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Abstract

The electromagnetic forming (EMF) process is an attractive manufacturing technique, which
uses electromagnetic (Lorentz) body forces to fabricate metallic parts. One of the many advan-
tages of EMF is the considerable ductility increase observed in several metals, with aluminum
featuring prominently among them. The quantitative explanation of this phenomenon is the pri-
mary motivation of this work.

To study the ductility increase due to EMF, an aluminum ring is placed outside a 8xed coil,
which is connected to a capacitor. Upon the capacitor’s discharge, the time varying current in
the coil induces a larger current in the ring specimen and the resulting Lorentz forces make it
expand. The coupled coil–ring electromagnetic and thermomechanical problem is solved, using
an experimentally obtained constitutive model for a particular aluminum alloy. Our results show
that for realistic imperfections, the EMF ring starts necking at strains about six times larger
than its static counterpart, as observed experimentally. This study establishes the importance of
solving the fully coupled electromagnetic and thermomechanical problem and provides insight
on how di;erent constitutive parameters in<uence ductility in an EMF process.
? 2004 Elsevier Ltd. All rights reserved.

Keywords: A. Electromechanical processes; A. Thermomechanical processes; B. Finite strain; B.
Viscoplastic material; C. Energy methods

1. Introduction

Electromagnetic forming (EMF) is a highly <exible and cost-e;ective method
of implementing high-velocity sheet metal forming. It is typically accomplished by
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connecting a conducting actuator (usually a solenoid coil made of copper windings) in
series with a large capacitor bank charged under high voltage and equipped with fast
action switches. By discharging the capacitor bank, the large transient current appear-
ing in the actuator produces by induction strong eddy currents in the nearby metallic
workpiece. The presence of these eddy currents inside the magnetic 8eld generated by
the currents of the actuator result in Lorentz body forces in the workpiece, which are
responsible for its plastic deformation.
The EMF technique was 8rst used in this country in the 1950s and 1960s, due

to its advantages in enabling the fabrication of many complex geometry parts and in
enhancing the formability of low ductility materials. EMF techniques are popular in
the aerospace and automotive industries due to a number of advantages they hold over
conventional forming techniques, such as repeatability (because of its electric nature,
energy input can be carefully adjusted), non-contact (no lubrication needed and no tool
marks to worry about) and speed (typical EMF processes duration is of the order of
10 �s). Of particular interest to the present work is the signi8cant increase in ductility
observed in certain EMF metals, with aluminum featuring prominently among them.
Experimental results by Balanethiram and Daehn (1992) and Balanethiram and Daehn
(1994) have produced forming limit diagrams that show that although a conventionally
formed structural steel alloy (DFQ steel) is about twice as ductile as a conventionally
formed aluminum one (6061-T4 aluminum), the EMF process can increase the ductility
of the same aluminum alloy up to a factor of six. A theoretical explanation of this
fact, based on a coupled electromagnetic and thermomechanical modeling of a relevant
EMF experiment is the motivation of the present work.
Although research work in EMF during the 1950s and 1960s was important, as evi-

denced by the (mainly experimental) number of publications reported in the engineering
literature, the research activity in the next twenty years (from the early 1970s to the
early 1990s) diminished to a trickle (see survey article by Daehn et al., 1999). Even
in the heyday of interest on EMF, the scarcity of modeling work for these processes
is strikingly noticeable. The main reason can be attributed to timing: computational
methods and the hardware required for the execution of the resulting numerical algo-
rithms were not yet in place. Although the physics of these complex thermomechanical
plus electromagnetic phenomena were in principle understood, the pertaining coupled
non-linear systems of partial di;erential equations could not be solved with the tech-
nology available at that time.
Of the initial modeling e;orts in EMF, we mention the work of Furth and Waniek

(1956) and Furth and Waniek (1957) who describe the basic equations of the prob-
lem as also do the analytical studies of Birdsall et al. (1961) and Meagher (1964).
Subsequent work by Al-Hassani et al. (1974) relaxed some of the assumptions in
the previous works and calculated numerically the Lorentz forces in the workpiece.
As computing power became more readily accessible, a new set of EMF modeling
studies has emerged since the 1980s. Of particular interest here is the experimental
and theoretical paper by Gourdin (1989) who has studied the electromagnetic expan-
sion of tin, copper and lead rings. Gourdin formulated the coupled electromagnetic
and thermomechanical problem by taking into account the geometry changes of the
ring to 8nd the correct induced currents. He has assumed several stress–strain laws
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for the axisymmetric, uniaxial deformation of the ring but did not model necking or
fracture.
The electromagnetically loaded ring expansion and fragmentation problem has also

been addressed in the mechanics literature, starting with the experimental investigations
of Niordson (1965). Since then, additional experimental (e.g. Grady and Benson, 1983)
and theoretical (e.g. Han and Tvergaard, 1995; Pandol8 et al., 1999; Sorensen and
Freund, 2000; Becker, 2002) investigations have addressed the mechanical aspects of
ring expansion and the ultimate fragmentation process, using 3D modeling of the ring
and sophisticated failure criteria. Although not formulated for the ring, the recent work
by Mercier and Molinari (2003) addresses the onset of a bifurcation instability and
wavelength selection in the dynamic loading of elastoplastic solids under uniaxial ex-
tension, thus providing important insight on the in<uence of inertia and material prop-
erties on the failure initiation mechanism for a ring. However these re8ned mechanics
studies of ring expansion ignored the coupled nature of the problem and assumed the
velocity boundary conditions imposed on the specimen (known). The common fea-
ture that emerges from the survey of the existing literature on EMF is the absence of
studies where the coupled electromagnetic and 8nite strain thermomechanical problem
is addressed concurrently with the onset of necking, and this is exactly the approach
adopted in the present work.
The formulation of the coupled electromagnetic and thermomechanical problem is

