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Abstract

It has been previously shown that the nonlinearity exhibited in the compressive response of

open cell foams is governed by cell ligament buckling. Significant insight into this behavior can

be gained by idealizing such foams as periodic, space-filling Kelvin cells assigned several

of the geometric characteristics of actual foams. The cells are elongated in the rise direction;

the ligaments are assumed to be straight, to have Plateau border cross sections, and

nonuniform cross sectional area distribution. The mechanical response of such foams

can be established using models of a characteristic cell assigned appropriate periodicity

conditions. The ligaments are modeled as shear deformable beams. The periodicity of this

microstructure allows the use of Bloch wave theory to conduct the search for the critical state

efficiently. The method tailored to the present microstructure is outlined. It is subsequently

used to establish the critical states for uniaxial and a set of triaxial loadings. A rich variety of

buckling modes are identified which are affected by the anisotropy and the mutliaxiality of the

applied loads. Under some loadings the critical modes have long wavelengths which are shown

to lead to unstable postbuckling behavior involving localization. Under other loading

conditions the modes are either local to the characteristic cell or involve an assemblage of a
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few such cells. For the cases analyzed local modes were found to have a stable postbuckling

response.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid foams comprise a class of light-weight cellular materials with exceptional
energy absorption characteristics. They are widely used in shock mitigation, in
packaging and in cushioning but also as cores in sandwich structures. Cellular
materials are abundant in nature but today they are also manufactured out of most
man-made materials (polymers, metals, ceramics, carbon, paper) to chosen cell sizes
and densities. Their advantageous characteristics are derived from their cellular
microstructure. The design of cellular materials requires that the microstructure be
related to their properties (mechanical, thermal, acoustic, etc.). Gibson and Ashby’s
book (1997) gives an excellent review of the state of the art as well as basic
information on many types of cellular materials. Hilyard and Cunningham (1994),
Weaire and Hutzler (1999) and the book by Ashby et al. (2000) provide articles on a
broad range of foam issues from manufacturing to application.
Common to most cellular materials is a compressive stress-displacement (s� d)

response with the characteristic three-regime shape shown in Fig. 1. In regime I the
response is stiff and essentially linearly elastic (modulus E�). This terminates into a
limit stress ðsIÞ which is followed by an extended stress plateau which comprises
regime II (mean stress level s̄P and extent D�̄P). In regime III the response recovers
stiffness once more. The limit stress is a sign of the onset of unstable behavior.
During the stress plateau, localized deformation bands involving buckled cells
initiate and spread throughout the material. The relatively low initial stress peak and
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Fig. 1. Compressive stress-displacement response characteristic of many foams.
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the extended plateau are defining features of the excellent energy absorption of such
materials. (The unloading response is indicated by a dashed line.) Design of cellular
materials requires that the deformation history of the microstructure be related to
the main variables of this response fE�;sI; s̄P;D�̄Pg: Honeycombs constitute the
simpler, two-dimensional version of this class of problems. Papka Kyriakides (1994,
1998a–c) and Triantafyllidis and Schraad (1998) used micromechanics to establish
these variables for honeycombs loaded in plane. They demonstrated that instabilities
are the root cause of this type of response and that the keys to its successful modeling
are first, accurate representation of the geometry of the microstructure and second,
measurement and appropriate modeling of the constitutive behavior of the base
material.
Gong et al. (2005) and Gong and Kyriakides (2005) have recently applied this

general framework to open cell foams. They analyzed polyester urethane foams with
nominal cell sizes of 3, 10, 20, 45 and 100 pores per inch (ppi). Their relative densities
(r�=r) varied between approximately 0.022 and 0.028. The experimental part of the
study included: (a) characterization of the cell and ligament morphology; (b)
measurement of the mechanical properties of the polymer using ligaments extracted
from the foam; and (c) crushing of blocks of foams between rigid parallel plates at
various constant displacement rates. The major findings were as follows:
�
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The microstructure consisted of interconnected polyhedra each with an average of
13.7 faces, each face having an average of nearly 5 sides.
�
 The size of the cells did not vary significantly.

�
 The cells were elongated in the rise direction (ratio of diameters in rise-to-lateral
directions—l-ranged from 1.23 to 1.43).
�
 The ligaments had a three-cusp hypocycloid cross section (Plateau borders) and the
cross sectional area varied along the length.
�
 To first order, the microstructure was found to scale with the cell size.

