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Failure Surfaces for Finitely
Strained Two-Phase Periodic
Solids Under General In-Plane
Loading
For ductile solids with periodic microstructures (e.g., honeycombs, fiber-reinforced com-
posites, cellular solids) which are loaded primarily in compression, their ultimate failure
is related to the onset of a buckling mode. Consequently, for periodic solids of infinite
extent, one can define as the onset of failure the first occurrence of a bifurcation in the
fundamental solution, for which all cells deform identically. By following all possible
loading paths in strain or stress space, one can construct onset-of-failure surfaces for
finitely strained, rate-independent solids with arbitrary microstructures. The calculations
required are based on a Bloch wave analysis on the deformed unit cell. The presentation
of the general theory is followed by the description of a numerical algorithm which
reduces the size of stability matrices by an order of magnitude, thus improving the
computational efficiency for the case of continuum unit cells. The theory is subsequently
applied to porous and particle-reinforced hyperelastic solids with circular inclusions of
variable stiffness. The corresponding failure surfaces in strain-space, the wavelength of
the instabilities, and their dependence on micro-geometry and macroscopic loading con-
ditions are presented and discussed. �DOI: 10.1115/1.2126695�
1 Introduction and Motivation
The issue of failure in composites is both a fundamental and

also an extremely diverse one in solid mechanics. The fundamen-
tal aspect of the problem pertains to questions like what consti-
tutes failure, when does failure start, and the possibility of pre-
dicting the onset-of-failure by investigating appropriately
averaged �homogenized� material properties of the composite. The
extreme diversity of the problem is due on one hand to the infinite
variety of possible materials and microstructures and on the
other hand to an equally large number of corresponding failure
mechanisms.

In the interest of �relative� simplicity, attention is hereby fo-
cused in ductile, periodic �and nearly periodic� composites that are
capable of sustaining large strains. These solids have a failure
mechanism—usually a localized deformation mode—that is initi-
ated by a buckling type instability. Moreover, the existence of a
clearly identifiable unit cell allows modeling consistency and the
possibility of controllable and repeatable experiments. There are
many applications of engineering interest that fall into this cat-
egory, such as fiber-reinforced composites, honeycomb, and cel-
lular solids, just to name a few.

More specifically, of interest here is the relation between the
onset of microscopic failure and the corresponding macroscopic
properties of periodic, finitely strained ductile solids. The connec-
tion between the onset of microscopic buckling and the corre-
sponding loss of ellipticity of the incremental moduli of the ho-
mogenized solid was first established by �1� for the special case of
an incompressible, hyperelastic composite under plane strain con-
ditions. Subsequent work by �2� proved the completeness of the
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Bloch wave representation for the bifurcation eigenmode in fi-
nitely strained, three-dimensional periodic solids with arbitrary
unit cells. In the same paper it also was shown that if the wave-
length of the bifurcation eigenmode is infinite �compared to the
unit cell size�, the corresponding instability of the periodic prin-
cipal solution can be detected as a loss of ellipticity of the corre-
sponding homogenized tangent moduli of the solid. Based on
these general results, �3� defined the onset-of-failure surfaces in
stress and strain space for periodic solids, a concept which was
subsequently applied to truss-like structures by �4�, to aluminum
honeycomb by �5� and more recently to the case of fiber-
reinforced composites under combined normal and shear strains
by �6� and to three-dimensional Kelvin foams �7�.

Due to the time-consuming nature of the Bloch wave stability
calculations, only layered two-dimensional microstructures �for
fiber reinforced composites under plane strain� and truss-like
structures in two and three dimensions so far have been consid-
ered. The present paper, motivated by interest in the behavior of
periodic porous and particle reinforced solids, is the first—to the
best of the authors’ knowledge—to deal with the microscopic and
macroscopic stability of periodic continua having unit cells of
commensurate dimensions in each direction, a task that requires
the development of a novel, specialized numerical procedure.

The outline of the paper is a follows: The general mathematical
theory, allowing for the construction of the onset-of-failure sur-
faces, is given in Sec. 2. The material description, macroscopic
loading conditions, and the finite element method �f.e.m.�-based
condensation algorithm that allows an efficient application of the
Bloch wave analysis for the determination of the onset of micro-
scopic instabilities are presented in Sec. 3. Section 4 presents the
calculation results for the onset of microscopic and macroscopic
failure of a compressible neo-Hookean, finitely strained periodic
solid under various �orthotropic and non� plane strain conditions.
The microgeometry considered is two phase with circular inclu-
sions under two different arrangements: square and diagonal, both
having the same volume fraction. The microscopic and macro-
scopic onset-of-failure surfaces for porous and rigid inclusion-

reinforced solids are constructed by varying the inclusion-to-
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matrix stiffness ratio. Porous solids are found to be considerably
more unstable than inclusion-reinforced solids under biaxial com-
pression, but, in contrast to the latter, the failure of the porous
solids is relatively insensitive to the microgeometry and involves
critical modes with finite wavelengths. The presentation concludes
with a discussion in Sec. 5.

2 Problem Formulation
In this section the “onset-of-failure surface” concept is formu-

lated for an infinite, rate-independent solid with a perfectly peri-
odic microstructure, which is subjected to an arbitrary, quasi-static
macroscopic loading. As explained in the Introduction, the ulti-
mate failure mechanism for a ductile solid with periodic micro-
structure often is related to the onset of a buckling-type instability.
Consequently, the onset-of-failure surface is defined as the first
occurrence of a bifurcation in the fundamental periodic solution,
for which all cells deform identically. By using radial loading
paths emerging from the stress-free state in macroscopic strain or
stress space, one can construct onset-of-failure surfaces by con-
necting the failure points for all such paths.

The first part of this section presents the “microscopic onset-of-
failure surface” concept, which is based on the investigation of all
possible bounded modes of instability with wavelengths that are
commensurate with the size of the unit cell, also termed “local”
modes. Since the corresponding calculations are exceedingly time
consuming �all wavelengths must be investigated along each co-
ordinate direction�, a “macroscopic onset-of-failure surface” con-
cept is introduced in the second part, which is based on the inves-
tigation of instability modes with wavelengths that are much
larger than the size of the unit cell, also termed “global” modes.
Hence, by definition, the more accurate and also more computa-
tionally intensive microscopic onset-of-failure surface of a peri-
odic solid always lies inside its macroscopic counterpart. The lat-
ter onset-of-failure surface only requires checking of rank one
convexity of the solid’s homogenized tangent moduli and is there-
fore considerably less time consuming to construct.

