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Abstract

Some of the most interesting, and technologically important solid–solid transformations are the
1rst order di2usionless transformations that occur in certain equiatomic, ordered, bi-atomic crys-
tals. These displacive transformations include thermally-induced, reversible, proper martensitic
transformations as seen in shape memory alloys such as NiTi (where group–subgroup relation-
ships exist between the symmetry groups of the crystal phases) and the reconstructive martensitic
transformations seen in certain ionic compounds such as CsCl (where no group–subgroup rela-
tionship exists between the phases).

In contrast to existing continuum mechanics approaches, the present work constructs a contin-
uum energy density function W (F; �) (as a function of a uniform deformation gradient and tem-
perature) of a perfect periodic bi-atomic crystal from temperature-dependent atomic pair-potentials.
Equilibrium solutions and their stability are examined as a function of temperature for crystals
under no external stress. The full problem is solved numerically, and an asymptotic theory is
employed to guide the numerical solution near multiple bifurcation points. Using pair-potentials
and enforcing constrained kinematics (uniform deformation of a cubic CsCl-type crystal), lower
symmetry crystals, such as orthorhombic, monoclinic, and rhombohedral structures are predicted.
The 1rst two of these are unstable within the chosen temperature window for our particular
case, while the third is stable for higher temperatures. In addition, a hysteretic transforma-
tion was discovered in which the CsCl structure is stable at high temperatures and the NaCl
structure is stable at low temperatures. These two cubic phases are connected by an unstable
rhombohedral path corresponding to the transformation mechanism proposed by Buerger (1951).
The CsCl–NaCl transformation suggested by the numerical results is a reconstructive trans-
formation with a group–nonsubgroup relationship between the symmetry groups of the two
phases. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although there is no universal agreement on classi1cation (for example, contrast
Cohen et al. (1979), TolAedano and Dmitriev (1996), James (1986)), solid–solid phase
transformations can be (loosely) divided into two categories di2usional and di2usion-
less, depending on whether long-range atomic migration is involved. Adopting the
classi1cation scheme of Cohen et al. (1979), di2usionless transformations (also called
displacive transformations) can be subdivided into two major categories, shuCe trans-
formations which involve no macroscopic strain, and lattice-distortive transformations,
which involve a macroscopic strain of the lattice. If a (relatively) undistorted interface
plane exists between the phases for lattice-distortive transformations, the transformation
is called martensitic.
We choose to further classify martensitic transitions as either “proper” martensitic

transformations, where a group–subgroup relationship exists between the symmetry
groups of the parent and product phases (a requirement for shape memory behavior,
see Bhattacharya, 1998), or as “reconstructive” martensitic transitions, where no such
group–subgroup relationship exists (see TolAedano and Dmitriev, 1996). In the proper
martensitic case the austenite (high symmetry) and martensite (low symmetry) crystals
are connected kinematically by in1nitesimal displacements of atoms (these transfor-
mations are often reversible). Reconstructive martensitic transitions on the other hand
involve 1nite displacements and often the breaking and reforming of atomic bonds. Re-
versible proper martensitic transformations are seen in shape memory alloys (SMAs)
such as NiTi and have been the subject of intensive study in recent years due to their
potential for novel technological applications. Reconstructive martensitic transforma-
tions are seen in steel, in many pure elements (BCC–HCP and BCC–FCC transitions),
in several compounds such as CsCl and other alkali-halides (CsCl–NaCl), and AgI and
CuBr (both BCC-wurtzite).
This work was originally motivated by an interest in thermoelastic proper martensitic

transformations seen in NiTi. However as will be seen, the approach taken applies
equally well to the reconstructive type of martensitic transformation. Many of the
characteristics of such transformations imply diIculties for theoretical models at the
continuum length-scale. For instance, the tendency in SMAs for the transition from the
austenite phase to the martensite phase to occur through the mechanism of localization
and propagation of transformation fronts, shows that instabilities at the nano-scale can
percolate all the way up to the macro-scale, even for polycrystalline SMAs (Shaw and
Kyriakides, 1998; Shaw, 2000). The modeling of discontinuous strain 1elds implies
serious technical problems, since the governing equilibrium equations are no longer
elliptic in nature.
A continuum mechanics framework of 1nite strain thermoelasticity has emerged since

the 1980s, thanks to the work of Abeyaratne, Bhattacharya, Ericksen, James, Knowles
and many others. It consists of postulating a phenomenological energy density W (F; �)
(where F is the deformation gradient tensor and � is the absolute temperature of the
material at the point of interest), whose local minima with respect to F (potential wells)
correspond to di2erent phases of the crystal. For the general three-dimensional formu-
lation of the corresponding boundary value problems and the appropriate requirements
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Fig. 1. Di2erential scanning calorimetry of NiTi wire, showing solid state phases with di2erent crystal
symmetries; austenite (B2 or CsCl cubic), R-phase (rhombohedral), martensite (B19′ or monoclinic).

for W (F; �), the interested reader is referred to James (1986). The main objective of
these investigations is to give the general form of W for these crystals and to study the
nature of the solutions for corresponding boundary value problems. This approach has
successfully predicted many features of the 1ne microstructures observed experimen-
tally in shape memory crystals (e.g., the laminar microstructures in CuAlNi investigated
by Abeyaratne et al., 1996). The same continuum mechanics framework has also been
considered by Ericksen (1992), who used symmetry properties of the crystals to show
the possibility of bifurcated equilibrium paths.
Unfortunately, the phenomenological construction of W leaves some important ques-

tions unanswered pertaining to which phases can coexist at a certain temperature. The
continuum mechanics literature thus far deals with constructions where two distinct
phases (and all their variants) are assumed: a highly symmetric austenite crystal, usu-
ally cubic, and a lower symmetry martensite crystal, such as tetragonal, rhombohedral,
orthorhombic, or monoclinic. For some shape memory materials of interest, such as
NiTi with particular heat treatment, three di2erent stable phases (and all their vari-
ants) can coexist, i.e. cubic, monoclinic, and rhombohedral (see the di2erential scan-
ning calorimetry thermogram of Fig. 1). The phenomenological constructions of such
energy densities, although feasible become exceedingly complex and unmanageable.
Additional related questions, which cannot be answered by the above phenomenologi-
cal models without supplementary assumptions, pertain to the relative size (compared
to the lattice) of the wavelength of twinning modes at the nano-scale and interfacial
energies at boundaries between phases.
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For our purposes we return to the underlying nano-structure and derive the cor-
responding energy density from temperature-dependent atomic potentials. We prefer
to avoid the usual approach of molecular dynamics with its statistical aspects and
large-scale computations, and instead model phenomena in a quasi-static setting. This
also allows us to 1nd all equilibrium paths and address their stability in a systematic
way. First order gradient (local) continuum calculations for nonlinear periodic crystals
are frequently encountered in the physics and materials science literature, in particular
when elastic properties of crystals based on atomistic pair-potentials are sought. The
earliest studies of stability of mono-atomic cubic crystals under 1nite strains go back
to Born (1940). Somewhat more recently, in a series of articles Milstein (1970) and
Milstein and Hill (1977, 1978, 1979) used the same approach to study the dependence
of bulk and shear moduli on pressure and examined the stability of these crystals. To
the best of the authors’ knowledge, no systematic e2ort has been devoted to modeling
martensitic transformations by explicitly deriving an energy density function W (F; �)
from a network of temperature-dependent atomic potentials and to study the ensuing
symmetry-breaking bifurcated equilibrium solutions and their stability.
The goal of the present work is to use atomistic model simulations as a tool for

generating an energy density W (F; �) of a prototype, ordered, bi-atomic, crystal (CsCl
structure). Such an energy density has all the necessary symmetry properties of the
underlying crystal and is used to 1nd all the equilibrium phases and their stability
within a certain temperature range. Accordingly, Section 2 introduces our atomic model
and the scope of the boundary value problem of interest. Section 3 details the stability
analysis and asymptotic solutions near critical points in the equilibrium paths. Section
4 provides numerical results for a particular bi-atomic crystals maps all the equilibrium
paths for crystals of di2erent symmetries, and determines their stability.

