmm

B

Fig. 13. Asymptotic verification of numerical equilibrium states (squares ¼ B19, triangles ¼ Cmmm).
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Fig. 14. Asymptotic verification of bifurcated B190 (P2=m) orthorhombic equilibrium path.
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The original set of orthorhombic B19 and Cmmm equilibrium paths initially emerge from
pointB by way of internal shifts of the atoms in the 4-lattice description. In Fig. 15 the internal
shift components Sx½1� and Sx½3� are plotted as a function of temperature. The B19 and Cmmm

paths are each symmetric about the horizontal zero line and both the B2 and L10 paths lie
directly on this line since their internal shifts are identically zero. It is important to note the two
orders of magnitude difference in the shifts Sx½1� and Sx½3� showing that atom 3 shifts within
the unit cell by nearly 13% of the lattice spacing, whereas atom 1 shifts less than 0:5%.

The 4-lattice description has only two distinct stress-free equilibrium paths with phonon-
stable segments, the B2 path attached to point B and the B19 path attached to point C.
Additionally, these segments satisfy CB-stability, and therefore, they are stable with
respect to all quasi-uniform perturbations as well. The dimensionless energy density of
these two paths and the unstable paths are plotted in Fig. 16(a). The stable segments of the
B2 cubic and the B19 orthorhombic crystals overlap in temperature. Indeed, the B19
orthorhombic crystal structure stabilizes for temperatures below y ¼ 1:25 (point C), and
the B2 cubic crystal structure is stable for temperatures above y ¼ 0:97 (point B). This
suggests the existence of a hysteretic, temperature-induced, proper martensitic transforma-
tion cycle, as follows. Starting at high temperatures in the B2 cubic phase (austenite), the
temperature is decreased until the B2 phase becomes unstable (at B) and the material
transforms to the stable B19 orthorhombic structure (martensite). If the temperature is
now increased, the B19 crystal structure is initially stable, but destabilizes as the
temperature reaches y ¼ 1:25 (point C). At this temperature the material undergoes the
reverse transformation, returning to the original B2 crystal structure. Furthermore, the
jump down in internal potential energy at B and the jump up in internal potential energy
at C are consistent with the notion of exothermic and endothermic latent heat changes,
respectively, that accompany such martensitic transformations.

Since the B19 structure has many energetically equivalent variants and its symmetry
group is a proper subgroup of the B2 symmetry group (only one variant), this model has
the potential to capture the shape memory effect. The change in volume DV=V ¼ detðUÞ
with respect to the reference configuration as a function of temperature is shown in
Fig. 16(b). The B2 cubic equilibrium path exhibits a nominally linear thermal expansion
with a coefficient of linear thermal expansion (CTE) a ¼ 17:4� 10�6=K (as compared to
the experimental value of a ¼ 11� 10�6=K, Memry Corporation, 2004). The simulated
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B2! B19 transformation at B has a 0:72% volume change, and the B19! B2
transformation at C has a �0:76% volume change. A third possible measure of the
transformational volume change is given by the difference in volume between the B2 phase
at yC and the B19 phase at yB, which is �0:27%. These values are within the range of
�0:139% to 0:820% reported in Table 9.2 of Bhattacharya (2003) for 12 different SMA’s.
As can be seen from Fig. 16(b), the CTE’s of austenite and martensite can play an
important role in the determination of the reported volume change, depending on the
details of the particular experimental procedure. We choose to report the jump in
deformation at a fixed temperature. The calculated transformation parameters at B (with
respect to an orthonormal basis aligned with the B19 xyz frame) are

U	 ¼

1:0625 0 0

0 1:0277 0

0 0 0:9224

264
375, (5.4)
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Fig. 16. Calculated 4-lattice stress-free equilibrium bifurcation diagrams showing: (a) the dimensionless energy
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where U	 is defined by the relation UB19ðyBÞ ¼ U	 �UB2ðyBÞ. In the case of NiTi the
transformation parameters are (Otsuka et al., 1971)

U	NiTi ¼

1:0823 0 0:0603

0 0:9663 0

0:0603 0 0:9563

264
375, (5.5)

