
Journal of the Mechanics and Physics of Solids
52 (2004) 941–974

www.elsevier.com/locate/jmps

Onset of failure in &nitely strained layered
composites subjected to combined normal and

shear loading
M.D. Nestorovi+c, N. Triantafyllidis∗

Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2140, USA

Received 4 February 2003; received in revised form 16 June 2003; accepted 24 June 2003

Abstract

A limiting factor in the design of &ber-reinforced composites is their failure under axial
compression along the &ber direction. These critical axial stresses are signi&cantly reduced in
the presence of shear stresses. This investigation is motivated by the desire to study the onset
of failure in &ber-reinforced composites under arbitrary multi-axial loading and in the absence
of the experimentally inevitable imperfections and &nite boundaries.

By using a &nite strain continuum mechanics formulation for the bifurcation (buckling) prob-
lem of a rate-independent, perfectly periodic (layered) solid of in&nite extent, we are able
to study the in8uence of load orientation, material properties and &ber volume fraction on
the onset of instability in &ber-reinforced composites. Two applications of the general theory
are presented in detail, one for a &nitely strained elastic rubber composite and another for a
graphite–epoxy composite, whose constitutive properties have been determined experimentally.
For the latter case, extensive comparisons are made between the predictions of our general theory
and the available experimental results as well as to the existing approximate structural theories.
It is found that the load orientation, material properties and &ber volume fraction have substantial
e:ects on the onset of failure stresses as well as on the type of the corresponding mode (local
or global).
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1. Introduction and motivation

Fiber-reinforced polymer matrix composites have become widely used in engineering
applications because of their high sti:ness and strength-to-weight ratios when compared
to the conventional structural materials. In spite of the signi&cant improvements in prop-
erties like the impact resistance, energy absorption and tensile strength, the compressive
strength of these composites is signi&cantly less than their tensile strength. It was also
observed that shear applied simultaneously with compression along the &ber direction
further lowers the strength of these composites. This has reduced the advantageous
position of these materials in spite of their long established and widespread use, and
has stipulated further study of their mechanical properties, in particular the behavior
of these materials under multi-axial loading conditions.
The importance of shear on the onset of instability of unidirectional &ber composites

was &rst recognized in early works by Rosen (1965), who modeled &bers embedded in
a matrix as elastic beams on an elastic foundation, in order to estimate the compressive
stress at which the &bers buckle. In spite of all the extensions and improvements,
the analysis for which the constituents are assumed to be elastic yields compressive
strengths which are signi&cantly higher than those measured in the experiments. It
is now widely known that the compressive strains at failure of these composites are
such that the matrix yields, and the &rst e:ort to account for this e:ect appeared
in Schuerch (1966). Argon (1972) was the &rst to point out that the aligned &ber
composites have small &ber misalignments and that under axial compression the matrix
can develop local shear stresses. When these shear stresses reach the yield stress of
the composite, the shear modulus decays, and this results in a maximum load type
instability which further develops into a kink band. The sensitivity of the critical stress
to &ber misalignments was reaErmed by Budiansky (1983), who extended the work of
Argon (1972) by considering the response of a zero angle kink band in unidirectional
composites with elastoplastic shear response. A signi&cant extension of this work is
presented in Budiansky and Fleck (1993) to include the analysis of inclined kink bands
and combined axial compression and shear loading.
Following the initial works of Argon (1972) and Budiansky (1983), there has been an

abundance of approximate structural models which improved and extended these ideas
on the stability of unidirectional &ber composites. Our purpose here is not to review
this voluminous literature on the failure mechanics of &ber-reinforced composites. Of
particular interest to the present work are the recent experimental and analytical studies
in Kyriakides et al. (1995), on the failure of &ber-reinforced polymer matrix composites.
These researchers modeled the composite as a two-dimensional solid with alternating
layers representing the elastic &bers and inelastic matrix with an initial waviness. This
work was further extended in Hsu et al. (1998), who modeled the same composite as
a three-dimensional solid with circular elastic &bers which are hexagonally distributed
inside an inelastic matrix, also with an initial waviness. In both works the properties
of the constituents were selected so that the shear response of the model material
matched that of the graphite–epoxy (AS4/PEEK) composite. Both models developed
a limit load under axial compression, which was followed by localized bending in
well-de&ned narrow bands across the specimen. It was observed that the &bers inside



M.D. Nestorovi*c, N. Triantafyllidis / J. Mech. Phys. Solids 52 (2004) 941–974 943

the band bend and rotate in a similar fashion to the kink bands reported from the
compressive failure experiments. Vogler et al. (2000) further extended both models
to complement their experimental studies, by modeling failure under combined axial
compression and shear loading.
The aforementioned experiments on composites and the corresponding numerical

calculations model the deformation of the imperfect &nite sized specimens from the
stress-free state, through the initial maximum load and subsequent localization of de-
formation in narrow bands, all the way to complete collapse of the entire specimen.
However, this work pertains only to certain loading orientations and boundary condi-
tions, the ones which best describe their experimental setup. Important issues regarding
the dependence of the mechanical properties of these materials on the macroscopic
loading orientation and geometry without the in8uence of imperfections and boundary
e:ects have not been addressed, partially due to the limitations of the experimental
procedures.
It should also be mentioned at this point that the stability of layered media under

multi-axial loading plays an important part in many engineering applications, besides
the &ber-reinforced composites. Metal-reinforced rubbers, in the form of reinforced
tires or composite pads (see Rivin, 1983), are some examples of these applications.
On a smaller scale the same layered morphology appears as the salient microstructural
feature in the glassy–rubbery copolymers, whose macroscopic behavior is closely linked
to the instabilities associated with their layered microstructure (see Cohen et al., 2000).
Clearly the stability of &nitely strained layered elastomeric composites requires a large
strain continuum mechanics formulation of the problem, an approach that was not
necessary for the modeling of &ber-reinforced composites.
As the &rst step in the direction of using a continuum mechanics approach to model

these types of problems, Triantafyllidis and Maker (1985) have studied the bifurcation
problem of a &nitely strained, rate-independent, &ber-reinforced composite of in&nite
extent under axial compression. It was found that the macroscopic (global) failure pre-
dictions, which correspond to the onset of &rst long-wavelength type instability, are
an upper bound to the microscopic (local) failure predictions, which correspond to
the onset of &rst bifurcation instability in the solid. Subsequent work by Geymonat
et al. (1993) proposed a general theory to investigate the failure surfaces in periodic
solids of in&nite extent. It was shown that if the critical wavelength is much larger
than the unit cell size, the &rst instability can also be determined from the macro-
scopic properties of the in&nite medium as the &rst loss of ellipticity of the homog-
enized moduli of the periodic solid. The usefulness of these onset of failure surfaces
is that they provide a consistent upper bound for the onset of failure in the cor-
responding actual composite materials with random imperfections (see Triantafyllidis
and Schraad, 1998 for the case of aluminum honeycombs) and allow the possibil-
ity to investigate arbitrary macroscopic loading, which is exactly what is done in the
present work.
The outline of this paper is as follows: In Section 2 the plane strain bifurcation

problem is formulated for an in&nite, perfectly periodic, rate-independent composite.
Following a description of the macroscopic loading paths considered, the methodol-
ogy for calculating the principal equilibrium solution is given next for two di:erent
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types of layered composites. The results of the analysis are presented and discussed
in Section 3, for the following two composites: one is motivated by the microstruc-
tural instability mechanisms in copolymer &lms and metal-reinforced rubbers, and is
made of two alternating layers of a compressible foam rubber and the other is made of
graphite–epoxy, and whose properties have been determined experimentally by Vogler
et al. (2000). The paper is concluded with the discussion of the above presented work
and suggestions for further work in Section 4.

2. Problem formulation

In this section, the plane strain bifurcation problem for an in&nite, perfectly periodic
(layered), rate-independent solid is formulated. The goal is to &nd the critical loading
corresponding to the &rst bifurcation of the layered medium as the loading parameter
increases from zero, along a speci&ed loading path. The section is divided into three
parts. The governing equations and bifurcation analysis are presented &rst, followed by
a description of the loading process in the second part. The choice of constitutive laws
for &nite elasticity and elastoplasticity is given in the last part.