�
 The base material is an elastomer and, as a result, it is viscoelastic and exhibits
Mullin’s effect. In this first attempt at the problems, rate dependence was neglected
and the material was approximated to be linearly elastic with modulus E and
Poisson’s ratio n (typical values given in Table 1 of Gong et al. (2005).
ble 1

t parameters for corrected relative density power-law relationship (3) for various cross sections

n k

1.7392 0.1803

1.7426 0.1791

1.7433 0.1637

1.7449 0.1580

1.7474 0.1350

nif. Xsc 1.8968 0.1395
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Fig. 2. Comparison of rise and transverse direction compressive responses of a typical open cell foam.
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�
 Because of the anisotropy in the microstructures, the compressive responses in the
rise and transverse directions of the foams were different. Fig. 2 shows a
comparison of such responses for a 45 ppi foam. The rise direction response
exhibits the characteristic three regime behavior described above. It was observed
that the blocks tested buckled in an overall manner irrespective of specimen size
(Fig. 1, Gong and Kyriakides, 2005). As the stress plateau was traversed, localized
deformation involving bands of buckled cells initiated and spread throughout the
material. The stress plateau terminates when most of the microstructure has
collapsed. The response in the transverse direction has a much smaller elastic
modulus but is essentially a monotone. Overall buckling of the test specimens was
not observed in this direction.

A sequence of models for predicting all mechanical foam properties of interest has
been developed. The foam is idealized to be periodic using the space-filling Kelvin
cell (see Fig. 3) assigned several of the geometric characteristics of the actual foams.
The cells are elongated in the rise direction; the ligaments are assumed to be straight,
to have Plateau border cross sections and variable cross sectional area distribution as
shown in Fig. 4. An area distribution function developed from measurements has
been adopted. The ligaments have been modeled as shear deformable beams.
The first level models are aimed at the initial elastic constants of the anisotropic

foam. These have been developed in closed form (Gong et al., 2005) using
microsections appropriate for each type loading. The rise and transverse direction
moduli predicted for the five foams used in the experiments were found to be in
reasonable agreement with the measured values. The second level models are based
on the characteristic cell shown in Fig. 5 and are aimed at the initial nonlinear
response, the onset of instability and for initial postbuckling studies. The predicted
critical stresses and corresponding modes followed the trends seen in the
experiments. The third level model is aimed at the large deformation response of
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Fig. 3. Cluster of anisotropic Kelvin cells.
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the material involving the stress plateau. The localization of deformation and its
spreading during the stress plateau are reproduced using large scale, finite size type
models involving a large number of cells.
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An essential requirement of the numerical models is the identification of the
critical stress and the associated buckling mode. The complexity of such
microstructures, even when idealized, requires that bifurcation checks, involving
increasingly larger domains with multiples of the characteristic cell, be made in order
to identify the prevalent modes. These include modes local to the cell, others
involving several cells and others involving many cells. The corresponding stresses
are then compared and the critical stress is identified. Even for just uniaxial
compression along the rise and transverse directions considered in Gong and
Kyriakides (2005), this process is lengthy. If more general multiaxial loadings are
considered the task of establishing a stability surface in an appropriate stress space
(say) is daunting.
Because of the periodicity of our microstructure a robust method for establishing

the critical conditions under multiaxial loadings based on Bloch waves can make this
task more systematic and efficient. In the next section such a method developed by
Triantafyllidis and co-workers (Geymonat et al., 1993; Schraad and Triantafyllidis,
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1997a,b) will be tailored to the present microstructure. Subsequently, it will be first
used to revisit uniaxial loading of the foam and then to generate stability surfaces for
a set of triaxial loadings.
2. Analysis

2.1. Anisotropic Kelvin foam and characteristic cell

Most polymeric foams exhibit anisotropy in the form of elongation of the cells in
the rise direction. In an effort to mimic this in the Kelvin cell foam, all ligaments with
a projection in the x1-direction are elongated to ‘=

ffiffiffi
2

p
cos a (aXp=4) while the length

of ligaments in the plane normal to x1 is ‘: This change makes the height of the cell
h1 ¼ 2

ffiffiffi
2

p
‘ tan a and the width h2 ¼ 2

ffiffiffi
2

p
‘: An anisotropy parameter l is defined as

l ¼
h1

h2
¼ tan a: (1)

The ligaments have a three-cusp hypocycloid cross section shown in Fig. 4 defined by
the radius r: The cross sectional area varies along the length ðnominal length ¼ ‘Þ
according to the empirical relationship

AðxÞ ¼ A0f ðxÞ ¼ A0ðax
4
þ bx2 þ 1Þ; �0:5px ¼ x=‘p0:5 (2)

(unless otherwise stated a ¼ 86 and b ¼ 1 will be used). The sectional properties of
the beam are