presented in Section 2, followed by an onset-of-necking “band type” analysis in the
spirit of Marciniak and Kuczynski (1967). The numerical results for a ring made from
a 6061-T6 aluminum alloy whose constitutive properties have been measured experi-
mentally by Yadav et al. (1995) are given and discussed in Section 3. There among
other things it is shown that for the alloy considered and for realistic imperfections,
the observed ductility improvement over a purely mechanical process is close to exper-
imental observations. The main reason for the enhanced ductility of the rings, which is
discussed in Section 4, lies in the material’s rate sensitivity, which is known to delay
necking in uniaxial tension tests (see Hutchinson and Neale, 1977). The presentation
is concluded by some general observations and suggestions for further investigations,
also given in Section 4.

2. Problem formulation

The schematic diagram of the ring expansion experiment is shown in Fig. 1. The
setup consists of a capacitor of capacitance C1 connected to a coil of radius r1 and
placed coaxially and symmetrically inside a ring (also termed the “specimen”) of a
slightly larger initial radius r0. Here and subsequently, all quantities associated with
the coil will be denoted by a subscript (1) while their counterparts for the ring will
be denoted by a subscript (2). To avoid unnecessarily cumbersome notation, quantities
associated with the ring that do not have a coil counterpart will have no subscript,
while a (0) subscript designates the initial value, at t=0, of a ring-associated variable,
i.e. r0 ≡ r2(0).
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Fig. 1. Schematic representation of the experimental setup for the electromagnetic ring expansion experiment.

By discharging the capacitor connected to the coil, a time-dependent current, I1(t),
<ows through it and, according to Lenz’s Law, induces in the ring a current, I2(t), in
the opposite direction. The resulting Lorentz force exerted on the ring (since the current
I2 interacts with the coil’s magnetic 8eld) is responsible for its expansion. The switch
shown in Fig. 1 is used to produce a single pulse in the coil by preventing a sign
change in I1, which would have resulted in an unwanted subsequent contraction of the
ring following its initial expansion phase. The section continues with the presentation
of the equations governing the electromechanical system at hand and concludes with
the derivations pertaining to the onset of necking in the ring.

2.1. Governing equations

The system’s governing ordinary di;erential equations are derived using the princi-
ples of classical mechanics for 8nite degree of freedom systems as follows. First the
Lagrangian, L, of the system is constructed as the di;erence of the generalized kinetic
energy, T, and generalized potential energy, V, namely

L(Q1; Q2; �p; r2) ≡ T − V;

T ≡ 1
2 M2(ṙ2)2 + 1

2 [L11(Q̇1)2 + 2L12(r2)Q̇1Q̇2 + L22(r2)(Q̇2)2];

V ≡ 1
2C1

(Q1)2 +
V2E
2

(�e)2: (2.1)
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The four degrees of freedom of the system are the electric charges, Q1 and Q2, in the
coil and the ring, the plastic strain, �p, of the ring and the radius, r2, of the ring, since
only axisymmetric deformations are considered. In addition, here and subsequently, a
quantity surmounted by a dot denotes the time derivative of the quantity in question.
The generalized kinetic energy of the system, T, consists of a mechanical part

(one-half times mass, M2, times the square of the ring’s radial velocity, v2 = ṙ2) plus
an electromagnetic part, which is the energy stored in the coil and the ring. This
electromagnetic energy is a quadratic function of the currents, I1 = Q̇1 and I2 = Q̇2,
and depends on L11 and L22(r2), which are, respectively, the self-inductances of the
coil and the ring, and on L12(r2), which is the mutual inductance between the coil and
the ring. All inductances depend on geometry and their explicit expressions are given
in Appendix A. Attention is here drawn to the fact that the inductances L12 and L22

depend on the ring’s radius, r2, and hence—in contrast to L11—are time dependent,
thus greatly in<uencing the resulting currents in the system.
The generalized potential energy of the system, V, consists of an electrostatic part

(the energy stored in the capacitor equals one-half the square of the capacitor’s charge,
Q1, divided by the capacitance, C1) plus a mechanical part which is the ring’s volume,
V2, multiplied by its elastic energy density (one half the ring’s Young’s modulus, E,
times the square of its elastic strain �e). The elastic strain is given in terms of the total
(logarithmic) strain, �, the plastic strain, �p, and the thermal strain, ��, by

�e = � − �p − ��;

� ≡ ln(r2=r0);

�� ≡ �(� − �0); (2.2)

where � is the ring’s thermal expansion coeTcient and � is the ring’s temperature,
while �0 is its initial temperature (�0 ≡ �(0)). For simplicity, it is further assumed that
the ring is incompressible and that its mass density � is temperature-insensitive. Hence
the ring’s mass, M2, and volume, V2 =M2=�, are time-independent constants.
The governing equations for the dissipative system described by the Lagrangian in