2.1. Governing equations and bifurcation analysis

Consider an in&nite, perfectly periodic solid composed of a self-repeating sequence
of two layers, each made of a homogeneous, rate-independent material as depicted in
Fig. 1. The two layers m (matrix) and f (&ber) have initial thicknesses Hm and Hf in
the undeformed, stress-free con&guration which is used as the reference con&guration.
The solid is deformed under &nite plane strain conditions and perfect bonding between
the layers is assumed, i.e., the tractions and displacements are continuous across each
interface for all possible deformations. A full Lagrangian formulation of the problem

X1

H
f

X2

H
m H

Fig. 1. Schematic representation of an in&nite, perfectly periodic solid composed of a self-repeating sequence
of two layers, each made of a homogeneous, rate-independent material, with initial thicknesses Hm and Hf .
The solid is deformed under &nite plane strain conditions in the X1–X2 plane.
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is presented relative to a &xed Cartesian coordinate system X1–X2, where X1 is the
direction aligned with the direction of lamination in the reference con&guration.
In the absence of body forces and inertia e:ects, the incremental equilibrium equa-

tions and interface conditions are

�̇ij; i = 0; X1 ∈R; X2 ∈ {(0; Hm) ∪ (Hm ; H)};1 (2.1)

<�̇2i= = 0; <vi= = 0; X1 ∈R; X2 ∈ {0; Hm ; H}; (2.2)

where �̇ is the rate of the &rst Piola–Kirchho: stress tensor, v is the displacement rate
&eld and H = Hm + Hf is the initial thickness of the unit cell. Moreover, <f= denotes
a di:erence in the values of any &eld quantity f when evaluated on both sides of an
interface.
For any rate-independent, incrementally linear material, the constitutive law can be

written in the following form:

�̇ji(	;X) = Lijkl(	;X)Ḟkl; Ḟkl = vk; l; (2.3)

where L is the incremental (tangent) moduli tensor relating the rate of the transpose
of the &rst Piola–Kirchho: stress tensor �̇T to the rate of the deformation gradient Ḟ,
its work conjugate quantity.
For the rate-independent, quasi-static loading problems considered, the rate of any

&eld quantity (denoted by a superimposed dot) is this quantity’s derivative with respect
to a “time-like” scalar 	, which increases monotonically from zero with the evolution
of the loading process. The scalar 	 is thus named the “loading parameter”, and is
assumed to uniquely characterize the current state of the material. The incremental
moduli tensor L is evaluated on the principal equilibrium path, i.e., on the path whose
stability is under investigation, and is a function of the material properties and the
current state in each layer, and is consequently fully characterized by 	. Explicit ex-
pressions for L in the cases of &nite elastic and elastoplastic constitutive models are
given at the end of this section. For now it suEces to say that the incremental moduli
tensor L possesses major symmetry Lijkl = Lklij.

The procedure for determining the onset of the &rst bifurcation, as 	 increases mono-
tonically from zero, hinges on &nding a non-trivial solution to the system (2.1)–(2.3)
and works as follows: By considering the Fourier transform of the governing equations
(2.1)–(2.3) with respect to X1, the system of linear partial di:erential equations and
interface conditions with piecewise constant coeEcients is reduced to the following
system of ordinary di:erential equations and interface conditions in X2

!2
1Li1k1v̂k − i!1(Li2k1 + Li1k2)v̂k;2 − Li2k2v̂k;22 = 0; (2.4)

<i!1Li2k1v̂k + Li2k2v̂k;2= = 0; <v̂i= = 0; (2.5)

1 Here and subsequently, Latin indexes range from 1 to 2, unless indicated di:erently. Einstein’s summa-
tion convention is implied over repeated indexes. Repeated indexes in parentheses are not summed, unless
indicated explicitly.
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where v̂(X2) is the Fourier transform of v(X1; X2) and the real number !1 is the Fourier
transform variable corresponding to X1. It is assumed that the displacement rate &eld
v is uniformly bounded and has adequate continuity. Note that the Fourier transform v̂
exists in the sense of distributions.
To determine a non-trivial solution v̂ (up to a multiplicative constant), for the pe-

riodic system of ordinary di:erential equations in Eqs. (2.4) and (2.5), the system is
solved on just one unit cell together with some additional boundary conditions at its
ends X2 = 0+ and X2 = H+. These conditions are provided by Floquet’s theorem (see
Floquet, 1883) which applies to linear systems of ordinary di:erential equations in X2,
with periodic coeEcients (period is the unit cell thickness H), according to which

v̂i(H+) = exp(i!2H)v̂i(0+); (2.6)

where the real number !2 (!2H ∈ [0; 2�)) is the Floquet parameter of the solution.
The general solution to the system of ordinary di:erential equations with piece-

wise constant coeEcients (2.4) is found to be in each layer, the sum of four linearly
independent partial solutions:

v̂k(X2) =
4∑
j=1

m
C

( j)

k exp
(
i!1

m
Z ( j) X2

)
; X2 ∈ (0; Hm);

v̂k(X2) =
4∑
j=1

f
C

( j)

k exp
(
i!1

f
Z ( j) X2

)
; X2 ∈ (Hm ; H);

v̂k(X2) =
4∑
j=1

m
C

∗( j)
k exp

(
i!1

m
Z ( j) X2

)
; X2 ∈ (H;H + Hm); (2.7)

where Z(j) (j=1; 4) are the four complex roots of the following fourth-order polynomial
in Z

det[Li2k2Z2 + (Li2k1 + Li1k2)Z + Li1k1] = 0; (2.8)

and C( j) is the eigenvector of the 2 × 2 matrix shown in brackets in Eq. (2.8)
and is associated with the root Z(j). The eigenvector components C( j)

1 and C( j)
2 are

related by

C( j)
2 = D(j)C

( j)
1 ; D(j) ≡ −L1212Z

2
(j) + (L1211 + L1112)Z(j) + L1111

L1222Z2
(j) + (L1221 + L1122)Z(j) + L1121

: (2.9)

Note that Eqs. (2.8) and (2.9) are valid for each of the two layers and the superscripts
m and f are omitted from these equations in the interest of notational simplicity. The
requirement that the roots Z(j) are complex, at least for the loading parameter 	 of
interest, stems from the assumed strong ellipticity of each layer, i.e., the absence of
any localized mode of deformation in each layer for all deformations along the loading
paths considered here.
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The Fourier transform of the interface conditions (2.5), after substituting Eqs. (2.7)

and (2.9), gives the following equations for the coeEcients
m
C1,

f
C1 and

m
C

∗
1 in matrix

form:

m
V exp(i!1

m
ZHm)

m
C1 =

f
V exp(i!1

f
ZHm)

f
C1;

f
V exp(i!1

f
ZH)

f
C1 =

m
V exp(i!1

m
ZH)

m
C

∗
1 ; (2.10)

for the interfaces X2 = Hm and X2 = Hm + Hf = H , respectively. The components of
the 4 × 4 matrices V and Z are de&ned by

V1j = 1;

V2j = D(j);

V3j = L1212Z(j) + L1211 + (L1222Z(j) + L1221)D(j);

V4j = L2212Z(j) + L2211 + (L2222Z(j) + L2221)D(j);

Zij =

{
Z(j); i = j;

0; i �= j;
(2.11)

and the four-dimensional vector D is de&ned in relation (2.9). The components of the
four-dimensional vector C1 are the constants C( j)

1 introduced in Eq. (2.7). Here again,
the superscripts m and f are omitted from Eq. (2.11) in the interest of notational
simplicity and the components of V, Z and C1 are evaluated for the corresponding
layer.
Substituting Eq. (2.7) into the Floquet conditions (2.6) results in the additional

relation
m
C

∗
1 = exp (i!2H) exp(−i!1

m
ZH)

m
C1: (2.12)