The problem is formulated in two dimensions, since all numeri-
cal calculations will be based on a two-dimensional application.
However, a generalization to three dimensions is straightforward
and is accomplished by enlarging the range of indices �from 1–2
to 1–3�. Also notice that the onset-of-failure surface concept is
valid for any rate-independent, i.e., elastic or elastoplastic, solid.
However, the onset-of-failure surface is independent of the load
path used in its determination only for elastic solids, because of
the path-independent nature of their constitutive response. The
application presented in the next section falls in this category
since it pertains to a rubber-elastic material.

2.1 Microscopic Onset-of-Failure Surface. Consider a solid
which occupies a domain V �with boundary �V� in its under-
formed �stress-free� state, which is used as the reference configu-
ration. The solid has a regular, perfectly periodic microstructure
with a fundamental building block D �with boundary �D�, called
the “unit cell,” as shown in Fig. 1. The solid is deformed in the
X1-X2 plane, under finite, plane strain conditions, and a full La-
grangian formulation of the problem is adopted. Material points in
the solid are identified by their initial position vector X, while the
current position vector of the same point is denoted by x. The
displacement of each material point X is denoted by u where u
�x−X. The deformation gradient at X, a quantity that measures
the deformation in the neighborhood of each point, is denoted by
F��x /�X.

The material in each phase of the unit cell follows a rate-
independent, incrementally linear constitutive law that can be
written in the following form2:

2Here and subsequently, Latin indexes range from 1 to 2, unless indicated differ-

ently. Einstein’s summation convention is implied over repeated indexes.
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�̇ ji��,X� = Lijkl��,X�Ḟkl; Ḟkl = vk,l, �2.1�

in which �̇ is the rate of the first Piola-Kirchhoff stress tensor and

its work conjugate quantity Ḟ is the rate of the deformation gra-
dient, a function of the displacement rate v�X�� u̇. For the quasi-
static loading conditions considered here, by the rate of a field
quantity one designates its derivative with respect to any time-like
parameter which increases monotonically with the evolution of
the loading process.

The incremental �tangent� moduli tensor L characterizes the
material’s instantaneous response in the neighborhood of X and is
a function of the material properties and the current equilibrium
state that can be described by a set of internal variables. Every
loading process, assuming that it produces a unique response
called the “principal equilibrium path,” can be parametrized in
terms of a scalar quantity �, referred to as the “load parameter.”
Because the current state of the material, i.e., the stresses and
internal variables in the neighborhood of X, can be expressed in
terms of the load parameter �, the incremental moduli tensor L is
fully characterized by � as stated in �2.1�. For the applications of
interest here, it suffices to say that the incremental moduli tensor
L possesses major symmetry, namely,

Lijkl��,X� = Lklij��,X� , �2.2�
which is a condition satisfied by a wide range of rate-independent
solids. The importance of this condition will be explained below.
One must also mention here that L is a “D-periodic” function of
X, since the principal solution, whose stability is under investiga-
tion, has the translational symmetry of the microstructure �see Fig.
1�

L��,X1,X2� = L��,X1 + n1L1,X1 + n1L1� , �2.3�

with n1 ,n2 arbitrary integers. The translational symmetry condi-
tion is equivalent to ignoring boundary effects due to the applica-
tion of surface loads and considering the stability of the interior
region in periodic solids.

In this work, the stability of the principal equilibrium path is
under investigation Hill �8� was the first to place the bifurcation
and stability criteria for rate-independent, elastoplastic solids on a
firm mathematical foundation. He presented the sufficient condi-
tions for the exclusion of bifurcation in the incremental �rate one�
problem of an elastoplastic solid and conjectured that these con-
ditions also guarantee uniqueness. Moreover, he investigated the
stability in elastoplastic problems by means of calculating the dis-
sipation produced by small perturbations about the state in ques-
tion, and further showed that his criterion for the exclusion of rate

Fig. 1 Schematic representation of an infinite solid with a per-
fectly periodic microstructure and its corresponding unit cell.
The solid is deformed under finite plane strain conditions in the
X1-X2 plane.
one bifurcation was sufficient for stability in the above-described
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sense. It was shown subsequently by �9� that Hill’s stability crite-
rion, based on the elastic moduli evaluated at the point of the
loading path under investigation, implies the exclusion of bifurca-
tion in any rate along the principal equilibrium path.

Thus, the stability of the rate-independent solid considered here
is governed by Hill’s stability criterion, which is based on the
positive definiteness of a functional FV, defined on V, which is
quadratic in the displacement rate field v�X�. Therefore, a de-
formed state �characterized by �� on the principal equilibrium
path is stable if the minimum eigenvalue ���� of the above-
mentioned stability functional is positive,

���� = min
v

�FV��,v�/�v�V
2�;

FV��,v� � �
V

v̄i,jLijkl��,X�vk,l dV , �2.4�

�v�V
2 ��

V

v̄m,nvm,n dV ,

when the minimum is taken over all kinematically admissible
functions v, i.e., all functions that are continuous in V and vanish
on those points of the boundary �V where the displacement �es-
sential� boundary conditions are prescribed. Furthermore, v̄ is the
complex conjugate of the field v. The assumed major symmetry of
the incremental moduli L in �2.2� guarantees that all eigenvalues
of the above-described quadratic functional are real.

The stability definition �2.4� pertains to a solid of finite size. A
closer examination of �2.3� shows that solids of infinite extent can
be included by considering locally integrable, bounded functions
v and progressively increasing the size of the domain from a finite
size V to R2, while ensuring that the ratio defining the eigenvalue
is finite. The corresponding Euler-Lagrange equation in R2 is

„Lijkl��,X�vk,l − ����vi,j…,j = 0. �2.5�
For the perfectly periodic solids of infinite extent considered in

this work, it has been shown by �2� that the eigenmodes v�X� of
the problem �2.5� always can be expressed as3

v�X� = p�X�exp�i� · X�, ��1L1,�2L2� � ��0,2�� � �0,2��	
�2.6�

in which ����1 ,�2� is the wave number of the eigenmode and
p�X� is a D-periodic function, i.e., p satisfies �2.3� in which L is
replaced by p.