(2.1) are
d
dt

(
@L
@q̇i

)
− @L

@qi
+ fi = 0 (i = 1; : : : ; 4); (2.3)

where the generalized coordinates, qi, and their work-conjugate dissipative forces, fi,
are given by

q1 ≡ Q1; f1 = R1I1;

q2 ≡ Q2; f2 = R2I2;

q3 ≡ �p; f3 = V2�;

q4 ≡ r2; f4 = 0: (2.4)

The dissipative forces corresponding to Q1 and Q2 are the voltage drops due to the
ohmic resistances, R1 and R2, of the coil and the ring, respectively, while the dissipative
force corresponding to �p is the axial stress, �, of the ring multiplied by its volume.
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Using the particular form of the system’s Lagrangian in Eq. (2.1) in the general
expression (2.3), and after taking into account Eqs. (2.2) and (2.4), one obtains the
following four equations:

i = 1 :
d
dt
(L11Q̇1 + L12Q̇2) +

Q1

C1
+ R1Q̇1 = 0;

i = 2 :
d
dt
(L12Q̇1 + L22Q̇2) + R2Q̇2 = 0;

i = 3 : −V2E�e + V2� = 0;

i = 4 : M2 Ur2 − dL12

dr2
Q̇1Q̇2 − 1

2
dL22

dr2
(Q̇2)2 + V2E�e

1
r2

= 0: (2.5)

The 8rst two equations are Faraday’s Law for the coil and the ring, respectively. The
third equation is the stress–elastic strain relation for the ring and the last equation is
the ring’s equation of radial motion. The above equations could have been obtained
by direct considerations (as in Gourdin, 1989), but the present derivation, besides its
elegance, is helpful in establishing the system’s energy balance, which has not been
studied previously to the best of the authors’ knowledge.
To establish the system’s energy balance one must multiply each one of the four

equations in Eq. (2.5) by the corresponding q̇i and then sum the resulting expressions,
obtaining with the help of Eqs. (2.1), (2.2) and (2.4)

4∑
i=1

[
d
dt

(
@L
@q̇i

)
− @L

@qi

]
q̇i = Ė+D= 0;

E ≡ T+V;

D ≡
4∑

i=1

fiq̇i: (2.6)

Up to this point, no mention of the system’s material properties has been made, which
are an indispensable ingredient for the solution of the ring expansion problem. For
the application of interest, large strains, high strain rates and important temperature
increases are expected. Consequently, and given our interest in the ductility increase
of EMF formed aluminum, the rate-sensitive, thermoviscoplastic constitutive model in
Yadav et al. (2001), which is based on experiments by Yadav et al. (1995) on 6061-T6
Al alloy, is used (in conjunction with Eq. (2.2) and the third equation of Eq. (2.5))

�̇p =




�̇p0

[(
�

g(�p)

)1=m
− 1

]
if �¿g(�p);

0 if �6 g(�p);

g(�p) = �y

(
1 +

�p

�p0

)n [
1 −

(
� − �0
�m − �0

)�]
: (2.7)
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In the power law type model presented above, m, n and � are the rate-sensitivity,
hardening and thermal sensitivity exponents, respectively, while �p0 and �̇p0 are the ref-
erence plastic strain and plastic strain rate. In addition, �m is the material’s melting
temperature, �0 the reference temperature and �y the yield stress at �0.
It is tacitly assumed (and veri8ed numerically in all the subsequent calculations)

that the ring is under loading conditions �̇¿ 0 until it reaches its maximum strain, at
which point the calculations are terminated, thus justifying the absence of unloading
considerations. The material in the ring starts by loading elastically (�̇p = 0; �̇¿ 0) and
subsequently enters its plastic range when the strain reaches a (thermally dependent)
yield strain, ��y, given by

��y = �(� − �0) +
�y

E

[
1 −

(
� − �0
�m − �0

)�]
; (2.8)

which has been obtained by requiring stress continuity at the 8rst onset of yielding.
Similarly to the mechanical properties, the electrical properties of the system’s ma-

terials are required. Thus if � is the (temperature-dependent) resistivity of the ring, its
resistance, R2, is given by

R2 = �(�)2�r2=a2;

�(�) = �0 +  (� − �0); (2.9)

where a2 is the ring’s current cross-section, �0 its resistivity at the reference temper-
ature, �0, and  the resistivity’s temperature sensitivity (assumed linear). The deter-
mination of the current cross-section, a2, in terms of the current radius of the ring,
r2, and its initial cross-section, a0, is achieved with the help of the incompressibility
assumption, mentioned earlier in this section,

V2 = 2�r2a2 = 2� r0 a0: (2.10)

A similar relation to Eq. (2:9)1 is used to calculate the total resistance of the main
coil and it is also recorded for completeness in Appendix B.
So far we dispose of four equations, Eq. (2.5) (the third equation from Eq. (2.5)

is combined with the kinematics, Eq. (2.2) and constitutive law, Eq. (2.7) for the
8ve unknown quantities: Q1, Q2, �p, r2 and �. Consequently, an additional equation
is required for the solution of the problem. This additional equation is obtained by
assuming that all the ohmic and part of the plastic energy—given by a factor !—
dissipated in the ring is converted into heat, a reasonable assumption due to the short
duration of the ring’s expansion phase. Hence

M2cp�̇= V2!��̇p + R2(I2)2; (2.11)

where cp is the ring’s speci8c heat, V2��̇p is the ring’s rate of plastic work and R2(I2)2

is its ohmic dissipation. The coil’s temperature changes are ignored.
At this point, one has 8ve equations for the 8ve unknowns Q1, Q2, �p, r2 and �.