A ¼
ffiffiffi
3

p
�

p
2

� �
r2; Iy ¼ Iz ¼

1

24
ð20

ffiffiffi
3

p
� 11pÞr4; J ¼ 0:0021r4 (3)

(GJ is an equivalent torsional rigidity which accounts for warping (Warren et al.,
1997)). When approximating foam ligaments as beams, a correction is required
which involves removal of extra material at the intersection (nodes) of four beams.
We adopt the volume correction scheme of Gong et al. (2005) which results in a
relative density relationship

r�

r
¼ k

r0

‘

� �n

; (4)

where k and n depend on the anisotropy variable l: Table 1 gives values for the
constants for specific anisotropy values of interest. (In the absence of this correction
n ¼ 2; the value most quoted in foam literature.)
A Timoshenko-type correction for the additional deformation resulting from

shear stresses will be adopted. The strain energy due to the shear force ðV Þ is
modified as follows:

Us ¼

Z 1=2

�1=2
b

V 2ðxÞ
2GA

‘ dx where b ¼
A

I2y

Z
z

Q2ðzÞ

bðzÞ
dz: (5)
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The second integral is over the cross section of the ligament shown in Fig. 4 with Q

being the first moment of area about the y-axis ðbðzÞ � widthÞ: For this cross section
b ¼ 1:24:
Because of the regularity and periodicity of the microstructure chosen, several of

the mechanical properties of interest can be evaluated by considering either the
appropriate characteristic cell or an assembly of characteristic cells along with
appropriate periodicity conditions. The characteristic cells of the anisotropic Kelvin
foam is shown in Fig. 5 (also drawn in color in Fig. 3). The periodicity conditions for
a single unit cell can be expressed as follows: Let the three pairs of opposite bounding
faces of the cell be ð@Ri1; @Ri2Þ; i ¼ 1; 2; 3: The displacements and rotations of points
on these faces are, respectively, denoted by ðui1; ui2Þ and ðyi1; yi2Þ; i ¼ 1; 2; 3: The
following relationships of degrees of freedom are prescribed for points on each pair
of faces ð@Ri1; @Ri2Þ i ¼ 1; 2; 3:

ui1 � ui2 ¼ urefi1 � urefi2 ; i ¼ 1; 2; 3;

yi1 � yi2 ¼ 0; i ¼ 1; 2; 3; ð6Þ

where urefij (j ¼ 1; 2) are displacements of corresponding points on opposite sides
chosen as reference points (e.g., ðA1;A2Þ; ðC1;C2Þ; etc.).
The characteristic cell is discretized with finite elements within the nonlinear code

ABAQUS using the B32, three-noded, quadratic, space-beam elements. Each
ligament is represented by 8 elements of uniform cross-sectional area. The area of
each element is based on the symmetric function f ðxÞ in (2) as follows:

f ðxÞ ¼

1; 0pjxjp0:2;
1:482; 0:2ojxjp0:3;
2:574; 0:3ojxjp0:4;
4:993; 0:4ojxjp0:5:

8>>><
>>>:

(7)

By using the beam general section feature, the sectional characteristics of each beam
fA; Iy; Jg are prescribed to correspond to the values in (3). The shear correction
factor b ¼ 1:24 is included. The resultant model has 24 ligaments, 192 elements, 378
(951 code) nodes and a total of 2268 variables. As in the preceding work, the foam
material is assumed to be linearly elastic with Young’s modulus E and Poisson’s
ratio of 0.49.
2.2. Bloch wave stability calculations

We consider the stability of the infinite periodic foam under general loading
following a specified path. We will use the incremental response of the unit cell to
this loading, and seek to identify the first instance equilibria different from the trivial
one become possible.
Let KðLÞ be the global tangent stiffness matrix of the characteristic cell

(unconstrained, i.e. before applying boundary conditions) where L is a normalized
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load parameter. It can be written as

KðLÞ ¼

K11 K12 K1I

K21 K22 K2I

KI1 KI2 KII

2
64

3
75; (8)

where Kab are stiffness submatrices corresponding to nodes on the three opposite
pairs of cell surfaces ð@Ri1; @Ri2Þ; i ¼ 1; 2; 3 (subscripts 1 and 2 represent the face pair)
and internal nodes are represented by subscript I. So, for example, K11 is a 36 36
matrix for the six nodes ðA1;B1Þ; ðC1;D1Þ; ðE1;F 1Þ on surfaces @Ri1 (see Fig. 5). Each
node has 6 degrees of freedom constituting vector u1 with 36 components. K22 is a
similar stiffness matrix corresponding to ðA2;B2Þ; ðC2;D2Þ; ðE2;F2Þ on surfaces @Ri2

and degrees of freedom u2 (also with 36 components). K12 and K21 are cross
stiffnesses relating u1 and u2: KII ð2196 2196Þ is the stiffness matrix of the (366)
internal nodes with corresponding (2196) degrees of freedom uI:
Let ~u ¼ f~u1; ~u2; ~uIg