Finally, after employing the above result (2.12) into Eqs. (2.10), a non-trivial solu-

tion v(X) �= 0 (or equivalently
m
C1 �= 0) exists if the matrix with constant coeEcients

K has unimodular eigenvalues, i.e.,

det[K(	; !1H) − exp(i!2H)I] = 0;

K ≡ f
K

m
K;

l
K ≡ l

V exp(i!1
l
ZHl)

l
V

−1

; l=m; f ; (2.13)

where I is the 4 × 4 identity matrix. It should be noted here that the 4 × 4 matrix K
is in general complex in view of the complex roots Z(j) in Eq. (2.8).
Thus, the critical loading parameter 	c, which represents the &rst occurrence of

a bifurcation in the layered solid during a monotonically increasing loading history,
corresponds to the &rst occurrence of a singular matrix in Eq. (2:13)1, as the loading
parameter 	 increases from zero, for some pair of dimensionless wavenumbers !c

1H
and !c

2H .
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The calculation works as follows: At criticality yc ≡ exp(i!c
2H) is an eigenvalue

of matrix K, and in view of the fact that yc is unimodular (‖yc‖ = 1), it corresponds
to the &rst occurrence of a root with magnitude plus or minus one of the following
characteristic equation:

y4 − IK1 y
3 + IK2 y

2 − IK3 y + IK4 = 0; IKj = IKj (	; !1H); (2.14)

where the four invariants IKj of matrix K, introduced in Eq. (2:13)2, are in general
complex and are de&ned by

IK1 ≡ trK;

IK2 ≡ 1
2
[(trK)2 − trK2];

IK3 ≡ detK trK−1;

IK4 ≡ detK: (2.15)

For a &xed dimensionless wavenumber !1H , 	̂(!1H) corresponds to the &rst uni-
modular root of characteristic equation (2.14). The critical loading parameter 	c is
then found by a numerical search as the minimum loading parameter 	̂(!1H), when
the minimum is taken over an adequately large interval !1H , in the process also giving
the corresponding critical dimensionless wavenumber !c

1H , i.e.,

	c ≡ min
!1H

	̂(!1H) = 	̂(!c
1H): (2.16)

For the case of purely orthotropic loading, it can be shown that the four invariants
are real and the interested reader is refered to Geymonat et al. (1993) for a more
detailed discussion. Here it suEces to say that the four invariants have the following
property, which follows from their de&nitions,

IKj (	; !1H) = conj[IKj (	;−!1H)]:2 (2.17)

This property implies that 	̂(!1H)= 	̂(−!1H) and thus justi&es the need to scan only
the domain [0;∞) for the dimensionless wavenumber !1H , when searching for the
critical loading parameter 	c.
It should be noted here, that in all the previous calculations it was tacitly assumed

that the dimensionless wavenumber !1H �= 0. The function 	̂(!1H) has a singular
point at the origin, i.e., 	̂(0) �= 	̂(!1H → 0), since two physically di:erent types of
modes can exist in the neighborhood of !1H = 0, as described next.
For the case that !1H=0, i.e., for the modes independent on X1, the critical loading

parameter 	c can still be found from the transformed governing Eqs. (2.4) and (2.5).
In this case it can be seen from Eq. (2.4), that v̂1(X2) and v̂2(X2) are piecewise
linear functions in X2 within each layer. Applying the interface (2.5) and boundary

2 Here, conjf denotes the complex conjugate of f. The more common overline notation is avoided in
view of its subsequent use for denoting the averaged quantities over the unit cell.
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(2.6) conditions results in the following implicit algebraic equation for the loading
parameter 	,

det[Hf
m
Li2k2(	) + Hm

f
Li2k2(	)] = 0: (2.18)

The critical loading parameter 	c corresponds to the &rst occurrence of a singular matrix
in Eq. (2.18) as the loading parameter 	 increases from zero. The above equation (2.18)
is obtained for the critical dimensionless number !c

2H = 0 (the choice !2H �= 0; 2� is
shown to be impossible) and corresponds to a periodic solution for v̂(X2), with period
the unit cell thickness H .
Unlike the case !1H = 0, which also implies that !c

2H = 0 and corresponds to
a periodic mode, the case !1H → 0 corresponds to a long-wavelength type mode,
when compared to the unit cell size, thus explaining the singularity of 	̂(!1H) in the
neighborhood of !1H =0. For this case it has been shown by Geymonat et al. (1993),
that the limit value of the critical loading parameter 	c, as !1H → 0, corresponds to the
&rst loss of ellipticity of the homogenized incremental moduli LH , which is calculated
by solving the appropriate boundary value problem on the unit cell. Derivation of the
homogenized incremental moduli LH for the layered composites is shown in detail in
Geymonat et al. (1993), but for reasons of completeness, a brief outline is presented
here. The required homogenized incremental moduli LH are obtained by using the
method of multiple scales expansion and are found to be

LHijkl(	) =
1
H

∫ H

0
Lmnpq(�im�jn +

ij
’m;n)(�kp�lq +

kl
’p;q) dX2; (2.19)

where �ij is the Kronecker delta. The characteristic &eld
ij
’(X2) is the unit cell’s re-

sponse to the ijth component of the unit macroscopic deformation and is a periodic
function in X2, with period the unit cell thickness H . It is calculated by solving the
following boundary value problem given in its variational form:∫ H

0
Lmnpq(�kp�lq +

kl
’p;q)�’m;n dX2 = 0: (2.20)

The &rst loss of ellipticity results correspond to the lowest loading parameter 	
at which the homogenized incremental moduli LH loses positive de&niteness along
direction n (‖n‖ = 1),

det[LHijkl(	)njnl] = 0; (2.21)

with n1 = cos � and n2 = sin �, and where �∈ [0; 2�).

2.2. Loading paths

To complete the bifurcation problem formulated for the in&nite, perfectly periodic
solid, the loading paths followed from the undeformed, stress-free con&guration are now
described. The proposed choice of loading paths is motivated by the desire to simulate
the loading conditions used in the combined compression and shear experiments by
Vogler et al. (2000).
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(a) (b)

(c)

21Π

11Π

22Π

12Π
11Π

11Π

21Π

12Π

Fig. 2. Schematic representation of an in&nite, perfectly periodic solid, subjected to three di:erent states of
deformation. The solid is sheared in the direction parallel (a) and normal (b) to the direction of lamination,
and is biaxially loaded (c) along the axes of orthotropy.

For each loading path, a combination of the macroscopic (averaged) &rst Piola–
Kirchho: stress tensor T� 3 components and their work conjugate, macroscopic (aver-
aged) deformation gradient tensor TF components, is prescribed. For the combined axial
compression and shear loading, two di:erent states of deformation, depicted in Fig. 2,
are considered: In the &rst and second case, the macroscopic deformation gradient ten-
sor components are TF21 =0 and TF12 =0, and the composite is sheared in the directions
parallel and normal to the direction of lamination so that the prescribed macroscopic
&rst Piola–Kirchho: stress tensor components are related by T�21= T�11 = −tan and
T�12= T�11 = −tan , respectively. For completeness of the investigation, an orthotropic
loading path is considered in the third case, with its macroscopic &rst Piola–Kirchho:
stress tensor components related by T�22= T�11 = −tan . The ratio of the macroscopic
&rst Piola–Kirchho: stress tensor components tan is kept &xed for proportional load-
ing paths.
Since the macroscopic force parameter !, which is a measure of the macroscopic

stress magnitude and is de&ned immediately below, reaches a maximum for the

3 Here and subsequently, the overline symbol denotes an averaged quantity over the unit cell and is not
to be confused with the more common notation for a complex conjugate quantity. Thus, if f is any &eld
quantity, then Tf = 1

H

∫ H
0 f dX2.
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majority of loading paths considered, its work conjugate quantity " is prescribed in-
stead and thus plays the role of the monotonically increasing loading parameter 	. The
calculation of the macroscopic loading parameter 	 ≡ " is described in the following
subsections, in which the methodology for obtaining the principal equilibrium solution
and consequently the incremental moduli L is given for both the &nitely elastic and
rate-independent elastoplastic composites.
Finally one additional remark about the principal solutions which correspond to all

the loading paths is in order. Due to the homogeneous properties of each layer, the
resulting stresses and strains are constant within each layer.