To solve the system for these 8ve time-dependent quantities, the appropriate initial
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conditions are required. These conditions account for the fact that the system at t=0 is
at temperature �0 and has no initial velocity or currents, no permanent deformations, a
maximum charge in the primary circuit Q1 =C1Vmax—where Vmax is the initial voltage
of the capacitor—and no charge in the specimen, i.e.

at t = 0




Q1 = C1Vmax; Q2 = �p = 0;

r2 = r0;

�= �0;

Q̇1 = Q̇2 = ṙ2 = 0:

(2.12)

The fact that the initial rates of Q1, Q2 and r2 must be prescribed (and not the initial
rates of �p or �) is explained by Faraday’s Laws, Eq. (2:5)1 and Eq. (2:5)2, and
the ring’s equation of motion, Eq. (2:5)4, which involve second derivatives of these
variables. In contrast, the evolution equation for the internal variable �p, Eq. (2.7),
and the equation governing the ring’s heating in Eq. (2.11) involve only 8rst order
time derivatives of �p and �, thus justifying the corresponding initial conditions in
Eq. (2.12). The resulting system of ordinary di;erential equations is solved numerically
as explained subsequently.

2.2. Onset of necking

Having established the governing equations for the axisymmetric motion of the ring,
attention is focused next on the determination of the critical strain corresponding to
the onset of necking in the ring. As explained in the introduction, in the interest of
modeling simplicity, a “band type” analysis, introduced by Marciniak and Kuczynski
(1967), is to be employed here. The main di;erence of the present analysis with its
purely mechanical counterpart used in the study of necking in rate-sensitive bars by
Hutchinson and Neale (1977) is the thermomechanical coupling due to ohmic heating.
Consistently with the assumption of a uniaxial stress state in the ring (due to its

small curvature,
√
a2�r2) one assumes the existence of a “weak” zone in the ring, see

Fig. 2, whose initial cross-section, ain(0) is slightly inferior to the initial cross-section
of the ring, aout(0) = a0,

ain(0) = (1 − #)aout(0); 0¡#�1: (2.13)

The (in) and (out) subscripts herein refer to quantities associated with the in(side)
and the out(side) of the weak zone of the ring. It is tacitly assumed that the extent
of the weak zone is small and that the di;erences between quantities evaluated inside
and outside this zone are so small (up to the onset of necking) as to not a;ect the
axisymmetric solution of the ring. Consequently, the solution to the system of ordinary
di;erential equations (2.5) and (2.11) with initial conditions (2.12) will be subsequently
labeled with a subscript (out) since it provides all the quantities outside the weak zone.
As the loading process starts, the strains inside and outside the weak zone are almost

the same (�in=�out =1+O(#)). With the continuation of the loading process there comes
a time that the strain ratio �in=�out starts increasing very rapidly and without bound, as
seen in Fig. 2. The onset of necking strain, �neck, is de8ned at the strain �out(tneck),
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π/4

Fig. 2. Evolution of strain inside and outside a “weak” zone of the ring.

where tneck is the time at which �in=�out exceeds a certain value (which in all subsequent
calculations is taken to be equal to four). A higher than four value for the de8nition
of the onset of necking makes practically no di;erence for the value found for �neck,
although it requires much smaller step sizes near tneck due to the practically vertical
asymptote of �in(t)=�out(t) near tneck. The numerical calculation of �in(t) is based on
the assumption of force and current continuity across the two zones of the ring, in
addition to the constitutive, heat and incompressibility equations for the material, and
works as follows: the force and current continuity conditions between the zones are

�inain = �outaout ; (force continuity);

(I2)in = (I2)out ; (current continuity): (2.14)

The incompressibility condition, Eq. (2.10), in conjunction with the logarithmic strain
de8nition (2:2)2 and the de8nition of the imperfection in Eq. (2.13) yields

ain = aout(1 − #)exp(�out − �in): (2.15)
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By combining Eqs. (2.14) and (2.15) with the rate form of the elastic stress de8nition,
Eqs. (2:5)3 and (2.2), one obtains

�̇in =
�̇pin + ��̇in + [exp(�in − �out)=E(1 − #)][�̇out − �out �̇out]

1 − [�out=E(1 − #)]exp(�in − �out)
: (2.16)

The expressions for �̇pin and �̇in are found next in terms of �pin, �in, �in and the known
solution for the ring. From the de8nition of the plastic strain in Eq. (2.7), and assuming
that we are in the plastic zone, and combining with force continuity (2.14) and (2.15),
one has

�̇pin = �̇p0

[(
�outexp(�out − �in)=(1 − #)

�y(1 + �pin=�
p
0)n[1 − ((�in − �0)=(�m − �0))�]

)1=m
− 1

]
: (2.17)

The expression for �̇in is obtained with the help of the heat equation, Eq. (2.11), the
force and current continuity, Eqs. (2.14) and (2.15) and reads

�̇in =
(

�(�in)
�(�out)

)(
exp(2�in − 2�out)

(1 − #)2

)(
�cp(�out)�̇out − �out �̇

p
out

�cp(�in)

)

+
(

�out �̇
p
in

�cp(�in)

)(
exp(�out − �in)

1 − #

)
: (2.18)

By substituting Eq. (2.17) into Eq. (2.18) and both into Eq. (2.16) one obtains a
8rst-order system of ordinary di;erential equations for �in ; �

p
in ; �in,

ẋin = f(xin ; ẋout ; xout) x ≡ (�; �p; �); (2.19)

which is solved numerically using a fourth-order Runge–Kutta algorithm.