T be the displacement increments along a bifurcated equilibrium
path starting at the critical point and ~F ¼ f ~F1; ~F2; 0g

T be the corresponding force
increments. Then incremental equilibrium requires that

KðLÞ~u ¼ ~F: (9)

The internal degrees of freedom ~uI can be evaluated from (9) as

~uI ¼ �K�1
II ½KI1 ~u1 þ KI2 ~u2�: (a)

Substituting ðaÞ ! ð9Þ results in

K̂11 K̂12

K̂21 K̂22

" #
~u1

~u2

( )
¼

~F1
~F2

( )
; (10)

where

K̂11 ¼ K11 � K1IK
�1
II KI1;

K̂12 ¼ K12 � K1IK
�1
II KI2;

K̂21 ¼ K21 � K2IK
�1
II KI1;

K̂22 ¼ K22 � K2IK
�1
II KI2: ðbÞ

Because of the periodicity of the cell we can assume that the bifurcation mode admits
the following form (Bloch, 1928)

~uðxÞ ¼ UðxÞ exp i
m1x1

h1
þ

m2x2

h2
þ

m3x3

h3

� �� �
; (11)

where hi and mi=hi; i ¼ 1; 2; 3 are the dimensions of the sides of the characteristic cell
and the wave numbers, respectively. UðxÞ is a periodic function with the same spatial
periodicity as the unit cell, i.e.

Uðx1 þ n1h1; x2 þ n2h2;x3 þ n3h3Þ ¼ Uðx1;x2;x3Þ; (c)
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where ni are arbitrary integers. In view of (11) nodes on opposite sides will have

~u2 ¼ l~u1 and ~F2 ¼ �l ~F1; (12)

where

l ¼

eim1I 0 0

0 eim2I 0

0 0 eim3I

2
64

3
75; dimðIÞ ¼ 12: (d)

Substituting ð12Þ ! ð10Þ results in

K̂11 K̂12

K̂21 K̂22

" #
I 0

0 l

" #
~u1

~u1

( )
¼

I 0

0 l

" #
~F1

� ~F1

( )
: (13)

Multiplying both sides by ½I l̄�; where l̄ is the complex conjugate of l (i.e., ll̄ ¼ I),
gives

½I l̄�
K̂11 K̂12

K̂21 K̂22

" #
I 0

0 l

" #
~u1

~u1

( )
¼ ½I l̄�

I 0

0 l

" #
~F1

� ~F1

( )
(e)

which results in

K
�

ðL;lÞ~u1 ¼ ½I l̄�
K̂11 K̂12

K̂21 K̂22

" #
I

l

" #
~u1 ¼ ½K̂11 þ K̂12l þ l̄K̂21 þ l̄K̂22l�~u1 ¼ 0:

(14)

Here K
�

ðL;m1;m2;m3Þ is a 36 36 Hermitian matrix (i.e., real eigenvalues) with zero
determinant. Thus, we prescribe mi and seek the lowest value of LðmiÞ for which
det jK

�

j ¼ 0: The process is repeated for a broad range of mi 2 ½0; p� (note cubic
symmetry of cell) and the critical bifurcation load is

LC ¼ min
m1;m2;m3

LðmiÞ at mi ¼ mci : (15)

The corresponding bifurcation mode is given by

~uðxÞ ¼ UðxÞ exp i
mc1x1

h1
þ

mc2x2

h2
þ

mc3x3

h3

� �� �
: (16)

Two cases are distinguished: either the dimensionless wave numbers at criticality mci
are different from 0 (or 2np) (modes involving a finite number of cells) or they are in
the neighborhood of 0. In the latter case two different types of modes coexist; either
strictly periodic modes—local to the cell—(mci ¼ 0; or 2np) or long wavelength
modes (mci ! 0). For the strictly periodic modes (~u2 ¼ ~u1) one should be careful to
constrain (14) against rigid body translation, thus removing the singularity from
det jK

�

j ¼ 0: For mci ! 0; the limit of det jK
�

j ¼ 0 has to be taken analytically and
corresponds to the loss of ellipticity of the homogenized tangent moduli of the
structure.
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To this end, we evaluate the homogenized tangent moduli of the infinite periodic
structure under macroscopically uniform unit strains in all possible directions (i.e.,
three normal and six shear), as follows:

2.2.1. Homogenized moduli of Kelvin cell foam

We construct special functions v
ij
for the six degrees of freedom of all nodes of the

characteristic cell which correspond to unit normal (�ii; no sum) and shear (�ij ; iaj)
strains as follows:

v
ij
¼ v1

ij
; v2

ij
; vI

ij
� �T

; ðijÞ ¼ 1; 2; 3: (17)

For each node ðNÞ

v
ij
ðNÞ ¼

vk

ij

vr

ij

8<
:

9=
; ðk ¼ 1; 2; 3Þ ðr ¼ 4; 5; 6Þ (f)

where subscript k represents the displacements and r the rotations. For the
displacement degrees of freedom

wk

ij
¼ dikxj þ vk

ij
; (g)

where x are the coordinates of the nodes, vk

ij
are periodic functions

vk

ij
���
1
¼ vk

ij
���
2

� �
and

wk

ij
���
2
¼ wk

ij
���
1
þ dikhj ; (h)

where �j1 and �j2 refer to opposite sides of the characteristic cell (the second term on
the RHS is only present for surfaces with normals acting in the j-direction). For the
rotational degrees of freedom

wr

ij
���
1
¼ wr

ij
���
2
: (i)

Applying Eq. (17) to the unit cell, where the internal degrees of freedom are
condensed out as in (a), results in

K̂11 K̂12

K̂21 K̂22

" #
v1
ij

v2
ij

8<
:

9=
; ¼

F1
ij

F2
ij

8><
>:

9>=
>;: (j)

Using (h), (i) and F2
ij

¼ �F1
ij

in (j) and multiplying both sides by ½ I I � yields

½I I�
K̂11 K̂12

K̂21 K̂22

" #
v1
ij

v1
ij
þ dikhj

� �
8<
:

9=
; ¼ ½I I�

F1
ij

�F1
ij

8><
>:

9>=
>;
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or

½K̂11 þ K̂12 þ K̂21 þ K̂22�fv1
ij
g ¼ �½K̂12 þ K̂22�hdikhji; (k)

where dikhj

� �
are applied to all displacement degrees of freedom of v1

ij
: This has the

solution

v1
ij
¼ �½K̂11 þ K̂12 þ K̂21 þ K̂22�

�1½K̂12 þ K̂22� dikhj

� �
: (18)

From v1
ij
evaluate v2

ij
and vI

ij
and form v

ij
:

The incremental moduli of the material at the load L can then be evaluated as:

Lijkl Lð Þ ¼
vT
ij

KðLÞ v
kl

V
; (19)

where V ¼ h1h2h3 is the volume of the unit cell.
Long wavelength instability has been shown (Geymonat et al., 1993) to

correspond to the loss of rank one convexity of the above found homogenized
moduli of the structure, i.e.

ðLijkl Lð ÞnjnlÞgk ¼ 0 or det jLijklðLÞnjnlj ¼ 0: (20)

Define

n ¼ fcos j; sin j cos c; sin j sin cgT 0pjpp; 0pcp2p: (l)

Then for each L; vary fj;cg until (20) is satisfied. The critical load is the lowest L
which allows such a solution and the corresponding n is the direction of the band (see
also Rice, 1976).
3. Results

3.1. Uniaxial compression in rise direction

Uniaxial compression of one characteristic cell is accomplished by prescribing
incrementally the relative displacement (d1) between its upper and lower periodic
boundaries. Fig. 6a shows the calculated stress-displacement response for a generic
anisotropic foam with l ¼ 1:3 and relative density of 0.025. (For this foam E�

1 ¼

0:00176E can be evaluated from the closed form solution in Table 4 in Gong et al.,
2005.) Initially (OAB), the foam deforms uniformly and symmetrically about a
vertical axis through the center of the cell (inset shows side view of deformed
characteristic cell). The response is stiff but increasingly nonlinear because of the
increasingly larger deflections of the ligaments. At some point along OAB an
eigenvalue is identified indicating that an alternate equilibrium configuration is
possible corresponding to a mode at the cell level. Similar calculations and
eigenvalue checks are conducted for columns of N characteristic cells with
periodicity conditions at the top, bottom, and sides. For the present microstructure
N ¼ 2 yields the same first eigenvalue and mode, but for N ¼ 3 the eigenvalue is
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smaller. Increasing the number of cells to 4, 6, 8 and 12 reduces further the critical
stress and increases the mode wavelength. Fig. 7a illustrates the drop in critical stress
with N: For N412 the critical stress remains unchanged although the mode
wavelength increases. Similar calculations were performed for wider columns in the
x2-, x3- and both directions. It was found that widening the column does not affect
the critical stress or the corresponding mode.
The Bloch wave method automates the search for the critical state. The method

was implemented in conjunction with the code ABAQUS which provided the
instantaneous stiffness matrix KðLÞ at different positions along the primary loading
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path. At each L; mi (i ¼ 1; 3) are varied from 0 to p and check is made for which
values, if any, det jK