2.2.1. Finite elasticity
For the layerwise homogeneous composite considered in this work, which is sub-

jected to a uniform state of deformation, the macroscopic (averaged) strain energy
density TW can be written in the following form:

TW ( TF) =
1
H

∫ H

0
W (X2;F(X2)) dX2 = $m

m
W (

m
F) + $f

f
W (

f
F);

$l ≡ Hl
H
; l=m; f ; (2.22)

where
m
W (

m
F) and

f
W (

f
F) are the matrix and &ber strain energy densities, and $m and $f

are the matrix and &ber volume ratios, respectively.
For the reason explained previously, instead of prescribing the macroscopic force

parameter !, its dimensionless, work conjugate quantity " is prescribed instead. The
macroscopic force parameter ! is then found from the requirement that

T�ji( TFij − �ij) = !"; T�ji = !
◦
T�ji; (2.23)

where the components of
◦
T� are prescribed and depend on the loading path. For the

mixed loading considered in this work, the macroscopic deformation gradient tensor
component TF21 = 0 or TF12 = 0 is also prescribed and corresponds to shearing in the
direction parallel or normal to the direction of lamination.
In the absence of body forces, the equilibrium equations and in turn the princi-

pal equilibrium solution for the in&nite, layered solid are obtained by minimizing the
macroscopic strain energy density TW with respect to the macroscopic deformation gra-
dient tensor TF, subject to the constraint (2.23). The constrained minimization problem
is equivalent to minimizing with respect to the local (within layer) deformation gra-

dient tensors
m
F and

f
F, and is formulated with a numerical solution algorithm in mind

using the penalty approach

min
m
Fkl;

f
Fkl

{$m
m
W (

m
F) + $f

f
W (

f
F) +

1
2%

[
◦
T�ji( TFij − �ij) − "]2}; (2.24)
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where % (0¡%�1) is the penalty parameter. The macroscopic and local deformation
gradient tensors are related using geometric considerations and are found to be

TF11 =
m
F11 =

f
F11;

TF12 = $m
m
F12 + $f

f
F12;

TF21 =
m
F21 =

f
F21;

TF22 = $m
m
F22 + $f

f
F22: (2.25)

The layerwise equilibrium equations obtained from Eq. (2.24) are more conveniently
written in the following variational form:∫ H

0


$m @

m
W

@
m
Fkl

�
m
Fkl + $f

@
f
W

@
f
Fkl

�
f
Fkl − !

◦
T�ji

(
@ TFij

@
m
Fkl

�
m
Fkl +

@ TFij

@
f
Fkl

�
f
Fkl

)
 dX2 = 0; (2.26)

where the macroscopic force parameter ! is calculated by

!= −1
%
[

◦
T�ji( TFij − �ij) − "]: (2.27)

2.2.2. Elastoplasticity
Observe that the variational form of equilibrium equations in Eq. (2.26) can alter-

natively be written in terms of the local (within each layer) &rst Piola–Kirchho: stress
tensor as follows:∫ H

0

[
$m

m
�lk�

m
Fkl + $f

f
�lk�

f
Fkl − !

◦
T�ji

(
@ TFij

@
m
Fkl

�
m
Fkl +

@ TFij

@
f
Fkl

�
f
Fkl

)]
dX2 = 0; (2.28)

after considering that for &nite elasticity �ji = @W=@Fij.
Taking the rate of the equilibrium equations (2.28) results in the incremental equi-

librium equations required for the rate-independent, elastoplastic, layered solid, and
they are∫ H

0

[
$m

ṁ
�lk�

m
Fkl + $f

ḟ
�lk�

f
Fkl − !̇

◦
T�ji

(
@ TFij

@
m
Fkl

�
m
Fkl +

@ TFij

@
f
Fkl

�
f
Fkl

)]
dX2 = 0; (2.29)

since for the loading paths considered (@ TFij=@Fkl)· = 0, in view of Eq. (2.25).
The additional relation for calculating the rate of the macroscopic force parameter

!̇ is obtained by taking the rate of the requirement (2.23), and is found to be
◦
T�ji ṪFij = "̇; (2.30)

where "̇= 1 for all the numerical calculations in Section 3.

2.3. Constitutive laws

The analysis presented thus far is valid for any homogeneous, rate-independent, in-
crementally linear material model. As mentioned previously, two di:erent types of
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layered composites are discussed. The &rst composite is made of two alternating layers
of compressible foam rubbers and the second is a graphite–epoxy (AS4/PEEK) com-
posite which was extensively studied, experimentally and theoretically, under combined
compression and shear loading by Vogler et al. (2000). A speci&c choice of material
models is now proposed for the numerical calculations presented in Section 3.

2.3.1. Hyperelastic material
The hyperelastic material used to model a compressible foam rubber is the standard

Blatz–Ko material (see Blatz and Ko, 1962). For plane strain deformations considered
in this work, the strain energy density W is of the following form:

W =
(
2

(
J1
J2

+ 2
√
J2 − 4

)
; (2.31)

where ( is the initial shear modulus of the material and Ji (i = 1; 2) are the two
invariants of the right Cauchy–Green tensor Cij = FkiFkj, where F is the deformation
gradient tensor, and they are

J1 = trC; J2 =
1
2
[(trC)2 − trC2]: (2.32)

For any hyperelastic material, the incremental moduli tensor L required by the
general bifurcation analysis and &rst introduced in Eq. (2.3) is

Lijkl =
@2W

@Fij@Fkl
; (2.33)

and the &rst Piola–Kirchho: stress tensor � is

�ji =
@W
@Fij

; (2.34)

with the partial derivatives evaluated on the principal equilibrium path. The spe-
ci&c values of the initial shear modulus (, for each of the two layers, are given in
Section 3.

2.3.2. Elastoplastic material
The inelastic matrix studied in the combined compression and shear failure tests

by Vogler et al. (2000) is modeled using two di:erent rate-independent elastoplastic
models, namely, the &nite strain versions of the isotropic J2 deformation and 8ow
theory materials, both sharing the same experimentally obtained uniaxial stress–strain
curve.
The incremental moduli tensor L, expressed in the full Lagrangian formulation (see

Abeyaratne and Triantafyllidis, 1981 for the pertaining moduli derivation) required by
the general bifurcation analysis, is given by

Lijkl =Lijkl − 1
2
(SikC−1

jl + SilC−1
jk + SjkC−1

il − SjlC−1
ik ); i; j; k; l= 1; 3;4 (2.35)

where S is the second Piola–Kirchho: stress tensor and C−1 is the inverse of the right
Cauchy–Green tensor. The incremental moduli tensor L, relating the Jaumann rate of

4 Here and also in Eqs. (2.36) and (2.38), Latin indexes range from 1 to 3.
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the Kirchho: stress tensor
∇
� to the strain rate tensor D, its work conjugate quantity,

is of the form

Lijkl =
E∗

1 + ,∗

[
1
2
(C−1

ik C
−1
jl + C−1

il C
−1
jk ) +

,∗

1 − 2,∗
C−1
ij C

−1
kl

− 3
2

(E∗=Et) − 1
(E∗=Et) − (1 − 2,∗)=3

S ′
ijS

′
kl

.2e

]
; (2.36)

where for deformation theory: E∗ = Es and ,∗ = ,s, and for 8ow theory: E∗ = E and
,∗ = ,.
In the above expressions, E and , are the elastic Young’s modulus and the elastic

Poisson’s ratio of the material’s uniaxial response, respectively. In addition, the secant
modulus Es, the tangent modulus Et and the secant Poisson’s ratio ,s are de&ned by
the following expressions:

Es =
.
/
; Et =

d.
d/
; ,s =

1
2

− Es

E

(
1
2

− ,
)
; (2.37)

in terms of the material’s uniaxial Kirchho: stress . and the natural (logarithmic) strain
/ response. It should be mentioned at this point that the incremental moduli L in
Eq. (2.36) assume that the material is in the plastic regime, i.e., .¿ .y, where .y is
the uniaxial yield stress. The uniaxial Kirchho: stress . in the expressions for Es, Et

and ,s in L is replaced by the equivalent Kirchho: stress .e, which is given in terms
of the deviatoric second Piola–Kirchho: stress tensor S′ by

.2e =
3
2
S ′
ijS

′
ij; S ′

ij = Sij − 1
3 C

−1
ij SklCkl: (2.38)

All the above expressions (2.35)–(2.38) are valid for an arbitrary uniaxial stress–
strain response. The material’s uniaxial response used in the numerical calculations
presented in Section 3 is obtained experimentally and the interested reader is refered
for a detailed procedure to Vogler et al. (2000). Also, note that the &bers are assumed
to be isotropic and linearly elastic, and their material properties are also obtained
experimentally.
Some general remarks are in order at this point. The &nite strain version of the

J2 deformation theory of plasticity, introduced by StVoren and Rice (1975), has its
advantages as a constitutive choice, over its 8ow counterpart, due to the merits for
predicting experimental results for stability problems involving proportional loading
paths. The interested reader is referred to the review article by Hutchinson (1974),
for an extensive and detailed discussion of this subject. In Section 3, the numerical
results for the stability predictions of the graphite–epoxy (AS4/PEEK) composite are
compared for both theories of plasticity for all the loading paths considered, i.e., for
the mixed proportional as well as non-proportional loading paths.

3. Numerical calculations and discussion

The present section pertains to the numerical application of the bifurcation problem
for the layered solid presented in Section 2. The section is divided into two parts. A
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description of the numerical algorithms, followed by the material and geometry data
used in the calculations, is given in the &rst part. The second part of the section is
devoted to the presentation and discussion of the obtained results.

3.1. Numerical calculations

The critical force !c and displacement "c parameters, at the onset of &rst bifur-
cation, and the corresponding critical dimensionless wavenumbers !c

1H and !c
2H are

obtained from the characteristic equation (2.14), whose construction involves calcula-
tion of the stress state �(") within each layer. In addition the force and displacement
parameters corresponding to the maximum force and to the &rst loss of ellipticity of
the homogenized incremental moduli LH are also found. The numerical calculation of
the stress state at displacement parameter " is done di:erently for the hyperelastic and
elastoplastic materials, as it is detailed immediately below.

3.1.1. Hyperelastic material
The layerwise equilibrium equations and in turn the principal equilibrium solution

are obtained as a result of the constrained minimization problem (2.24). This non-linear
system of equilibrium equations is solved numerically using a straightforward incre-
mental Newton–Raphson solution procedure. A typical increment size of the displace-
ment parameter " which is used in the solution of the equilibrium equations is 10−4.
The penalty parameter % introduced in the constrained minimization problem (2.24) is
taken to be 10−8. The solution is found to be insensitive to % when lower values of
the penalty parameter are considered.
The results for the hyperelastic material correspond to the initial &ber to matrix shear

modulus ratio of (f =(m = 102, and are normalized with respect to (f = 1. As a result
!=(f is dimensionless.

3.1.2. Elastoplastic material
For the elastoplastic material, the calculation of the principal solution is based

on the system of &rst-order ordinary di:erential equations, with respect to the
displacement parameter ", which are obtained from the incremental equilibrium equa-
tions (2.29) and from the additional requirement (2.30), where the incremental mod-
uli are given by Eqs. (2.35)–(2.38). The equations are numerically integrated using
a standard fourth-order Runge–Kutta method with a step size equal to 10−5 of the
displacement parameter ".
The parameters required for the description of the uniaxial stress–strain response, of

the inelastic matrix and linearly elastic &ber, are obtained experimentally by Vogler
et al. (2000). The uniaxial stress–strain curve for the epoxy (matrix) is shown in
Fig. 3, where . is the uniaxial Kirchho: stress (in 106 psi) and / is the natural (loga-
rithmic) strain. The corresponding uniaxial stress–strain constants used in the numerical
calculations are: the elastic Young’s modulus Em = 893 ksi, the elastic Poisson’s ratio
,m=0:356 and the uniaxial yield stress .my=3:515 ksi. The material parameters for the
graphite (&ber), which is assumed to be isotropic and linearly elastic, are: the elastic
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Fig. 3. The uniaxial stress–strain curve for the (PEEK) matrix in the graphite–epoxy composite with a &ber
volume ratio $f = 0:60, obtained experimentally by Vogler et al. (2000).

Young’s modulus Ef = 31000 ksi and the elastic Poisson’s ratio ,f = 0:263. As a result
of the units chosen, the force parameter ! has units of psi.

3.2. Results and discussion

The presentation and discussion of results is divided into two main parts. The &rst
part pertains to the composites made of two alternating layers of a compressible foam
rubber, each modeled using a Blatz–Ko material, as described in Section 2. The
composite with a high &ber volume ratio $f = 0:60 (thick &bers) is analyzed &rst,
under proportional loading for the &rst two types of deformation, depicted in Fig. 2,
i.e., for shearing parallel and normal to the direction of lamination. The same anal-
ysis is then repeated for a low &ber volume ratio $f = 0:10 (thin &bers). This foam
rubber composite investigation is concluded by examining the e:ect of varying &ber
volume ratio, in the range 0:106 $f 6 0:80, for shearing parallel to the direction of
lamination.
The second part is devoted to the investigation of a particular graphite–epoxy com-

posite, with a &ber volume ratio $f = 0:60, which was extensively studied both ex-
perimentally and numerically by Vogler et al. (2000). In this case the critical strains
are small when compared to the corresponding ones in the &nite elasticity application,
but the presence of large rotations still requires a full Lagrangian formulation. For this
reason the inelastic matrix (epoxy) is modeled using the &nite strain versions of the
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isotropic J2 deformation and 8ow theory materials. The numerical results presented here
are for the in&nite, perfect composite and comparisons are made with the correspond-
ing results obtained by Vogler et al. (2000), for the &nite sized, imperfect specimens.
Both versions of the J2 plasticity theory are compared under proportional as well as
non-proportional loading paths for the two types of shear deformation considered. The
investigation for the graphite–epoxy composite is concluded by presenting the results
for orthotropic loading, again for both versions of the J2 plasticity theory.

In all the &gures shown here, the initial bifurcation curves are plotted in solid lines.
The critical load parameter 	c ="c, which corresponds to the onset of &rst bifurcation,
is found by scanning all the possible non-negative dimensionless wavenumbers !1H
in the X1 direction. For all the calculations reported, to &nd the critical load parameter,
it is suEcient to scan the space 06!1H6 5 in 0.1 increments. The singularity in the
neighborhood of !1H = 0, which corresponds to the loss of macroscopic ellipticity of
the composite, is treated according to the discussion in Section 2 (see Eq. (2.21)). The
corresponding loss of macroscopic ellipticity curves are plotted in dotted lines and the
orientation angle � is scanned in 1◦ increments. Finally, the maximum force curves
are plotted in dashed lines.