Consequently, to find the minimum eigenvalue � of FV, instead
of scanning over all the bounded, locally integrable functions v on
R2, it suffices to scan over all D-periodic functions p and over all
the wave numbers � in the appropriate domain of Fourier space,

���� = inf
�

����,��� ,

�2.7�
���,�� � min

p
�FD„�,p exp�i� · X�…/�p exp�i� · X��D

2 � ,

with the D subscript in F and in �v� denoting that the correspond-
ing quantities are defined by the same expressions as in �2.4� with
the difference that the integration is now over the unit cell D
instead of the entire domain V. Also note that the inf symbol has
been used for the minimization with respect to � since ��� ,��
might have a singular point at �=0, as will be discussed subse-
quently in detail.

For any physically meaningful problem, the periodic solid un-
der investigation is stable in its undeformed �stress-free� state, i.e.,
��0��0. As the load parameter � increases monotonically from

3The solutions to linear equations with periodic coefficients, in more than one

dimension, are commonly named “Bloch waves” in physics literature.
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zero, ���� decreases. The initially unique and stable principal,
D-periodic, solution will at some load level cease to be unique,
since nature always finds a way to go from a higher symmetry to
a lower symmetry state. This first instability is detected by the
lowest root of ����, which is termed the “microscopic critical
load parameter” and is denoted by �c,

���c� = 0, �c = inf
�

��m���� ,

�2.8�
�„�m���,�… = 0, ���,�� � 0, for 0 � � 	 �m.

In other words, �m��� is the lowest � root of ��� ,�� for a fixed
value of �. The locus of all the macroscopic stresses or strains
evaluated at �c for all loading paths constitutes the microscopic
onset-of-failure surface in the corresponding macroscopic stress
or strain space. Some important remarks about the nature of the
eigenmode corresponding to �c are now in order.

From Eqs. �2.7� and �2.8� the determination of the load corre-
sponding to the onset of a microscopic failure �c along a given
load path consists of finding the lowest point of the surface �m���
in a �m versus �1,�2 graph. This surface need not be smooth.
Quite frequently, numerical calculations of these surfaces show
�see �5�� the presence of a singular point in the neighborhood of
�=0. The physical reason for this singularity is due to the fact
that in the neighborhood of �=0 one finds, by inspecting �2.6�,
two physically different types of modes: the strictly periodic
modes �=0, v=p, and the long-wavelength modes �→0, v�p,
which have wavelengths much larger that the unit cell dimensions.
This remark explains why the inf symbol is needed in the defini-
tion for the critical load in �2.7�.

Thus, the following possibilities exist for the microscopic criti-
cal load, according to the wavelength of its corresponding mode.
If �c=�m��c� where �c�0 �mod 2�, assuming without loss of
generality a square unit cell of unit side�, the onset of microscopic
failure corresponds to a truly local mode with a wavelength that is
commensurate with the size of the unit cell. If �c=�m��c→0� and
�c→0 is a regular point of �m, the critical mode is still a local
mode that is D periodic. If, however, at the limit �c→0 the sur-
face �m is singular, then the corresponding eigenmode is global in
nature, because its characteristic wavelength is much larger than
the unit cell dimensions. The critical load in this case can be
determined by a much simpler calculation, as will be discussed in
the next subsection that deals with macroscopic onset-of-failure-
type modes.

2.2 Macroscopic Onset-of-Failure Surface. As explained
above, the determination of the microscopic onset-of-failure sur-
face is a computationally intensive task. It is reasonable to ques-
tion whether any relevant stability information can be obtained by
considering the macroscopic �averaged� properties of the periodic
solid. It turns out that for periodic solids there is a consistent and
unambiguous definition of their macroscopic response in terms of
the macroscopic, also termed “homogenized,” tangent moduli of
the solid that relates the average first Piola-Kirchhoff strain rate to
the average rate of the deformation gradient



̇ ji� = Lijkl
H ���
Ḟkl�, 
f� �

1

volD�
D

f dV . �2.9�

For periodic solids, the homogenized incremental moduli tensor
H
L is determined by
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Ḟij�Lijkl
H ���
Ḟkl� = min

p
� 1

volD�
D

�
Ḟij� + pi,j�Lijkl��,X��
Ḟkl� + pk,l�dV , �2.10�
where 
Ḟ� is an arbitrary rank two tensor and p any D-periodic
function. From the above definition, a straightforward calculation
procedure can be established from which, given the incremental
moduli on each point X of the unit cell evaluated at the principal
solution at load �, one can determine the homogenized moduli
tensor LH���.

A macroscopic measure of the stability of the periodic solid at
load � can thus be defined, in an analogous way to the micro-
scopic case in �2.4�, by

B��� = min
a,n

���,a,n� ,

���,a,n� � ainjLijkl
H ���aknl ��a� = �n� = 1� ,

in which the minimum is taken over all unit vectors a and n. A
positive B��� guarantees the rank one convexity of the �2.11� ma-
terial, thus excluding discontinuous solutions in boundary value
problems formulated in terms of the macroscopic tangent moduli.
Notice that the definition for B��� in �2.11� does not involve ar-
bitrary tensors, but only rank one tensors an. There are several
physical explanations for this fact, the most important one being
that local convexity of the homogenized moduli with respect to
tensors of arbitrary rank is too restrictive and physically unrealis-
tic �it would imply uniqueness in corresponding boundary value
problems, an unacceptable situation for nonlinear solids�.

One can now proceed to define the “macroscopic critical load
parameter,” denoted by �h as the lowest root of B���,

B��h� = 0, �h = min
a,n

„�M�a,n�… ,

�2.12�
�„�M�a,n�,a,n… = 0, ���,a,n� � 0, for 0 � � 	 �M .

In other words �M�a ,n� is the lowest � root of ��� ,a ,n� for fixed
a, n.

