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Asymptotic Stability Analysis for
Sheet Metal Forming—Part II:
Application
The general asymptotic method proposed in Part I is applied to the investigation o
puckering instability in the hemispherical cup test. Both a membrane and a shell s
state for the principal axisymmetric solution have been considered. Due to the poss
of strong deviations from proportional loading in some cases, a corner theory of plas
is also employed, in addition to the standard J2 deformation theory which is often used
plastic buckling calculations. Results are compared to a previous experimental inves
tion for brass specimens.@S0021-8936~00!00904-1#
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1 Introduction and Motivation

As an application of the general methodology of Part I,
study the puckering instability of the hemispherical cup test. T
reasons for the choice of this problem are threefold:~a! relative
analytical simplicity,~b! easy calculation of membrane and sh
prebifurcation solutions, allowing asymptotic method to be a
plied to two different prestressed states, and~c! it is an interesting
problem with reliable experimental data and a clear asymme
bifurcation away from the axisymmetric principal solution.

Although our goal is not an exhaustive, in-depth study of pu
ering per se, a few comments are in order concerning the he
spherical cup test. In addition to its practical interest as a ben
mark test for the appearance of wrinkles around corners in s
metal forming ~see Devons@1#!, the problem possesses a ve
interesting theoretical aspect~see Triantafyllidis@2#!: unlike most
plastic buckling problems that are studied, which have a prop
tional loading path~beams, plates, cylinders!, the hemispherical
cup test has large deviations from proportional loading. This f
ture has implications concerning the constitutive model tha
used. The goal here is to show the validity of the asympto
methodology presented in Part I and to compare the results fo
using a membrane theory prestress and a shell theory prestre
addition we investigate, in a systematic fashion, the influence
the constitutive theory and the friction boundary conditions.

The presentation of the work begins with the formulation of t
problem in Section 2. The kinematics for the axisymmetric pr
cipal solution are given first, followed by the stability function
for the hemispherical cup test as deduced from the general th
of Part I. Finally, a brief discussion of numerical consideratio
concludes the problem formulation. In Section 3 numerical res
based on the above derived stability functional are compare
the experimental data of Donoghue et al.@3# for the hemispherical
cup test performed on circular brass disks. The effect of sh
thickness on the loading history is examined, and as a result
effect of the choice of the constitutive theory on the critical heig
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is also considered. Finally, the influence of the boundary con
tions, arising from the friction between the tooling surfaces a
the sheet is also investigated.

2 Problem Formulation
The application of the general methodology of Part I to t

hemispherical cup puckering test requires the solution of the
symmetric sheet punching problem. For this solution, two ca
are considered: a membrane theory and a shell theory prest
The membrane theory is an approximate solution, while the s
theory ~see Triantafyllidis and Samanta@4#! is a consistent finite
rotation and finite strain shell theory with a more accurate p
stress.

Following the presentation of the kinematics and of the bif
cation functional for the problem at hand, there is a brief disc
sion of numerical considerations for the finite element discreti
tion of the problem and the calculation of the critical pun
height.

As mentioned in the Introduction, the choice of constituti
response is very important for plastic buckling problems. Due
nonproportional loading of the principal solution, the present s
bility calculations use the corner theory of Christoffersen a
Hutchinson@5#. This theory gives the flexibility of investigating a
range of constitutive theories from deformation theory to flo
theory.

2.1 Kinematics. The geometry of the hemispherical cup te
is shown in Fig. 1 while the kinematics for the undeformed a
deformed configurations are shown in Fig. 2. For an axisymme
sheet the convected coordinatesu i are used, whereu15s,
u25u, andu35z. The meridian for the surface of revolution tha
describes the midsurface of the sheet in the undeformed con
ration is depicted by the lineC in Fig. 2. A material point on the
midsurface is given by its position vectorR, and an arbitrary
material point, at distancez from the midsurface, is given byP

P~s,u,z!5R~s,u!1zN~s,u!, 2
h

2
<z<

h

2
, (2.1)

where N is the unit normal to the midsurface atR. During the
deformation of the initially flat sheet, a point on the midsurfa
initially at R, undergoes a displacementu and its new position on
the deformed midsurface, depicted by curveC̄ in Fig. 2, is given
by r5R1u. The position vector for an arbitrary material point,
distancez̄ from the midsurface, is given byp,
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p~s,u,z!5r ~s,u!1 z̄n~s,u!, 2
h̄~s!