2. Formulation

2.1. Problem statement

Since the focus of the current work is to determine the bulk behavior of a perfect,
equi-atomic, ordered crystal of two elements, we restrict our attention to the behavior of
an in1nite crystal under uniform deformation. We chose the CsCl (or B2) structure as
our reference con1guration. The relative position vector rij, separating atom i and atom
j, is given by rij=F · [Xj−Xi] where Xi is the reference position of atom i. The symbol
( · ) indicates tensor contraction, where F · X represents FikXk in component form with
Einstein’s summation convention. The rigid body rotation part, R, of the deformation
gradient tensor F = R · U is irrelevant for a uniform deformation, so without loss of
generality it is assumed to be R = I, the rank two identity tensor. Consequently,

rij =U · [Xj − Xi]; (2.1)

where U is the uniform, symmetric right stretch tensor. It is recognized that martensitic
transformations in SMAs, for example, involve internal atomic shuCes (e.g., the B19′
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structure of NiTi martensite shown in Fig. 1, see also Otsuka et al., 1971), but these
locally nonuniform deformations, as well as twinning deformation are left to future
work. The energy density of the crystal, therefore, is given by the summation of the
atomic potential of atom i, 	i, over a reference volume of the unit cell, Vr , as

W (U; �) =
1
2Vr

K∑
i=1

	i(ri1; ri2; : : : ; ri(i−1); ri(i+1); : : : ; �); (2.2)

where K is the number of atoms per unit cell and the arguments of 	i rePect the
possible interactions with all other atoms.
We are presently interested in temperature-induced transformations under no exter-

nally applied stress. Temperature, in this case, plays the role of the only loading pa-
rameter. Equilibrium solutions are sought of a stress-free, perfect crystal (speci1cally,
the CsCl structure as seen in NiTi austenite) and its stability in a 100 K, or so, interval
about the reference temperature of 300 K. Equilibrium paths are found by extremizing
W with respect to the right stretch tensor U, or

9W
9U = 0: (2.3)

The fundamental hypothesis is that martensitic transformations are manifestations of
lattice level instabilities in certain crystals. For example, the remarkable behavior of
SMAs is a result of material existing at the cusp of an instability that causes a sort of
“buckling” of the crystal structure. For a conservative system in equilibrium stability
is evaluated in the usual way by determining whether 92W=9U9U is positive de1nite
along the equilibrium paths found from Eq. (2.3), or

min
[
�U :

92W
9U9U: �U

]
¿ 0; (2.4)

for all admissible, second-order, symmetric tensors �U, and where A:B denotes double
tensor right contraction (de1ned in component form as AijklBkl).

2.2. Atomistic model

The simplest way to model atomic interactions is by the pair-potential model. We
recognize the well known de1ciencies inherent in the use of pair-potentials (Cauchy
relations, etc.) but accept these limitations in the interest of simplicity. Thus, the atomic
potential of atom i can be written as the sum of pair-potentials for all the interacting
atoms.

	i(ri1; ri2; : : : ; �) = 	i(ri1; �) + 	i(ri2; �) + · · · ; (2.5)

where rij is the length of rij.
The energy of an ordered equi-atomic CsCl crystal (with atom species a and b)

is thus constructed by summing over the interacting atom pairs within a sphere of
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inPuence.

W (U; �)

=
1
2Vr

[∑
i

(	aa(rai; �) + 	ab(rbi; �)) +
∑

j

(	bb(rbj; �) + 	ab(raj; �))

]
; (2.6)

where 	aa; 	ab, and 	bb denote the pair-potentials between atoms a–a; a–b, and b–b,
respectively and the subscripts a and b on r denote the corresponding atoms in a unit
cell. Here i and j range over all a and b atoms, respectively. A sphere of inPuence is
chosen to represent the distance outside of which interactions are considered negligible.
In this way the model includes long-range central-force interactions at the nano-scale.
Any of the popular atomic potentials could be used in this framework, but we selected
the following Morse potential, 1

	(r) = A
{
exp

[
−2m

(
r
r0

− 1
)]

− 2 exp
[
−m

(
r
r0

− 1
)]}

; (2.7)

where r is the current separation between two atoms, r0 is the zero force separation,
and A and m are parameters characterizing the strength and sti2ness of the bond. The
Morse potential is chosen for convenience, since it rapidly (exponentially) decays with
radius. The bond is made temperature-dependent by assuming the parameters to be
temperature-dependent as follows:

	(r; �)

=A(�)
{
exp

[
−2m(�)

(
r

r̂(�)
− 1

)]
− 2 exp

[
−m(�)

(
r

r̂(�)
− 1

)]}
; (2.8)

where

A(�) = A0

[
1− �

4�m

]
; �r—reference temperature;

r0—bond length at � = 0;

m(�) = m0

[
1 + ��

(� − �r)
�r

]
; �m—melting temperature;

A0—binding energy;

r̂(�) = r0

[
1− 1

2m0
ln
(
1− �

4�m

)]
; m0—bond sti2ness parameter;

��—sti2ness temperature coeIcient:

(2.9)

1 It is understood that interaction potentials and their coeIcients depend on bond type a–a; a–b, and b–b,
but these indices are omitted to avoid cumbersome notation in Eqs. (2.7)–(2.9).
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Fig. 2. Temperature-dependent bonds.

This speci1c form of 	 arises from the construction shown in Fig. 2. An absolute
zero temperature bond potential has the parameters A0; m0, and r0. As thermal energy
(kinetic energy according to nk�, where k is Boltzmann’s constant and n is the number
of degrees of freedom of the bond) is added the energy of the bond increases linearly
with temperature above the zero temperature binding energy of −A0. The Morse po-
tential has an inPection point (zero bond sti2ness) at the energy of −3A0=4, so the
thermal energy A0=4 is interpreted as the approximate energy required for melting. In
order to avoid the necessity of dynamic simulations, we choose an average natural
bond length according to r̂(�) = [r1(�) + r2(�)]=2, where r1 and r2 are the extreme
bond lengths under thermal oscillations at �. A Morse-type, temperature-dependent,
quasi-static atomic potential is constructed to have a minimum at this average po-
sition and is scaled to have the total energy of the bond. With increasing temper-
ature this e2ectively results in a slight increase in the natural bond length (due to
the asymmetry of the bond potential). In addition, the bond sti2ness parameter m
is assumed to have a linear dependence with temperature (according to the parame-
ter ��) in the neighborhood of a chosen reference temperature �r . Speci1c parame-
ters for the three bond types will be discussed in the numerical results presented in
Section 4.