There is an intimate connection between the microscopic and
macroscopic critical loads �c and �h,

�h = inf
�→0

�m��� , �2.13�

assuming of course that LH exists, which requires uniqueness in
the solution of the unit cell boundary value problem, thus exclud-
ing a first bifurcation with �c=0 �a periodic mode with a period
equal to the unit cell size�. In all the numerical calculations re-
ported here, this is indeed the case, i.e., �c�0. However, the
periodic solids with a first buckling mode corresponding to �c
=0 are frequently encountered. For example, critical microbuck-
ling modes with wavelengths equal to the dimensions of the unit
cell are encountered in cellular solids, because of their very flex-
ible unit cells �the interested reader is referred to �5��.

3 Solution Procedure
The general theory for the onset-of-failure in periodic solids of

infinite extent, presented in Sec. 2, is applied to a class of finitely
strained, two-phase hyperelastic solids, which are subjected to ar-
bitrary loading under plane strain conditions. This section is di-
vided into three parts, starting with the description of the micro-
geometry and the imposed macroscopic loading, continuing with
the constitutive model and ending with the presentation of the
f.e.m.-based numerical algorithm.

3.1 Geometry and Loading Conditions. Of interest here are

two-phase periodic solids consisting of circular inclusions per-
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fectly bonded to their surrounding matrix. By adjusting the ratio
of the inclusion-to-matrix stiffnesses, one can cover the range
from voided to rigid fiber-reinforced solids with the same micro-
geometry. Two different microstructure geometries are considered
for these two-phase periodic solids: A square arrangement of cir-
cular inclusions shown in Fig. 2�a� and a diagonal arrangement of
the same inclusions shown in Fig. 2�b�. Both microstructures con-
sidered have the same volume fraction for the inclusions. Conse-
quently, as seen in Fig. 2�a�, the unit cell dimensions for the
square microgeometry are L1=L2=L, while the unit cell dimen-
sions for the diagonal microgeometry depicted in Fig. 2�b� are
L1=L, L2=2L. The radius of the inclusion R is the same for both
microgeometries and hence the volume fraction of the inclusions
is �� /4��R /L�2.

The macroscopic loading imposed on the infinite periodic solid
is such that the corresponding average deformation has principal
stretch ratios �1 and �2 at a fixed angle � with respect to X1, X2
�the solid’s axes of orthotropy in the reference configuration�. By
ignoring macroscopic rigid body rotations �
R�=I�, the macro-
scopic �average� deformation gradient 
F� coincides with the mac-
roscopic right stretch tensor 
U� and left stretch tensor 
V� and
can be expressed as


Fij� = 
Uij� = 
Vij� = �cos � − sin �

sin � cos �
���1 0

0 �2
�� cos � sin �

− sin � cos �
� .

�3.1�
The current deformed state of the solid is achieved through a

proportional straining path in principal strain space. More specifi-
cally, it is assumed that the ratio of the principal logarithmic
strains i is fixed,

ln��1� � 1 = � cos �, ln��2� � 2 = � sin � . �3.2�

in which � is the monotonically increasing “load parameter” of
the process and � is the “load path” angle.

The macroscopic and microscopic onset-of-failure surfaces cal-

Fig. 2 Schematic representation of an infinite, perfectly peri-

odic solid, with „a… square and „b… diagonal microgeometry
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culated here are found by marching along �starting from �=0� all
radial paths �� �0,2�� in principal strain space for a fixed value
of the “principal axes orientation” angle �.

3.2 Constitutive Model. The theory presented thus far for the
onset of failure in finitely strained periodic solids is valid for any
rate-independent material with constitutive relations that can be
put in the rate form �2.1�. In the interest of �relative� simplicity,
rubber-elastic materials are considered here because they have no
memory of loading history and thus the final stress state of the
unit cell depends only on the imposed final macroscopic strain. A
compressible neo-Hookean constitutive law is adopted, which is a
modified compressible 2D version of the standard Mooney-Rivlin
solid, with strain energy density

W =
�

2
�I1 − ln I2 − 2� +

�

2
��I2 − 1�2, �3.3�

in which � is the solid’s shear modulus at zero stress and � de-
termines its compressibility �for � /�→� the solid becomes in-
compressible�. Constants corresponding to the inclusion phase
carry a subscript f �which stands for “fiber,” since the microge-
ometry corresponds to a cross section of a fiber-reinforced solid�
and constants corresponding to the matrix phase carry a subscript
m �stands for “matrix”�. Moreover, I1 and I2 are the two invariants

of the right Cauchy-Green tensor C,

I1 = tr C, I2 = det C, Cij = FkiFkj , �3.4�

and where F�X� is the deformation gradient tensor introduced in
Sec. 2. Hence the components of the incremental moduli tensor L,
which enter the calculations for the onset of failure, are given by

Lijkl =
�2W

�Fij�Fkl
. �3.5�

The reason for choosing this particular material lies in the fact
that its strain energy density given by �3.3� is polyconvex in the
sense of Ball �10�, which guarantees the solid’s rank one convex-
ity at any deformation. This property precludes the appearance of
strain discontinuities within each phase of the deformed unit cell.

3.3 F.E.M. Discretization and Condensation Algorithm.
The unit cell of each periodic solid under consideration is dis-
cretized into standard two-dimensional quadrilateral isoparametric
elements with bilinear shape functions, resulting in a four-node
element with two degrees of freedom �d.o.f.� �one per each dis-
placement component� per node. The unit cell of the periodic solid
with the square microstructure �see Fig. 2�a�� is analyzed using an
N�N rectangular �in parameter coordinate space� grid, while for
the unit cell of the periodic solid with the diagonal microstructure
�see Fig. 2�b�� an N�2N rectangular �again in parameter coordi-
nate space� grid is employed. To facilitate the application of peri-
odicity requirements, both for the determination of the principal
solution and for the Bloch wave-based stability investigations,
corresponding nodes on opposite sides have the same coordinates
in the reference configuration. Thus, corresponding nodes on sides
AD �nodes with X1=−L1 and denoted by Vl� and BC �nodes with
X1= +L1 and denoted by Vr� have the same X2 coordinates and
corresponding nodes on sides AB �nodes with X2=−L2 and de-
noted by Vd� and DC �nodes with X2= +L2 and denoted by Vu�
have the same X1 coordinates �see Fig. 3�.