2
< z̄<

h̄~s!

2
, (2.2)

wheren is the unit normal to the current midsurface atr andh̄(s)
is the current sheet thickness. The displacement,u, has compo-
nentsv(s) andw(s) along the radial and axial directions, respe
tively, i.e.,

u~s,u!5v~s!er~u!1w~s!e3; er~u!5cosue11sinue2 .
(2.3)

The basis vectors for the midsurface in the current configurat
ai , expressed in terms of the local orthonormal basis$t,n,b%, are

a15
]r

]s
5lst, a25

]r

]u
5rb, a35n, (2.4)

wheret is the unit tangent to the curveC̄, ls is the radial stretch
ratio andr is the current distance from the axis of symmet
which are found with the help of~2.1!–~2.4! to be

ls5
ds̃

ds
5F S 11

dv
dsD

2

1S dw

dsD 2G1/2

, r5s1v~s!. (2.5)

From differential geometry~e.g., Goetz@6#!, the nonzero compo-
nents of the curvature tensor for the axisymmetric midsurface

Fig. 1 Schematic drawing for hemispherical cup test

Fig. 2 Kinematics for axisymmetric shell and membrane theo-
ries. C is the meridian for the sheet in the undeformed „refer-
ence … configuration, and C̄ is the meridian for the sheet in the
deformed „current … configuration.
692 Õ Vol. 67, DECEMBER 2000
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b1
152ks5

1

ls
2 S sinf

d2v
ds2 1cosf

d2w

ds2 D , b2
252ku52

sinf

r
(2.6)

where cosf5N•n. The nonzero Christoffel symbols for the cu
rent midsurface are found from Eq.~2.5! in Part I

t11
1 5

1

ls

dls

ds
, t12

2 5t21
2 5

1

r

dr

ds
, t22

1 52
r

ls
2

dr

ds
. (2.7)

With these kinematic quantities, the stability functional presen
in Part I can be evaluated for the axisymmetric hemispherical
test.

2.2 Stability Functional. Using the results from Part I, and
representing tensor quantities with their physical components,1 the
stability functional for an axisymmetric shell is according to E
~3.24! in Part I

F~ v̄
0

^ i & ;H !5
1

2 EA
H E

2h/2

h/2

@P̄ ^ ibkd&v̂ ^k,d&v̂ ^ i ,b&m#dz

1@K̂ ^ ik&v̂ ^k&v̂ ^ i &#u352h/2J dA, (2.8)

wherev̂ ^ i & is deduced from Eq.~3.25! of Part I under the assump

tion ^P̄
1

ibkd&'0,

v̂ ^ i &5 v̄
0

^ i &2u3~L ^m3i3&!21L ^m3kd&F ] v̄
0

^k&

]ud
2tkd

r v̄
0

^r &G , (2.9)

and the incremental moduli, appearing in~2.9! ~and in the expres-
sion for the plane stress moduliP!, are given in Triantafyllidis@2#.

For simplicity, we introduce the notationv̄
0

^1&[ū, v̄
0

^2&[ v̄ and

v̄
0

^3&[w̄. Using the kinematics from Section 2.1 in conjunctio
with ~2.9!, the plane stress assumption and the axisymmetry of
stress state, the strain rate termsv̂ ^ i , j & in ~2.8! are found to be

v̂ ^1,1&5
1

ls~11ksz̄! H ]ū

]s
2lsksw̄2 z̄S ]a

]s D J (2.10)

v̂ ^1,2&5
1

r~11ku z̄! H ]ū

]u
2 v̄ cosf2 z̄S ]a

]u
2b cosf D J (2.11)

v̂ ^2,1&5
1

ls~11ksz̄! H ] v̄
]s

2 z̄S ]b

]s D J (2.12)

v̂ ^2,2&5
1

r~11ku z̄! H ] v̄
]u

1ū cosf1w̄ sinf2 z̄S ]b

]u
1a cosf D J

(2.13)

v̂ ^3,1&5a; v̂ ^3,2&5b (2.14)

where for simplicity, the following auxiliary quantitiesa and b
have been introduced:

a[
1

ls

]w̄

]s
2ksū, b[

1

r

]w̄

]u
2kuv̄. (2.15)