3. Results

For all the numerical calculations reported here, the geometric and electrical prop-
erties of the main circuit are those used in the experimental setup of Gourdin (1989),
while the ring specimen is a 6061-T6 Al alloy whose experimentally measured me-
chanical properties are given in Yadav et al. (2001). For reasons of completeness of
the presentation, all the geometric, electrical and mechanical properties of the main
circuit and of the base case specimen are given in Appendix B. For the same reason,
the calculation of the self-inductances of the coil L11 and specimen L22 and of the coil
–specimen mutual inductance L12 are also included in Appendix A.
The results are presented in dimensionless form and the de8nitions of the necessary

characteristic quantities are given in this section as the need arises. The 8rst such con-
stant introduced is the characteristic time t0, which is the time required for the current
in the coil circuit to reach its 8rst maximum—in the absence of the specimen ring.
Hence t0 is the quarter period of a simple LRC circuit with inductance L11, resistance
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Fig. 3. Maximum and onset-of-necking strains as a function of the energy stored in the capacitor (Eopt is
energy at which max and onset-of-necking strains for base case specimen coincide).

R1 and capacitance C1, and is given by

t0 ≡ �
2

[
1

L11C1
−
(

R1

2L11

)2]−1=2

: (3.1)

As an indication, we mention that for the base case, t0 = 12:4 �s (see Eq. (B.3)).
The numerical solutions of the governing system of ODEs given in Section 2 is

achieved through a fourth order Runge–Kutta algorithm with a step size Vt =10−3 t0.
The accuracy of the algorithm and the size of the step are determined by comparing
the numerical results to the analytical solution of the linearized coil/ring system. In
this analytical solution the ring is assumed to be linearly elastic and its strains small,
so as to neglect the change of the inductances. An additional check of the accuracy of
the algorithm for the actual non-linear system of ODEs is based on the veri8cation, at
all times t, of the energy balance equation which from Eq. (2.6) reads

E0 = E(t) +
∫ t

0
D dt E0 ≡ E(0): (3.2)

The dependence of the maximum �max and necking �neck strains for the base case of a
6061-T6 Al ring as a function of the energy stored in the capacitor E0(=0:5C1V 2

max) is
depicted in Fig. 3. The energy is non-dimensionalized by using the optimal energy Eopt

de8ned as the energy stored in the capacitor for which the base case Al ring (with an
imperfection #=10−3) starts necking at maximum strain (i.e. �max=�neck). For the base
case this energy is found to be Eopt = 545:6 J and corresponds to an initial voltage of
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Fig. 4. Dimensionless velocity versus dimensionless time for di;erent initial radii, r0, and cross-sections, a0,
of the specimen (a) for E = Eopt and (b) for E = 2Eopt .

Vmax = 4:4 × 103 V (see Eq. (B.3)). For higher energies stored in the capacitor notice
that the necking strain remains practically unchanged, while the maximum strain that
the ring would have attained had the deformation remained axisymmetric (physically
impossible—maximum strain results are shown here just for comparison purposes)
increases dramatically. For capacitor energies E0 ¡Eopt the ductility of the ring is not
exhausted, since no necking is found during the axisymmetric expansion of the ring
from its stress-free con8guration all the way up to its maximum strain.
The time evolution of the ring velocity is depicted in Fig. 4a and b for capacitor

energies Eopt and 2Eopt, respectively. The ring’s velocity is non-dimensionalized with
respect to the corresponding equivalent initial velocity vequ, which is de8ned as the
initial velocity of the ring had all the energy stored in the capacitor been available as
kinetic energy at the onset of the deformation process, i.e.

1
2 M2v2equ =

1
2 C1V 2

max ≡ E0: (3.3)

For the base case, this characteristic velocity is found to be vequ = 845:37 m=s (see
Eq. (B.3)).
Since the ring expansion process starts at rest, the initial velocity is zero. Moreover,

because initially the currents, and hence the Lorentz forces are zero, the initial accel-
eration is also zero, thus explaining the horizontal tangent of the velocity graphs in
Fig. 4. Due to the important ohmic and plastic work dissipation of the EMF process,
the maximum velocity is always considerably less than the equivalent initial velocity.
For a given capacitor energy, both the maximum velocity and the time it takes to reach
the maximum strain decrease as the ring’s cross-section increases, due to the increased
amount of material that is deformed with the same energy—compare the curves for
a0 = 4, 6 and 8 mm, respectively. Also for a given energy the maximum velocity and
the time it takes to reach the maximum strain decrease for increasing radius of the
ring, due to the strong decay of the magnetic 8eld outside the coil as the distance
from the coil’s axis increases—compare the curves for r0 = 1:50, 1.55 and 1:65 cm.
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a0, of the specimen (a) for E = Eopt and (b) for E = 2Eopt .