The principal solution for a given load path is calculated using
a standard incremental Newton-Raphson technique, with a typical
step size ��=10−3. This choice usually results in three iterations
per step when an accuracy of 10−6 �based on a Euclidean displace-
ment norm� is taken as the convergence criterion in each incre-
ment. For the case of orthotropic loading ��=0� only one-quarter
of the unit cell is needed for the calculations. Due to symmetry,
straightforward displacement conditions are applied on the bound-
aries of the positive quadrant. When the principal axes of strain

are oriented at an angle with respect to the axes of orthotropy
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���0�, the entire unit cell is used to calculate the principal solu-
tion by imposing appropriate coupling conditions to the nodes of
opposite faces.

The stability analysis of the infinite periodic structure requires
the consideration of all possible wave numbers ��1L1 ,�2L2�
� ��0,��� �0,��	 for each equilibrium state along each loading
path. A straightforward application of the Bloch wave theorem to
find the minimum eigenvalue of the stability functional defined
over the unit cell would require the numerical calculation of the
minimum eigenvalue of an approximately 2N2�2N2 size com-
plex stiffness matrix for the square and 2N2�4N2 size complex
stiffness matrix for the diagonal microgeometry, respectively.
Since this task would have to be repeated for each pair of wave
numbers ��1L1 ,�2L2�, the scanning of a reasonably fine grid in
the interval �0,��� �0,�� would be prohibitively time consum-
ing. Hence the need for an appropriate algorithm to address this
issue becomes urgent.

The algorithm used to reduce the size of the stiffness matrices
required for the Bloch wave calculations is based on a condensa-
tion technique and results in the eigenvalue sign determination of
considerably smaller complex stiffness matrices, approximately
4N�4N for the square and 6N�6N for the diagonal microgeom-
etry cell. The condensation technique is based on the observation
that only boundary nodes need to be coupled in Bloch wave cal-
culations and works as follows.

Of interest here is the lowest value �c of the load parameter �
for which the quadratic stability functional FD�� ,v� loses its posi-
tive definiteness, i.e., its minimum eigenvalue ���c�=0, while
�����0 for 0��	�c along the path. Consequently, in the finite
element discretization of the problem one seeks the lowest value
of the load parameter for which the quadratic form FD�� ,V�
�which corresponds to FD� has a zero eigenvalue, and where

FD��,V� � �V̄�TK���V . �3.6�

Here K��� is the full �real and uncondensed� stiffness matrix
corresponding to the f.e.m. discretization of the unit cell, and V is
the nodal displacement vector corresponding to the discretization
of v. Notice that the components of the nodal displacement vector
are not independent, but must satisfy the conditions imposed by
the Bloch wave theorem, according to �2.6�. To facilitate the cal-
culations, the nodal numbering of the mesh is chosen such that

V = �Vi,Vb,Vt�; Vb � �Vl,Vd,VA�, Vt � �Vr,Vu,VB,VC,VD� ,

�3.7�

in which, as shown in Fig. 3, Vi are the d.o.f. corresponding to the
unit cell’s internal nodes, Vl and Vr are the d.o.f. corresponding to
the left and right face of the unit cell, Vd and Vu are the d.o.f.
corresponding to the lower and upper face of the unit cell and VA,
VB, VC and VD are the d.o.f. corresponding to the four corner

Fig. 3 Partition of the nodes of the discretized unit cell into
internal and boundary ones, as required by the f.e.m.-based
condensation technique employed in Bloch wave calculations
nodes of the unit cell. The above partition of the nodal displace-
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ment vector V into internal and boundary d.o.f. parts also implies
the corresponding partition of the uncondensed, tangent stiffness
matrix K���

K��� = �Kii��� Kib��� Kit���
Kbi��� Kbb��� Kbt���
Kti��� Ktb��� Ktt���

� . �3.8�

From the Bloch wave representation theorem �2.6�, given that
the finite element discretization is chosen such that corresponding
nodes on opposite faces of the unit cell have one coordinate with
the same value, one has the following relations between the
boundary node d.o.f. of V:

Vr = exp�2i�1L1�Vl, Vu = exp�2i�2L2�Vd,

VB = exp�2i�1L1�VA, VD = exp�2i�2L2�VA,

VC = exp�2i�1L1�exp�2i�2L2�VA. �3.9�

Thus, one can connect Vb to Vt, defined in �3.7� through a com-
plex matrix A��1 ,�2� whose nonzero entries are exp�2i�1L1� and
exp�2i�2L2�,

Vt = A��1,�2�Vb, �3.10�

At the loss of positive definiteness of the quadratic form FD, by
solving KV=0 and expressing Vt and Vi in terms of Vb, one can
show that FD can be equivalently expressed as a quadratic form
involving only Vb, namely,

FD��,�1,�2� = �Vb�TK̂��,�1,�2�Vb, �3.11�

in which the complex �Hermitian� matrix K̂�� ,�1 ,�2� is ex-
pressed in terms of A and the submatrices on the uncondensed
tangent stiffness K��� by

K̂ = Kbb + �Ā�TKtb + KbtA + �Ā�TKttA

− ��Ā�TKti + Kbi��Kii�−1�Kib + KitA� . �3.12�
The Bloch wave stability analysis of the infinite periodic me-

dium requires along each loading path �fixed � and �� finding the
lowest value �c of the load parameter � for which there exists a
pair of wave numbers ��1c ,�2c� �not necessarily unique due to

symmetry� such that the Hermitian matrix K̂��c ,�1c ,�2c� is posi-
tive semi-definite, i.e., its lowest eigenvalue is zero. Thus, the
microbuckling algorithm proceeds as follows: after determining
the principal solution for each load parameter �, the signature of

the matrix K̂�� ,�1 ,�2� is evaluated by performing an LDU de-

composition of K̂. Positive definiteness is lost when the lowest
entry of the Cholesky diagonal matrix D vanishes. This procedure
is performed for each � on a fine grid �grid spacing is � /36 in
each direction� in wave number space. To investigate the special
case when �i=0 �i.e., when the eigenmode has period 2Li� the
additional constraint VAi=0 is also imposed.