(with principal values of 1:1065, 0:9663, and 0:9321) for which there is only modest
agreement with the calculated transformation. This is expected since NiTi transforms
between B2 and monoclinic B190 (space group P21=m). We suspect that more
sophisticated atomic potentials, with some angular dependence, such as 3-body potentials,
would be required to model a stable crystal with such a low degree of symmetry as
monoclinic. Better agreement, however, is obtained for other SMA’s, such as
AuCd (Chang and Read, 1951) and CuAlNi (Otsuka and Shimizu, 1974), both of which
exhibit a proper martensitic transformation similar to B2! B19. These transformation
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parameters are

U	AuCd ¼

1:0350 0 0

0 1:0138 0

0 0 0:9491

264
375; U	CuAlNi ¼

1:0619 0 0

0 1:0231 0

0 0 0:9178

264
375.

(5.6)

The agreement between the calculated and experimental transformation parameters is
reasonable for AuCd and is surprisingly good for the pseudo-binary alloy CuAlNi.
6. Summary and conclusions

A set of temperature dependent, nonlocal, atomic pair-potentials is used to derive a
thermo-elastic energy density to simulate the bulk mechanical behavior of a prototype bi-
atomic crystal. The aim is to model crystal instabilities that are the underlying mechanism
for martensitic transformations which occur in shape memory alloys (SMA’s). Atomic
degrees of freedom (DOFs) are described by a multilattice using CB kinematics, which
include a uniform deformation gradient and internal shifts of sub-lattices. Stress-free
equilibrium paths are found numerically, and stability of each is evaluated using a
combination of the CB-stability criterion and the phonon-stability criterion according to
the approach recommended by the companion paper Elliott et al. (2004b) (Part I).
Additionally, a general procedure is identified for determining all commensurate
equilibrium paths that are connected to the crystal’s principal path.
Initially, a 2-lattice description is used to describe a B2 crystal, which is a common

crystal structure of the austenite phase in SMA’s. Using a set of Morse pair-potentials,
where the bonds’ natural lengths increase with temperature, results in the B2 crystal having
a principal branch that is stable at high temperatures but CB-unstable at low temperatures.
An asymptotic analysis at the critical point identifies a set of transcritically intersecting
equilibrium paths corresponding to the variants of a tetragonal crystal (L10 structure).
According to the CB-stability criterion this secondary branch is initially unstable, but then
stabilizes as it crosses a ‘‘limit-load’’ (actually ‘‘limit-temperature’’, the loading parameter),
resulting in overlapping stable segments between the principal and secondary branches.
However, the entire tetragonal branch is subsequently shown to be unstable with respect to
the phonon-stability criterion and the onset of phonon-instability upon cooling along the
primary branch actually occurs sooner (at a higher temperature). These results underscore
the importance of using both the CB- and phonon-stability criteria to establish the stability
of such a multi-lattice, since they ensure stability with respect to complementary types of
perturbations, i.e., quasi-uniform perturbations of infinite wavelength (CB) and bounded
perturbations of all finite wavelengths (phonon).
An investigation of the critical modes of the ‘‘new’’ (phonon) bifurcation point then

leads to the study of a 4-lattice. The larger number of DOFs allows a set of symmetric
intersecting equilibrium branches to emerge from this new bifurcation point. While many
other unstable crystal structures are shown to exist, a set of secondary branches emerge
from the phonon bifurcation point that correspond to an orthorhombic crystal (B19
structure), which is initially unstable, undergoes a ‘‘limit-load’’, and then stabilizes (both
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CB and phonon criteria) for temperatures below a secondary bifurcation point. This
bifurcation point occurs at a higher temperature than the primary bifurcation point,
leaving overlapping stable segments of the B2 (austenite) equilibrium path at high
temperatures and the B19 (martensitic) paths at low temperatures. This indicates the
presence of a hysteretic temperature-induced proper martensitic transformation. The most
prevalent bi-atomic SMA is NiTi, which has a B2 austenite and a monoclinic B190

martensite. Our calculations show B190 paths that bifurcate from the B19 branch, but they
are predicted to be unstable. We suspect this is due to the simple central-force potentials
used in the calculations. However, certain other SMA’s do exhibit martensitic
transformations from B2 to B19 (AuCd), or at least between cubic to orthorhombic
lattices (CuAlNi). The predicted jump in deformation gradient components compare
favorably with experimentally obtained values for AuCd and CuAlNi.

