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Abstract

Many crystalline materials exhibit solid-to-solid martensitic phase transformations in response to

certain changes in temperature or applied load. These martensitic transformations result from a

change in the stability of the material’s crystal structure. It is, therefore, desirable to have a detailed

understanding of the possible modes through which a crystal structure may become unstable. The

current work establishes the connections between three crystalline stability criteria: phonon-stability,

homogenized-continuum-stability, and the presently introduced Cauchy-Born-stability criterion.

Stability with respect to phonon perturbations, which probe all bounded perturbations of a

uniformly deformed specimen under ‘‘hard-device’’ loading (i.e., all around displacement type

boundary conditions) is hereby called ‘‘constrained material stability’’. A more general ‘‘material

stability’’ criterion, motivated by considering ‘‘soft’’ loading devices, is also introduced. This

criterion considers, in addition to all bounded perturbations, all ‘‘quasi-uniform’’ perturbations (i.e.,

uniform deformations and internal atomic shifts) of a uniformly deformed specimen, and it is

recommend as the relevant crystal stability criterion.
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1. Introduction

Many crystalline materials exhibit solid-to-solid phase transformations (PTs) in
response to certain changes in temperature or applied load. These phase transformations
can be categorized as ‘‘diffusional’’ or ‘‘diffusionless’’. In diffusional PTs the atoms in the
crystal migrate over large distances with respect to the lattice spacing, eventually reaching
a new equilibrium state (or phase). The diffusionless PTs, also called ‘‘martensitic’’ or
‘‘displacive’’ transformations, involve the coordinated motion of atoms in the crystal in
response to an instability which results in the material’s transformation from one lattice to
another. In such a transformation neighboring atoms move small relative distances
compared to the lattice spacing by a process that involves latent heat (a ‘‘first order’’ PT).
Martensitic phase transformations (MTs) produce material property changes that have
often been utilized for technological purposes. For example, the martensitic transforma-
tions in steel lead to its notable strength and hardness, ferroelectric materials exhibit MTs
which result in the generation of a piezoelectric effect (Dove, 1993), magnetostrictive

materials undergo MTs which lead to magnetic–mechanical coupling (Kittel, 1956), and
MTs are responsible for the remarkable properties exhibited by shape memory alloys

(Otsuka and Wayman, 1998).
For all of these materials a transformation occurs when the underlying crystal structure

becomes unstable at a particular thermomechanical load, and the material reconfigures
into a new stable structure. It is, therefore, desirable to have a detailed theory of the
possible modes by which a crystal structure may become unstable. This should ultimately
lead to a better understanding of why certain crystalline solids exhibit MTs. This
knowledge can subsequently be applied toward the development of improved modeling
techniques for existing materials and could potentially help guide the search for
undiscovered materials that possess unique properties.
The solid-state physics community has partially addressed this need by considering a

crystal as an assembly of independent atoms and calculating the phonon-spectra (normal
mode frequencies) corresponding to bounded perturbations.2 Thus, an infinite crystal is
considered stable if all its phonon frequencies are real. First developed by Born and Huang
(1962), some examples of use of the ‘‘phonon-stability’’ criterion include the quantum
mechanics calculations of Huang et al. (2002) and the molecular dynamics calculations of
Yu and Clapp (1989) and Kastner (2003). In contrast to these explicit atomic calculations,
many investigators have adopted a continuum level energy minimization definition of
stability. In this case, a homogenized material energy density is employed and energy
minimizing equilibrium configurations are considered to be stable. This ‘‘homogenized-
continuum’’ (HC-stability) criterion ensures stability of the crystal with respect to both
rank-one and non-rank-one uniform deformation perturbations. The HC-stability
convention is prevalent in the continuum physics and mechanics communities and is
embodied in the classic Landau theory of phase transition (see, for example, Dove, 1993)
as well as more recent investigations by James (1987), Pitteri and Zanzotto (2002), and
Bhattacharya (2003).
The relationships between these two differing views of crystalline stability have received

little attention in the literature. The notable exception is Born’s method of long waves (Born
2In the mechanics community a similar method, known as the ‘‘Bloch-wave method’’, has been developed for

continuous periodic solids of infinite extent (see Geymonat et al., 1993).
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and Huang, 1962), which investigates the behavior of long wavelength ‘‘acoustic phonon’’
modes and proves that these modes are equivalent to the rank-one ‘‘uniform’’
perturbations considered by the HC-stability criterion.

To provide a better understanding of crystalline stability and the different criteria used
to measure it, the current work introduces a new, generalized, continuum stability
criterion, named the ‘‘Cauchy–Born (CB) stability’’ criterion. CB-stability is based on CB
kinematics for multilattices and includes uniform deformation and ‘‘internal atomic shift’’
perturbations of the crystal structure. The three stability criteria (phonon-, CB-, and HC-)
are, for the first time, concurrently presented in a unified context to illuminate the
relationships between them. Stability with respect to phonon perturbations, which probe
all bounded perturbations of a uniformly deformed specimen under ‘‘hard-device’’ loading
(i.e., all around displacement type boundary conditions) is, hereby, called ‘‘constrained
material stability’’. A more general ‘‘material stability’’ criterion, motivated by considering
‘‘soft’’ loading devices, is also introduced. This criterion considers, in addition to all
bounded perturbations, all ‘‘quasi-uniform’’ perturbations (i.e., uniform deformations and
internal atomic shifts) of a uniformly deformed specimen and it is recommend as the
relevant crystal stability criterion.

Although several parts of the lattice-based atomistic stability calculations exist in one
form or another in the physics literature, the current general, full Lagrangian description
as well as the connections made between the existing (phonon- and HC-) stability criteria
and the presently introduced (CB) stability criterion are novel and merit, in the authors’
opinion, an independent presentation.

The stability of a three-dimensional (3-D) multi-atomic perfect crystalline solid is
investigated in Section 2. First, the crystal’s atomic equilibrium equations and stability
conditions for bounded perturbations of all wavelengths (phonon-stability) are presented.
The crystal’s atomic energy density is then homogenized, resulting in the CB model that
allows uniform deformations of the crystal as well as ‘‘internal shifts’’, collectively called
‘‘quasi-uniform’’ deformations. Additionally, it is shown that CB equilibrium ensures that
every atom in the crystal is in force equilibrium. Finally, these internal shifts are condensed
out of the energy density to obtain the HC model. Section 3 compares the three stability
criteria—phonon-, CB-, and HC-stability—with respect to the types of perturbations that
they consider, and the ‘‘material stability’’ criterion is recommended. In the companion
paper (Part II of this work, Elliott et al., 2004) the recommended stability criteria are
applied to a specific atomic-scale model to study the temperature-dependent stability of bi-
atomic shape memory alloys.
2. Three-dimensional crystals

In this section an arbitrary finite crystal with long range (non-local) interactions between
its atoms is considered. At the expense of some rather heavy notation, the equations are
kept as explicit as possible.3
3In Elliott (2004) attention is also given to the analogous 1-D formulation in an effort to more clearly display

the general mathematical structure.
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2.1. Problem description

The potential energy of the crystal is derived as a function of the atomic displacements
from the reference configuration. A two-dimensional 4-lattice finite crystal of atoms, O,
consisting of the four sub-lattices L0;L1;L2;L3 is shown in Fig. 1. The atoms interact
through a set of long range multi-atomic potentials (not illustrated) and are subjected to a
set of externally applied forces f ‘

a

� �
(also not illustrated) on the ‘‘boundary atoms’’ (defined

below). The ‘‘extra’’ atoms comprising the positive faces of the crystal Fþ are included to
facilitate the subsequent application of periodic boundary conditions.