Notice that in the expression for K̂ in �3.12� the inverse of
Kii��� appears which depends only on �, the current load state.
Hence, the inversion of Kii��� is done only once �based on an
LDU decomposition that takes advantage of the banded nature of
this matrix�. Consequently the calculations of the signature of all

K̂�� ,�1 ,�2�’s on the grid points of the Fourier space are much
quicker due to the considerably reduced �compared to the full
d.o.f. of the unit cell� dimensions of these Hermitian matrices.

4 Results
The results of the numerical calculations are presented in Figs.

4–9 depicting the onset-of-failure surfaces for periodic compos-
ites with soft and hard inclusions, in macroscopic strain space

where the coordinate axes are the principal logarithmic strains. All
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calculations reported here correspond to dimensions R=0.5L and
hence to a volume fraction of � /16 �approximately 20%�. The
case of voids is approximated by soft inclusions �� f /�m=0.02�
and the case of rigid inclusions is approximated by stiff inclusions
�� f /�m=50.0�. The advantage of this approach is that the same
unit cell mesh is employed for all inclusion-to-matrix stiffness
ratios.

It should be mentioned here that such a complicated numerical
algorithm requires a set of nontrivial checks in order to have con-
fidence in its output. To this end, the numerical code used here

Fig. 4 In „a… are plotted the macroscopic „continuous line… and
microscopic „dashed line… onset-of-failure surfaces in the prin-
cipal macroscopic logarithmic strain space for a perfectly peri-
odic, nearly incompressible „� /�=98… solid, with a square dis-
tribution of voids „�f /�m=0.02… and subjected to biaxial loading
along the initial axes of material orthotropy „�=0…. In „b… is plot-
ted a blow-up of the biaxial compression region showing that
the first bifurcation occurs before the macroscopic loss of el-
lipticity. Note that the distance between the microscopic and
macroscopic onset-of-failure surfaces increases with increas-
ing compressibility of the material.
was tested against the analytical calculations of �6� for the fiber-
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reinforced composite under combined compression and shear. By
considering a rectangular unit cell of various aspect ratios made of
two different layers, the Bloch wave and macroscopic loss of el-
lipticity predictions of the present code confirmed the results pre-
sented in the aforementioned paper. In addition, some of the loss
of ellipticity calculations for the porous and the rigid inclusion
case were repeated �based on a much finer unit cell f.e.m. mesh�
by �11� providing an independent confirmation of the validity of
our code. One should also point out the possibility of short wave-
length interface instabilities at the matrix-inclusion boundary,
which are inevitable at adequately large strains �see �12��. For the
calculations reported here no such instabilities have been detected.

For the case of orthographically loaded ��=0�, nearly incom-
pressible �� /�=98�,4 porous solids �� f /�m=0.02� with a square
microgeometry, the macroscopic �solid line� and microscopic
�dotted line� onset-of-failure surfaces are depicted in Fig. 4�a�. As
expected from the symmetry of the loading and of the microstruc-
ture, the graph is symmetric with respect to the diagonal �1=�2.
Notice that for strains in the range ��i��1.5 there is no instability
under biaxial tension �0���� /2� and that the most unstable
region of the graph, i.e., the region with the lowest critical strains,
is biaxial compression �����3� /2�. These results agree quali-
tatively with the loss of ellipticity numerical calculations of �13�
�periodic, compressible Mooney-Rivlin-type solid� and the recent
approximate analytical calculations of �14� �based on the same
material and volume fraction but a random pore distribution�.

Observe that at the scale used to plot the results in Fig. 4�a�, the
microscopic and macroscopic onset-of-failure surfaces appear to
coincide. In reality the critical instability has a long wavelength
�i.e., �c→0� for most loading path angles �, except within a
region in the biaxial compression zone �about �=5� /4� for which
��1L1�c= ��2L2�c=� /2. To better see the difference between the
two onset-of-failure surfaces, Fig. 4�b� shows a magnification of
the biaxial compression region in which one can clearly see the
separation between the microscopic onset-of-failure surface �dot-
ted line� and its macroscopic counterpart �solid line�.

As it turns out, there is a strong dependence of the macroscopic
and microscopic failure surfaces on the compressibility of the
solid, which is depicted in Fig. 4�b�. It is found that by increasing
the compressibility tenfold �� /�=9.8�, the onset of failure sur-

4The absence of subscripts indicates that the compressibility ratio has the same

Fig. 5 Eigenmode of the microscopic bifurcation instability
„antisymmetric in the unit cell… for balanced biaxial compres-
sion of the more compressible „� /�=9.8… voided solid exam-
ined in Fig. 4 „courtesy of Dr. J. C. Michel, CNRS-LMA,
Marseille, France…
value in each phase.
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faces move further away from the origin and critical strains in-
crease by approximately 40%. Moreover, there is a considerable
increase in the separation between the microscopic and the mac-
roscopic onset-of-failure surfaces for the more compressible ma-
terial, although the critical wavelength of the microscopic buck-
ling mode remains the same as in the nearly incompressible case.
For the case of balanced biaxial loading in compression ��
=5� /4� of the solid with � /�=9.8, the eigenmode has been plot-

Fig. 6 In „a… are plotted the macroscopic and microscopic
onset-of-failure surfaces in the principal macroscopic logarith-
mic strain space for a perfectly periodic, nearly incompressible
„� /�=98… solid, with a square distribution of inclusions
„�f /�m=50… and subjected to biaxial loading along the initial
axes of material orthotropy „�=0…. Notice that the macroscopic
and microscopic onset-of-failure surfaces coincide. The
dotted-dashed line indicates macroscopic strains at which
there is rigid inclusion contact. In „b… is plotted a blow-up of the
biaxial compression region showing the influence of material
compressibility.
ted at the onset of the first bifurcation instability, in Fig. 5 using a
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4�4 cell region of the periodic solid. This picture clearly shows
the antisymmetric bifurcation mode �the repeating unit pattern of
the eigenmode is a 2�2 cell region�.