By doubling the energy in the capacitor, the same ring reaches a higher maximum
velocity and takes a considerably longer time to reach its maximum strain, which can
be seen by a direct comparison of the two groups of velocity graphs in Fig. 4 (for this
case the equivalent initial velocity increases from 845.37 to 1195:53 m=s, see remark
after Eq. (B.3)). Notice also the change of shape in these velocity graphs since the
velocity peak is reached at about t = t0—independently of the initial energy of the
capacitor—while the time that the ring requires to reach its maximum strain (i.e. the
v = 0 point in the graphs) increases considerably with the increasing initial energy
stored in the capacitor.
The evolution of the ring’s dimensionless temperature �=�0 versus the dimensionless

time t=t0 is depicted in Fig. 5a and b for initial capacitor energies Eopt and 2Eopt, re-
spectively. The geometries of the rings are the same as the ones presented in Fig. 4.
Notice that an increase of the ring’s cross-section leads to a decrease in its tempera-
ture due to the drop of the ring’s resistance (recall that the ohmic dissipation in the
specimen, which is proportional to its resistance, is converted to heat). Also an in-
crease in the radius of the ring results in lower temperatures (assuming again the same
initial energy of the capacitor) due to the weaker magnetic 8elds experienced by the
larger radius rings. As expected, when the same ring is subjected to the discharge of
a capacitor with double the initial energy, the higher induced currents result in higher
ohmic dissipation and hence an increase in the temperature of the ring, as evidenced
by the comparison between rings with the same geometry in the two groups of the
temperature graphs in Fig. 5.
The graphs of the dimensionless currents I1=I0 of the coil and I2=I0 of the ring versus

the dimensionless time t=t0 are depicted in Fig. 6a and b for initial capacitor energies
Eopt and 2Eopt, respectively.The characteristic current I0 is de8ned as the amplitude of
the current in a simple LRC circuit with inductance L11, resistance R1 and capacitance
C1, and is given by

I0 ≡ 2
�

Vmaxt0
L11

; (3.4)
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of the specimen (a) for E = Eopt and (b) for E = 2Eopt .

where the characteristic time t0 is de8ned in Eq. (3.1). For the base case at optimal
energy, the characteristic current is I0 = 32:6 × 103 A (see Eq. (B.3)).
It is worth noticing that the initial energy of the capacitor has a rather small e;ect

on the dimensionless currents. On the other hand, an increase in the cross-section of
the ring results in an increased current while an increased ring radius leads to lower
currents, due to the decay of the coil’s outside magnetic 8eld away from its symmetry
axis. The change of the ring’s cross-sectional area a;ects the amplitude, but not the
shape, of the currents graphs. In contrast, the change of the ring’s radius tends to widen
the current pulse, in addition to lowering its peak. It should also be mentioned at this
point that the current peaks occur at about half the characteristic time, i.e. in half the
time as compared to the corresponding peak that would have occurred in the coil in
the absence of the ring.
The repartition of the di;erent energies of the system (energy stored in the capacitor,

in the coils—primary plus ring—elastic and kinetic energy of the ring) as functions
of the dimensionless time is depicted in Fig. 7a while the di;erent dissipations accu-
mulated up to time t (ohmic in coil and ring, plastic dissipation in ring as well as
the total dissipation) are plotted versus the dimensionless time in Fig. 7b. The results
in Fig. 7 correspond to the base case with an initial capacitor energy Eopt = 545:6 J.
Notice in Fig. 7a that the electromagnetic energy stored in the coils peaks at the same
time as the currents (recall from Eq. (2.1) that the electromagnetic energy of the coils
is a quadratic function of the currents), while the kinetic energy peaks at the time cor-
responding to the ring’s maximum velocity (see Fig. 4a). It is also worth mentioning
that the elastic (reversible) energy stored in the ring is negligible.
The energy dissipation results for the base case shown in Fig. 7b show that eventually

more than 80 percent of the total available energy is dissipated through the ohmic
losses in the coil, while the remainder goes to ohmic losses and plastic work in the
ring. Initially, the ohmic losses in the ring are higher due to the rapid increase of the
ring current, but as the deformation proceeds the currents die out, while the stresses
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and plastic strains increase to the point that the total plastic work exceeds the ohmic
losses in the ring by about half, as seen in Fig. 7b. The sum of all dissipated energies
approaches asymptotically the initial energy stored in the capacitor, thus providing an
independent accuracy check for the numerical solution procedure.
The in<uence of the material properties of the ring on its maximum and necking

strains as functions of the initial energy of the capacitor is depicted in Fig. 8. In each
group of graphs, all geometric and material properties are kept the same to the base
case, save for the hardening exponent n which varies in Fig. 8a, the rate sensitivity
exponent m which varies in Fig. 8b and the temperature sensitivity exponent � which
varies in Fig. 8c. According to Fig. 8a, an increase in the hardening exponent sti;ens
the material which consequently reaches a lower maximum strain for a given initial
energy of the capacitor. In contrast to the maximum strain, the onset of necking strain
in the ring increases with increasing hardening, as expected by the higher sti;ness
of the material. Similar trends are observed in the study of the in<uence of the rate
sensitivity, recorded in Fig. 8b. Observe that an increase in m results in a more viscous
—and hence sti;er—material, thus explaining the lowering of the maximum strain for
a given initial energy of the capacitor as the rate sensitivity of the ring increases. In
contrast to the in<uence on the maximum strain, an increased rate sensitivity results
in delaying the onset of necking, as evidenced by the signi8cant increases in the
onset-of-necking strains over the range of m considered in Fig. 8b. In the absence of
ohmic e;ects, our analysis for the necking delay of the rate-sensitive ring reduces to
the one given by Hutchinson and Neale (1977) for the uniaxially strained bar. Finally,
the in<uence of the temperature sensitivity exponent depicted in Fig. 8c shows that as
� decreases the maximum strain for a given initial energy of the capacitor increases,
as expected from the increased thermal softening of the ring. On the other hand, for
the range of the temperature sensitivity parameters considered, their in<uence on the
onset-of-necking strains is negligible.
The results in Fig. 8b elucidate better than any others the main physical reason for