2.1.1. Multilattices

A three-dimensional simple lattice (1-lattice) is an infinite collection of discrete ‘‘lattice
points’’ in R3 generated by three non-coplanar lattice basis vectors Gi, such that each
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Fig. 1. Multilattice (M ¼ 4) description of a 2-D finite crystal showing the individual sub-lattices La, the

composite crystal O, and the fractional position vectors P½a� within a unit cell.
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lattice point has the position vector4

X½‘� ¼ ‘iGi; ‘i 2 Z, (2.1)

where the label ‘ for the lattice point is a short-hand notation referring to the triplet of
integers ‘i. The Gi’s for a lattice are not unique, but belong to a class of linearly
independent lattice vectors that generate all lattice points when the linear combinations
(Eq. (2.1)) are formed (see Miller, 1972). Associated with each set of lattice basis vectors Gi

is a set of ‘‘reciprocal lattice basis vectors’’ Gi defined by

Gi
�Gj ¼ di

j ðKroneker deltaÞ, (2.2)

while the metric tensor components in these bases are Gij � Gi �Gj, and Gij � Gi
�Gj. The

lattice vectors transform to and from the reciprocal lattice vectors through the above
defined metric tensor components

Gi
¼ GijGj ; Gi ¼ GijG

j, (2.3)

as do the components of any tensor.
An M-lattice is a collection of M distinct mono-atomic sub-lattices, with the same set of

basis lattice vectors Gi, which are located relative to each other by simple translations. The
M-lattice is described by giving the M relative position vectors P½a� of each sub-lattice with
respect to some imaginary ‘‘skeletal lattice’’. These relative position vectors are called the
‘‘fractional position vectors’’ (Sands, 1993), since their components range between zero
and one

P½a� ¼ Pi½a�Gi; 0pPi½a�o1; a ¼ 0; 1; . . . ;M � 1. (2.4)

This description allows the unique identification of each atom in the crystal with a single
sub-lattice index a and a single skeletal lattice point ‘. The reference position vector of
atom ‘

a

� �
is

X
‘

a

� �
¼ X½‘� þ P½a�; X½‘� � ‘iGi; P½a� � Pi½a�Gi, (2.5)

where X½‘� is the position vector of the skeletal lattice point ‘. Eq. (2.5) (arbitrarily)
chooses the skeletal lattice to be centered on the coordinate origin, implying X½0� ¼ 0. Each
periodic volume containing M atoms associated with the lattice point ‘ is called a ‘‘unit
cell’’ (see the shaded region in Fig. 1).

The 3-D finite crystal O, consisting of n � ð2NÞ3 unit cells, is chosen so that the domain
O is much larger than the effective range of atomic interactions (large N). This guarantees
that boundary effects on the crystal’s bulk properties can be neglected. Atoms belonging to
the zeroth sub-lattice are placed on the set of lattice points (which includes the positive
faces of the crystal Fþ, see Fig. 1)

Nþ � f‘ 2 Z3j �Np‘ipNg, (2.6)
4Unless otherwise specified, Latin indices represent spatial tensor components and Einstein’s summation

convention is employed for repeated indices (over i ¼ 1; 2; 3).
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resulting in the finite sub-lattice of atoms

L0 �
‘

0

� �
j‘ 2Nþ

� �
. (2.7)

The remaining sub-lattices have atoms on the set of lattice points (without the positive
faces)

N � f‘ 2 Z3j �Np‘ioNg, (2.8)

resulting in the M � 1 finite sub-lattices of atoms

La �
‘

a

� �
j‘ 2N

� �
; a ¼ 1; 2; . . . ;M � 1. (2.9)

The sub-lattices La for a ¼ 0; 1; . . . ;M � 1 are shown in Fig. 1 (for the case M ¼ 4). The
finite crystal O is the union of these sub-lattices

O �
[M�1
a¼0

ðLaÞ. (2.10)

Additionally, the subsets of lattice points Fþ;F� �L0 are defined as the three positive
faces, ‘1 ¼ N ; ‘2 ¼ N ; ‘3 ¼ N, and three negative faces, ‘1 ¼ �N; ‘2 ¼ �N; ‘3 ¼ �N, of
the crystal, respectively. These sets are illustrated for the 2-D crystal in Fig. 1 where it can
be seen that these faces only contain atoms from the finite sub-lattice L0.
If one imagines O as a subset of an infinite M-lattice the total force fT on atom ‘

a

� �
will have a component fO due to atoms in O and a component fOc due to atoms outside O,
i.e.,

fT
‘

a

� �
¼ fO

‘

a

� �
þ fOc

‘

a

� �
, (2.11)

where Oc is the (complementary) set of atoms in the infinite crystal outside the
parallelepiped O. Assuming the finite crystal O is large, only those atoms near the
boundary of O will have non-zero forces fOc

‘
a

� �
, due to the rapid decay of atomic forces

with distance. This set of atoms (which have ‘‘broken bonds’’ in the finite crystal) is called
the boundary of O,

qO �
‘

a

� �
2 O fOc

‘

a

� ����� ����4�

���� ��
, (2.12)

where � is a small number, and the remaining atoms in O, called interior atoms, are

O0 � OnqO ¼
‘

a

� �
2 O fOc

‘

a

� ����� ����o�

���� ��
. (2.13)

Note that Fþ [F� � qO (strictly), since in general the crystal faces Fþ and F� do not
constitute the entire set of boundary atoms qO.

2.1.2. Energy density and atomic potentials

Atoms in the crystal are assumed to interact through a set of atomic potentials given by
the individual atomic energy contributions c ‘

a

� �
resulting in the internal potential energy

density W of the finite crystal as a function of the atomic displacements u ‘
a

� �
from their
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reference positions X ‘
a

� �
W ðuÞ ¼

1

nV

X
‘
a

� �
2O

c
‘

a

� �
; u � u

‘

a

� �
‘

a

� �
2 O

���� ��
, (2.14)

where u is the vector of all atomic displacements and V ¼ G1 � ðG2 �G3Þ is the reference
unit cell volume.

Applied external forces on the boundary atoms are denoted by

f
‘

a

� �
;

‘

a

� �
2 qO. (2.15)

The total potential energy density for the finite crystal is

EðuÞ ¼W ðuÞ �
1

nV

X
‘
a

� �
2qO

f
‘

a

� �
� u

‘

a

� �
. (2.16)

The derivatives of the internal potential energy ðnVW Þ, Eq. (2.14), are often evaluated at
some specified configuration of the crystal (usually an equilibrium configuration), denoted
by u

o
, so it is convenient to introduce the following notation5:

F
o

i

‘

a

� �
�

qðnVW Þ

qui ‘
a

� � �����
u
o

; F
o

ij

‘ ‘0

a a0

� �
�

q2ðnVW Þ

qui ‘
a

� �
quj ‘0

a0

h i
������
u
o

. (2.17)

Eq. (2.17)1 represents the total sum of forces in the Gi direction on each atom due to all

other atoms in O, and Eq. (2.17)2 represents the stiffness between the atoms ‘
a

� �
and ‘0

a0

h i
in

O. With these definitions the energy density is expanded in powers of the perturbation

du ‘
a

� �
about the configuration u

o
as

Eðu
o
þduÞ ¼ Eðu

o
Þ þ

1

nV

X
‘
a

� �
2O

F
o

i

‘

a

" #
dui

‘

a

" #
þ

1

2

X
‘
a

� �
2O

X
‘0
a0
� �
2O

F
o

ij

‘ ‘0

a a0

" #
dui

‘

a

" #
duj

‘0

a0

" #
þ � � �

264
375

�
1

nV

X
‘
a

� �
2qO

f i

‘

a

" #
dui

‘

a

" #
. ð2:18Þ

For an arbitrary non-linear crystal the equilibrium and stability conditions must be
calculated numerically, in general, but can be analyzed by considering perturbed equations

in terms of the quantities F
o

i
‘
a

� �
and F

o

ij

‘ ‘0

a a0

� �
.

2.1.3. Translational invariance and periodicity relations

The internal energy density must be invariant with respect to arbitrary rigid-body
translations (u ‘

a

� �
� u

o ‘
a

� �
¼ d constant vector) of the configuration u

o
. Consequently, its
5In the remainder of this work, an ‘o’ above a variable indicates evaluation of the quantity at configuration u
o
.
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derivative with respect to d must be zero6

qW

qdi

����
d¼0

¼
X
‘
a

� �
2O

qW

quj ‘
a

� ������
u
o

quj ‘
a

� �
qdi
¼

1

nV

X
‘
a

� �
2O

F
o

i

‘

a

� �
¼ 0. (2.19)

Furthermore, higher-order derivatives of W must also be invariant with respect to rigid-
body translations, giving

q2W

qui ‘
a

� �
qdj

�����
d¼0

¼
1

nV

X
‘0
a0
� �
2O

F
o

ij

‘ ‘0

a a0

� �
¼

1

nV

X
‘0
a0
� �
2O

F
o

ji

‘0 ‘

a0 a

� �
¼ 0, (2.20)

where the symmetry of the coefficients F
o

ij

‘ ‘0

a a0

� �
with respect to its indices (due to their

definition as a second-order derivative of the internal energy),

F
o

ij

‘ ‘0

a a0

� �
¼ F

o

ji

‘0 ‘

a0 a

� �
, (2.21)

has been used in the second equality of Eq. (2.20). There is also a similar set of conditions
expressing the invariance of the energy density with respect to rigid-body rotations,
although these do not contribute anything in the present theory since rigid-body rotation
modes are eliminated by the application of periodic boundary conditions. The reader is
referred to Wallace (1998) for invariance relations corresponding to infinitesimal rigid-
body rotations.
The stability criteria discussed later pertain to 3-D crystals with deformed equilibrium

configurations that retain the periodicity of the referential 3-D multilattice. Consequently,
the deformed configuration of the M-lattice remains describable as an M-lattice, and thus,
the current atomic positions can be written in the form

x
o ‘

a

� �
¼ F

o

�X
‘

a

� �
þ s

o
½a� ¼ u

o ‘

a

� �
þ X

‘

a

� �
, (2.22)

where F
o

is the uniform deformation gradient tensor and s
o
½a� are the sub-lattice’s current