3. Asymptotic analysis

Eq. (2.3) may appear disarmingly simple, but it actually represents six nonlinear
equilibrium equations. The case when the stability criterion Eq. (2.4) is equal to zero
de1nes a critical point on the equilibrium path. As will be seen certain critical points
may have multiple bifurcation modes, and the treatment of such a complication is an
important feature of the present work. In order to guide our numerical solution of Eq.
(2.3) and to provide an analytical veri1cation of our numerical results, an asymptotic
analysis of the bifurcated paths near critical points is required. The approach taken
here is based on the Lyapunov–Schmidt–Koiter decomposition and follows the general
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theory given in Triantafyllidis and Peek (1992), which is used to 1nd critical points,
categorize their type, and 1nd the initial stability of emanating branches. 2

3.1. Critical points

The stress-free equilibrium states sought are the solutions of Eq. (2.3). Due to the
cubic symmetry of the crystal, an obvious solution is the CsCl crystal structure with

a uniform dilation,
0
U(�) = �(�)I. We refer to this as the “principal solution”. The

principal solution,
0
U(�), is assumed to be stable for high temperatures, at least in a

neighborhood of the reference temperature, �r . Accordingly, it is a local minimizer of

the energy, W , and hence 92W=9U9U evaluated on
0
U(�) is positive de1nite.

As the temperature decreases away from �r , it reaches a value �c, called the “critical

temperature”, at which the austenitic phase,
0
U(�), is no longer a local energy minimizer

and the positive de1niteness of 92W=9U9U along the principal solution is lost, i.e.,

2
Lc:

(I)
U = 0; (I = 1; : : : ; N ); (3.1)

where

2
Lc ≡ 92W (

0
U(�c); �c)
9U9U ; (3.2)

represents the tangent moduli tensor at the critical point, and N is the order of the

critical point. 3 The N eigenmodes, 4
(I)
U, are a basis for the null space of

2
Lc. From here

on capital Latin indices (I; J; K; : : :) refer to eigenmodes, whereas lower Latin indices
(i; j; k; : : :) refer to Cartesian directions.

3.2. Cubic symmetry

While an explicit knowledge of the elastic energy density, W (F; �), is assumed,
much can be learned about the character of critical points based solely on the material
symmetry properties of W . The cubic symmetry of the reference con1guration implies
that the energy density must satisfy

W (F; �) =W (F ·M; �); (3.3)

2 The interested reader is also referred to Ericksen (1996), which presents an equivalent analysis for
the tetragonal mono-atomic lattice under applied pressure and temperature, but from a somewhat di2erent
viewpoint.

3 From here on a superscript or subscript “c” indicates that the quantity is evaluated at the critical tem-
perature, �c.

4 In view of the major symmetry of
2
Lc, there are N linearly independent eigenmodes, where N is the

multiplicity of the corresponding zero eigenvalue of
2
Lc.
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where, M∈O, the octahedral point symmetry group, which consists of all rigid body
transformations mapping a cube onto itself. The deformation gradient, F, may be written
R · U by virtue of the polar decomposition theorem, where R is a rigid body rotation
and U, the right stretch tensor, is symmetric. Since we make use of the uniform
deformation assumption, R may be chosen arbitrarily, and thus, the energy density may
be considered a function of U only. Furthermore, the principle of frame indi2erence
states that W (F; �) = W (R · F; �) for any rotation R. Now, since M is a rigid body
transformation, so is its transpose (inverse), MT, and we may take R=MT resulting in
a symmetric argument MT · U ·M. The cubic symmetry requirements on the energy
density can now be restated with symmetric tensor arguments as

W (U; �) =W (MT · U ·M; �) (3.4)

for all M∈O. The energy density is then invariant under an arbitrary permutation
of the indices of the components of U and a sign change of two of the three shear
components of U. That is (no sums are implied),

W (U; �) =W (Uii; Ujj; Ukk ; Uij; Ujk ; Uki; �)

=W (Uii; Ujj; Ukk ;−Uij;−Ujk ; Uki; �)

=W (Uii; Ujj; Ukk ;−Uij; Ujk ;−Uki; �)

=W (Uii; Ujj; Ukk ; Uij;−Ujk ;−Uki; �); (3.5)

where {i; j; k} is any permutation of {1; 2; 3}. Thus, Eq. (3.5) represents 24 relations
that can be used to simplify the asymptotic expansions used below.

Any pure dilation,
0
U(�)=�(�)I, leaves the cubic symmetry of the crystal unchanged.

A Taylor series expansion of the energy density 5 can be constructed about the pure

dilation
0
U(�), and a lengthy calculation results in

W (
0
U(�) + �U; �) =

0
L+

1
Ln

∑
i

SUii

+
1
2!


2

Lnn

∑
i

(SUii)2 +
2
Lnn′

∑
i �=j

(SUiiSUjj) +
2
Lss

∑
i �=j

2(SUij)2




+
1
3!


3

Lnnn

∑
i

(SUii)3 +
3
Lnnn′

∑
i �=j

3((SUii)2 SUjj)

5 It is assumed that W is suIciently smooth.



2472 R.S. Elliott et al. / J. Mech. Phys. Solids 50 (2002) 2463–2493

+
3
Lnn′n′′

∑
i �=j �=k �=i

(SUiiSUjjSUkk) +
3
Lnss

∑
i �=j

12(SUii(SUij)2)

+
3
Ln′ss

∑
i �=j �=k �=i

6(SUii(SUjk)2) +
3
Lss′s′′

∑
i �=j �=k �=i

8(SUijSUikSUjk)




+O(�U4): (3.6)

The notation used in Eq. (3.6) requires some explanation. We de1ne
K
L as the 2K th

order tensor, representing the K th partial derivative of the energy density with respect
to the right stretch tensor evaluated on the principal branch, i.e.,

K
L(

0
U(�); �) ≡ 9KW (

0
U(�); �)
9UK : (3.7)

A subscript “n” represents a normal component of the stretch tensor with a pair of

equal indices (11, or 22, or 33), such as
2
Lnn=92W=9U119U11. A subscript “s” represents

a shear component of the stretch tensor with a pair of unequal indices (12, 23, 31, 21,

32, 13), such as
2
Lss = 92W=9U129U12. In some cases it is necessary to use subscripts

with a prime (′) to indicate that a pair of indices are distinct from those indices

which do not have a prime, for example
2
Lnn′ = 92W=9U119U22. Three mutually distinct

pairs of indices are indicated with a prime and a double prime (′′). See Table 1
for a list of the symbols used in Eq. (3.6), giving an example of each.