The stability results for the case of orthotropically loaded ��
=0� solids with periodic rigid inclusions �� f /�m=50� with the
same microgeometry and the same compressibility as in Fig. 4�a�
are depicted in Fig. 6�a�. The dotted-dashed line represents the
locus of points in principal logarithmic strain space where there is
inclusion contact �easily calculated from geometry, assuming per-
fectly rigid inclusions�. Again all graphs are symmetric with re-
spect to the diagonal 1=2, as expected from the symmetry of the
loading and of the underlying microstructure. The critical strains
in biaxial compression are much higher �about five times� than in
the case the corresponding porous solids. Also unlike the porous
case, the microscopic and macroscopic onset-of-failure surfaces of

Fig. 7 Influence of changing the stiffness contrast on the
onset-of-failure surfaces for „a… weaker than the matrix „�f /�m
=0.02,0.1,0.5… and „b… stronger than the matrix „�f /�m
=2.0,10.0,50.0… inclusions under orthotropic loading and for a
square microgeometry arrangement
the solid with rigid inclusions are always coincident, thus indicat-
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ing that the critical mode at instability is a long wavelength one
�i.e., �c→0� for all loading path angles. Also note that no insta-
bility is detected here in the biaxial tension region �0���� /2�
for i	1.5.

As expected from the voided solid case, compressibility plays
an important role on failure, and the comparison of the onset-of-
failure surfaces for two different compressibilities �� /�=98 and
� /�=9.8� is presented in Fig. 6�b�. As for the voided case, an
increase in compressibility in the solid with periodic inclusions
leads to higher critical strains, although the increase of the critical
strains is less dramatic than in the voided solid of the same vol-
ume fraction and microgeometry.

The influence of the stiffness contrast between the inclusion and
matrix phases � f /�m on the stability of the nearly incompressible
�� /�=98� periodic solid with a square microgeometry is depicted

Fig. 8 Influence of changing the stiffness contrast on the
onset-of-failure surfaces for „a… the voided solid „�f /�m=0.02…
and „b… the solid with rigid inclusions „�f /�m=50.0… under
orthotropic loading and for a diagonal microgeometry
arrangement
in Fig. 7. More specifically Fig. 7�a� shows the onset-of-failure
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surfaces for three stiffness ratios � f /�m=0.02,0.1,0.5 �lowest
number corresponds to voided solid� while Fig. 7�b� shows the
onset-of-failure surfaces for three stiffness ratios � f /�m
=2,10,50 �highest number corresponds to solid with rigid inclu-
sions�. In both cases a decrease in the stiffness contrast between
the two phases increases the strains at the onset of failure as
expected from continuity since for � f /�m=1 the solid is uniform
and strongly elliptic at all strains. Again the graphs are symmetric
with respect to the diagonal 1=2 and the microscopic and mac-
roscopic onset-of-failure surfaces coincide in all cases except for
the voided solid �� f /�m=0.02� near balanced biaxial compression
��=5� /4�, a difference which is not discernible at the scale for

Fig. 9 Influence of principal axes orientation � on the onset-
of-failure surfaces for a perfectly periodic solid, with „a… a
square distribution of voids „�f /�m=0.02… and „b… a square dis-
tribution of rigid inclusions „�f /�m=50…. Observe the increase
in the critical strains from a loading at a angle �=0 to a loading
at angle �=� /18 with respect to the initial axes of material
orthotropy.
which the results are plotted. It is also worth mentioning the
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highly nonlinear dependence of the results on the stiffness con-
trast, since the first fivefold change in the voided �from � f /�m

=0.02 to 0.1� or in the rigid inclusion �from � f /�m=50 to 10�
case produces considerably smaller changes in the onset-of-failure
surface than the next fivefold change in the same stiffness
contrast.

The importance of the microgeometry on the onset-of-failure
surfaces is shown in Fig. 8�a� and 8�b� which correspond to the
voided and rigid inclusion cases, respectively, but with a diagonal
microgeometric arrangement of the inclusions �volume fraction is
kept constant�. The onset-of-failure surfaces for the voided diag-
onal microgeometry case in Fig. 8�a� does not look much different
from its square microgeometry counterpart in Fig. 4�a�, save for
the nonsymmetry of the graphs with respect to the diagonal �1
=�2 and the fact that there is a much broader range of the loading
path angle � for which a microbuckling instability precedes the
microscopic loss of ellipticity. The microgeometry influence is
considerably more dramatic for the rigid inclusion case, as a com-
parison between Figs. 6�b� and 8�b� shows �the dotted-dashed line
again corresponds to fiber contact�. Observe that in the diagonal
inclusion arrangement there are loading paths in biaxial compres-
sion for which the material shows no microscopic instability �and
remains macroscopically elliptic� until inclusion contact. Also
note the large difference in the stability properties along the two
different axes of orthotropy.

Finally the influence of principal strain axes orientation � with
respect to the axes of orthotropy is presented in Fig. 9, which
compares the onset-of-failure surfaces of the two-phase periodic
solids with diagonal microgeometry for loading along the axes of
orthotropy ��=0� and for loading at a fixed angle with respect to
the axes of orthotropy ��=� /18�. The comparison for the voided
case �� f /�m=0.02� is presented in Fig. 9�a�, which shows no
appreciable influence of the principal strain axes orientation on
the onset-of-failure surfaces in the biaxial compression region, but
shows substantial stabilization for the nonorthotropic loading case
�i.e., higher critical strains� in the remaining regions where one
strain is tensile. As in the orthotropic loading case, for the non-
orthotropic loading there is also a difference between the macro-
scopic and macroscopic onset-of-failure surfaces in the biaxial
compression region �for both principal strain axes orientations the
eigenmode is local in nature; it is antisymmetric on the unit cell
with ��1L1�c= ��2L2�c=� /2�. However, due to the scale of the
graph, the corresponding curves appear to coincide.