‘‘internal shift’’ vectors away from their affine locations. The space of equilibrium
configurations that are consistent with a user selected M-lattice description will be called
‘‘CB’’ configurations. For these equilibrium configurations the force and stiffness
coefficients, Eq. (2.17), must satisfy periodicity conditions for atoms in the interior of
the crystal

F
o

i

‘

a

� �
¼ F

o

i

‘ þ l

a

� �
;

‘

a

� �
;
‘ þ l

a

� �
2 O0, (2.23)

and

F
o

ij

‘ ‘0

a a0

� �
¼ F

o

ij

‘ þ l ‘0 þ l

a a0

� �
;

‘

a

� �
;
‘0

a0

� �
;
‘ þ l

a

� �
;
‘0 þ l

a0

� �
2 O0. (2.24)
6In fact, Eq. (2.19) is valid for any d. Evaluation at d ¼ 0 results in the corresponding expression in terms of the

coefficients F
o

i
‘
a

� �
.
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2.2. Phonon model

All three of the stability criteria (phonon, CB, and HC) will address stability of a CB
configuration of the form of Eq. (2.22), but the perturbations that they allow are different.
In this section, the phonon-stability criterion for 3-D crystals is derived using the atomistic
model presented in the previous section. This criterion addresses stability of CB
equilibrium configurations of the form of Eq. (2.22).

2.2.1. Microscopic equilibrium and phonon-stability conditions

The conditions for u
o
to be an equilibrium configuration are given by

qE

qui ‘
a

� ������
u
o

¼ 0

‘ 2 O;

a ¼ 0; 1; . . . ;M � 1;

i ¼ 1; 2; 3:

8><>: (2.25)

Using Eq. (2.18) equilibrium becomes

F
o

i

‘

a

� �
¼

0;
‘

a

� �
2 O0;

f i

‘

a

� �
;

‘

a

� �
2 qO:

8>>>><>>>>: (2.26)

This expresses ‘‘microscopic’’ equilibrium of each atom. Application of the translational
invariance relation, Eq. (2.19), results in an expression of global force equilibrium, orX

‘
a

� �
2qO

f i

‘

a

� �
¼ 0. (2.27)

Stability of the crystal is evaluated by considering the linearized dynamical behavior of
the system about its equilibrium configuration with periodic boundary conditions, given by

mad €uj
‘

a

� �
¼ �

X
‘0
a0
� �
2O

GjkF
o

kp

‘ ‘0

a a0

� �
dup

‘0

a0

� �
,

du
‘

0

� �
¼ du

‘0

0

� �
;

‘

0

� �
2Fþ;

‘0

0

� �
2F�, (2.28)

where €ð Þ � q2ð Þ=qt2 (t is time), ma is the mass of atom a, and ‘
0

� �
and ‘0

0

h i
in Eq. (2.28)2 are

located directly across from each other on their respective positive and negative crystal
faces. Of interest are the normal modes of vibration (eigenmodes of Eq. (2.28)) that are
characteristic of the bulk material, which means that the effect of free surfaces on the
stability of the crystal will be neglected. The application of periodic boundary conditions,
Eq. (2.28)2, first introduced by Born, is now customary and can be interpreted as providing
a procedure for obtaining a ‘‘representative sampling’’ of vibration modes in an infinitely
extended crystal (see further, Born and Huang, 1962, p. 45). Additionally, the use of
periodic boundary conditions restricts the stability criterion to consider perturbations with
zero average deformation of the specimen and thus eliminates ‘‘structural’’ type modes
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(such as bending) and uniform deformations (such as multi-axial strain and uniform
dilatation) from consideration. Note that periodic boundary conditions are not applied to

the entirety of qO but only to the faces Fþ and F� �L0. Furthermore, the rigid-body
translation modes are still included in Eq. (2.28) and must be eliminated before any
stability criterion is applied.
The 3-D crystal is considered stable if there exists a dð�Þ40 such that for any given �40

solutions to the linearized equations of motion Eq. (2.28) satisfy

du
‘

a

� �
ð0Þ

���� ����; d_u
‘

a

� �
ð0Þ

���� ����o�; ) du
‘

a

� �
ðtÞ

���� ����; d_u
‘

a

� �
ðtÞ

���� ����odð�Þ 8t40, (2.29)

where du ‘
a

� �
ð0Þ and d_u ‘

a

� �
ð0Þ are the respective vector of initial displacements and velocities

at time t ¼ 0, and �k k is any norm for u ‘
a

� �
. Equivalently, for the conservative system under

consideration, all solutions remain bounded if and only if all eigenvalues of the global

stiffness matrix F
o

ij

‘ ‘0

a a0

� �
(with the rigid-body modes eliminated) are positive.

2.2.2. Block-diagonalization of the system’s global stiffness matrix

The equations of motion, Eq. (2.28), are a set of 3Mn� 3Mn linear, constant coefficient,
ordinary differential equations with exponential solutions of the form

duj
‘

a

� �ðrÞ
¼ Duj

‘

a

� �ðrÞ
expfioðrÞtg; r ¼ 1; 2; . . . ; 3Mn; (2.30)

where i �
ffiffiffiffiffiffiffi
�1
p

, Duj ‘
a

� �ðrÞ
are the eigenvectors, and oðrÞ are the corresponding cyclic

frequencies. The normal modes of vibration in the crystal are referred to as phonons, taken
from the condensed matter physics literature, and every solution of Eq. (2.28) can be
expressed as a linear combination of the 3Mn independent phonon modes (Eq. (2.30)).
Stability requires that the phonon frequencies be real quantities, or equivalently all

ðoðrÞÞ240; r ¼ 4; 5; . . . ; 3Mn; (2.31)

where the rigid-body translation modes are associated with r ¼ 1; 2; 3 (rigid-body rotations
having been eliminated by the periodic boundary conditions).

Generally, diagonalization of the stiffness matrix GjkF
o

kp

‘ ‘0

a a0

� �
of Eq. (2.28) to

determine the phonon frequencies is a time consuming computation due to the large

dimension of the system (3Mn, with the number of cells n � ð2NÞ3 large). Fortunately, the
periodicity conditions, Eq. (2.24), ensure that a block-diagonalization (to 3M � 3M

blocks) exists, which greatly reduces the computational effort required to obtain the
phonon frequencies.7

The block-Fourier transform for the 3-D crystal’s displacement perturbation is

dbuj h

a

� �
¼

1ffiffiffi
n
p

X
‘2N

duj
‘

a

� �
expfiðk½h� � X½‘�Þg, (2.32)
7The periodicity conditions (Eq. (2.24)) imply that the stiffness matrix is ‘‘block-circulant’’ (Davis, 1994), and

therefore, the existence of the block-diagonalization is ensured.
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and the inverse block-Fourier transform is

duj
‘

a

� �
¼

1ffiffiffi
n
p

X
h2N

dbuj h

a

� �
expf�iðk½h� � X½‘�Þg. (2.33)

Here, k½h� is the wave vector with respect to the reference configuration

k½h� ¼ 2p
hj

2N
Gj ; hj 2N, (2.34)

and h � hj (a triplet of indices) are the coordinates of reciprocal lattice points. Defining the
Fourier transform on the set of lattice points N results in the automatic application of
periodic boundary conditions when the crystal’s equations of motion, Eq. (2.28), are
transformed to Fourier-space (see Elliott, 2004 for further details).