�

j ¼ 0: The critical value of L is the lowest value for which this is
the case (see Eq. (15)). This search is done by the computer for the stiffness matrices
provided by the user for finite increments of L: Once buckling is found to occur
between two values of L; interpolation is used to get close to the critical state.
The results for uniaxial loading in the x1-direction are drawn with a solid line in

Fig. 7a ðN ¼ 2p=mÞ: They are seen to be in agreement with the discrete results
obtained via the manual method described above. The critical stress is taken to be
the plateau value in Fig. 7a and is identified on the response in Fig. 6a as s1C: From
the results it is evident that the periodic foam admits a long wavelength buckling
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mode for this type uniaxial loading. This finding is in concert with the bowing
observed in the compressed foam block shown in Fig. 1b in Gong and Kyriakides
(2005).
The postbuckling response of the periodic column of cells can be established by

adding a small initial geometric imperfection to the domain corresponding to the
critical mode (N ¼ 12 is selected here). The microsection is then compressed in the
x1-direction by prescribing incrementally d1: Results for the case with imperfection
amplitude of D0=‘ ¼ 0:25 are included in Fig. 6a (D0 ¼ ju0ðxÞj1 and u0ðxÞ is the
imperfection). The initial and several deformed configurations of a column of cells in
the 1–3 plane corresponding to points marked with solid bullets on the response are
shown in Fig. 6b. Initially the response follows that of the perfect case. As s1C is
approached, the domain is distorted (see configurations and ) resulting in
reduction of its stiffness. With further distortion the response increasingly deviates
from that of the perfect case and reaches a limit stress at an average strain of about
17.6%. Subsequently, the stress decreases with deformation. The deformed
configurations in Fig. 6b show the progressive growth of the buckled configuration.
The limit stress is imperfection sensitive. The extent of this sensitivity was

quantified in Gong and Kyriakides (2005). In addition, they observed that the
presence of a limit load instability in the response of this strictly periodic
microstructure is a sign that localized deformation patterns may be preferred in a
less constrained domain. This was shown to be the case by analyzing finite size
domains. Generally both the limit stress and the plateau stress depend on the
imperfection amplitude and approach the measured values from above.

3.2. Uniaxial compression in transverse direction

The same process is repeated for uniaxial compression in the transverse direction
(x2). Again we start with one characteristic cell with periodicity conditions on all of
its sides and prescribe incrementally the relative displacement (d2) between the two
sides normal to the x2-direction. The calculated s2 � d2 response is shown in Fig. 8a.
Initially, the deformation involves symmetric crushing of the cell as shown in the
inset. The initial modulus is much smaller than the corresponding one in the rise
direction (E�

2 ¼ 0:475E
�
1). At larger strains the response again becomes increasingly

nonlinear due to geometric distortion of the cells. The first eigenvalue occurs at point
A at a stress of s2C:
The domain size is then increased progressively to columns with N characteristic

cells. In this direction the critical stress and the corresponding mode were found to
be insensitive to N : The critical state was also found to be insensitive to the width of
the domain analyzed. These results were also confirmed by the Bloch wave method.
Results of s2C as a function of N predicted by the two methods are compared in Fig.
7b and seen to be in excellent agreement. Thus, the results show that in this direction
the prevalent buckling mode is one local to the cell.
The buckling mode corresponding to s2C with amplitude D0 ¼ 0:01‘ is now

applied as an imperfection to the characteristic cell and the compression test is
repeated keeping the same periodicity conditions. The imperfect cell response
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Fig. 8. (a) Calculated prebuckling and postbuckling responses in transverse direction, and (b) deformed

configurations showing evolution of local mode.
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included in Fig. 8a is seen to initially follow that of the perfect cell. It starts to deviate
from it as s2C is approached. Deformed configurations corresponding to points
marked on the response are shown in Fig. 7b. In configuration nonsymmetric
deformation is visible and it is seen to grow in configurations and . In contrast to
the rise direction, this response maintains a positive slope to large values of average
strain. This overall behavior indicates that this deformation pattern will be repeated
in larger domains in which the periodicity conditions are relaxed. The monotonic
nature of the response is again in agreement with the experimental observations. The
‘‘knee’’ of the response is affected by imperfections as quantified in Gong and
Kyriakides (2005).
This dichotomy in behavior between the rise and transverse directions was found

to be repeated in Kelvin foams with density ratios less than 6% and anisotropy
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values 1olp1:4: Isotropic foams were found to exhibit the long wavelength
unstable buckling mode. For this range of variables the critical stress in the rise
direction decreases as the anisotropy increases.
The critical stresses calculated for the five foams tested follow the same trends as

the measured limit stresses recorded in the rise direction and the stresses
corresponding to the first knee of the transverse direction responses. They are
higher than both sets of measurements by about a factor of 2. When imperfections
are added to the models the results approach measured values from above.