Finally, it is noted that the stability functional in~2.8! can be
used with a membrane or shell prestressed state. A memb
prestress state, one with no bending stiffness, gives a stress
that is constant through the thickness of the sheet, resultin
plane stress incremental moduli that depend solely on the mid
face coordinates. On the other hand, a shell prestress state give

1The physical components of a tensor are denoted with the subscripts or s
scripts of the tensor enclosed in brackets^•&.
Transactions of the ASME
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varying stress state through the thickness of the sheet, in w
case the plane stress incremental moduli are integrated thr
the sheet thickness.

2.3 Numerical Considerations. The methodology and al
gorithm for calculating the axisymmetric principal solutions
presented in detail in Triantafyllidis@2# for the membrane mode
and Triantafyllidis and Samanta@4# for the shell model, respec
tively. The same references also contain detailed derivation
the incremental moduli for the deformation and corner theory c
stitutive models employed here. The determination of the posi
definiteness of the stability functional is done by employing
same finite element discretization used for the principal solut
The axisymmetry of the principal solution, suggests a Fourier
composition for the eigenmode

ū~s,u!5(
n50

`

@un* ~s!cos~nu!1un~s!sin~nu!#, (2.16)

v̄~s,u!5(
n50

`

@vn~s!cos~nu!1vn* ~s!sin~nu!#, (2.17)

w̄~s,u!5(
n50

`

@wn* ~s!cos~nu!1wn~s!sin~nu!#, (2.18)

where n>1 is the eigenmode’s wave number. Using~2.16!–
~2.18! and exploiting the orthogonality of the trigonometric fun
tions, the stability functional can be written as

F~ ū,v̄,w̄;H !5(
n51

`

@Fn~un~s!,vn~s!,wn~s!!

1Fn~un* ~s!,vn* ~s!,wn* ~s!!#, (2.19)

whereFn are quadratic functionals of the threes-dependent parts
of the eigenmode ~un(s),vn(s),wn(s), or equivalently of
un* (s),vn* (s),wn* (s)! and the wave numbern. By inspection of
~2.19!, it is seen that loss of positive definiteness of someFn ,
results in loss of positive definiteness ofF. Hence the stability
analysis of the two-dimensional puckering problem is reduced
the determination of positive definiteness of a one-dimensio
stability functional over a given range of wave numbersn, thus
greatly simplifying the analysis.

For assembling the stability functionalFn , we use the same
mesh as for the principal axisymmetric solution but with a line
interpolation function forū,v̄ and a Hermitian cubic interpolation
for w̄. A Cholesky decomposition of the resulting symmetric sti
ness matrixKn is used, i.e.,Kn5LnDnLn

T . For a given punch
height, the stability of the structure is examined by looking at
sign of the minimum entry in diagonal matrixDn over a large
range of integersn ~typically from 1 to 25!. The critical heightHc
is the lowest punch displacement at which this entry becom
negative for some integern.

3 Results
The goal of this section is to compare the predictions of

theory derived in Section 2 with experimental results and also
examine the accuracy of the membrane prestress simplificatio
opposed to the shell theory prestress, for the prediction of
Journal of Applied Mechanics
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critical punch height. The experimental results used in our co
parisons were performed by Donoghue et al.@3# where circular
brass blanks of four different thicknesses,h, of 0.508 mm, 0.635
mm, 0.813 mm, and 1.016 mm, were tested. In addition to vary
the sheet thickness, the tooling size and draw ratio (RL /RA) were
also varied. Results will be presented here for two tooling siz
S1 and S2 , ~shown in Table 1! and for two draw ratios
~RL /RA51.7 andRL /RA51.5!.

Experimental data for the brass uniaxial stress-strain cur
closely follow a bilinear hardening model. The initial elast
modulus isE5110 GPa. For the three thinest sheets the yi
stress issy5195 MPa and the tangent modulus isEt5812 MPa,
while for the thickest sheet,h51.016 mm, the yield stress i
sy5120 MPa, and the tangent modulus isEt5852 MPa. For the
brass experiments there was no measured plastic anisotropy i
sheets.