3.3. Classi3cation of critical points

To determine the character (bifurcation or limit load) of the critical points which
may be encountered, use of the notation introduced in Eq. (3.6) leads to the restatement
of the critical point de1nition in Eq. (3.1) as follows:




2
Lc

nn

2
Lc

nn′
2
Lc

nn′ 0 0 0

2
Lc

nn′
2
Lc

nn

2
Lc

nn′ 0 0 0

2
Lc

nn′
2
Lc

nn′
2
Lc

nn 0 0 0

0 0 0
2
Lc

ss 0 0

0 0 0 0
2
Lc

ss 0

0 0 0 0 0
2
Lc

ss







U11

U22

U33

2U12

2U23

2U31




(I)

= 0; (I = 1; : : : ; N ): (3.8)
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Table 1
Nonzero components in expansion (3.6)

Tensor Order Example Nonzero equal components

1
L 2nd

1
Ln =

9W
9U11

3

2
L 4th

2
Lnn =

92W
9U119U11

3

2
Lnn′ =

92W
9U119U22

6

2
Lss =

92W
9U129U12

12

3
L 6th

3
Lnnn =

93W
9U119U119U11

3

3
Lnnn′ =

93W
9U119U119U22

18

3
Lnn′n′′ =

93W
9U119U229U33

6

3
Lnss =

93W
9U119U129U12

72

3
Ln′ss =

93W
9U119U239U23

36

3
Lss′s′′ =

93W
9U119U239U31

48

Nontrivial solutions exist when the determinant of the coeIcient matrix is zero,

(
2
Lc

nn + 2
2
Lc

nn′)(
2
Lc

nn −
2
Lc

nn′)2(
2
Lc

ss)3 = 0: (3.9)

There are three 6 distinct cases of order N =1; 2, and 3, respectively, according to the
multiplicity of the root of Eq. (3.9). For each case, the character of the critical point
is determined by the following criterion (see Triantafyllidis and Peek, 1992),

92W
9U9�

∣∣∣∣
c
:
(I)
U

{ �=0; limit load point;

=0; bifurcation point;
(3.10)

which tests whether or not the equilibrium path passing through the critical point is
unique. Each of the three possible solutions of Eq. (3.9) is now classi1ed in turn.

6 Simultaneous roots, such as
2
Lc

nn − 2
Lc

nn′ =
2
Lc

ss = 0 are not investigated due to their degenerate and
unlikely nature.
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Case I.
2
Lc

nn + 2
2
Lc

nn′ = 0.

In this case the critical point is of order N = 1 with a single eigenmode,
(1)
U = I,

a simple dilation. According to Eqs. (3.6) and (3.10),

92W
9U9�

∣∣∣∣
c
:
(1)
U =

9
1
Ln

9�

∣∣∣∣∣∣
c

tr
(1)
U = 3

9L1
n

9�

∣∣∣∣
c
�=0; (3.11)

a critical point of this type is a limit load.

Case II.
2
Lc

nn =
2
Lc

nn′ .
In this case, where the two normal moduli are equal, the critical point is of order

N = 2 with two independent eigenmodes,

(1)
U =



2 0 0

0 −1 0

0 0 −1


 ;

(2)
U =



−1 0 0

0 2 0

0 0 −1


 : (3.12)

Examination of criterion (3.10) shows

92W
9U9�

∣∣∣∣
c
:
(I)
U =

9
1
Ln

9�

∣∣∣∣∣∣
c

tr
(I)
U = 0; (I = 1; 2): (3.13)

This case, therefore, corresponds to a double bifurcation point.

Case III.
2
Lc

ss = 0.
In this case, where the shear modulus vanishes, the critical point is of order N = 3

with three independent eigenmodes,

(1)
U =



0 0 0

0 0 1

0 1 0


 ;

(2)
U =



0 0 1

0 0 0

1 0 0


 ;

(3)
U =



0 1 0

1 0 0

0 0 0


 : (3.14)

Criterion (3.10) in this case shows

92W
9U9�

∣∣∣∣
c
:
(I)
U =

9
1
Ln

9�

∣∣∣∣∣∣
c

tr
(I)
U = 0; (I = 1; 2; 3); (3.15)

which indicates that the critical point is a triple bifurcation point.

3.4. Bifurcated branches and their initial stability

The initial stability of the bifurcated branches associated with Case II and Case III
is now examined using the asymptotic analysis of Triantafyllidis and Peek (1992).
According to the general theory, any bifurcated equilibrium path can be expressed in
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terms of a bifurcation amplitude, ". The deformation measure U and temperature � for
each equilibrium path are parameterized in terms of ". The corresponding asymptotic

expansions near the critical point (
0
U(�c); �c) are

U(") =
0
U(�(")) + "

1
Uc +

"2

2

2
Uc + O("3); (3.16a)

�(") = �c + "�1 +
"2

2
�2 + O("3): (3.16b)

In the case where �1 �=0 (called a transcritical, or asymmetric, bifurcation) only the
linear terms are required to determine the equilibrium paths and their stability near �c,
where

1
Uc =

N∑
I=1

�I
(I)
U; (3.17a)

‖Q‖= 1; (3.17b)

and Q (not to be confused with the scalar lattice angle, �) is the unit tangent of the
bifurcated equilibrium path at the critical point with dimensionality equal to the order
of the bifurcation point. There are as many unit tangents, Q, as bifurcated equilibrium
paths through �c. However, if �1 =0 identically (called a super-critical or sub-critical,
or symmetric, bifurcation) the second order terms are needed. In this case,

2
Uc =

N∑
I; J=1

�I�J
(IJ )
V ; (3.18)

where
(IJ )
V is de1ned by

92W
9U9U

∣∣∣∣
c
:
(IJ )
V =−

(
93W

9U9U9U

∣∣∣∣
c
:
(I)
U

)
:
(J )
U ; (3.19a)

(IJ )
V :

(K)
U = 0: (3.19b)

The 1rst condition, (3.19a), is necessary to satisfy equilibrium involving order "2 terms,

and the last condition, (3.19b), ensures the uniqueness of
(IJ )
V by choosing it to be

orthogonal to
(K)
U . Combining the equilibrium equations in the null space of

2
Lc with

the above asymptotic expressions for the displacement U (3.16)–(3.18) results in the
following system of equilibrium equations for the Q’s.

If �1 �=0:
N∑

J; K=1

�J �KEIJK + 2�1
N∑

J=1

�JEIJ� = 0; (I = 1; : : : ; N ); (3.20a)
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If �1 = 0:
N∑

J; K; L=1

�J �K�LEIJKL + 3�2
N∑

J=1

�JEIJ� = 0; (I = 1; : : : ; N ): (3.20b)

The coeIcients EIJK ; EIJKL, and EIJ� are de1ned as (I; J; K; L= 1; : : : ; N ),

EIJK ≡
[

93W
9Uij9Ukl9Umn

]
c

(I)
Uij

(J )
Ukl

(K)
Umn; (3.21a)

EIJKL ≡
[

94W
9Uij9Ukl9Umn9Upq

]
c

(I)
Uij

(J )
U kl

(K)
Umn

(L)
Upq

+
[

93W
9Uij9Ukl9Umn

]
c

(
(J )
Ukl

(KL)
V mn +

(K)
Ukl

(JL)
Vmn +

(L)
Ukl

(JK)
V mn

)
(I)
Uij; (3.21b)

EIJ� ≡

 d
d�


92W (

0
U(�); �)

9Uij9Ukl






c

(I)
Uij

(J )
Ukl: (3.21c)

The initial stability of bifurcated equilibrium paths is governed, according to the general
theory, by the properties of the matrix B, de1ned as

If �1 �=0: BIJ (Q) ≡ �1EIJ� +
N∑

K=1

�KEIJK ; (3.22a)

If �1 = 0: BIJ (Q) ≡ �2EIJ� +
N∑

K;L=1

�K�LEIJKL: (3.22b)

The initial stability of a symmetric (�1=0) bifurcated equilibrium branch is guaranteed
if B is positive de1nite. Asymmetric (�1 �=0) bifurcated equilibrium branches have a
change in stability as the critical point is crossed if all eigenvalues of B are of the same
sign, but they are initially unstable in both directions if the signs of the eigenvalues are
di2erent. We now revisit the two di2erent types of bifurcation paths found in Section
3.3, determine their tangents Q, and examine their initial stability.