3.3. Triaxial loading

Porous materials are usually tested under triaxial loading (e.g., Triantafyllou et al.,
1989; Deshpande and Fleck, 2000; Gioux et al., 2000). Motivated by this we
investigate the stability of our foam under such loading states (Laroussi et al., 2002)
used a variation of the Bloch wave method to conduct similar calculations for an
isotropic Kelvin cell foam with uniform cross section ligaments; Triantafyllidis and
Schraad (1998) used the method to investigate biaxial loading of a honeycomb).
Since the material is elastic, surfaces associated with the loss of stability (failure

surfaces) are independent of the loading path followed. Because of the shape of the
failure surfaces traced in the J2 � I1 plane, we found it convenient to load the foam
under the radial stress loading defined by

fs1; s2; s3g ¼ Sfk; 1; 1g k 2 ½1;1Þ: (21)

Thus, k ¼ 1 represents pure hydrostatic pressure loading and k ! 1 represents
uniaxial compression. k was varied and for each value the critical state was
established. The Bloch wave method is invaluable in the conduct of such
calculations.
Fig. 9a shows the mean stress-change in volume (s̄� du) response for hydrostatic

compression for a foam with relative density of 0.025 and l ¼ 1:3 (in this case
s̄ ¼ S). The mean stress is normalized by the critical stress under uniaxial loading in
the rise direction (s�1C). The critical stress (s̄C) corresponds to a mode local to a single
cell. The postbuckling response was calculated by applying a small initial
imperfection to the unit cell corresponding to this buckling mode. The calculated
response is shown in the figure while a set of deformed configurations corresponding
to the points marked in the response with numbered flags are shown in Fig. 9b
(x1–x3 and x2–x3 planar views are shown). For clarity a 2 2 2 microsection is
shown although the repetition of the single cell deformation pattern is quite obvious.
Once again the response is a monotone indicating that deformation is stable. Because
of the anisotropy most of the deformation occurs in the x2–x3 plane where some
parts of the microstructure are seen to stay intact whereas the surrounding
neighboring ligaments collapse by twisting. The pattern in configuration is
reminiscent of patterns seen in the equibiaxial crushing experiments and numerical
simulations on circular cell honeycombs of Papka and Kyriakides (1999a, b) (see
Figs. I.11 and II.5b). (Note that no ligament contact was applied in these
calculations.)
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Results for a k ¼ 1:54 are shown in Fig. 10. Fig. 10a shows the axial stress-
displacement response and Fig. 10b the corresponding mean stress-change in volume
response (in this case s̄ ¼ Sð2þ kÞ=3). Both stress quantities are normalized by s�1C:
The critical state is marked on the responses by s1C and s̄C: For this loading, the
critical buckling mode involves a domain consisting of 2 2 2 cells. The
postbuckling responses corresponding to a small initial imperfection in the form
of the critical buckling mode are included in the two figures. Both are monotones
indicating that they are stable. However, they exhibit a milder rate of increase than
the pure hydrostatic case. Fig. 10c shows two planar views of a sequence of deformed
configurations of the 2 2 2 cell domain analyzed. The evolution of patterns in
both domains is quite complex.
Fig. 11a and b show similar responses for k ¼ 2:5: In this case the critical state

corresponds to a long wavelength mode. Furthermore, the postbuckling responses of
the appropriate domain with a small initial imperfection corresponding to this
buckling mode exhibit a limit load instability. Fig. 11c shows the initial and three
deformed configurations corresponding to the points marked on the responses with
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numbered flags. The domain analyzed consists of a column of 12 characteristic cells
with the usual periodicity conditions applied to the top, bottom and sides. Overall,
the behavior is similar to that of the uniaxial loading case shown in Fig. 6. The limit
load again implies that if the periodicity conditions are removed deformation will
tend to localize.
Additional calculations were conducted for a broad range of k and for each case

the critical state was established. The results are summarized in Fig. 12a in the form
of a ‘‘failure’’ envelope in the