Considerable effort was devoted to removing the effects of f
tion in the tests reported by Donoghue et al.@3# by using teflon
sheets between the blank and the tooling, and the friction co
cient between the tooling and the sheet, while not removed
tirely, was reduced considerably. The valuem50.04 used in the
simulations reported in Donoghue et al.@3#, has also been used fo
all numerical calculations in this work.

To constrain wrinkling in the flange, a blank holder forc
~BHF! was applied to the sheet between the blank holder and
die block. Table 2 shows the blank holder forces for all of t
experimental cases examined here.

For all comparisons between the experimental and theore
results,J2 deformation theory of plasticity is used, which gives
lower bound on the critical punch height. The influence of t
constitutive response of the material is examined later. Note
all subsequent comparisons involve the critical height, which
very sensitive to the constitutive description employed. The cr
cal wave number, being determined mainly by geometry, is
ways in good agreement with experimental results, as discu
by Donoghue et al.@3# and hence is of no further concern.

For the first set of comparisons, the largest tooling (S1) is used
and the draw ratio isRL /RA51.7. The results for this case ar
shown in Table 3. For thin sheets the theoretical predictions us
both the shell and membrane theories, show good agreement
the experimental results. The percent error for the 0.508 mm s
is 2.2 percent using the shell theory and 13.7 percent with
membrane theory. As the sheet thickness increases the theor
predictions using the deformation theory grow progressiv
worse. For the 1.016-mm sheet, the shell theory result under
dicts the critical punch height by 36.5 percent, while for the me
brane theory calculation the error is 48.4 percent. The main rea
for this discrepancy lies in the large deviations from proportio
loading that occur. For the thickest sheets the deviations fr

Table 1 Tooling sizes used in Donoghue et al. †3‡

S1 S2

RP 50.00 mm 33.33 mm
RA 58.33 mm 38.87 mm
RT 10.71 mm 6.94 mm
Table 2 Blankholder force „BHF… for cases examined in experimental study by Donoghue et al. †3‡

Tooling RL ÕRA Thickness „mm… BHF „kN… Tooling RL ÕRA Thickness „mm… BHF „kN…

S1 1.7 0.508 34.637 S1 1.5 0.635 33.373
S1 1.7 0.635 33.809 S1 1.5 0.813 33.818
S1 1.7 0.813 41.227 S1 1.5 1.016 41.320
S1 1.7 1.016 41.316 S2 1.7 0.508 49.570
S1 1.5 0.508 33.168 S2 1.7 0.635 49.837
DECEMBER 2000, Vol. 67 Õ 693
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Table 4 Experimental and theoretical results using deformation theory with RL ÕRAÄ1.5 and
the S1 tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

Hc ~experimental! 13.46 mm 18.03 mm 24.38 mm 41.91 mm
Hc ~shell theory! 13.72 mm 15.81 mm 19.02 mm 24.18 mm
Hc ~membrane theory! 13.37 mm 15.37 mm 18.06 mm 22.15 mm

Table 3 Experimental and theoretical results using deformation theory with RL ÕRAÄ1.7 and
the S1 tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

Hc ~experimental! 22.86 mm 29.46 mm 36.38 mm 54.36 mm
Hc ~shell theory! 22.35 mm 25.15 mm 30.81 mm 34.54 mm
Hc ~membrane theory! 19.72 mm 21.15 mm 24.64 mm 28.05 mm
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proportional loading are larger, especially for material poi
away from the midsurface of the sheet. As a result the defor
tion theory of plasticity will not be as accurate for the thick
sheets. This point will be addressed subsequently.

Next attention is turned to experiments run with the sa
tooling as before (S1), but with a smaller draw ratio of
RL /RA51.5. The experimental and theoretical results for this c
are shown in Table 4. It is seen, as in the previous case, tha
predictions for thin sheets, usingJ2 deformation theory, are very
good, while those for thick sheets are not as accurate. For
0.508-mm sheet the percent error, using both the shell and m
brane theories, is under 2.0 percent. But as the sheet thick
increases, once again the error grows quite large. For
1.016-mm sheet the percent error is 42.3 percent for the s
theory and 47.1 percent for the membrane theory.