Taking the block-Fourier transform of Eq. (2.28), substituting the inverse transform,

Eq. (2.33), for du ‘0

a0

h i
on the right hand side, and combining the exponential terms results in

the Fourier-space equations of motion8

mad
€̂uj

h

a

" #
¼ �

1

n

XM�1
a0¼0

X
h02N

X
‘2N

X
‘02Nþ

GjkF
o

kp

‘ ‘0

a a0

" #"

� expfiðk½h� � X½‘� � k½h0� � X½‘0�Þg

#
dbup

h0

a0

" #
, ð2:35Þ

which after multiplying and dividing by expfik½h0� � X½‘�g can be written as

mad
€̂uj

h

a

" #
¼ �

1

n

XM�1
a0¼0

X
h02N

X
‘2N

expfiðfk½h� � k½h0�gÞ � X½‘�g

"

�
X
‘02Nþ

GjkF
o

kp

‘ ‘0

a a0

" #
expf�iðk½h0� � fX½‘0� � X½‘�gÞg

#
dbup h0

a0

� �
. ð2:36Þ

In the interior of the crystal the stiffness coefficients F
o

ij

‘ ‘0

a a0

� �
correspond to a block-

circulant matrix. The non-circulant boundary effects are small since a ‘‘large’’ crystal, where
the number of boundary atoms is much smaller than the number of interior atoms, is

considered. Neglecting these boundary effects and replacing F
o

with a purely block-circulant

approximation is called ‘‘evaluating in the interior’’ and involves replacing F
o

ij

‘ ‘0

a a0

� �
by

F
o

ij

0 ‘0 � ‘

a a0

� �
, relabeling ð‘0 � ‘Þ as ‘00 and noting that X½‘00� ¼ X½‘0� � X½‘�, which results in

mad
€̂uj

h

a

" #
¼ �

1

n

XM�1
a0¼0

X
h02N

X
‘2N

expfiðfk½h� � k½h0�gÞ � X½‘�g

"

�
X

‘002Nþ

GjkF
o

kp

0 ‘00

a a0

" #
expf�iðk½h0� � X½‘00�Þg

#
dbup

h0

a0

" #
, ð2:37Þ
8For the summations
PM�1

a0¼0

P
‘02Nþ ð�Þ, the terms

PM�1
a0¼1

P
‘02Fþ[F� ð�Þ are implicitly set to zero since they

involve atoms ‘
a

� �
eO which are outside the finite crystal.
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where the sum on ‘ is now independent of the sum on ‘00. It is well known that the finite
Fourier modes (or basis vectors) are orthonormal giving, in particular,X

‘2N

expfiðfk½h� � k½h0�gÞ � X½‘�g ¼ ndh0h; dh0h ¼
1; h0j ¼ hj ; j ¼ 1; 2; 3;

0; otherwise:

(
(2.38)

Thus, the equations of motion are expressed more simply as (with the sum on ‘ canceling the
factor of n)

mad
€̂uj h

a

� �
¼ �

XM�1
a0¼0

X
‘02Nþ

GjkF
o

kp

0 ‘0

a a0

� �
expf�iðk½h� � X½‘0�Þg

" #
dbup h

a0

� �
(2.39)

for all h 2N.

2.2.3. Phonon frequencies—normal modes of vibration

It is convenient to change variables, normalize by the atomic masses, and introduce a
complex phase factor to recast the eigenvalue problem in terms of perturbations dbv h

a

� �
defined by

dbuj h

a

� �
¼

expf�iðk½h� � P½a�Þgffiffiffiffiffiffi
ma
p dbvj h

a

� �
. (2.40)

Substituting into the transformed equations of motion (Eq. (2.39)) gives

d €̂vj h

a

� �
¼ �

XM�1
a0¼0

Kj
p

h

a a0

� �
dbvp h

a0

� �
; 8h 2N, (2.41)

with the ‘‘dynamical matrix’’ Kj
p

h

a a0

� �
defined by

Kj
p

h

a a0

� �
� ðmama0 Þ

�1=2
X
‘02Nþ

GjkF
o

kp

0 ‘0

a a0

� �
exp �ik½h� � X

‘0

a0

� �
� X

0

a

� �
 �� �
.

(2.42)

The dynamical matrix, Eq. (2.42), is a 3M � 3M matrix, which has real eigenvalues.9 It
therefore has real eigenvalues denoted by ðoðqÞ½h�Þ2, q ¼ 1; 2; . . . ; 3M. Assuming
exponential solutions, dbvj h

a

� �
¼ Dbvj h

a

� �
expfioðqÞ½h�tg, the final eigenvalue problem is

ðoðqÞ½h�Þ2Dbvj h

a

� �ðqÞ
¼
XM�1
a0¼0

Kj
p

h

a a0

� �
Dbvp h

a0

� �ðqÞ
; 8h 2N; q ¼ 1; 2; . . . ; 3M.

(2.43)

The perturbations remain bounded for all time if the square of each phonon frequency
oðqÞ½h� is positive. The crystal is phonon-stable if

ðoðqÞ½h�Þ240
for ha0; q ¼ 1; 2; . . . ; 3M ;

for h ¼ 0; q ¼ 4; 5; . . . ; 3M ;

(
(2.44)
9Wallace (1998) shows thatK is Hermitian with respect to an orthonormal coordinate system. See Elliott (2004)

for a demonstration of its Hermitian nature with respect to the non-orthogonal set of lattice basis vectors used

here.
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where the second line omits the rigid-body translation modes (labeled q ¼ 1; 2; 3 and
corresponding to k½0� ¼ 0, since for this special case Duj ‘

a

� �
¼ d) from the stability

criterion. All solutions of Eq. (2.28) are given by combining Eqs. (2.33) and (2.40)

duj
‘

a

� �
¼

1ffiffiffiffiffiffiffiffiffi
man
p

X
h2N

X3M

q¼1

Dbvj h

a

� �ðqÞ
exp �i k½h� � X

‘

a

� �
� oðqÞ½h�t


 �� �
, (2.45)

where Dbvj h
a

� �ðqÞ
is the eigenvector of Eq. (2.43) associated with the eigenvalue ðoðqÞ½h�Þ2.
2.2.4. Zero wave vector limit—acoustic and optic phonons

As the wave vector k approaches zero, phonon-stability pertains to long wavelength
perturbations of the crystal structure, and a distinction between ‘‘acoustic’’ and ‘‘optic’’
phonon-modes develops. As discussed by Dove (1993), a general 3-D crystal with M atoms
per unit cell will have 3M different dispersion branches for each wave vector direction.
There are three acoustic branches that correspond to rank-one ‘‘quasi-uniform’’
deformations10 of the crystal in the long wavelength limit. The remaining 3M � 3
branches are optic branches that represent perturbations with period close to the unit cell
spacing in the neighborhood of k ¼ 0. At exactly k ¼ 0 the optic modes exist with non-zero
cyclic frequency and pertain to a deformation with unit cell period where the sub-lattices
move rigidly with respect to one another. The acoustic modes in the neighborhood of
k ¼ 0 represent internally equilibrated long wavelength modes. The acoustic branches at
k ¼ 0 correspond to the rigid-body translations of the crystal (with zero cyclic frequency)
and do not coincide with their limiting behavior (tending toward a rank-one quasi-uniform
perturbation).

In the limit N !1, where all unit cells in the infinite crystal are considered (i.e.,

‘ 2 Z3), the matrix Ki
j

k

a a0

� �
becomes a continuous, differentiable function of k except

at k ¼ 0. In fact, the limk!0K
i
j

k

a a0

� �
is well defined for k! 0 only along a fixed

direction n (Wallace, 1998). Thus, any examination of the long wavelength behavior of the
crystal must specify a fixed n direction and expand about the magnitude of k.

Taking k ¼ kn, nk k ¼ 1 the eigenvalue problem (Eq. (2.43)) is

ðoðqÞðknÞÞ2Dbvj kn

a

� �ðqÞ
¼
XM�1
a0¼0

K j
r

kn

a a0

� �
Dbvr kn

a0

� �ðqÞ
. (2.46)

Expanding the quantities o and Dbv in k (as in Born and Huang (1962) and Wallace (1998))
and suppressing the index q (for notational simplicity) gives

oðknÞ ¼ o
½0�
ðnÞ þ o

½1�
ðnÞk þ o

½2�
ðnÞ

k2

2
þ � � � , (2.47)
10Note: the term ‘‘homogeneous’’ is often used (see Born and Huang, 1962; Wallace, 1998), but here the term

‘‘quasi-uniform’’ is introduced in an effort to be more precise. Quasi-uniform deformation should not be confused

with a uniform or affine deformation. A quasi-uniform deformation can be viewed as having sub-lattices that

deform uniformly, but shifts between them are still allowed. A uniform or affine deformation, by contrast, has no

such internal shifts and all sub-lattices move in ‘‘lock-step’’ with the unit cell deformation.
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Dbvj kn

a

� �
¼ D v

½0�j
n

a

� �
þ D v

½1�j
n

a

� �
ik þ D v

½2�j
n

a

� �
k2

2
þ � � � . (2.48)

The corresponding expansion of K is

K
j
k

kn

a a0

� �
¼ K
½0�

j
k½a a0� þK

½1�
j;p
k ½a a0�npik þK

½2�
j;pq
k ½a a0�npnq

k2

2
þ � � � , (2.49)

with the coefficients defined by (now summing over integers in Z3)

K
½0�

j
k½a a0� ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mama0
p

X
‘02Z3

GjrF
o

rk

0 ‘0

a a0

� �
,

K
½1�

j;p
k ½a a0� ¼

�1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mama0
p

X
‘02Z3

GjrF
o

rk

0 ‘0

a a0

� �
X p

‘0

a0

� �
� X p

0

a

� �
 �
,

K
½2�

j;pq
k ½a a0� ¼

�1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mama0
p

X
‘02Z3

GjrF
o

rk

0 ‘0

a a0

" #
X p

‘0

a0

" #
� X p

0

a

" # !