Case II.
2
Lc

nn =
2
Lc

nn′ ; N = 2.
This case is a double bifurcation point, which has at most three 7 bifurcated paths

intersecting the primary branch at �c. From the corresponding eigenmodes in Eq. (3.12)
and the expansion of the energy density (3.6) one 1nds for EIJK and EIJ�, according
to the de1nitions (3.21a) and (3.21c)

EIJK =

{
E; I = J = K;

−E=2; otherwise;
(3.23a)

7 Since Eq. (3.20a) is a system of N quadratic equations for Q, there are as many as 2N − 1 nontrivial
independent real solutions (the trivial solution is, of course, the principal branch).
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EIJ� =

{
E�; I = J;

−E�=2; otherwise;
(3.23b)

where

E ≡ 6(
3
Lc

nnn − 3
3
Lc

nnn′ + 2
3
Lc

nn′n′′); (3.24a)

E� ≡ 6
d
d�

(
2
Lnn −

2
Lnn′)c: (3.24b)

It should be noted that the derivative in Eq. (3.24b) is a total derivative with respect
to � (see de1nition (3.7)).
With the help of the above result, the system of equations (3.20a) which governs

the initial tangent, Q, of each bifurcated equilibrium path can be simpli1ed to

�1E�(2�1 − �2) + E(�21 − �1�2 − �22=2) = 0; (3.25a)

�1E�(2�2 − �1) + E(�22 − �1�2 − �21=2) = 0: (3.25b)

By inspection, the above system has 3 real solutions: T1;T2;T3, representing asym-
metric (tetragonal, as will be seen) equilibrium paths, all with the same nonzero �1,

T1: Q= (1; 0); �1 =−E=2E�; (3.26a)

T2: Q= (0; 1); �1 =−E=2E�; (3.26b)

T3: Q= (−1;−1); �1 =−E=2E�; (3.26c)

where the convenient norm ‖Q‖∞ was chosen. According to the eigenmodes (3.12) and
the linear term in the asymptotic expansion (3.16a), the bifurcated branches emerge
from the principal branch with tangents

1
Uc(T1) =



2 0 0

0 −1 0

0 0 −1


 ;

1
Uc(T2) =



−1 0 0

0 2 0

0 0 −1


 ;

1
Uc(T3) =



−1 0 0

0 −1 0

0 0 2


 : (3.27)

The above equilibrium paths are the three variants of a tetragonal phase (sides a=b �= c,
angles �= %= &= '=2) which results by stretching a cubic cell of the austenitic phase
along one axis.
The stability of these asymmetric paths in the neighborhood of �c is found using

the 2×2 matrix B de1ned by Eq. (3.22a). Using the results of Eq. (3.23) we obtain for
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transcritical branch

Fig. 3. Cubic to tetragonal bifurcation.

the three paths,

B(T1) =
E

4

[
2 −1

−1 −4

]
; B(T2) =

E

4

[−4 −1

−1 2

]
; B(T3) =

E

4

[−4 5

5 −4

]
: (3.28)

Since the determinant of each one of the above matrices is strictly negative, the corre-
sponding two eigenvalues are of di2erent sign and hence all the corresponding trans-
verse bifurcation paths from cubic to tetragonal are unstable in the neighborhood of �c.
This is a rather strong result, since it depends only on the cubic symmetry of the pri-
mary branch and not on the particular form of the chosen energy density. A schematic
of this type of transformation is depicted in Fig. 3.

Case III.
2
Lc

ss = 0; N = 3.

This case is a triple bifurcation point with at most 2N − 1 = 7 bifurcated branches
emerging from �c. From the corresponding eigenmodes (3.14) and the expansion (3.6),
we 1nd EIJK and EIJ� (I; J; K = 1; : : : ; N ) de1ned in Eqs. (3.21a), (3.21c) to be

EIJK =

{
E; I �= J �=K �= I;

0; otherwise;
(3.29a)

EIJ� =

{
E�; I = J;

0; otherwise;
(3.29b)

where

E ≡ 8
3
Lc

ss′s′′ ; (3.30a)

E� ≡ 4
d
d�

(
2
Lss

)
c
: (3.30b)
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With the help of the above result, the equilibrium equations (3.20a) simplify to

�1E��1 + E�2�3 = 0; (3.31a)

�1E��2 + E�3�1 = 0; (3.31b)

�1E��3 + E�1�2 = 0: (3.31c)

By inspection, we 1nd that the above system has 7 real solutions, divided into two
categories, according to whether �1�2�3 �=0 (4 rhombohedral solutions RH1; : : : ;RH4)
or �1�2�3 =0 (3 orthorhombic solutions OR1;OR2;OR3). The equilibrium paths in the
1rst category are the asymmetric bifurcated branches, all with the same nonzero �1
satisfying

RH1: Q= (−1;−1;−1)=
√
3; �1 = E=

√
3E�; (3.32a)

RH2: Q= (−1; 1; 1)=
√
3; �1 = E=

√
3E�; (3.32b)

RH3: Q= (1;−1; 1)=
√
3; �1 = E=

√
3E�; (3.32c)

RH4: Q= (1; 1;−1)=
√
3; �1 = E=

√
3E�; (3.32d)

where the convenient norm ‖Q‖2 was chosen. According to the eigenmodes (3.14) and
the linear term in the asymptotic expansion (3.16a), the bifurcated branches emerge
from the principal branch with tangents

1
Uc(RH1) =

1√
3




0 −1 −1

−1 0 −1

−1 −1 0


 ;

1
Uc(RH2) =

1√
3



0 1 1

1 0 −1

1 −1 0


 ;

1
Uc(RH3) =

1√
3




0 1 −1

1 0 1

−1 1 0


 ;

1
Uc(RH4) =

1√
3




0 −1 1

−1 0 1

1 1 0


 : (3.33)

The above equilibrium paths are the four variants of a rhombohedral phase (sides
a = b = c, angles � = % = &), i.e., stretching the cubic cell along one of its four main
diagonals. The stability of these paths in the neighborhood of �c is found with the help
of the 3× 3 matrix B de1ned by Eq. (3.22a). Substituting Eqs. (3.29) and (3.32) into
Eq. (3.22a) (where now I; J = 1; 2; 3) we obtain

B(RH1) =
E√
3



1 1 1

1 1 1

1 1 1


 ; B(RH2) =

E√
3



1 1 1

1 1 −1

1 −1 1


 ;

B(RH3) =
E√
3




1 1 −1

1 1 1

−1 1 1


 ; B(RH4) =

E√
3




1 −1 1

−1 1 1

1 1 1


 : (3.34)
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Fig. 4. Cubic to rhombohedral bifurcation.