Results are also examined for tests run with a smaller tool
S2 , which gives higher curvatures, and a draw ratio
RL /RA51.7. These results are shown in Table 5. Here it is se
as in the previous cases, that the shell theory performs better
the membrane theory when estimating the critical punch hei
The larger curvatures in this problem, especially near the
throat, necessitate a shell theory.~Experiments using the
0.813-mm and 1.016-mm sheets were not performed by Do
ghue et al.@3#.!

The role of the constitutive theory in plastic buckling problem
is extremely important and is often the major reason for the
crepancy between theoretical buckling calculations and exp
mental observations~see review article by Hutchinson@7#!. For
most commonly studied problems, the prebuckling solution
proportional loading, and deformation theory of plasticity w
predict the instability. However, in the problem examined he
large deviations from proportional loading occur, especially
the thickest sheets. Deformation theory is inadequate when l
deviations from proportional loading occur, and as a result, i
not expected to accurately predict instabilities for thicker shee

To examine the effect of sheet thickness on the deviation fr
proportional loading, we follow the stress histories for mater
points in the unsupported region of the cup, which lie initia
near the die throat. This choice is dictated by the fact that
stress distribution in the unsupported region, has the greates
fect on the stability calculations. Presented here are the s
histories for the thinest sheet, 0.508 mm, and the thickest sh

Table 5 Experimental and theoretical results using deforma-
tion theory with RL ÕRAÄ1.5 and the S2 tooling

Thickness 0.508 mm 0.635 mm

Hc ~experimental! 34.80 mm 38.86 mm
Hc ~shell theory! 30.18 mm 31.32 mm
Hc ~membrane theory! 21.09 mm 22.23 mm
DECEMBER 2000
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1.016 mm, using the largest tooling and a draw ratio
RL /RA51.7. The stress history for material points in th
0.508-mm sheet, at an initial radius of 48.12 mm are shown
Fig. 3. This point in the sheet has a location in the unsuppo
region of the sheet when the punch reachesHc and the resultant
hoop force at this point is compressive. The yield surface is p
ted in s11–s22 space. Material points on the top, middle, an
bottom surface load through the elastic range, reach the y
surface, and continue loading in the plastic range. For the mid
surface there is not a strong deviation from proportional load
after yield. The top and bottom surfaces, however, do show str
deviations from proportional loading after yielding has occurre
Notice, however, that the corresponding stresses are just out o
initial yield surface.

These results are compared to the stress histories for the th
est sheet,h51.016 mm, shown in Fig. 4. Again the stress hist
ries are plotted for a material point at an initial radius of 48.
mm. Here large deviations from proportional loading are se
throughout the sheet and the stresses are now deeply into
plastic range. The stresses in the sheet are redistributed
yielding in order to sustain equilibrium, and this stress redistrib
tion is greater if the sheet is thicker, resulting in larger deviatio
from proportional loading. Nearly proportional loading is nece
sary for the accuracy of a deformation theory, and as a result,
plasticity theory chosen to model the behavior of the thinn
sheets, i.e., deformation theory, is not necessarily valid for
thicker sheets. To improve on the deformation theory, a cor
theory is employed to predict buckling.

The effect of sheet thickness on the critical punch height

Fig. 3 Stress history for material points initially at a radius of
48.12 mm for the 0.508 mm sheet. Stress history is shown for
the bottom, middle, and top surfaces of the shell.
Transactions of the ASME
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various corner theories can be seen in Fig. 5. The coefficien
friction for all the cases shown is 0.04 and the BHF is 41.316 k
These are the same boundary conditions for the case of
1.016-mm sheet with theS1 tooling and the draw ratio of
RL /RA51.7. It is recalled that this case had the largest discr
ancy between the experimental and theoretical results. The
two curves,~a! and ~b!, show the results found using the defo
mation theory of plasticity with a membrane and shell theo
respectively. Here it is seen that the bending terms and thick
distribution of the stress, both ignored in the membrane formu
tion, have the effect of raising the critical punch height. Alteri
the response of the material by changing the corner character
can further increase the critical punch height. Curves~c!, ~d!, and
~e! show the effects of different corner theories with no forwa
loading cone,u050. As the unloading cone angle,uc , approaches

Fig. 4 Stress history for material points initially at a radius of
48.12 mm for the 1.016 mm sheet. Stress history is shown for
the bottom, middle and top surfaces of the shell.

