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Mem. ASME puckering instability in the hemispherical cup test. Both a membrane and a shell stress
state for the principal axisymmetric solution have been considered. Due to the possibility
of strong deviations from proportional loading in some cases, a corner theory of plasticity

N. T”antafV"'d'S is also employed, in addition to the standargdkformation theory which is often used in
Department of Aerospace Engineering, plastic buckling calculations. Results are compared to a previous experimental investiga-
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Fellow ASME
1 Introduction and Motivation is also considered. Finally, the influence of the boundary condi-

L tions, arising from the friction between the tooling surfaces and
As an application of the general methodology of Part I, w e sheet is also investigated.

study the puckering instability of the hemispherical cup test. The

reasons for the choice of this problem are threef¢il:relative

analytical simplicity,(b) easy calculation of membrane and shelb Problem Formulation

prebifurcation solutions, allowing asymptotic method to be ap- o

plied to two different prestressed states, éndt is an interesting ' N€ application of the general methodology of Part | to the

problem with reliable experimental data and a clear asymmetﬁ@miSpherical cup puck_ering test requires t_he solu_tion of the axi-
bifurcation away from the axisymmetric principal solution symmetric sheet punching problem. For this solution, two cases
) re considered: a membrane theory and a shell theory prestress.

) T a
Although our goal is not an exhau.stlve, in-depth stydy of pUCl':I=he membrane theory is an approximate solution, while the shell
ering per se, a few comments are in order concerning the hemjaqry (see Triantafyliidis and Samanfa)) is a consistent finite
spherical cup test. In addition to its practical interest as a bengliation and finite strain shell theory with a more accurate pre-
mark test for the appearance of wrinkles around corners in shegess.
metal forming(see Devong1]), the problem possesses a very Following the presentation of the kinematics and of the bifur-
interesting theoretical aspetee Triantafyllidig2]): unlike most cation functional for the problem at hand, there is a brief discus-
plastic buckling problems that are studied, which have a propaion of numerical considerations for the finite element discretiza-
tional loading path(beams, plates, cylindersthe hemispherical tion of the problem and the calculation of the critical punch
cup test has large deviations from proportional loading. This fefeight. ) ) . ) o
ture has implications concerning the constitutive model that isAS mentioned in the Introduction, the choice of constitutive
used. The goal here is to show the validity of the asymptot[ESPONSe is very important for plastic buckling problems. Due to

methodology presented in Part | and to compare the results fOL{?ﬁ proportional loading of the principal solution, the present sta-

using a membrane theory prestress and a shell theory prestres calculations use the corner theory of Christoffersen and
9 . i yp . - yp H chinson[5]. This theory gives the flexibility of investigating a
addition we investigate, in a systematic fashion, the influence

. L " nge of constitutive theories from deformation theory to flow
the constitutive theory and the friction boundary conditions. theory.

The presentation of the work begins with the formulation of the ) ) ) )
problem in Section 2. The kinematics for the axisymmetric prin- 2.1 Kinematics. The geometry of the hemispherical cup test
cipal solution are given first, followed by the stability functionafS Shown in Fig. 1 while the kinematics for the undeformed and

for the hemispherical cup test as deduced from the general the§fformed configurations are s_hov(vgg In Fig. 2. For an axisymmetric
of Part I. Finally, a brief discussion of numerical consideration¥ et the convected coordinates are used, whereg =s,
concludes the problem formulation. In Section 3 numerical resulfs ~ ¢ and¢=z. The meridian for the surface of revolution that
based on the above derived stability functional are compared scribes the midsurface of the sheet in the undeformed configu-

) . . ration is depicted by the liné in Fig. 2. A material point on the
the experimental data of Donoghue et[8l].for the hemispherical midsurface is given by its position vect®, and an arbitrary

cup test performed on circular brass disks. The effect of shgfbiarial point, at distancefrom the midsurface, is given by
thickness on the loading history is examined, and as a result, the

effect of the choice of the constitutive theory on the critical height

P(s,0,2)=R(s,0)+2zN(s,0), fgszs h (2.1)
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bi= k= [sind T +coss T 2=k
= —ke=—7| sin cos ., bi=—k,=——