It is easily checked that each one of the above matrices has two eigenvalues with dif-
fering signs, and hence, all the rhombohedral paths are unstable near �c. This is again a
result independent of the chosen energy density; it only depends on the cubic symme-
try of the principal branch. The stability and transverse character of the rhombohedral
equilibrium paths are displayed in Fig. 4.
The equilibrium paths through �c that belong to the second category of solutions

(i.e., �1�2�3 = 0) are symmetric branches with

OR1: Q= (1; 0; 0); �1 = 0; (3.35a)

OR2: Q= (0; 1; 0); �1 = 0; (3.35b)

OR3: Q= (0; 0; 1); �1 = 0: (3.35c)

Since �1=0, Eqs. (3.20b) must be considered to determine the character of these modes.
With the help of the expansion (3.6) and eigenmodes (3.14) and the de1nitions (3.21b)
and (3.19) we 1nd

EIJKL =




Ê I = J = K = L;

Ẽ I = J �=K = L or any permutation;

0 otherwise;

(3.36)

where

Ê ≡ 16
4
Lc

ssss + 12((
3
Lc

n′ss + 2(̂
3
Lc

nss); (3.37a)

Ẽ ≡ 16
4
Lc

sss′s′ + 4(((+ (̂)
3
Lc

nss + (̂
3
Lc

n′ss): (3.37b)

See Appendix A for details of the calculations of Eqs. (3.37) and the de1nitions of (
and (̂. After substituting Eq. (3.36), Eqs. (3.20b) simplify to

�1[Ê�21 + 3Ẽ(�22 + �23) + 3�2E�] = 0; (3.38a)
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�2[Ê�22 + 3Ẽ(�21 + �23) + 3�2E�] = 0; (3.38b)

�3[Ê�23 + 3Ẽ(�21 + �22) + 3�2E�] = 0: (3.38c)

The above equilibrium system is satis1ed by the orthorhombic solutions OR1;OR2;OR3

in Eq. (3.35), each case admitting the solution

�2 =−Ê=3E�: (3.39)

Thus, according to the eigenmodes (3.14) and the linear and second order terms in
the expansion (3.16a), the bifurcated branches emerge from the principal branch with
tangents and curvatures

1
Uc(OR1) =



0 0 0

0 0 1

0 1 0


 ;

2
Uc(OR1) =




( 0 0

0 (̂ 0

0 0 (̂


 ; (3.40a)

1
Uc(OR2) =



0 0 1

0 0 0

1 0 0


 ;

2
Uc(OR2) =




(̂ 0 0

0 ( 0

0 0 (̂


 ; (3.40b)

1
Uc(OR3) =



0 1 0

1 0 0

0 0 0


 ;

2
Uc(OR3) =




(̂ 0 0

0 (̂ 0

0 0 (


 : (3.40c)

The above three equilibrium paths correspond to the six variants of an orthorhombic
phase (sides a=b �= c, angle & �= '=2; �=%='=2). Each results by shearing two opposite
faces of the cube and allowing the perpendicular direction to stretch independently.
There are six variants, since each equilibrium path in Eqs. (3.35) corresponds to two
variants of the orthorhombic phase (see Fig. 5); one for the angle &¡'=2 and the
other for &¿'=2 (i.e., for bifurcation amplitude "¡ 0 or "¿ 0).
The stability of these paths in the neighborhood of �c is found with the help of the

3 × 3 matrix B de1ned by Eq. (3.22b). Substituting Eqs. (3.29), (3.35), and (3.36)
into Eq. (3.22b) we obtain,

B(OR1) =
1
3



2Ê 0 0

0 3Ẽ− Ê 0

0 0 3Ẽ− Ê


 ; B(OR2) =

1
3



3Ẽ− Ê 0 0

0 2Ê 0

0 0 3Ẽ− Ê


 ;

B(OR3) =
1
3



3Ẽ− Ê 0 0

0 3Ẽ− Ê 0

0 0 2Ê


 : (3.41)
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Fig. 5. Cubic to orthorhombic bifurcation.

Positive de1niteness of B(Q) along a path with initial tangent Q guarantees the stability
of that path near �c. Thus, stability of the orthorhombic paths is guaranteed only
when 3Ẽ¿ Ê¿ 0. Notice that unlike the tetragonal or rhombohedral paths, which
were always unstable near �c (independent of the particular functional dependence of
W ), the stability of the orthorhombic paths depends on the choice of atomic interaction
potential.

4. Numerical results

Now that a clear understanding exists of the character of equilibrium paths in the
vicinity of critical points we turn to numerical calculations of entire equilibrium paths.
Table 2 lists the chosen parameters for the pair-potentials introduced in Section 2.2.
The a–a and b–b interactions (like bonds) are chosen to give reasonable elastic moduli
and thermal expansion coeIcients of pure intermetallics (we chose Ni and Ti) near
room temperature. The parameters for the pair-potential of the a–b (unlike) bond are
then chosen so that the crystal is stable in the CsCl crystal structure at and above the
reference temperature of 300 K. The radius associated with the isolated unlike-pair bond
is assumed to be the average of the other two bond radii, i.e., r̂ab(�)=[r̂aa(�)+r̂bb(�)]=2.
The exponents in the like bonds are chosen to be temperature independent (�� = 0),
yet the exponent of the unlike bond is chosen to decrease linearly with decreasing
temperature (�� ¿ 0). A pictorial representation of these potentials for the three di2erent
type bonds at two di2erent temperatures is given in Fig. 6.

4.1. Solution procedure

As indicated previously the crystal lattice is assumed to follow a uniform deformation
U, which is described by six independent components in general. Equivalently, the
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Table 2
Pair-potential parameters used in numerical calculation

Parameter a–a bond b–b bond a–b bond

r0 1 1.16 1.08
�m 1718 1943 1573
A0 1 1.124 0.425
m0 4 7 5.5
�� 0 0 3

00

2
a-a

1
r/ro

250K

21
r/r

b-b

a-b

300K

o

φ φ

a

b

Fig. 6. E2ect of temperature on the three pair-potentials.

deformation can be parameterized by the six lattice parameters, side lengths (a; b,
and c) and internal angles (�; %, and &). Temperature plays the role of a loading
parameter. For each equilibrium path of interest the applicable degrees of freedom are
1rst identi1ed to characterize the branch uniquely, namely

Ucubic =




U11 0 0

0 U11 0

0 0 U11


 ; (4.1a)

Urhombo =




U11 U12 U12

U12 U11 U12

U12 U12 U11


 ; (4.1b)

Uortho =




U11 U12 0

U12 U11 0

0 0 U33


 ; (4.1c)
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Umono =




U11 U12 U13

U12 U11 U13

U13 U13 U33


 : (4.1d)

The corresponding subset of the nonlinear equations (2.3) is then solved incrementally
using Newton–Raphson iteration with path length control Ss.

cubic Ss2 = (S�=� ∗)2 + SU 2
11; (4.2a)

rhombohedral Ss2 = (S�=� ∗)2 + SU 2
11 + SU 2

12; (4.2b)

orthorhombic Ss2 = (S�=� ∗)2 + SU 2
11 + SU 2

12 + SU 2
33; (4.2c)

monoclinic Ss2 = (S�=� ∗)2 + SU 2
11 + SU 2

12 + SU 2
33 + SU 2

13: (4.2d)

To improve the numerical conditioning of the algorithm a scaling factor, � ∗, is in-
troduced to ensure variations of the same order in temperature and deformation for a
given Ss. This scheme allows limit loads to be easily traversed in the calculation.
The energy density of a representative volume element is summed explicitly ac-

cording to Eq. (2.6) over all interacting bonds within a sphere of inPuence. The cal-
culation is, therefore, long-range at the nano-scale. Practically, an Eulerian inPuence
sphere of seven lattice units is suIcient to achieve converged results for our chosen
pair-potentials. 8 The stability of equilibrium solutions can be evaluated by monitoring
the number of negative eigenvalues of 92W=9U9U through the use of a cyclic Jacobi
method (see Patel, 1994).