the increased ductility of EMF rings. In contrast to the small in<uence of changing
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the material’s strain hardening or thermal sensitivity, small variations in the rate sen-
sitivity have considerable e;ects in delaying necking. Of course for rate sensitivity to
play an important role, high strain rates have to be encountered during the expansion
process. As an indication of the strain rates achieved, we note that for the base case
the maximum strain rate during the expansion is of the order �̇max =1:3× 104 s−1 (see
Eq. (B.3)).
The considerable improvement, as compared to the purely mechanical methods, in the

ductility of the electromagnetically formed Al is quanti8ed in Fig. 9. This 8gure shows
the “ductility improvement ratio”—de8ned as the ratio of the onset-of-necking strain
in the EMF experiment �emf over its counterpart in a quasistatic and purely mechanical
process �stat—versus the initial energy stored in the capacitor. The calculation of �stat
is based on the rate and temperature independent behavior of the 6061-T6 Al ring
and consists of 8nding the strain corresponding to the maximum force �a—where a
is the current cross-sectional area that can be related to its initial counterpart A by the
incompressibility relation a=A exp(−�)—in a uniaxial experiment involving this alloy,
when the in<uence of the ring’s curvature is ignored. The calculation of �stat, which is
independent of the imperfection amplitude parameter # is based on the solution of the
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following non-linear system:(
d(�a)
d�

)
�stat

= 0; � = �y(1 + �p=�p0)
n; �= �p + �=E: (3.5)

For reference purpose, we note that �stat = 0:0782 for the base case (see Eq. (B.3)).
The ductility improvement ratio is very sensitive to the ring’s imperfection amplitude

parameter #, but practically insensitive to the initial energy stored in the capacitor. No-
tice that by varying # from 5×10−3 to 10−4, the ductility improvement goes from a fac-
tor of 2.5 to about 6, thus explaining the experimentally observed considerable increase
in the necking strains of electromagnetically formed Al reported by Balanethiram and
Daehn (1992) and Balanethiram and Daehn (1994).

A frequently used simpli8cation in calculating the ductility of expanding rings is
to treat the problem as a purely mechanical one which starts deforming from its
stress-free con8guration under a given initial velocity. To assess the importance of
the exact deformation history in the ring ductility calculations, Fig. 10 compares the
ductility improvement ratio calculated 8rst on the basis of the exact coupled electro-
magnetic/thermomechanical process and second based on the simplifying assumption
of a purely thermomechanical process which starts with the velocity vequ de8ned in
Eq. (3.3) but which has no electrical currents and hence no Lorentz forces. It is worth
pointing out that in spite of the fact that the EMF process proceeds under lower ve-
locities than its purely thermomechanical counterpart (see the EMF velocity pro8le in
Fig. 4), it results in higher onset-of-necking strains, due to higher strain rates. Conse-
quently, the results in Fig. 10 emphasize the importance of solving the exact coupled
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electromagnetic/thermomechanical problem to accurately predict the onset-of-necking
strain in the ring.

4. Conclusion

The work presented here is motivated by the need to quantify the experimentally ob-
served ductility increase (over a quasistatic mechanical method) in electromagnetically
formed aluminum alloys. Recognizing the importance of the interaction between the
electromagnetic and the thermomechanical e;ects for the correct determination of the
strain history, we solve here the coupled problem of 8nite strain deformation of a rate
and temperature sensitive elastoviscoplastic ring subjected to induced electric currents
generated by a coil connected to a capacitor bank. The ductility limit is modeled for
simplicity as the onset-of-necking in the uniaxially stressed and axisymmetrically de-
forming ring under the assumptions (i) of the existence of an imperfection in the form
of a thinner section (weak zone) and (ii) of a negligible curvature in<uence on the
necking initiation. The constitutive description for the ring used in the calculations has
been obtained experimentally (and independently) for an Al alloy (6061-T6) subjected
to strains, strain rates and temperature ranges of the magnitudes encountered in this
application.
For realistic magnitudes of the imperfection, our calculations show that the ductility

enhancement of the Al ring, when an EMF process is used instead of a mechanical
method, can increase six times, in agreement with experimental observations. The main
reason for this enhancement can be found in the rate sensitivity of the material and
the high strain rates encountered in the EMF process, of the order of 104 s−1. Our
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calculations show the necessity of modeling the exact deformation history of the ring,
which in turn requires the solution of the fully coupled, highly non-linear electromag-
netic and thermomechanical set of equations. The reason is that changes in geometry
strongly a;ect the currents which determine the Lorentz forces that in turn give the
strain rates and also the temperatures due to the inevitable and important ohmic losses.
The strong dependence of the ductility results on the size of the ring’s imperfection

is due to our use of a simple “band type” analysis to model the onset-of-necking. To
obtain ductility results that are insensitive to imperfections, one will have to consider a
more sophisticated analysis in which the onset-of-necking is signaled by the appearance
of a non-axisymmetric bifurcated solution which will lead to thinning in one part of
the ring and eventually end up as a necking failure. Such considerations require at least
a two-dimensional description of the EMF process and are envisioned for subsequent
investigations. In spite of the fact that the EMF method is known to be an eTcient
manufacturing technique, it is only recently that it has attracted the attention of the
mechanics community. The present work, although relatively simple from a purely
mechanics modeling standpoint, is a useful 8rst step to understand the salient features
of this coupled electromagnetic/mechanical process.
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Appendix A. Calculation of inductances