� X q
‘0

a0

" #
� X q

0

a

" # !
. ð2:50Þ

Acoustic phonons: The long wavelength acoustic phonon frequencies are determined up
to first order in k, and the resulting expressions are used later to establish the equivalence
of long wavelength phonons and elastic wave solutions for the HC model (Section 2.4).
The acoustic phonon modes are defined by the property o! 0 as k! 0, implying

o
½0�
ðnÞ ¼ 0. In Appendix A, the expansions Eqs. (2.47)–(2.49) are substituted into the

eigenvalue problem Eq. (2.46) and a lengthy calculation (following Wallace, 1998) results

in an eigenvalue problem for the first order frequencies o
½1�
ðnÞ and the zeroth-order

eigenvectors D v
½0� n

a

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mcma
p

~vðnÞ given by

ðo
½1�
ðnÞÞ2 ~vjðnÞ ¼

GjkZk
p
l

q

mc=V

" #
npnq ~v

lðnÞ; j ¼ 1; 2; 3, (2.51)

where mc is the total mass of one unit cell. The ‘‘dynamical coefficients’’ Zk
p
l

q
governing the

behavior of the long wavelength acoustic phonons are given by

Zk
p
l

q
�
�1

2V

XM�1
a¼0

X
‘0
a0
� � Fo nk

0 ‘0

a a0

" #
X p

‘0

a0

" #
� X p

0

a

" # !
Ln;q

l ½a�

(264
þ X q

‘0

a0

" #
� X q

0

a

" # !
Ln;p

l ½a�

)

þ
X
‘0
a0
� � Fo kl

0 ‘0

a a0

" #
X p

‘0

a0

" #
� X p

0

a

" # !
X q

‘0

a0

" #
� X q

0

a

" # !375, ð2:52Þ
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where ‘0 is summed over Z3, a0 is summed over 0; . . . ;M � 1; and the quantities Ln;p
j ½a� are

defined by Eq. (A.16) of Appendix A.
These coefficients describe the crystal’s response to rank-one long wavelength traveling

waves and are therefore related to the HC behavior of the material.
Optic phonons: The long wavelength optic phonons are distinguished by the property

that o 6! 0 as k! 0. The zeroth-order (infinite wavelength) optic phonon frequencies are
determined by substituting the expansions Eqs. (2.47)–(2.49) into the eigenvalue problem
Eq. (2.46). This results in the eigenvalue problem, of dimension 3M � 3, which determines
the 3M � 3 (infinite wavelength) optic mode frequencies

ðo
½0�
ðnÞÞ2D v

½0� j
n

a

� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
mama0
p

XM�1
a0¼0

X
‘02Z3

GjpF
o

pk

0 ‘0

a a0

� �
D v
½0� k

n

a0

� �
, (2.53)

where one of the D v
½0� n

a

� �
(say a ¼ 0) are set equal to zero so as to eliminate the translational

modes. These phonon modes correspond to periodic modes over the unit cell, i.e., rigid
translations of the crystal’s sub-lattices with zero average strain for the unit cell. Hence,
they are related to the CB behavior of the material, as shown in the next section.

2.3. CB continuum model

Often the engineering problem of interest is at a length-scale much larger than the atomic
length-scale of Section 2.1. In these cases it is impractical to explicitly consider all atomic
DOFs, and a continuum model based on a reduced set of DOFs is desired. Of course, such a
model inherently contains less information than the corresponding full atomic model and
cannot consider all possible modes of instability. In this subsection the atomic model is
homogenized according to CB kinematics, and the new 3-D CB-stability criterion is defined.

2.3.1. CB kinematics

CB kinematics give the current position vectors in terms of the uniform deformation
gradient tensor F and the internal shift vectors s½a�

x
‘

a

� �
¼ F � X

‘

a

� �
þ s½a�, (2.54)

where now F and s½a� do not necessarily correspond to an equilibrium configuration. The
internal shift s½0� ¼ 0 is set to zero to eliminate the three rigid-body translation degrees of
freedom. The essential characteristic of the CB kinematic assumption is that it takes a 3-D
M-lattice into another 3-D M-lattice. Additionally, as shown below, the equilibrium
equations written in terms of CB DOFs ensure that ‘‘microscopic’’11 equilibrium of each
atom can be obtained.

2.3.2. Equilibrium and CB-stability conditions

Substituting CB kinematics into the total energy density expansion, Eq. (2.18), and
introducing the notation

s ¼ s½1�; s½2�; . . . ; s½M � 1�
� 

(2.55)
11Since the atomic scale is actually the nano-scale, ‘‘micro’’ and ‘‘macro’’ are used in this context to distinguish

between discrete and continuum viewpoints, not necessarily to indicate the actual length-scale.
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for the internal shift vectors results in the CB energy density

~EðF; sÞ � E u
‘

a

� �
ðF; sÞ


 �
, (2.56)

which can be expanded about the configuration ðF
o

; s
o
Þ as
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ð2:57Þ

where the shorthand notation, ‘ 2 qO, indicates the summation over all skeletal lattice
points in qO, and the sums on a range over 1; :::;M � 1 (since ds½0� ¼ 0). The conditions for
configuration u

o
to satisfy equilibrium are given by the first-order derivatives of the CB

energy density

q ~E
qF i

j

�����
F
o
;s
o

¼
1

nV

X
‘
a
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2O

F
o

i

‘

a
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X j

‘

a

� �
�

1

nV

X
‘
a

� �
2qO

f i

‘

a

� �
X j

‘

a

� �
¼ 0, (2.58)

and

q ~E
qsi½a�

����
F
o
;s
o
¼

1

nV

X
‘2Nþ

F
o

i

‘

a

� �
�

1

nV

X
‘2qO

f i

‘

a

� �
¼ 0. (2.59)

Together Eqs. (2.58) and (2.59) imply that ‘‘microscopic’’ equilibrium, Eq. (2.25), is
satisfied. To prove this, it is first assumed that the boundary forces f ‘

a

� �
are applied at the

atomic scale to all atoms in the ‘‘boundary layer’’ so that Eq. (2.26) is satisfied for atoms in
qO. If this is not the case, then the boundary layer will exhibit non-uniform deformation
which cannot be accommodated by CB kinematics. It remains to be shown that with this
assumption Eq. (2.26) is satisfied for the atoms in O0 when Eqs. (2.58) and (2.59) are
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satisfied. Eq. (2.59) is now given by

q ~E
qsi½a�

����
F
o
;s
o
¼

1

nV

X
‘2O0

F
o

i

‘

a

� �
¼ 0, (2.60)

for aa0. Using the periodicity condition, Eq. (2.23), F
o

i
‘þl
a

� �
¼ F

o

i
‘
a

� �
, Eq. (2.60) becomes

F
o

i

‘

a

� �
¼ 0; aa0. (2.61)

Recalling that F
o

i

‘

a

� �
represents the sum of forces on an atom, this shows that each atom

of type aa0 is in force equilibrium. Due to the assumed values for f ‘
a

� �
Eq. (2.58) reduces

to
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qFi
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F
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¼ 0. (2.62)

Using the periodicity condition (Eqs. (2.23) and (2.61)), Eq. (2.62) can be written as

F
o

i

‘

0

� �
1

nV

X
‘02O0

X j
‘0

0

� �0@ 1A ¼ 0. (2.63)

It is easily seen that the forces on each atom of type 0 are balanced, i.e., F
o

i
‘
0

� �
¼ 0. The

reader may notice that the summation of the term in parentheses in Eq. (2.63) is actually
zero due to the choice of coordinate system, but for a different choice of coordinate system
this summation is not zero. This proves that Eqs. (2.58) and (2.59) assure that every atom
in the 3-D crystal is in force equilibrium.