3.2.1. Compressible foam rubber composite
The results in Figs. 4 and 5 correspond to a compressible foam rubber composite

with a high &ber volume ratio $f =0:60, which is subjected to proportional loading for
two types of deformation: shearing parallel and normal to the direction of lamination. In
Figs. 4(a) and (b), the results for initial bifurcation, loss of macroscopic ellipticity and
maximum force are recorded on the force–displacement curves obtained for di:erent
load paths 06 6 �=2, plotted in 1◦ increments. In Fig. 4(a), for shearing parallel to
the direction of lamination, there is no maximum force for purely axial compression
of an in&nite, perfectly periodic solid, corresponding to  = 0. As the load angle  
increases, for 0¡ 6 �=2, the force parameter ! is &rst an increasing function of the
displacement parameter ", which then passes through a maximum before decreasing.
This behavior is expected from the in8uence of small &ber misalignments on the axially
compressed &ber composites (see Argon, 1972), where shear has a destabilizing e:ect
since it reduces the maximum axial load. Notice that the initial bifurcation and loss
of macroscopic ellipticity curves are below the maximum force, which means that
the bifurcation always occurs before the maximum force is reached. However, the
di:erences are negligible for very strong shearing  ¿�=6. It is interesting to note
that in Fig. 4(b), for shearing normal to the direction of lamination, a maximum force
is observed only for very weak shearing 0¡ ��=180 (see insert). Also, although
shear has initially a destabilizing e:ect, as expected from the previous case, it can also
be a stabilizing factor which can be seen from the fact that the critical force parameter
!c is not a monotonically decreasing function of ". Observe from Figs. 4(a) and (b)
that for small values of the load angle  , the onset of failure predictions show similar
trends for both types of deformation, while di:erences become more pronounced for
increased shearing, i.e., for large values of  .
The in8uence of shear can further be seen in Figs. 5(a) and (b) where the normal-

ized critical axial stress T�c
11=(f , corresponding to the initial bifurcation, is plotted as
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Fig. 4. The onset of bifurcation, loss of ellipticity and maximum force predictions are plotted on the
force–displacement curves obtained for 06 6 �=2 under proportional loading, for shearing parallel
(a) and normal (b) to the direction of lamination. The compressible Blatz–Ko type foam rubber composite
has a &ber volume ratio $f = 0:60.

a function of the normalized prescribed shear stress. For shearing parallel and normal
to the direction of lamination the prescribed shear stresses are T�21 and T�12, respec-
tively. As previously observed in Fig. 5(a), shear parallel to the direction of lamination
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Fig. 5. The onset of failure predictions are obtained for shearing parallel and normal to the direction of
lamination. The compressible Blatz–Ko type foam rubber composite has a &ber volume ratio $f = 0:60.

has a destabilizing in8uence and the critical axial stress is a monotonically decreasing
function of the prescribed shear stress T�21. From Fig. 5(b), it can be seen that the
e:ect of shear for shearing normal to the direction of lamination is not monotonic,
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although initially shearing has a destabilizing e:ect. In Figs. 5(c) and (d), the critical
dimensionless wavenumber !c

1H is plotted in terms of the load angle  and in all the
numerical calculations, increment for the dimensionless wavenumber !1H is 0.1. There
is a high sensitivity of the critical dimensionless wavenumber !c

1H to the increment
size for the displacement parameter ". Observe from Fig. 5(c), that for 06 6 �=6,
the critical dimensionless wavenumber !c

1H = 0, i.e., the initial bifurcation and loss
of macroscopic ellipticity results coincide, which means that the critical wavelength
is much larger than the unit cell size (long-wavelength type mode). For  ¿�=6, the
critical dimensionless wavenumber !c

1H is &nite and thus the initial bifurcation re-
sults precede the loss of macroscopic ellipticity results. Similar results can be seen in
Fig. 5(d) for shearing normal to the direction of lamination, where the initial bi-
furcation and loss of macroscopic ellipticity results coincide for a smaller range of
load angles  6 �=30. In Figs. 5(e) and (f), the normalized critical axial stress is
plotted as a function of the normalized reaction shear stress, which is the work conju-
gate quantity to the deformation component kept at zero, and shows similar trends to
Figs. 5(a) and (b).
The results for a compressible foam rubber composite with a low &ber volume

ratio $f =0:10 are presented in the same way as for its high &ber volume counterpart in
Figs. 6 and 7. The initial bifurcation and loss of macroscopic ellipticity results are
di:erent from the ones obtained for the composite with a high &ber volume ratio
$f =0:60. Most notable di:erence is that for both types of deformation, shearing parallel
and normal to the direction of lamination, shear has initially a stabilizing e:ect, which
can be seen by the increase in the critical force and displacement for increasing load
angle  in Figs. 6(a) and (b). For shearing parallel to the direction of lamination the
initial bifurcation and loss of macroscopic ellipticity results coincide initially, but later
diverge, while for shearing normal to the direction of lamination the initial bifurcation
always occurs before the loss of macroscopic ellipticity, thus indicating the absence
of the long-wavelength type mode of instability for any load path. Another di:erence
is that for shearing normal to the direction of lamination, see Fig. 6(b), no maximum
force is observed for small values of the load angle  ≈ 0, which is in contrast with the
results for the high &ber volume case in Fig. 4(b). The non-monotonic dependence of
the critical axial stress on shear stress can clearly be seen in Figs. 7(a) and (b), where
the critical axial stress is &rst an increasing function of the prescribed shear stress,
which then passes through a maximum before decreasing. Note that in Fig. 7(b), for
shearing in the direction normal to the direction of lamination, the initial bifurcation
curve in stress space is well inside the loss of macroscopic ellipticity curve for all the
load angles  . This can also be seen from Fig. 7(d), where in contrast to Fig. 7(c), the
critical dimensionless wavenumber !c

1H is always &nite. Here again, Figs. 7(e) and
(f) depict the normalized critical axial stress plotted as a function of the normalized
reaction shear stress and show similar behavior to Figs. 7(a) and (b).
Finally, in Fig. 8, the in8uence of varying &ber volume ratio $f on the initial bifurca-

tion is examined for a compressible foam rubber composite, which is sheared parallel
to the direction of lamination for three di:erent load paths. In Figs. 8(a) and (b),
the normalized critical axial stress T�c

11=(f and the critical dimensionless wavenum-
ber !c

1H are plotted as functions of the &ber volume ratio $f for  = 0 (uniaxial
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Fig. 6. The onset of bifurcation, loss of ellipticity and maximum force predictions are plotted on the
force–displacement curves obtained for 06 6 �=2 under proportional loading, for shearing parallel
(a) and normal (b) to the direction of lamination. The compressible Blatz–Ko type foam rubber composite
has a &ber volume ratio $f = 0:10.
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Fig. 7. The onset of failure predictions are obtained for shearing parallel and normal to the direction of
lamination. The compressible Blatz–Ko type foam rubber composite has a &ber volume ratio $f = 0:10.

compression). Observe that the critical axial stress is a monotonically increasing func-
tion of the &ber volume ratio for 0:16 $f 6 0:8, and that the critical dimensionless
wavenumber !c

1H =0, indicating a global (long-wavelength type) critical mode. These
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Fig. 8. The initial bifurcation predictions for the normalized axial stress T�c
11=(f are plotted as functions of

the &ber volume ratio $f , for the load angles  = 0, �=6 and �=3, and are obtained for shearing parallel to
the direction of lamination in a compressible Blatz-Ko foam rubber composite.

results agree with the previous &nding by Triantafyllidis and Bardenhagen (1996),
which show that in compression the critical dimensionless wavenumber !c

1H �= 0 only
for very low &ber volume ratio $f ¡ 0:1. Figs. 8(c) and (d) are plotted for a di:erent
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loading path  =�=6. Here one can see that the critical axial stress is &rst an increasing
function of the &ber volume ratio $f , which then passes through a maximum, decreases
and then increases again. Note that now for the &ber volume ratio 0:16 $f 6 0:56, the
critical dimensionless wavenumber !c

1H is &nite, indicating a local critical mode, while
for higher &ber volume ratio $f ¿ 0:56 the critical mode is global. Figs. 8(e) and (f)
are plotted for  = �=3 and the critical axial stress is again a monotonically increasing
function of the &ber volume ratio $f , the di:erence with  =0 being that for this load-
ing path the critical dimensionless wavenumber !c

1H is always &nite, i.e., the critical
mode is always local.