These successful results indicate a promising avenue for future study of SMA’s at the
atomic scale. For the first time, an atomic-scale calculation has been used to simulate the
equilibrium paths and their changes in stability consistent with temperature-induced
martensitic transformations seen in SMA’s. The group–subgroup relationship between the
austenite (B2) and martensite (B19) crystal symmetries indicates that a shape memory
behavior is possible. The effect of an applied stress still needs to be evaluated before shape
memory behavior and pseudoelasticity can be demonstrated, but this will be addressed in
future work. The ultimate realization of such a model should provide a useful numerical
tool to answer fundamental questions at the atomic scale regarding the origins of shape
memory behavior and nano-scale structure evolution.
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Appendix A

A.1. Crystal structure determination

The LSK asymptotic techniques of Section 3.2 determine the equilibrium paths which
emerge from a bifurcation point, but they provide little help in identifying the symmetry of
the resulting crystal structures. For this, the computer program MS Modeling created by
Accelrys (2004) is used by supplying it with atomic positions within the crystal at some
arbitrary point along the equilibrium path of interest (away from any bifurcation points,
where the symmetry of the crystal often becomes degenerate). The program’s find

symmetry function is then used to perform a regression analysis on these atomic positions
and determine the largest space group to which the crystal belongs. Another, freely



ARTICLE IN PRESS

1

2

3

3

2

a a

2

c

c

2

a

2
a

1

2

(a)

1

2

y x

x

y

3,z(b)
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available, program for accomplishing this task is ISOTROPY developed by Stokes and
Hatch (2002).
The L10 (space group P4=mmm) crystal structure is shown in Fig. A.1(a) and is

completely determined by the two lattice parameters a and c. Fig. A.1(b) displays the
correspondence between the primitive unit cell of the L10 crystal structure and the larger
more conventional unit cell containing four atoms (see US NRL Center for Computational
Materials Science, 2004). When a ¼ c the L10 crystal becomes the B2 cubic crystal
structure. The L10 equilibrium path, plotted in Fig. 5, is characterized within the 2-lattice
CB kinematics by the right stretch tensor

U ¼

a 0 0

0 a 0

0 0 c

264
375, (A.1)

in the 123 frame of Fig. 2, and the internal shift is zero

S ¼ 0. (A.2)

The geometry of the B19 (space group Pmma) crystal structure is shown in Fig. A.2(a) and
is completely determined by the three lattice parameters a, b, and c and the two ‘‘motif
parameters’’ z1 and z2 (see US NRL Center for Computational Materials Science, 2004).
When a ¼ b ¼

ffiffiffi
2
p

c and z1 ¼ z2 ¼ a=4 the B19 structure reduces to the B2 crystal. When
a ¼ ba

ffiffiffi
2
p

c and z1 ¼ z2 ¼ a=4 it reduces to the L10 structure. The correspondence
between the B19 primitive unit cell and the 4-lattice unit cell (with atoms located at
the corners) used in the calculations of Section 4 is shown in Fig. A.2(b). As can be seen,
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the 4-lattice unit cell obscures much of the symmetry of the motif; whereas, the primitive
unit cell of Fig. A.2(a) clearly displays the simple relationships defining the B19 crystal
structure. This appears to be a general observation, i.e., the symmetry of a crystal’s motif is
often obscured by placing atoms at the corners of the unit cell (except for the cubic
crystals). Further examples of this are found in the Cmmm and B190 crystal structures. The
B19 equilibrium path (depicted in Fig. 12) is characterized within the 4-lattice CB
kinematics by a uniform deformation of the form

U ¼

a 0 0

0 b 0

0 0 c

264
375 (A.3)

with respect to the xyz frame, and it occurs as a higher-order effect coupled to the shifts.
The internal shifts obey the relations8