An equilibrium configuration u
o
is CB-stable if it is a local minimum of the energy density

~EðF; sÞ. Equivalently, the second derivative of ~E must be positive definite with respect to all
non-zero symmetric12 right stretch tensor perturbations dU and all non-zero internal shift
perturbations ds

½dU; ds�
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12The restriction to symmetric deformation tensor perturbations eliminates rigid-body rotations from the

stability criterion.
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40. ð2:64Þ

The stability operator has dimension ð3M þ 3Þ � ð3M þ 3Þ.
There is overlap between the phonon-stability and CB-stability criteria. If one

considers perturbations with no uniform deformation component, dU ¼ 0, then the
components q2 ~E=qs2 of the CB-stability matrix, Eq. (2.64) (in the limit as n!1,
for the infinite crystal), are positive definite only if the optic phonon equations (2.53) have

positive eigenvalues, ðo
½0�
ðnÞÞ240. However, there is significant non-overlap between the

perturbations they address. Thus, the phonon- and CB-stability criteria are, in a
sense, complementary. The phonon-stability criterion indicates stability with respect to
bounded perturbations of all wavelengths. These perturbations approach the
rank-one uniform perturbations, in the limit as k! 0, but do not contain all
possible quasi-uniform perturbations. On the other hand, CB-stability indicates
stability with respect to all quasi-uniform perturbations but not for all finite wavelength
modes.
2.4. Homogenized continuum (HC) model

Eliminating the internal shifts from the CB model to obtain an HC model is a prevalent
approach encountered in the literature (Bhattacharya, 2003; Pitteri and Zanzotto, 2002).
Physically this may be reasonable, since one can imagine the characteristic time scale for
the internal variable’s dynamic evolution to be much shorter than the rate of evolution for
the uniform deformation F. In this subsection the CB model is reduced to the HC model,
the HC-stability criterion is presented, and it is demonstrated that the elastic wave
solutions to the equations of motion for the HC model are equivalent to the long
wavelength acoustic phonon modes.
The HC energy density is defined by

E
�

ðFÞ � ~EðF; sðFÞÞ, (2.65)

where sðFÞ is obtained implicitly by Eq. (2.59). Note that this definition does not guarantee
that the shifts correspond to local energy minimum. In particular, if a k ¼ 0 optic phonon-
mode is unstable, then the shifts will correspond to a local energy maximum with respect to
the shift DOFs. Often an energy minimization definition of the HC energy density is
advocated (Pitteri and Zanzotto, 2002), e.g. E

�

ðFÞ � inf sð ~EðF; sÞÞ. We prefer to adopt the
homogenized energy density defined in Eq. (2.65), which is consistent with the long
wavelength asymptotic phonon calculation.
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2.4.1. Elimination of internal shift DOFs

The non-linear system of equilibrium equations (2.59) is analyzed through the perturbed
internal shift equilibrium equations
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To first order in dF the internal shift perturbations from their equilibrium values are
defined byX
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This expression is closely related to the first order equations (A.7) obtained in the long
wavelength acoustic phonon asymptotics of Appendix A. Adding zero in the form

0 ¼
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(due to the translational invariance relations Eq. (2.20)) to

the right hand side of Eq. (2.67) and making the following associations
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reveals that the form of Eq. (A.7) and Eq. (2.67) are identical. Therefore, following the
arguments of Appendix A, the shift perturbations are

dsi½a� ¼ �Li;k
j ½a�dF

j
k, (2.69)

where Li;k
j ½a� is defined by Eq. (A.16).

Next, the internal shifts are eliminated from the energy density by the corresponding
equilibrium equations. Substitution of Eq. (2.67) in the ðds½a�ds½a0�Þ term of Eq. (2.57)
results in a cross term ðdFds½a�Þ which combines with the existing cross term. Then Eq.
(2.69) is substituted for the shifts and simplification leads to the HC energy
density
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Because the shifts are implicit (hidden) in the HC description, only the components of dF
remain as apparent perturbation DOFs. For brevity, we call these ‘‘uniform’’
perturbations. These are a subset of the (CB) ‘‘quasi-uniform’’ perturbations where the
shifts remain as explicit DOFs.
2.4.2. Equilibrium and HC-stability conditions

In general an HC energy density E
�

ðFÞ can be expanded as

E
�

ðF
o

þdFÞ ¼ E
�

ðF
o

Þ þ P j
i dFi

j þ
1

2
L

i

j

k

ldFi
jdF k

l þ � � �

� �
�P j

i dFi
j, (2.71)

where P j
i are the ‘‘first Piola–Kirchhoff’’ stress components and Li

j
k
l are the ‘‘elastic

moduli’’ components.
The HC equilibrium conditions are
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Comparing Eqs. (2.70) and (2.71) the expression for the applied first Piola–Kirchhoff stress
is revealed to be

P j
i �

1

nV

X
‘
a

� �
2O

F
o

i

‘

a

� �
X j

‘

a

� �
¼

1

nV

X
‘
a

� �
2qO

f i

‘

a

� �
X j

‘

a

� �
, (2.73)

where Eq. (2.72) has been used to obtain the second equality in Eq. (2.73). The elastic
moduli for the HC model are similarly found to be
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(2.74)

The HC-stability criterion, which ensures the equilibrium configuration is an energy
minimizer with respect to ‘‘uniform’’ perturbations (consistent with the long wavelength
acoustic phonons), is that Li

j
k
l be positive definite with respect to all symmetric uniform

deformation perturbations, or

dUi
jðLi

j
k
l
ÞdUk

l40; 8dU ¼ dUTa0. (2.75)

The linearized equations of motion for a 3-D continuum are given by

rd €uj ¼ ðGjkLk
p
l
q
Þ

q2dul

qX qqX p , (2.76)

where r is the reference mass density. Assuming rank-one traveling plane wave solutions of
the form duj ¼ Duj expf�iðk � X� oðkÞtÞg, substituting L from Eq. (2.74) and considering
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the limit as n!1 results in
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where the sums on ‘ and ‘0 range over Z3. Noting that the sums over the spatial indices p

and q ensure that only the symmetric part of Lk
p
l
q contributes gives
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Adding the following terms, which are individually zero by the translational invariance
relation, Eq. (2.20),
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to the right hand side of Eq. (2.78), rearranging and evaluating in the interior gives
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Table 1

Number of HC eigenvalues corresponding to rank-one and non-rank-one eigenmodes for the seven crystal

symmetry classes and isotropic materials

Symmetry Number of HC eigenvalues corresponding to

Rank-one modes Non-rank-one modes

Isotropic 5 1

Cubic 5 1

Hexagonal 4 2

Trigonal 4 2

Tetragonal 4 2

Orthorhombic 3 3

Monoclinic 2 4

Triclinic 0 6
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Recalling that the reference mass density of the crystal is r ¼ mc=V allows Eq. (2.80) to be
written as

ðoðkÞÞ2Duj ¼
GjkZk

p
l
q

mc=V

" #
kpkqDul , (2.81)

where the dynamical coefficients Zk
p
l
q are defined in Eq. (2.52). The eigenvalue problem

for the HC (rank-one) elastic waves is identical to Eq. (2.51) for the long wavelength
acoustic phonons, thereby proving that they are equivalent. The dynamical coefficients
Zk

q
l

p
¼ ½Lk

q
l

p
þ Lk

q
l

p
�=2 are the symmetric part (in p; q) of the elastic moduli, Eq. (2.74).

Appendix B derives the inverse relationship which establishes the elastic moduli in terms of
the dynamical coefficients.
Since the dynamical coefficients are defined in terms of the HC elastic moduli (see Eq.

(2.71)), it follows that each of the long wavelength acoustic phonon frequencies can be
expressed explicitly in terms of the six HC elastic moduli eigenvalues. Cowley (1976) has
classified each HC eigenvalue, for each crystal symmetry class, based on the existence of a
phonon frequency which goes to zero when the corresponding HC eigenvalue vanishes.13

This classification identifies the number of eigenvalues corresponding to rank-one
eigenmodes. Table 1 presents the number of HC eigenvalues corresponding to rank-one
and non-rank-one eigenmodes for each of the seven crystal symmetry systems and for an
isotropic material. As can be seen, HC rank-one convexity, in general, is not sufficient to
guarantee HC-stability.

3. Discussion of phonon-, CB- and HC-stability criteria

Each of the three stability criteria considered interrogates a different set of perturbations
and no single set encompasses the other two; however, some overlap exists. Therefore, this
section discusses the relative strengths of the different stability criteria. A Venn-like
diagram of the space of all perturbations of an infinite perfect M-lattice about an
equilibrium state is shown in Fig. 2, and Table 2 presents a comparison of the five disjoint
sets (a)–(e) that make up the space of perturbations collectively considered by the three
13See also Terhune et al. (1985), for corrections to the results in Cowley (1976).
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Space of all perturbations

(a)

(b)(c)

(d)

(e)

phonon
perturbations

long wavelength

acoustic
perturbations

HC
perturbations

CB
perturbations

Fig. 2. Perturbation space for perfect M-lattices showing: (a) bounded perturbations of all wavelengths; (b) quasi-

uniform perturbations corresponding to optic phonon modes; (c) rank-one ‘‘uniform’’ perturbations

corresponding to acoustic phonon modes; (d) non-rank-one ‘‘uniform’’ perturbations; and (e) all other quasi-

uniform perturbations.
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stability criteria. Set (a) consists of bounded perturbations (of an infinite crystal) of all
wavelengths where ka0 and no macroscopic deformation of the crystal exists, since
dU ¼ 0. All atomic DOFs are explicitly considered in the perturbation and thus, both optic
and acoustic phonon modes are included. The atomic DOFs for the remaining
perturbation sets (b)–(e) conform to CB kinematics. Set (b) consists of the infinite
wavelength (k ¼ 0) optic phonon modes where the sub-lattices translate rigidly with
respect to one another, i.e., dU ¼ 0 but ds½a�a0. Set (c) consists of the rank-one ‘‘uniform’’
perturbations where dF ¼ da
 n (or equivalently dU ¼ ðda
 nÞs, where the subscript s

indicates the symmetric part of the quantity in parenthesis) and the internal shift
perturbations are constrained according to equilibrium. Set (d) consists of the non-rank-
one ‘‘uniform’’ perturbations where again the internal shifts are constrained according to
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Table 2