Although well known, the expressions for the self L11; L22 and mutual L12 inductances
are given here for reasons of completeness of the presentation. At the basis of these
calculations are two fundamental results, (i) the mutual inductance of two coaxial rings
and (ii) the self inductance of a ring with circular cross-section. The self inductance
of the main coil L11 and the mutual inductance L12 between the main coil and the ring
are subsequently obtained from these results using superposition.
The mutual inductance lm(a; b; z) of two coaxial rings of radii a and b respectively,

whose parallel planes are separated by a vertical distance z is

lm(a; b; z) = 2�0

√
ab[(1 − k2=2)K(k) − E(k)]=k;

k2 ≡ 4ab=[(a+ b)2 + z2];

E(k) ≡
∫ �=2

0
(1 − k2 sin2x)1=2 dx;
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K(k) ≡
∫ �=2

0
(1 − k2 sin2x)−1=2 dx; (A.1)

where �0 is the magnetic permeability of vacuum. The calculation of the elliptic inte-
grals E(k) and K(k) is performed numerically.
The self-inductance ls of a thin circular ring with radius r and radius of cross-section

c is given by

ls = �0 r[ln(8r=c) − 7=4]: (A.2)

Consequently, the self-inductance of the main coil which consists of N1 coaxial inter-
acting rings, each with radius r1, cross-sectional area a1, radius c1 and spaced at h1
apart, is calculated by summing all possible mutual inductances between the N1 rings
and adding their self-inductances, i.e.

L11 =
N1∑

i; j=1;i �=j

lm(r1; r1; |i − j|h1) + N1ls(r1; c1); c1 =
√

a1=�: (A.3)

The mutual inductance between coil and ring L12 is obtained by summing all the mutual
inductances between the radius r2 specimen ring (placed symmetrically between the
rings of the coil) and the N1 coaxial rings of the coil, i.e.

L12 =
N1∑
i=1

lm(r1; r2; |i − (N1 + 1)=2|h1): (A.4)

The self-inductance of the specimen ring with radius r2 and cross-sectional area a2 and
radius c2 is given by

L22 = ls(r2; c2); c2 =
√

a2=�: (A.5)

A derivation of the above expressions for the inductances can be found in any standard
book on electromagnetics.

Appendix B. Parameters used in calculations

The following material and geometric parameters have been used in the numerical
calculations presented below. The 8rst set of parameters pertains to the main coil:

turns in coil N1 = 6;

radius of coil r1 = 1:41 × 10−2 m;

spacing of coil turns h1 = 2:3 × 10−3 m;

sectional area of coil wire a1 = 0:8235 × 10−6 m2;

capacitance of main circuit C1 = 56:36 × 10−6 F;

resistor of main circuit R∗
1 = 0:0425 W;
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resistivity of coil wire �1 = 1:7 × 10−8 W m;

total resistance of main circuit R1 = R∗
1 + 2��1N1r1=a1: (B.1)

The second set of parameters pertains to the properties of the 6061-T6 Al ring:

initial ring radius r0 = 1:5 × 10−2 m;

initial sectional area of ring a0 = 6 × 10−6 m2;

hardening exponent n= 0:0741;

rate sensitivity m= 0:087;

thermal sensitivity �= 0:5;

reference plastic strain �p0 = 10−3;

reference plastic strain rate �̇p0 = 103;

Young′s modulus E = 69 × 109 Pa;

yield stress �y = 276 × 106 Pa;

mass density � = 2:7 × 103 kg=m3;

thermal expansion coeTcient � = 2:3 × 10−5=K;

reference temperature �0 = 298 K;

melting temperature �m = 853 K;

reference resistivity �0 = 2:65 × 10−8 W m;

temp: sensitivity of resistivity  = 0:0039=K;

speci8c heat cp = 896 J=kg K;

plastic work conversion factor ! = 0:9: (B.2)

Results in this paper are presented in dimensionless form. The values of the character-
istic constants employed are obtained for the base case and are:

characteristic time t0 = 1:24 × 10−5 s;

optimal energy Eopt = 545:6 J;

optimal initial voltage Vmax = 4:4 × 103 V;

equivalent velocity vequ = 845:37 m=s;

characteristic current I0 = 32:6 × 103 A;

static necking strain �stat = 0:0782;

maximum strain rate encountered �̇max = 1:3 × 104 s−1: (B.3)
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For the cases calculated with an initial energy 2Eopt, the characteristic time t0 remains
the same, the characteristic current I0 and equivalent velocity vequ should be multiplied
by

√
2 while the corresponding maximum strain rate is almost double �̇max = 2:35 ×

104 s−1.
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