Sheet Die p
Ry —\ Block (2.6)
|
: A MR WS = where cosp=N-n. The nonzero Christoffel symbols for the cur-

rent midsurface are found from E@.5) in Part |

Blank
Holdar 1 L dh 2 _.o_1dp 1_ P dp 2.7)

tllz)\_s ds’ t12_t21_;£' 227 )TSZ&

With these kinematic quantities, the stability functional presented
T T T T T in Part | can be evaluated for the axisymmetric hemispherical cup
test.

i 2.2 Stability Functional. Using the results from Part |, and
representing tensor quantities with their physical comporiethis,
stability functional for an axisymmetric shell is according to Eq.
(3.29 in Part |

0 h/2 .
Flog )= 2 JA[ j—hlz[P<|Bk5>U<kv5>U<i,BW]dZ

R

Fig. 1 Schematic drawing for hemispherical cup test

o o KD 00D iy ] goe 2.
0(s.0,2)=1(s,0) +ZN(s, 6), —@s?s@, 2.2) FIK 00 lee- “’Z]dA’ (28)

wheren is the unit normal to the current midsurfaceraatndﬁ(s) wherel_u<i> 's deduced from Eq:3.25 of Part | under the assump-

is the current sheet thickness. The displacementhas compo- tjon (Pipks)~0,
nentsv (s) andw(s) along the radial and axial directions, respec-

. . 0
tively, i.e., ﬁv_<k> 0

0 )
ij(i):v(i)_ 03(L<m3l3))—1|_<m3k6> (705 _tk5v<r>

u(s,0)=uv(s)e(0)+w(s)e;; e(0)=cosbe, +sinde,. (29
2.3
. . . ( ) . and the incremental moduli, appearing(th9) (and in the expres-
The basis vectors for the midsurface in the current (:onflgurat|o§On for the plane stress mod@, are given in Triantafyllidi$2].
0 0

a , expressed in terms of the local orthonormal bésis, b}, are

o o For simplicity, we introduce the notation y=Uu, v»=v and
0

=7s "Nt @=—u=pb, ag=n, (2.4) v(5=Ww. Using the kinematics from Section 2.1 in conjunction

. Wlt?] (2.9), the plane stress assumption and the axisymmetry of the
wheret is the unit tangent to the cun@& A is the radial stretch stress state, the strain rate tering;, in (2.8) are found to be
ratio andp is the current distance from the axis of symmetry, 1 P e
which are found with the help aR.1)—(2.4) to be A~ haal = St %

U<1’1> )\S(l"l‘ksi) 95 )\sksW z 9 (210)

, p=stu(s). (2.5) 1 {(9U

S (1+ dv>2+(dW)2 1/2
ds ds . . [ da
v<1’2>7p(1+k9_2) v COS¢ 2(00 ,Bcos¢>)] (2.11)

=5
From differential geometrye.g., Goet46]), the nonzero compo- 96

d B

g—i( E) } (2.12)

=l

As

nents of the curvature tensor for the axisymmetric midsurface are 1
YeYTN(1+kD)
. 1 [au_

3 - e 9B
U<2'2>_m (7—0+u cos¢+wsm¢—i<a—0+a cos¢>)]

(2.13)

ﬁ<3,]>=a; lA)<3'2>=,8 (2.14)

where for simplicity, the following auxiliary quantities and g8
have been introduced:

1w T low e 215
=S U, B—;ﬁ ov- (2.15)
& " R v Finally, it is noted that the stability functional i2.8) can be

used with a membrane or shell prestressed state. A membrane
prestress state, one with no bending stiffness, gives a stress field
that is constant through the thickness of the sheet, resulting in
plane stress incremental moduli that depend solely on the midsur-

. P ]