3.2.2. Graphite–epoxy composite
Continuing in the format used for the compressible foam rubber composite, the results

in Figs. 9 and 10 are presented for a graphite–epoxy composite with a &ber volume
ratio $f = 0:60, whose inelastic matrix is modeled using the isotropic J2 deformation
theory of plasticity. The composite is again subjected to proportional loading for the
same two types of combined axial compression and shear deformation. In Figs. 9(a)
and (b), the initial bifurcation, loss of macroscopic ellipticity and maximum force
results are recorded on the force–displacement parameter curves obtained for di:erent
load paths 06 6 �=2. For shearing parallel to the direction of lamination, Fig. 9(a),
the maximum force results are similar in character to their counterparts obtained for
the compressible foam rubber composite, but at much smaller strains due to the rapid
reduction of the matrix sti:ness past the yield strain, which can be seen from the
smaller range of relevant values for the displacement parameter ". Notice that the
force parameter ! is &rst an increasing function of the displacement parameter ",
which after passing through a local maximum and a local minimum, increases again
for some load angles  . This increase in the force parameter !, at large displacements
", is strongly dependent on the material’s uniaxial stress–strain response, somewhat
arbitrarily chosen for large strains, but not without a lot of thought. The reason for this
is that for such large strains (/¿ 6%) there is no experimental data available, to the
best of our knowledge. Nevertheless, the choice of .(/) a:ects the force–displacement
parameter curves well beyond our range of interest, since the initial bifurcation and loss
of macroscopic ellipticity results always occur before the maximum force for all the
load angles  . The critical force parameter !c is a monotonically decreasing function
of the displacement ", with respect to the load angle  , showing a destabilizing e:ect
of shear. One di:erence for shearing normal to the direction of lamination, Fig. 9(b),
is that a maximum force is observed only for weak shearing 0¡ ¡ 2�=45, in which
range it also coincides with the initial bifurcation and loss of macroscopic ellipticity
results. Also, for  ¿ 2�=45, the results for initial bifurcation and loss of macroscopic
ellipticity are substantially di:erent.
The destabilizing in8uence of shear on the critical axial stress T�c

11 can further be
seen in Figs. 10(a) and (b), where the critical axial stress corresponding to the initial
bifurcation is a monotonically decreasing function of the prescribed shear stresses, T�21

and T�12, for shearing parallel and normal to the direction of lamination. It is impor-
tant to note that for both types of deformation, the critical dimensionless wavenum-
ber !c

1H = 0, i.e., the critical wavelength is much larger than the unit cell size,
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Fig. 9. The onset of bifurcation, loss of ellipticity and maximum force predictions are plotted on the
force–displacement curves obtained for 06 6 �=2 under proportional loading, for shearing parallel (a)
and normal (b) to the direction of lamination. The matrix in the graphite–epoxy composite with a &ber
volume ratio $f = 0:60 is modeled using the isotropic J2 deformation theory of plasticity.
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Fig. 10. The onset of failure surfaces in stress and strain space are obtained for shearing parallel and normal
to the direction of lamination. The numerical results are superposed to the experimentally obtained results
by Vogler et al. (2000) and compared to the approximate model by Budiansky and Fleck (1993). The
matrix in the graphite–epoxy composite with a &ber volume ratio $f = 0:60 is modeled using the isotropic
J2 deformation theory of plasticity.

except for very strong shearing normal to the direction of lamination  ¿ 2�=45, in
Fig. 10(b). New addition here is that our numerical results have been superposed to the
experimentally obtained results by Vogler et al. (2000) for the compressive strength
(de&ned as a limit load) under shear loading. Contrary to the imperfect, &nite sized
specimen, examined by Vogler et al. (2000), our model is in&nite, perfectly periodic
and deforms under plane strain. Although the trend is the same, the numerical values
obtained for the critical axial stress are much higher than their experimental counterparts
due to a strong imperfection sensitivity. It is now well known that &ber imperfections
have a decisive role in the compressive strength of aligned &ber composites which



M.D. Nestorovi*c, N. Triantafyllidis / J. Mech. Phys. Solids 52 (2004) 941–974 967

was &rst recognized by Argon (1972). Calculations show that the onset of bifurcation
results for a perfect structure are an upper bound for the results for a real, imperfect
structure, which are of the limit load type. Observe from Figs. 10(c) and (d), that the
critical axial deformation gradient TFc

11 is also a monotonically decreasing function of
the shear deformation gradients, TF12 and TF21, respectively.
It is of interest to compare our exact two-dimensional continuum mechanics results

with the predictions of an approximate structural model by Budiansky and Fleck (1993),
which are also included in Figs. 10(a) and (b). The bifurcation-buckling stress for a
perfectly aligned composite with straight &bers, is obtained by assuming the &bers to
be linearly elastic and the matrix to follow a J2 deformation theory model. In this case
the critical axial stress T�c

11 is calculated by solving (iteratively) the following system
of equations:

T�c
11 =

Gm

(1 − $f )
[
1 + 3Gm

(
1

Ems(.e)
− 1

Em

)] ; (.e)2 = (
m
�11)2 + 3(.m)2;

T�c
11 =

[
(1 − $f ) + $f

Ef

Ems(.e)

]
m
�11; (3.1)

where Gm and Ems(.e) are the elastic shear modulus and the secant modulus of the
matrix material, respectively. The shear stress .m in the expression for the equivalent

stress in the matrix .e is equal to the prescribed shear stress
m
�21 or

m
�12, for shearing

parallel or normal to the direction of lamination. Observe from Figs. 10(a) and (b) that
for both types of deformation, our results for weak shearing, i.e., for low values of the
load angle  , are in very good agreement with the theoretical predictions by Budiansky
and Fleck (1993). For progressively stronger shearing, their predictions increasingly
overestimate our results, but a comparison in this range is not meaningful, given the fact
that their work assumes small strains and low shear. Also note, that their methodology
cannot predict the in8uence of shear on the critical axial stress when the 8ow theories
with smooth yield surfaces are used to model the matrix material, because the e:ective,
initial shear modulus remains equal to its elastic value. In this case the predictions by
Budiansky and Fleck (1993) reduce to the well-known formula by Rosen (1965).
The results for the same graphite–epoxy composite, but when the inelastic matrix

is modeled using the isotropic J2 8ow theory of plasticity, are presented in Figs. 11
and 12. The most notable di:erence, when compared to the deformation theory results,
is that for shearing parallel to the direction of lamination, Fig. 11(a), no maximum
force is observed. To this end, the lack of available uniaxial stress–strain data at high
strains has an in8uence on the force–displacement curves. Nevertheless, the results for
the initial bifurcation and loss of macroscopic ellipticity are well within the range of
available data, and the critical force parameter !c is still a monotonically decreasing
function of the displacement parameter ". Notice in Fig. 11(b), that for shearing nor-
mal to the direction of lamination, the composite is stable for very strong shearing,
i.e., there is no bifurcation and no loss of macroscopic ellipticity for  ¿ 2�=45. In
Figs. 12(a) and (b), the numerical results for the critical axial stress, as a function of
the prescribed shear stress, are again superposed to the experimentally obtained results
by Vogler et al. (2000). The di:erence between the results is greater than in the case
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Fig. 11. The onset of bifurcation, loss of ellipticity and maximum force predictions are plotted on
the force–displacement curves obtained for 06 6 �=2 under proportional loading, for shearing parallel
(a) and normal (b) to the direction of lamination. The matrix in the graphite–epoxy composite with a &ber
volume ratio $f = 0:60 is modeled using the isotropic J2 8ow theory of plasticity.
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Fig. 12. The onset of failure surfaces in stress and strain space are obtained for shearing parallel and normal
to the direction of lamination. The numerical results are superposed to the experimentally obtained results
by Vogler et al. (2000). The matrix in the graphite–epoxy composite with a &ber volume ratio $f = 0:60 is
modeled using the isotropic J2 8ow theory of plasticity.

of deformation theory. This &nding is expected in view of the well-known advantages
of the deformation theory of plasticity versus its 8ow counterpart for predicting more
realistically the experimental results involving proportional loading. The results for the
critical axial deformation gradient TFc

11, as a function of the shear deformation gradients
corresponding to the two types of deformation, are plotted in Figs. 12(c) and (d), and
have similar character to the results obtained using the deformation theory of plasticity.
The in8uence of proportional and non-proportional loading on the onset of bifur-

cation for the same graphite–epoxy composite are compared in Fig. 13 using the J2
deformation and 8ow theories of plasticity. Only the results obtained for shearing par-
allel to the direction of lamination are presented and due to the high &ber volume
ratio the critical dimensionless wavenumber !c