ffiffiffiffiffiffiffiffi
3J2

p
� I1 plane (J2 is the second invariant of the

deviatoric stress tensor and I1 the first invariant of the stress tensor). The two stress
quantities are normalized by the critical stress of the same density isotropic foam
under uniaxial loading (sCð1Þ). Interestingly, the shape of the envelope is quite
similar to envelopes developed from triaxial tests on aluminum foams by Deshpande
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and Fleck (2000). At low values of k (and J2) the critical mode is local to a single cell.
At high values of k (and J2) the instability involves long wavelength modes. For
intermediate values of k (and J2) the critical buckling modes cover a domain
consisting a few cells (e.g. 2 2 2; 2 2 1; 1 2 2; 2 1 2 cells). In all cases
tested the postbuckling responses of long wavelength modes were found to exhibit a
limit load. By contrast, local modes exhibit stable postbuckling behavior.
Similar calculations were performed for foams with the same relative density but

different values of anisotropy. The results are summarized in Fig. 12a. For all
anisotropic cases considered the shapes of the failure surfaces are similar. The
isotropic case (l ¼ 1) does not exhibit the single cell buckling modes at low values of
kX1: Overall, increasing l tends to decrease the critical stress states.
An alternate failure envelope is one involving the lateral stress SC vs. the axial

stress s1C (note that here fs2;s3g ¼ fS;Sg). Both are normalized by the critical stress
of the isotropic foam with the same density under uniaxial loading (sCð1Þ). The
failure envelopes calculated for five values of anisotropy are shown in Fig. 12b.
Because of the different critical states plotted, these envelopes contain additional
results not included in Fig. 12a. Again the shapes of the surfaces are qualitatively
similar to experimentally produced ‘‘yield’’ surfaces for aluminum foams in
Deshpande and Fleck (2000). The isotropic foam essentially encloses all the others.
The same three regimes of buckling modes are identified on each envelope.
4. Summary and conclusions

In Gong and Kyriakides (2005) it was demonstrated that the nonlinearity in the
compressive response of open cell foams, is governed by cell ligament buckling.
Significant insight into this behavior was gained by idealizing such foams as
comprising of periodic, space-filling Kelvin cells assigned several of the geometric
characteristics of actual foams. The cells were elongated in the rise direction; the
ligaments were assumed to be straight, to have Plateau border cross sections, and
variable cross sectional area distribution. The base material was assumed to be
linearly elastic. The modeling involved either a single characteristic cell or an
assemblage of several such cells. In all cases appropriate periodicity conditions were
prescribed to the domain analyzed.
The complexity of such microstructures requires that bifurcation checks, involving

increasingly larger domains with multiples of the characteristic cell, be made in order
to identify the prevalent buckling modes. These include modes local to the cell,
others involving several cells and others involving many cells. This process can be
automated by using Bloch waves to establish the critical states. In this paper a
method based on Bloch waves developed by Triantafyllidis and co-workers has been
tailored to the present microstructure. The method was then used to find the critical
states of such foams under uniaxial and a set of triaxial loadings.
A rich variety of buckling modes were identified which were shown to be affected

by the foam anisotropy and the mutliaxiality of the applied loads. For example, for
uniaxial compression along the rise direction the critical state is associated with a
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long wavelength mode. This mode was shown to exhibit unstable postbuckling
behavior leading to localization. By contrast, for uniaxial compression in the
transverse direction the prevalent mode is local to the cell. This mode exhibits a
stable postbuckling response. Both of these behaviors persisted for all foam
anisotropy values considered. It is important to note that both types of the behavior
are consistent with experimental observations. Isotropic foams exhibit long
wavelength buckling modes.
The response and stability of Kelvin cell foams under triaxial loads was also

analyzed. The results were used to develop failure envelopes for foams with varying
anisotropy values in the

ffiffiffiffiffiffiffiffi
3J2

p
� I1 and s1C � SC planes. The envelopes correspond-

ing to the isotropic foam were found to enclose (nearly) those of anisotropic foams.
For loading states involving relatively small axial stresses (and J2) in the rise
direction, the critical buckling modes were found to be local to the characteristic cell.
For loading states involving relatively high axial stresses (and J2) in the same
direction the prevalent buckling modes had long wavelengths. In the transition
between the two regimes criticality was associated with buckling modes involving
domains of a few cells. For all cases examined, long wavelength modes exhibited
unstable postbuckling behavior leading to localization. Modes local to the
characteristic cell, or those involving domains of a few cells, were found to have
stable postbuckling responses. This richness in buckling modes is a complexity which
required the automated bifurcation check procedure provided by the Bloch wave
method. More on postbuckling behavior and on localization observed under some
loading regimes can be found in Gong and Kyriakides (2005).
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