Fig. 2 Kinematics for axisymmetric shell and membrane theo- face coordinats. On the other hand, a shell prestress state gives a
ries. C is the meridian for the sheet in the undeformed (refer-

ence) configuration, and C is the meridian for the sheet in the 1The physical components of a tensor are denoted with the subscripts or super-
deformed (current ) configuration. scripts of the tensor enclosed in brackéets
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varying stress state through the thickness of the sheet, in which Table 1 Tooling sizes used in Donoghue et al.  [3]
case the plane stress incremental moduli are integrated throagh

the sheet thickness. S S
2.3 Numerical Considerations. The methodology and al- E: gg:gg mm ggg? mm
gorithm for calculating the axisymmetric principal solutions is  R; 10.71 mm 6.94 mm

presented in detail in Triantafyllidig2] for the membrane model
and Triantafyllidis and Saman{#] for the shell model, respec-
tively. The same references also contain detailed derivations of
the incremental moduli for the deformation and corner theory con-
stitutive models employed here. The determination of the positive
definiteness of the stability functional is done by employing theritical punch height. The experimental results used in our com-
same finite element discretization used for the principal solutioparisons were performed by Donoghue et[&] where circular
The axisymmetry of the principal solution, suggests a Fourier dbrass blanks of four different thicknessésof 0.508 mm, 0.635
composition for the eigenmode mm, 0.813 mm, and 1.016 mm, were tested. In addition to varying
" the sheet thickness, the tooling size and draw raRio/R,) were
_ . . also varied. Results will be presented here for two tooling sizes,
u(s,&):go [un(s)codné)+uy(s)sin(nd)],  (2.16) S, and S,, (shown in Table 1 and for two draw ratios
* Experimental data for the brass uniaxial stress-strain curves
v(s, 0)22 [va(s)cogné) +vi(s)sin(nh)], (2.17) closely follow a bilinear hardening model. The initial elastic
n=0 modulus isE=110 GPa. For the three thinest sheets the yield
w stress iso, =195 MPa and the tangent moduluskis=812 MPa,
— _ * ; while for the thickest sheeth=1.016 mm, the yield stress is
w(s.9) Zo [wr (s)cosné) +wy(s)sin(nd)],  (2.18) oy=120 MPa, and the tangent modulusHs=852 MPa. For the

. . . brass experiments there was no measured plastic anisotropy in the
where n=1 is the eigenmode’s wave number. Usif2 16— sheets P P Py

(2.18 and exploiting the orthogonality of the trigonometric func- Considerable effort was devoted to removing the effects of fric-

tions, the stability functional can be written as tion in the tests reported by Donoghue et[&l]} by using teflon
* sheets between the blank and the tooling, and the friction coeffi-
]:(U,U_,W;H):E [Fr(un(s),vn(S),Wn(S)) cient between the tooling and the sheet, while not removed en-
n=1 tirely, was reduced considerably. The value-0.04 used in the
. . " simulations reported in Donoghue et [@], has also been used for
+ Fa(Un (8),07(5):Wq (5)], (2-19) a1l numerical calculations in this work.
where 7, are quadratic functionals of the threelependent parts  To constrain wrinkling in the flange, a blank holder force
of the eigenmode (u,(s),v,(S),Wn(S), or equivalently of (BHF)was applied to the sheet between the blank holder and the
u*(s),v¥(s),w*(s)) and the wave numben. By inspection of die block. Table 2 shows the blank holder forces for all of the