1H = 0 for all the load angles  . The
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Fig. 13. The onset of bifurcation surfaces in stress and strain space are obtained for shearing parallel
to the direction of lamination, under proportional and non-proportional loading paths. The matrix in the
graphite–epoxy composite with a &ber volume ratio $f = 0:60 is modeled using the isotropic J2 deformation
and 8ow theory of plasticity.

two non-proportional loading paths considered are similar to loading in Vogler et al.
(2000) and they are: The composite is &rst sheared to a predetermined level, which
is then held &xed while the composite is compressed axially. Similarly, for the other
loading path, the composite is &rst compressed axially to a predetermined level, which
is then held &xed while the composite is sheared. Observe from Figs. 13(a) and (b),
that for both plasticity theories there is virtually no di:erence in the results for the
onset of failure surface in stress space, for all three loading paths considered. This also
holds true for the onset of failure surface in strain space, when the deformation theory
is used in Fig. 13(c), but for the 8ow theory used in Fig. 13(d), some di:erence in
the results is observed. Nevertheless, this con&rms the &nding of Vogler et al. (2000),
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Fig. 14. The onset of failure surfaces in stress and strain space are obtained for biaxial loading along the
axes of orthotropy, under proportional loading paths. The matrix in the graphite–epoxy composite with a
&ber volume ratio $f = 0:60 is modeled using the isotropic J2 deformation and 8ow theory of plasticity.

that no signi&cant di:erence for the failure stresses is observed for di:erent loading
paths.
The numerical investigation is concluded by presenting the results for the graphite–

epoxy composite, subjected to proportional orthotropic loading in Fig. 14. The results
are presented for the isotropic J2 deformation and 8ow theories of plasticity. For both
theories the initial bifurcation and loss of macroscopic ellipticity occur before the max-
imum force, and the critical dimensionless wavenumber !c

1H = 0. In Figs. 14(a) and
(b), the critical axial stress T�c

11 is plotted as a function of the compressive as well as
tensile loading, normal to the direction of lamination −�=26 6 �=2. Observe that for
the deformation theory results in Fig. 14(a), the critical axial stress is a monotonically
decreasing function of the normal stress T�22 for tension, while for compression it is
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&rst an increasing function, which then passes through a maximum before decreasing.
For the 8ow theory presented in Fig. 14(b), the results for tension have similar char-
acter when compared to the results for the deformation theory, but for compression the
critical axial stress is always a monotonically increasing function of the normal stress.
Similarly in Figs. 14(c) and (d), a non-monotonic dependence of the critical axial
deformation gradient TFc

11 is observed for the deformation theory, while for the 8ow
theory the critical axial deformation gradient is a monotonic function of the normal
deformation gradient TF22.
It should be emphasized at this point, that all the numerical calculations presented in

this work correspond to the onset of bifurcation in in&nite, layered solids. Investigation
of the post-buckling response of these solids is a completely di:erent and more diEcult
problem from the onset of instability problem addressed here. It is the post-buckling
response that determines the practical load carrying capacity of these solids. The reader
interested in numerical modeling of the post-buckling behavior of actual &ber-reinforced
composites is referred to a work by Kyriakides et al. (1995).

4. Conclusion

Failure under axial compression, due to the bifurcation buckling type of instability at
the microscopic level, is a major limiting factor in the use and design of &ber-reinforced
composite materials. Moreover, macroscopic failure stresses are extremely sensitive to
the load orientation, since even a small amount of shear signi&cantly reduces the critical
axial compressive stress.
Although the onset of instability mechanism is local in nature, it is experimentally

impossible to avoid the simultaneous in8uence of &nite boundaries and material imper-
fections on failure. In addition, the consideration of a general load path with arbitrary
macroscopic load orientation, even though very important for practical applications, is
another major experimental stumbling block. The present work is motivated by the
above-mentioned experimental diEculties combined with the absence of exact &nite
strain continuum mechanics models (in spite of the abundance of very good struc-
tural approximations) for studying the onset of instability in rate-independent, perfect,
&ber-reinforced composites of in&nite extent under &nite strains and subjected to arbi-
trary macroscopic load orientations. The onset of instability is modeled as a bifurcation
from the straight &ber con&guration and in general it corresponds to a local type mode,
whose wavelength is commensurate with the unit cell size. When the &rst instability
corresponds to a global type mode, whose wavelength is much larger than the unit cell
size, the instability can be detected from the macroscopic properties as the &rst loss
of ellipticity of the homogenized moduli of the composite. In addition to the stability
information, the presence of a maximum load in the principal solution has been calcu-
lated for two composites: the &rst composite is made of two alternating layers of a very
sti: and very soft compressible rubber and the other is a graphite–epoxy (AS4/PEEK)
composite, whose material properties have been determined experimentally.
The results show a strong sensitivity of the initial bifurcation, loss of macroscopic

ellipticity and maximum load predictions to the load orientation, i.e., to the ratio of the
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macroscopic shear to normal stress. For the composite made of two alternating layers
of a compressible foam rubber (with one layer being two orders of magnitude sti:er
than the other), it has been determined that a bifurcated solution always exists prior to
reaching a maximum load. There is no maximum load for pure uniaxial compression
in the &ber direction, but a small amount of shear results in a maximum load along
a loading path. Also, for strong shearing, the critical dimensionless wavenumber !c

1H
is always &nite, indicating that the initial bifurcation precedes the loss of macroscopic
ellipticity. Moreover, shear can have a stabilizing as well as a destabilizing e:ect,
depending on both the &ber volume ratio $f and the load orientation.
Similar results are obtained for the graphite–epoxy composite, the main di:erence

being that shear always has a destabilizing e:ect, regardless of the load orientation.
Although the maximum load still cannot be reached for uniaxial compression in the
&ber direction, for the &ber volume ratio $f considered, it can now occur concur-
rently with the initial bifurcation and loss of macroscopic ellipticity. Moreover, the
mode corresponding to the critical dimensionless wavenumber !c

1H is in general of
the long-wavelength type. This coincidence of the micro-failure and macro-failure im-
plies that a macroscopic localization mode will occur for the post-buckling deformation
(see discussion in Triantafyllidis and Bardenhagen, 1996). This is in agreement with
the experiments by Vogler et al. (2000), where the observed failure mode leads to a
kink band type instability. Our calculations show no signi&cant path dependence, which
is also in agreement with their experiments.
Some additional comments are in order at this point about the proposed failure con-

cepts. Unlike the previous theoretical and experimental studies on the failure in periodic
composites, the present study considers all possible macroscopic load orientations. The
onset of failure predictions are calculated for perfect microstructures and thus provide
a consistent upper bound for the failure loads of the corresponding actual composites.
The imperfections in the geometry and material properties of the microstructure result
in failure surfaces which are nested inside their counterparts for the perfect case (see
Triantafyllidis and Schraad, 1998 for the case of aluminum honeycombs) as seen from
our present comparisons to the experimental data of Vogler et al. (2000). Moreover,
the proposed approach gives us the possibility of investigating all possible macroscopic
load orientations, a task which presents considerable experimental diEculties. Since the
failure predictions show a strong dependence on the macroscopic load orientation, the
proposed methodology o:ers a useful tool for designing appropriate microstructures.
An additional result stemming from the &nite strain formulation, is that the direction
of shear loading (parallel or normal to the direction of lamination) plays an important
role in the stability of layered composites.
Finally, it should be emphasized here that the methodology used in this work to

predict the onset of failure in layered composites, is applicable to any in&nite, per-
fectly periodic, rate-independent solid which undergoes &nite deformations. The ideas
used here are currently being employed to investigate the stability of &ber-reinforced
composites by using three-dimensional microstructural models. This direction seems to
be the next logical step in applying the results of the present investigation to engineer-
ing problems involving the failure of microstructured media under arbitrary multi-axial
loading and in the absence of imperfections and &nite boundaries.
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