Comparison of the five perturbation sets of Fig. 2
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equilibrium. Set (e) consists of all quasi-uniform perturbations that have non-zero dU and
independent ds perturbations.
The leftmost column of Table 2 indicates the sets of perturbations considered by the

three stability criteria. Thus, the phonon-stability criterion investigates the trapezoidal
region of perturbations in Fig. 2 given by the union of sets (a) and (b). The CB-stability
criterion investigates the circular region (Fig. 2) of perturbations given by the union of sets
(b)–(e). The HC-stability criterion investigates the rectangular region of perturbations
given by the union of sets (c) and (d). Stability information about the set of perturbations
(c) can also be obtained with Born’s method of long waves, consisting of an asymptotic
analysis of the long wavelength acoustic phonon modes. It should be noted that the set of
CB perturbations depends on the choice of M-lattice. However, the phonon perturbations
of an equilibrium configuration are independent of this choice. This important point is
discussed further in the context of the application presented in Part II.
Stability of a solid depends on the type of loading device used. For hard-device loading

(which imposes displacement conditions on the entire boundary of the body), classical
continuum mechanics indicates that HC rank-one-convexity (stability of region (c) in
Fig. 2) is necessary and sufficient for stability. When information is available about the
microstructure of a material, the HC rank-one-convexity criterion must be extended down
to all appropriate length scales. The phonon-stability criterion does exactly this for the
crystalline models considered here. Thus, for hard-device loading (which imposes periodic
displacement conditions on the entire boundary of the body), necessary and sufficient
conditions for crystal stability are phonon-stability and its limiting behavior (HC rank-
one-convexity), i.e., stability with respect to all perturbation modes in regions (a)–(c) of
Fig. 2. Stability of this type is called ‘‘constrained material stability’’.
Stability with respect to soft-device loading is more difficult to establish. Stability under

soft-device loading conditions (i.e., where displacement on part of the boundary is not
constrained) requires consideration of a boundary value problem, which includes
‘‘structural’’ modes such as bending (strain gradient) or surface modes. Thus, no
constitutive-level criterion can provide necessary and sufficient conditions for stability.
Therefore, our goal is to propose the strongest possible necessary criterion for stability
under soft-device loading conditions. In this spirit, necessary conditions for stability
require the equilibrium configuration to correspond to a local energy minimum, point-wise
at the homogenized scale. This is ensured by requiring both CB- and phonon-stability
criteria to be satisfied. Note that the CB criterion is chosen in preference to the HC
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criterion because the CB criterion interrogates all quasi-uniform perturbations of the
energy density, some of which are ignored by the HC criterion. It is, therefore, proposed
that ‘‘material stability’’ be defined such that both phonon- and CB-stability are satisfied,
i.e., stability with respect to all perturbations in regions (a)–(e) of Fig. 2.

4. Summary and conclusions

The stability of crystalline solids is a fundamental problem addressed by the physics,
materials science, and mechanics communities. There is strong interest in this subject due to
novel engineering applications for phase transformations. This work investigates equilibrium
configurations and stability properties of multi-atomic perfect crystals from an atomic
viewpoint. Stability criteria with respect to perturbations at the atomic scale (phonon-
stability) and the continuum scale (homogenized-continuum-stability) are reviewed and a new
stability criterion (CB-stability) is introduced that provides an intermediate criterion by
considering perturbations at both the atomistic and continuum scales. The goal of this work
is to provide a unified presentation of these stability criteria for crystalline solids in
equilibrium configurations describable by CB kinematics (uniform deformation and internal
shifts of sub-lattices) and to directly compare their relative strengths and weaknesses.

Phonon-stability is defined in terms of the normal modes of vibration (or phonons) for
the crystal. It requires that the natural frequency for each phonon be a real quantity, or
equivalently, that the eigenvalues of the crystal’s stiffness matrix with respect to all atomic
DOFs be positive definite. Phonon modes produce no average deformation in the crystal
but instead result in periodic displacements of arbitrary wavelength. The set of all phonon
modes for an infinite crystal constitute all possible bounded perturbations within a crystal.
However, the phonon-stability criterion does not directly provide stability information for
unbounded perturbations such as a uniform deformation gradient. The determination of
the natural frequencies for such a crystal, and thus evaluation of the phonon-stability
criterion, is simplified by application of a block-Fourier transformation to the crystal’s
equations of motion that results in a block-diagonalized stiffness matrix. In Fourier space
the phonon modes, which are labeled by the Fourier ‘‘wave vector’’ that indicates their
wavelength and direction of propagation, are classified as either ‘‘acoustic’’ phonons,
which have a finite group velocity in the long wavelength limit, or ‘‘optic’’ phonons, which
have zero group velocity in the long wavelength limit. Although asymptotic expressions for
rank-one ‘‘uniform’’ perturbations of the crystal can be recovered from the phonon mode
calculations (via Born’s method of long waves), this information is more conveniently
obtained with the HC- or CB-stability criteria.

CB stability is introduced to investigate stability of the crystal with respect to
independent perturbations in the uniform deformation gradient and the internal shifts,
which together comprise the so-called ‘‘quasi-uniform’’ deformations (i.e., those allowed
under CB kinematics). The CB-stability criterion bridges the length scales between the
phonon- and HC-stability criteria by accounting for the atomic scale internal shifts (optic
phonon modes) and a superset of the continuum scale uniform perturbations considered
by the HC-stability criterion.

HC-stability considers ‘‘uniform’’ perturbations of the crystal structure where the
‘‘internal shifts’’ are required to take on equilibrium values and are thus ‘‘condensed out’’
of the crystal’s kinematics. This criterion demands that the crystal’s homogenized elastic
modulus tensor be positive definite. HC-stability is strictly weaker than CB-stability.
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For hard-device loading conditions, phonon-stability and its limiting behavior (HC
rank-one-convexity) are necessary and sufficient for stability which we call ‘‘constrained
material stability’’. For soft-device loading conditions, it is clear that phonon-stability and

CB-stability are necessary (but not sufficient due to possible ‘‘structural’’ modes), and we
take this as our proposed definition of ‘‘material stability’’.
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Appendix A. Asymptotic calculations for acoustic phonon branches

Born’s method of long waves was the first to make a direct connection between the stability
of discrete and continuum views of crystals. The method considers the acoustic phonon
modes and analyzes the behavior of phonon dispersion relations in the limit as k! 0 along a
fixed direction n. This analysis is required to perform a comparison of the phonon-stability
and HC-stability criteria. The current presentation essentially follows that of Wallace (1998),
but is formulated in a non-orthogonal coordinate system and with respect to the reference
equilibrium configuration rather than the current equilibrium configuration.
The acoustic phonon modes are defined by the property o! 0 as k! 0, thereby

implying o
½0�
ðnÞ ¼ 0. Substituting the expansions (Eqs. (2.47)–(2.49)) into the eigenvalue

problem (Eq. (2.46)) and grouping terms of like order in k results in the following:
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zeroth-order equations have solutions
The
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with mc ¼
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ama and ~vðnÞ a constant vector. Substituting into Eq. (A.1) gives
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(A.5)

where the last equality is due to translational invariance, Eq. (2.20). In R3 there are three
linearly independent solutions ~vðqÞðnÞ, corresponding to acoustic waves, labeled q ¼ 1; 2; 3
for each wave vector direction n. One of these acoustic waves corresponds to a longitudinal
mode with atomic motion in the direction of n and the remaining two correspond to
transverse modes with atomic motion perpendicular to n. The remaining 3M � 3 long

wavelength modes (solutions to Eq. (2.46) with non-zero o
½0�
ðnÞ) correspond to optic phonon

branches which are not of interest here.