4.2. Discussion of numerical results

Fig. 7 presents the calculated equilibrium paths as a plot of one internal lattice
angle, & (where cos & = U1kUk2), versus temperature, �. The principal branch of the
CsCl cubic crystal (red line) is shown with a constant value of &=90◦. At the reference
temperature of 300 K the CsCl crystal is stable (indicated by the solid line), but be-
comes unstable (indicated by the dotted line) below 263 K. The critical point at 263 K
is a triple bifurcation of Case III-type (see Section 3.3) that includes four intersecting
rhombohedral paths and three intersecting orthorhombic paths. Only one of each are
shown. Consistent with the previous asymptotic analysis the rhombohedral path (green
line) is a transcritical (asymmetric) path that is initially unstable. The orthorhombic
branch (yellow line) is a super-critical (symmetric) path that, in this case, is also ini-
tially unstable. As the temperature decreases below the critical point the rhombohedral
path continues with an increasing & that eventually levels o2 near & = 109◦, but it
remains unstable.

8 One must beware of the temptation to attach the sphere of inPuence to a given set of atoms (Lagrangian
sphere). Relatively large 1nite deformation may convect it into a distorted ellipsoid that introduces an arti1cial
bias into the calculation. This can result in an aphysical imperfection that masks underlying bifurcations.
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Fig. 7. Calculated equilibrium paths showing unit cell angle as a function of temperature.

As the temperature increases above the critical point the rhombohedral path contin-
ues with a decreasing & that steepens as it crosses 60◦. Each segment of the symmetric
orthorhombic path emanating from the critical point on the CsCl branch undergoes a
shallow limit load near �=263 K and then approaches &=60◦ and 120◦ for low temper-
atures. Both segments remain unstable, however, for the entire branch. Interestingly, a
secondary (single) bifurcation point with an intersecting monoclinic branch (light blue
line) occurs near � = 251 K, but it is also unstable.
As can be seen in Fig. 7 another equilibrium path exists at a constant & = 60◦

(blue line). This seemingly large distortion of the reference con1guration actually rep-
resents another cubic crystal of the NaCl-type. Whereas the CsCl (or B2) crystal is two
inter-penetrating simple cubic mono-atomic crystals, the NaCl (or B1) crystal is two
inter-penetrating face centered cubic (FCC) mono-atomic crystals. The NaCl crystal is
stable at low temperatures, but becomes unstable at temperatures above a critical tem-
perature of �= 278 K. This critical point is also of the Case III-type with intersecting
rhombohedral and orthorhombic branches. The rhombohedral path is a continuation of
the path that intersects the CsCl primary branch, which eventually becomes stable for
high temperatures. Notice also the isolated (detached) unstable orthorhombic paths that
exist for temperatures above � = 281 K.
Since the behavior is relatively dense near the NaCl critical point, Fig. 8 shows

an expanded view in this vicinity. The rhombohedral path is again a transcritical bi-
furcation and the orthorhombic path is a super-critical bifurcation of the NaCl cubic
branch. The rhombohedral path undergoes two limit loads with decreasing &, and be-
comes stable after the second limit load. The orthorhombic path is everywhere unstable.
Notice also that the orthorhombic and rhombohedral paths are intersected by an unsta-
ble monoclinic path.
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Fig. 9 shows the dependence of the CsCl unit cell side-length, a (where a =
(U1iUi1)1=2), with temperature for the equilibrium paths. It has been normalized to
a value of unity at the reference temperature of 300 K. Although the side-length,

√
2a,

for the NaCl crystal remains larger than that of the CsCl crystal for all temperature, the
NaCl crystal actually has a more dense packing since it has twice as many atoms per
unit cell. The stable rhombohedral segment has a dramatically increasing side-length
with increasing temperature eventually leveling o2 near a value of a= 1:53.
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Fig. 10. Illustration of a reconstructive mode of a periodic lattice.

The existence of more than one cubic con1guration separated by a rather large
rhombohedral deformation is an interesting feature that merits discussion. This is a
consequence of the periodic nature of the crystal and the fact that particular 1nite
deformations exist which recover the cubic point symmetry of the crystal. As an illus-
tration Fig. 10 depicts a 2-dimensional square lattice that is subjected to a particular
symmetric shear deformation S that produces another square lattice (of in1nite ex-
tent). The rigid body rotation Rs brings the new cubic axes (heavy gray axes) in line
with the original ones (dotted axes). More possibilities exist in three dimensions. The
deformation gradient F to the current con1guration relative to the original reference
con1guration (dotted axes) can be related to the deformation gradient F∗ to the current
con1guration from the new reference con1guration (heavy gray axes) by

F= F∗ · Rs · S: (4.3)

Since the original reference con1guration satis1es the symmetry condition (M is in the
octahedral point group)

W (F) =W (F ·M); (4.4)

we seek particular deformations S such that the same symmetry is satis1ed relative to
the new reference con1guration

W ∗(F∗) =W ∗(F∗ ·M); (4.5)

where the energy of the crystal relative to the new reference con1guration is de1ned
as

W ∗(F∗) ≡ W (F∗ · Rs · S): (4.6)

We call S the cubic reconstructive mode, since it is a rearrangement of rigid spheres
into an equivalent point symmetry group. This is a special case of a group–nonsubgroup,
or reconstructive transformation (see TolAedano and Dmitriev, 1996; Hatch et al., 2001),
in which the two kinematically disjoint crystals (both cubic, in this case) are indirectly
related by a common symmetry subgroup (rhombohedral). The cubic reconstructive
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mode that takes the CsCl cubic crystal to the NaCl crystal has

S=
1
4



4 1 1

1 4 1

1 1 4


 ; Rs =

1
3



−1 2 2

2 −1 2

2 2 −1


 : (4.7)

Similar CsCl–NaCl transitions to that suggested by Fig. 7 have been observed in several
compounds including CsCl (near 460◦C), and other alkali halides (see Buerger, 1951;
TolAedano and Dmitriev, 1996).
The stable rhombohedral crystal that occurs above � = 278 K approaches another

cubic crystal asymptotically as the temperature becomes large. This asymptotic crystal
is another application of the above cubic reconstructive mode from the NaCl crystal.
The rhombohedral crystal, however, never reaches this cubic crystal because of the
ordering of the two atom species (alternating close packed planes of ‘a’ atoms and
then ‘b’ atoms). This unusual ordering of atoms seems improbable, so we expect that
it will not occur in reality.
Finally, the energy densities of the three stable phases, CsCl, NaCl, and rhombohedral

crystals, are examined as a function of temperature as shown in Fig. 11. The lowest
energy level is an indication of absolute stability at a given temperature. At high
temperature the CsCl crystal has the lowest energy density, but at low temperature
the NaCl crystal has the lowest energy density. The rhombohedral crystal is stable at
high temperatures, but its energy level remains above that of the stable CsCl crystal.
Consequently, the rhombohedral crystal is at best metastable.
From Fig. 11 one can imagine temperature-induced phase transitions between the