Sx½3� ¼ Sx½2� � Sx½1�,

Sy½a� ¼ Sz½a� ¼ 0; a ¼ 1; 2; 3. ðA:4Þ

Thus, the atoms 1, 2, and 3 remain in their initial xz plane and shift in the x direction.
There are generally understood to be six variants of an orthorhombic crystal structure

originating from a cubic austenite phase (see, for example Bhattacharya, 2003). Indeed, in
the current case there are two orthorhombic equilibrium paths that emerge from
bifurcation point B when one considers the wave vector kM1 (see Section 4.3). If the two
8Note that a misprint of these shift relations occurred in Eq. (25) of the paper Elliott et al. (2004a) which is

corrected in Eq. (A.4)1.
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wave vectors kM2 and kM3 are included one finds that each of these add two orthorhombic
variants of their own, and thus, the expected six variants of the orthorhombic phase are
obtained. It is interesting to note that when the full crystallographic details of the structure
are taken into account, this definition of the variants of a martensite phase is inadequate.
In fact, there are 12 distinct ‘‘crystallographic variants’’ of the orthorhombic B19 crystal
structure, that is, there are two variants of the crystal structure associated with each
equilibrium path such as the ones emerging fromB. Each side of the symmetric bifurcation
path shown in Fig. 15 corresponds to a distinct variant of the B19 crystal structure and
these two variants are related through a 180o rotation about the y axis. These ‘‘extra’’
variants are related to the concepts of merohedral-twinning or motif-twinning and shuffle-

twinning (also called antiphase boundaries, see Phillips, 2001) which are briefly discussed by
Pitteri and Zanzotto (2002).
The base-centered orthorhombic Cmmm primitive unit cell is displayed in Fig. A.3(a).

This crystal structure is completely determined by the three lattice parameters a, b, and c

and the two motif parameters z1 and z2. When a ¼ b ¼
ffiffiffi
2
p

c and z1 ¼ z2 ¼ a=4 the
structure becomes the B2 cubic crystal. Fig. A.3(b) shows the correspondence between
the Cmmm primitive unit cell of Fig. A.3(a), the conventional base-centered unit cell, and
the correspondence with the 4-lattice unit cell (with atoms located at its corners) used in
the calculations. The Cmmm equilibrium path (shown in Fig. 12) is characterized within
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the 4-lattice CB kinematics by a uniform deformation of the form

U ¼

aþ b

2

a� b

2
0

a� b

2

aþ b

2
0

0 0 c

266664
377775, (A.5)

with respect to the xyz frame, and the internal shifts obey the relations9

Sx½2� ¼ Sy½2� ¼ Sx½1� þ Sy½1�,

Sx½3� ¼ Sy½1�,

Sy½3� ¼ Sx½1�,

Sz½a� ¼ 0; a ¼ 1; 2; 3. (A.6)

The B190 (space group P2=m) crystal structure is shown in Fig. A.4(a) where the
monoclinic primitive unit cell is displayed. This structure is uniquely defined by the four
lattice parameters a, b, c, and g and the four motif parameters z1, z2, z3, and z4. When
g ¼ 90o and z2 ¼ z4 ¼ b=2 the B190 structure becomes a B19 crystal. Fig. A.4(b) shows the
9Note that a misprint of these shift relations occurred in Eq. (26) of the paper Elliott et al. (2004a) which is

corrected in Eq. (A.6)1.
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correspondence between the B190 primitive unit cell and the 4-lattice unit cell (with atoms
located at its corners) used in the calculations. The B190 equilibrium path is characterized
within the 4-lattice CB kinematics by a uniform deformation of the form

U ¼

a g 0

g b 0

0 0 c

264
375, (A.7)

with respect to the xyz frame, and the internal shifts are constrained to satisfy the relations

Sx½3� ¼ Sx½2� � Sx½1�,

Sy½3� ¼ Sy½2� � Sy½1�,

Sz½a� ¼ 0; a ¼ 1; 2; 3. (A.8)
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