Fig. 5 Effect of sheet thickness on the critical punch height
for a brass sheet with RL ÕRAÄ1.7, the S1 tooling, BHF
Ä41.316 kN a coefficient of friction mÄ0.04. The membrane
prestress underpredicts the shell theory results for the same
constitutive relations. Using a corner theory, and varying its
corner geometry so as to approach a flow theory, the critical
punch height increases. It is noted that the BHF used for all the
numerical calculations is the experimental value correspond-
ing to the thickest blank. Experimental results are marked by
„l….
Journal of Applied Mechanics
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p/2, the critical punch height increases. Flow theory is obtain
whenuc5p/2. This case is examined, but no puckering instabil
is found regardless of the sheet thickness.

Finally, the sensitivity of the results to the boundary conditio
are examined by varying the coefficient of friction between t
tooling surfaces and the sheet. The friction, combined with
BHF, supplies a restraining force on the sheet that prevents m
rial from flowing into the die. The amount of material that flow
into the die determines the compressive hoop stresses that c
puckering. Therefore, the coefficient of friction plays an importa
role in determining the critical punch height, as can be seen
Fig. 6. Once again the cases shown in Fig. 6 are variations of
case for the 1.016-mm sheet with theS1 tooling and the draw ratio
of RL /RA51.7. The blank holder force for all the cases is 41.3
kN and the coefficient of friction is varied from 0.00 to 0.16. Th
effect of the coefficient of friction is greater for the shell theori
~curves~b!–~e!! than for the membrane theory~curve~a!! as evi-
denced by the lower slope for the membrane theory curve.
effects for the different plasticity theories is the same for the sh
theories since they have similar slopes. Looking at the region n
the experimental results,m50.04, it is seen that a slight chang
say about 0.02, in the coefficient of friction can result in a chan
of up to 5 mm in the critical punch height. Therefore, it is dete
mined that the boundary conditions~the coefficient of friction and
BHF! have a very large effect on stability in the hemispheric
cup test.

4 Conclusions
The general method proposed in Part I is applied to the mo

ing of the hemispherical cup test. The goal is to check how
method performs for different sheet thicknesses and to investi
the influence of simpler~membrane! prestress states versus mo
accurate~shell! prestress states.

As expected, better agreement with experimental results is
tained for thinner sheets usingJ2 deformation theory of plasticity.
As the sheet thickness increases, so does the discrepancy be
the experimental results and the theoretical predictions. The m
reason for this discrepancy is the presence in the principal solu
of large deviations from proportional loading, which requir
more sophisticated constitutive models~corner theories! to accu-
rately predict the critical punch height.

Fig. 6 Effect of friction on the critical punch height for 1.016
mm brass sheet with RL ÕRAÄ1.7, the S1 tooling and a BHF
Ä41.316 kN. The trend in the results is the same as that seen in
Fig. 5, and it shows the great dependence of the results on the
friction boundary conditions, which are often difficult to mea-
sure. The experimental result for this case is shown by the
dashed line.
DECEMBER 2000, Vol. 67 Õ 695
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In the application at hand, the minimum eigenvalue of the s
bility functional goes through zero at the onset of bifurcatio
since a bifurcation type instability is guaranteed by the axisy
metry of the principal solution. For the general case of a nona
symmetric geometry, as for example for the punch test of non
cular blanks or blanks with some initial asymmetric imperfectio
recent calculations done by the authors show that the minim
eigenvalue will not change sign at criticality. Consequently
onset of instability is not clearly defined, although it must still
connected to the minimum eigenvalue of the stability functio
which measures the stiffness of the structure. Current work~un-
published! examines a nonaxisymmetric blank~a circular blank
with a small initial imperfection! and a square blank deformed b
a hemispherical punch and correlates the minimum eigenv
with the initial appearance of surface wrinkles.
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