The comparison for the rigid inclusion case �� f /�m=50.0� is
presented in Fig. 9�b�, which shows a significant and increasing
stabilization for the nonorthotropically loaded solid �i.e., higher
critical strains� as the loading path angle moves away from the
balanced biaxial compression ��=5� /4�. Similar to the orthotro-
pic loading case, for the nonorthotropic loading the microscopic
and macroscopic onset-of-failure surfaces are found to coincide. It
is noteworthy that a small deviation ��=� /18� of the principal
strain axes from the axes of orthotropy produces significant in-
creases in the failure strains for both the voided and the rigid
inclusion case. The finding for the voided case is consistent with
results for aluminum honeycomb �see �5�� for which nonorthotro-
pic loading leads to an expansion of the onset-of-failure surface,
i.e., to higher critical stresses.

The above results show the strong influence of compressibility
�� /�� and of principal axes orientation ��� on the onset-of-failure
surfaces for voided as well as solids with rigid inclusions. The
solid’s microgeometry has a much more important influence on
the onset-of-failure surfaces for the case of rigid inclusions. Note
that the above results pertain to perfect solids, thus raising the
very important question of the influence of imperfections, which

is the subject of a subsequent investigation.
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5 Discussion and Conclusions

The5 above-presented work connects the onset of a microscopic
�bifurcation-type� instability to its corresponding macroscopic
�loss of ellipticity in the homogenized tangent moduli� counterpart
in periodic continua of infinite extent, thus ignoring boundary
effects �for continua, the loss of ellipticity signals an instability
under Dirichlet boundary conditions�. Finding the microscopic in-
stability of a periodic solid of infinite extent that has a continuum
unit cell requires a novel numerical �f.e.m.-based� technique, in-
troduced in this paper to expedite the corresponding Bloch wave
calculations. The solids considered here are two-phase hyperelas-
tic, compressible neo-Hookean solids that satisfy in each phase
the strong ellipticity condition for arbitrary strains. Periodically
spaced circular inclusions are considered in two different micro-
geometric arrangements �one square and one diagonal�, both hav-
ing the same volume fraction. By varying the inclusion-to-matrix
stiffness ratio one can investigate the stability of a wide variety of
periodic continua, from porous solids all the way to solids with
rigid inclusions. The stability results are presented in macroscopic
logarithmic strain space for arbitrary plane strain loading and
show both the microscopic instability �onset of the first bifurca-
tion in the infinite, perfect periodic composite� and the corre-
sponding macroscopic instability �onset of the loss of ellipticity in
the homogenized tangent moduli of the initial unit cell�.

For porous solids loaded so that the principal strains are aligned
with the axes of orthotropy, the most unstable region is biaxial
compression. Although the matrix constitutive law and the volume
fraction are not the same, the shape of the loss of ellipticity curves
is in agreement with earlier results of �13�. However, in the biaxial
compression region of principal strain space, the macroscopic loss
of ellipticity is preceded by a microscopic instability with a local
bifurcation eigenmode �antisymmetric in each direction of the unit
cell�. The distance between the corresponding micro and macro
onset-of-failure surfaces is found to increase significantly with a
modest increase in the solid’s compressibility. At the same time
both microscopic and macroscopic onset-of-failure surfaces ex-
pand with compressibility, thus showing considerable overall sta-
bilization of the more compressible solid under biaxial compres-
sion. It has also been found that even a small deviation of the
principal axes of strain from the axes of orthotropy of the com-
posite results in a significant change of the failure surfaces.

At the same time, the change in microgeometry does not result
in any important change of the failure surfaces for the porous
solids, particularly under conditions of biaxial compression, as-
suming that the volume fraction remains constant. This result is in
agreement with recent calculations on the same solid by �14� who
find that solids of the same volume fraction, but a random distri-
bution of equidisperse pores have the same qualitative response
for the loss of ellipticity of their homogenized solid. The expla-
nation to this phenomenon has to be found in the response of
imperfect solids, which show a loss of stability at strains close to
the bifurcation strains of the perfect structure �bifurcation points
of the perfect composite become limit loads for its imperfect
counterpart�. Preliminary calculations by �11� support this
assertion.

The case of solids reinforced with rigid inclusions has several
major differences from the periodic porous solids with the same
matrix material and microgeometry. First, the microscopic and
macroscopic onset-of-failure surfaces are always coincident, thus
indicating that the long wavelength eigenmode is the critical one
for all possible loading paths. Moreover, the composite is consid-
erably more stable under balanced biaxial compressive strains

5We are grateful to the authors of �15� who confirmed that the macroscopic

moduli of their randomly, particle-reinforced material are strongly elliptic.
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than under uniaxial compressive strains and the corresponding
onset-of-failure strains are an order of magnitude larger than their
counterparts for porous solids with the same matrix material and
microgeometry. The distance between the corresponding micro-
scopic and macroscopic onset-of-failure surfaces is found to in-
crease significantly with a small increase in the solid’s compress-
ibility and the failure surfaces expand, thus showing considerable
overall stabilization of the more compressible solid. Similar to the
case of porous solids, even a small deviation of the principal axes
of strain from the axes of orthotropy of the composite results in
significant change of the failure surfaces.

In contrast to the porous solid case, changes in microgeometry
have significant influence on the onset-of-failure surfaces for sol-
ids with rigid inclusions. For this case, the comparison of the loss
of ellipticity for the periodic and random composite with the same
volume fraction of inclusions is not possible, since calculations
for the same matrix material with an equidisperse case of ran-
domly distributed rigid inclusions shows no loss of ellipticity in
the resulting composite. Again the explanation has to be found in
the influence of imperfections. Preliminary calculations by �11� in
composites with inclusions show that a slight perturbation in the
periodicity of the microgeometry results in a dramatic expansion
of the onset-of-failure surface, thus explaining why solids with the
same matrix material, but randomly reinforced with rigid inclu-
sions, remain elliptic.

The connection between the stability of composites with ran-
domly distributed and periodically arranged inclusions requires
understanding of the imperfection sensitivity of these structures.
To this end it is important to investigate the post-bifurcated solu-
tions emerging at critical points. For porous composites, prelimi-
nary calculations of imperfect many-cell assemblies indicate that
the bifurcated solutions are unstable �11�, while the opposite oc-
curs for the case of inclusions. In addition to post-bifurcated equi-
libria and imperfection sensitivity, there are important remaining
questions about the influence of volume fraction, microgeometry,
and constitutive behavior of the nonlinear matrix material. These
issues are currently the object of intense investigations which
hopefully will soon bear fruit.
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