Next, Eqs. (2.50)1;2 and the zeroth-order solution Eq. (A.4) are substituted into the first-
order equations, giving
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Multiplying by ðma=mcÞ
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The homogeneous part of this equation (left hand side) has an arbitrary constant vector T
as its solution, sinceX

‘0
a0
� �
2O

F
o

nj

0 ‘0

a a0

� �
Tj ¼ 0, (A.8)

by translational invariance. Thus, the inhomogeneous part (right hand side
of Eq. (A.7)) must be orthogonal to an arbitrary constant vector for a unique solution
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to exist, i.e.,XM�1
a¼0

Tn
X
‘0
a0
� �
2O

F
o

nj

0 ‘0

a a0

� �
X p

‘0

a0

� �
� X p

0

a

� �
 �
np ~v

jðnÞ ¼ 0. (A.9)

This is satisfied by neglecting surface effects, as can be shown by starting from the identity
(due to translational invariance)

0 ¼
X

‘
a

� �
; ‘
0

a0
� �
2O

F
o

nj

‘ ‘0

a a0

" #
X p

‘0

a0

" #
�

X
‘
a

� �
; ‘
0

a0
� �
2O

F
o

nj

‘ ‘0

a a0

" #
X p

‘

a

" #

¼
X

‘
a

� �
; ‘
0

a0
� �
2O

F
o

nj

‘ ‘0

a a0

" #
X p

‘0

a0

" #
� X p

‘

a

" # !
, ðA:10Þ

and evaluating this in the interior of the crystal gives

0 ¼ n
XM�1
a¼0

X
‘0
a0
� �
2O

F
o

nj

0 ‘0

a a0

� �
X p

‘0

a0

� �
� X p

0

a

� �
 �
. (A.11)

The solvability condition (A.9) is satisfied and the solution to the first-order equations is
arbitrary up to a constant vector. This ambiguity is eliminated from the equations by

setting one of the D v
½1� n

a

� �
to zero, say,

D v
½1� n

0

h i
¼ 0. (A.12)

Restricting Eq. (A.7) to a; a0a0, the system in general becomes non-singular and can be
solved by inverting the left hand side of (A.7). Defining ~G

ij
½a a0� for a; a0a0 as the inverse

of F
o

, then ~G
ij
½a a0� satisfiesXM�1

a00¼1

~G
ij
½a a00�

X
‘02Nþ

F
o

jk

0 ‘0

a00 a0

� �
¼ di

kdaa0 ; a; a0; a00a0. (A.13)

Next, the matrix ~G
ij
½a a0� is augmented to include rows and columns of zeros in the a; a0 ¼ 0

positions,

Gij½a a0� �
~G

ij
½a a0�; a; a0a0;

0; otherwise;

(
(A.14)

and a general expression for the solution of Eq. (A.2) is obtained as

D v
½1� j

n

a

� �
¼ ðmcmaÞ

1=2
XM�1
a00¼0

Gin½a a00�
X
‘0
a0
� �
2O

F
o

nj

0 ‘0

a00 a0

� �
X p

‘0

a0

� �
� X p

0

a00

� �
 �
np ~v

jðnÞ.

(A.15)

For convenience, the coefficients Li;p
j ½a� are defined as

Li;p
j ½a� ¼

XM�1
a00¼0

X
‘0
a0
� �
2O

Gin½a a00�F
o

nj

0 ‘0

a00 a0

� �
X p

‘0

a0

� �
� X p

0

a00

� �
 �
, (A.16)
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giving

D v
½1� i

n

a

� �
¼ ðmcmaÞ

1=2Li;p
j ½a�np ~v

jðnÞ. (A.17)

Next, Eqs. (A.4) and (A.17) are substituted into the second-order equations (A.3) and
rearranged to obtain

X
‘0
a0
� �
2O
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a a0

" #
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a a0
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� X p
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" # !
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jðnÞ

� 2
mc

ma


 �1=2 X
‘0
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2O

F
o
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0�npnr ~v

qðnÞ

þ 2ðmcmaÞ
1=2
ðo
½1�
ðnÞÞ2Gij ~v

jðnÞ. ðA:18Þ

The homogeneous part has solutions ðma0 Þ
1=2Tj (T an arbitrary vector) due to translational

invariance. The solvability condition for (A.18) is similar to Eq. (A.9) and requires that the
right hand side of Eq. (A.18) (multiplied by ðmaÞ

1=2 and summed over a) be zero, which
written explicitly is

XM�1
a¼0
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X
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" #375 ¼ 0. ðA:19Þ

Rearranging gives

mc o
½1�
ðnÞ
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jðnÞ, ðA:20Þ
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which is an eigenvalue problem for the first-order coefficient o
½1�
ðnÞ of the acoustic phonon

frequencies. The following series of operations reveal the coordinate system invariance of

the first term on the right hand side. The quantities F
o

kn

0 ‘0

a a0

� �
are replaced by

F
o

nk

‘0 0

a0 a

� �
, and the periodicity relation is used to obtain F

o

nk

0� ‘0

a0 a

� �
. Next, �‘0 is

relabeled ‘00 and it is noted that ðX p ‘0

a0

h i
� X p 0

a

� �
Þ can now be written as

ð�X p ‘00

a

h i
þ X p 0

a0
� �
Þ.Finally, the dummy indices a and a0 are switched to obtain

mc o
½1�
ðnÞ
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jðnÞ. ðA:21Þ

Note that the Einstein sums over p and q ensure that only the symmetric part of the right
hand side contributes, and normalizing by the unit cell volume, gives

o
½1�
ðnÞ


 �2

~viðnÞ ¼
GikZ

k

p
j
q

mc=V

" #
npnq ~v

jðnÞ, (A.22)

where Zk
p
j
q are the dynamical coefficients governing the behavior of the long wavelength

acoustic phonons defined by
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Eqs. (A.22) and (A.23) are the results that are repeated in Eqs. (2.51) and (2.52).

Appendix B. Homogenized continuum elastic moduli

In Section 2.4.2, a relationship between the HC elastic moduli, Eq. (2.74), and the
dynamical coefficients, Eq. (2.52), is established. In this appendix the inverse relationship is
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derived. Following Born and Huang (1962), an argument based on the symmetry of the
HC elastic moduli Cijkl (with respect to the Lagrangian strain) is used to establish the HC
elastic moduli Li

j
k
l (with respect to the deformation gradient) in terms of the dynamical

coefficients, Zi
j
k
l , the first Piola–Kirchhoff stress, P, and the uniform deformation

gradient, F.
The dynamical coefficients, Eq. (2.52), for long wavelength acoustic phonons and HC

elastic waves are the symmetric part of the full HC elastic moduli, Eq. (2.74),

Zk
p
l
q
¼ 1

2
½Lk

p
l
q
þ Lk

q
l
p
�. (B.1)

Here the inverse relation is derived in general by taking advantage of the full symmetry of
the HC elastic moduli and applied stress with respect to the Lagrangian strain tensor,
which is given by

Eij �
1
2
ðF s

iF sj � GijÞ, (B.2)

where Fsj ¼ GsrF
r
j. Thus, expanding the HC internal energy density in powers of the

Lagrangian strain gives

W
�

ðEþ dEÞ ¼W
�

ðEÞ þ SijdEij þ
1
2
CijkldEijdEkl þ � � � , (B.3)

where Sij are the components of the second Piola– Kirchhoff stress tensor and Cijkl are the
HC elastic moduli. These quantities have the following symmetries due to the symmetry of
the Lagrangian strain tensor and their definition as derivatives of the scalar HC energy
density

Sij ¼ Sji, (B.4)

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij . (B.5)

Using the chain-rule leads to expressions for the first Piola– Kirchhoff stress P (of Eq.
(2.73)) and the elastic moduli L (of Eq. (2.74))

P j
i ¼ SjpF ip, (B.6)

Li
j
k
l
¼ F ipCpjqlFkq þ SjlGik. (B.7)

Solving this for the elastic moduli Cijkl (and defining Hij � ðFijÞ
�1) gives

Cijkl ¼ Lp
i
q
lHkqHjp � SilHkpGpqHjq. (B.8)

Taking the symmetric part of Cijkl (in i; l) results in

1
2½C

ijkl þ Cljki� ¼ ½Zp
i
q
l
� SilGpq�H

kqHjp, (B.9)

exchanging i and j in Eq. (B.9) gives

1
2
½Cjikl þ Clikj � ¼ ½Zp

j
q
l
� SjlGpq�H

kqHip, (B.10)

and interchanging j and k in Eq. (B.10) leads to

1
2
½Ckijl þ Clijk� ¼ ½Zp

k
q
l
� SklGpq�H

jqHip. (B.11)
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Now, taking the sum of Eqs. (B.9) and (B.10) and subtracting Eq. (B.11) one finds that the
left hand side reduces to Cijkl giving

Cijkl ¼ ½Zp
i
q
l
HkqHjp þ Zp

j
q
l
HhqHip � Zp

k
q
l
HjqHip�

� ½SilGpqHkqHjp þ SjlGpqHkqHip � SklGpqHjqHip�. ðB:12Þ

Substituting Eq. (B.12) into Eq. (B.7) and using Eq. (B.6) leads to the final result
expressing the elastic moduli L with respect to the deformation gradient F in terms of
the dynamical coefficients Z, the first Piola–Kirchhoff stress, P, and the deformation
gradient, F,

Li
j
k
l
¼ Zi

j
k
l
þ FiqHjpZp

q
k
l
� FkqHjpZp

q
i
l
�P l

i H
j
k þP l

k H
j
i, (B.13)

where Hi
j � ðF

j
i Þ
�1
¼ HipGpj .
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