CsCl and NaCl crystals. Starting at a high temperature (say our reference temperature
of 300 K) the CsCl crystal is stable and has the lowest energy level. As the tem-
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perature is decreased the energy level crosses that of the NaCl crystal at � = 273 K.
Between this temperature and �= 263 K the CsCl crystal is metastable. At �= 263 K
it looses stability and a transition to NaCl would occur as the temperature is decreased
further. During this transition there is a jump in the energy level downward. Now
consider starting at a low temperature in the NaCl phase and increase the temperature.
The NaCl phase is absolutely stable until � = 273 K where its energy level crosses
that of the CsCl branch. The NaCl phase is then metastable until it looses stability at
�=278 K, where a transition to CsCl occurs as the temperature is raised further. Dur-
ing such a temperature cycle, dynamic jumps in energy level occur wherever a phase
looses stability. The overlap of stable phases leads to hysteresis in the transitions which
is suggestive of typical martensitic phase transitions (See the austenite and martensite
peaks, ignoring the R-phase peak, in Fig. 1). However, it should be emphasized that
this CsCl–NaCl transformation is a reconstructive transformation due to the large de-
formations separating the phases and the group–nonsubgroup relationship between the
symmetry groups of the two phases.
The results of the asymptotic analysis presented in Section 3 determine the tangents

and curvatures of paths emerging from a bifurcation point and thus provide a nontrivial
veri1cation of the numerical calculations. Eliminating " from the expansions (3.16)
results in � as a function of U12

�(U12) = �c +
9�
9U12

∣∣∣∣
c
U12 +

1
2

92�
9(U12)2

∣∣∣∣
c
(U12)2 + O((U12)3): (4.8)

For the rhombohedral and orthorhombic paths emerging from the CsCl cubic path in
Fig. 7 we 1nd

9�
9U12

∣∣∣∣
RH1

c
=−E=E�; (4.9a)

9�
9U12

∣∣∣∣
OR3

c
= 0;

92�
9(U12)2

∣∣∣∣
OR3

c
=− Ê

3E�
: (4.9b)

The values E; E�, and Ê are calculated (based on Eqs. (3.29) and (3.36)). The expan-
sion (4.8) is plotted against the numerically determined equilibrium path for both the
rhombohedral (RH1) and orthorhombic (OR3) phases (see Fig. 12). The expansions
(3.16) agree well with the numerical results for the range |U12|¡ 0:05.
A parameter study was also conducted to determine the sensitivity of the model.

It was found that changes of up to 40% of any one of the parameters had only a
quantitative e2ect on the results, i.e., the qualitative character of the results remained
essentially unchanged. The most inPuential parameter was ��, which determines �c.

The results obtained so far are encouraging in that they seem to con1rm that marten-
sitic transformations are the results of instability phenomena at the nano-scale. In our
case, however, the transitions occur between two cubic crystals, which is not the case
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in shape memory alloys. The lower symmetry crystals, such as orthorhombic and mon-
oclinic, do appear in our calculations, but they remain unstable in our chosen tempera-
ture window. More work remains to be done. We suspect that the uniform deformation
assumption is rather restrictive, and that relaxing internal degrees of freedom is neces-
sary to capture the lower symmetry stable crystals that are actually observed in shape
memory alloys. Relaxing the uniform deformation assumption would also admit the
possibility of twinning phenomena and would be interesting to study in this context.
The use of more sophisticated atomic potentials than simple pair-potentials would likely
improve the realism of the calculations. Martensitic transformations are strongly a2ected
by the application of an external stress, which we have so far ignored. Nevertheless,
now that the framework exists, these missing ingredients can be added to improve the
modeling of martensitic transformations at the atomic scale.

5. Summary and conclusions

An explicit energy density W (F; �) is constructed for a bi-atomic crystal using
pseudo-static, temperature-dependent atomic pair-potentials to investigate martensitic
transformations as instability phenomena at the nano-scale. Equilibrium paths are cal-
culated numerically for a uniformly deforming bi-atomic crystal of in1nite extent under
zero applied stress. Primary branches of crystals with cubic symmetry are identi1ed, as
well as intersecting branches of crystals with rhombohedral, orthorhombic, and mono-
clinic symmetries. Bifurcation points with multiple modes appear and asymptotic tech-
niques are used to uncover the character and initial stability of bifurcated branches.
The asymptotic analysis helps to guide the numerical results and gives results that, in
some cases (initially unstable tetragonal and rhombohedral bifurcated paths), are inde-
pendent of the potential model used, only depending on the symmetry of the crystal
on the primary branch. This analysis determines which crystal structures emerge from
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any particular critical point and characterizes the initial stability of these paths. These
results cannot be obtained by symmetry considerations alone.
In the numerical results the stability of each branch is evaluated, showing that por-

tions of three branches are stable: two cubic phases (CsCl and NaCl crystal structures)
and one rhombohedral phase. The rhombohedral phase may not be realistic due to its
improbable ordering for the two atomic species, and the stable portion of the equilib-
rium path is at best metastable relative to the stable CsCl path. The CsCl crystal (also
the crystal structure of NiTi austenite) is stable at high temperature, while the NaCl
crystal is stable at low temperature. The two stable CsCl and NaCl segments overlap
for intermediate temperatures, suggesting the existence of a temperature-induced, hys-
teretic reconstructive martensitic transformation. Each cubic branch has a triple critical
point with intersecting rhombohedral and orthorhombic paths. Using 1nite deformation
kinematics the two cubic paths are shown to be connected by an unstable rhombohedral
path.
While the current results are interesting and seem promising, it must be noted that the

current model does not predict any temperature-induced proper martensitic transforma-
tions. The equilibrium paths with low symmetry, such as orthorhombic and monoclinic
(which are observed in SMA martensites), are found to be unstable for all temperatures
within our temperature window. Further improvements are necessary before a realistic
model can be developed for martensitic transformations in SMAs at the atomic scale.
Speci1cally, the kinematic assumption of uniform deformation should be relaxed to
allow internal atomic shuCes, as is known to occur in SMA crystals; more sophisti-
cated atomic potentials, such as multi-body potentials or the modi1ed embedded atom
method, could be used; and the e2ect of applied stress should be investigated, since
martensitic transformations in SMAs are known to be sensitive to both temperature and
stress. The framework now exists for these improvements to be made.
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Appendix A. Determination of EIJKL

Determination of the coeIcients in Eq. (3.36) requires the use of the fourth order

terms (not shown) in the expansion (3.6) and the values
(IJ )
V de1ned by Eqs. (3.19a)

and (3.19b). The derivation of Eqs. (3.36) and (3.37) is detailed as follows.

From the de1nition of
(IJ )
V in Eq. (3.19), using the results of Eq. (3.6) and notation

introduced in Eq. (3.7), and making use of the eigenmodes in Eq. (3.14) one obtains a
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relatively straightforward system to determine
(IJ )
V . More speci1cally,

(IJ )
V = 0 for I �= J

due to the equilibrium condition (3.19a). With this information and the orthogonality
condition (3.19b), Eq. (3.19a) may be reformulated (where no summations are implied)
as 
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 ; II = ii �= jj �= kk �= ii: (A.1)

Solving this system of equations one obtains,

(II)
Vii ≡ (=−4
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; (A.2a)

(II)
Vjj =

(II)
Vkk ≡ (̂=−4
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2
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Finally, the results of Eqs. (A.2) may be substituted into Eq. (3.21b) and a lengthy
calculation involving the fourth order term in the expansion (3.6) results in Eq. (3.36).
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