(2.19, it is seen that loss of positive definiteness of safje  €Xxperimental cases examined here. _ _
results in loss of positive definiteness & Hence the stability ~ FOr all comparisons between the experimental and theoretical
analysis of the two-dimensional puckering problem is reduced gSults,J, deformation theory of plasticity is used, which gives a
the determination of positive definiteness of a one-dimensiorl@ver bound on the critical punch height. The influence of the
stability functional over a given range of wave numbeyghus —Cconstitutive response of the material is examined later. Note that
greatly simplifying the analysis. all subsequent comparisons involve the critical height, which is
For assembling the stability functiona,,, we use the same Very sensitive to the constitutive _descrlptl_on employed. The_crm-
mesh as for the principal axisymmetric solution but with a lined@l wave number, being determined mainly by geometry, is al-
interpolation function foir,v_and a Hermitian cubic interpolation Ways in good agreement with experimental results, as discussed
for w. A Cholesky decomposition of the resulting symmetric stiffPy Donoghue et al.3] and hence is of no further concern.
ness matrixK,, is used, i.e.K,=L,D,LT. For a given punch For the first set of comparisons, the largest tooliBg) (is used

; o : : : d the draw ratio iR /Ry=1.7. The results for this case are
Qieg'ghé’f tthhisrtr?i?wlilr%gj ?riritr#f%ggng?;n;gemd %{,fro';'?grg; ths own in Table 3. For thin sheets the theoretical predictions using
n

both the shell and membrane theories, show good agreement with
ng experimental results. The percent error for the 0.508 mm sheet
IS 2.2 percent using the shell theory and 13.7 percent with the
membrane theory. As the sheet thickness increases the theoretical
predictions using the deformation theory grow progressively
3 Results worse. For the 1.016-mm sheet, the shell theory result underpre-
The goal of this section is to compare the predictions of thdicts the critical punch height by 36.5 percent, while for the mem-
theory derived in Section 2 with experimental results and also bvane theory calculation the error is 48.4 percent. The main reason
examine the accuracy of the membrane prestress simplificationfasthis discrepancy lies in the large deviations from proportional
opposed to the shell theory prestress, for the prediction of th@ading that occur. For the thickest sheets the deviations from

negative for some integer.

Table 2 Blankholder force (BHF) for cases examined in experimental study by Donoghue et al. [3]

Tooling R /Ry  Thickness(mm) BHF (kN)  Tooling R /Ry,  Thickness(mm) BHF (kN)

S1 17 0.508 34.637 S1 15 0.635 33.373
S1 1.7 0.635 33.809 S1 15 0.813 33.818
S1 1.7 0.813 41.227 S1 15 1.016 41.320
S1 1.7 1.016 41.316 S2 1.7 0.508 49.570
S1 15 0.508 33.168 S2 1.7 0.635 49.837

Journal of Applied Mechanics DECEMBER 2000, Vol. 67 / 693



Table 3 Experimental and theoretical results using deformation theory with R, /IR,=1.7 and
the S, tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

H. (experimental 22.86 mm 29.46 mm 36.38 mm 54.36 mm

H. (shell theory 22.35 mm 25.15 mm 30.81 mm 34.54 mm

H. (membrane theojy 19.72 mm 21.15 mm 24.64 mm 28.05 mm

Table 4 Experimental and theoretical results using deformation theory with R,/IR,=1.5 and
the S; tooling

Thickness 0.508 mm 0.635 mm 0.813 mm 1.016 mm

H. (experimental 13.46 mm 18.03 mm 24.38 mm 41.91 mm

H. (shell theory 13.72 mm 15.81 mm 19.02 mm 24.18 mm

H. (membrane theojy 13.37 mm 15.37 mm 18.06 mm 22.15 mm

proportional loading are larger, especially for material point.016 mm, using the largest tooling and a draw ratio of
away from the midsurface of the sheet. As a result the deforma; /R,=1.7. The stress history for material points in the
tion theory of plasticity will not be as accurate for the thickef.508-mm sheet, at an initial radius of 48.12 mm are shown in
sheets. This point will be addressed subsequently. Fig. 3. This point in the sheet has a location in the unsupported
Next attention is turned to experiments run with the sammegion of the sheet when the punch reacHgsand the resultant
tooling as before %;), but with a smaller draw ratio of hoop force at this point is compressive. The yield surface is plot-
R, /Ry=1.5. The experimental and theoretical results for this cased in o1,—05, space. Material points on the top, middle, and
are shown in Table 4. It is seen, as in the previous case, that thwtom surface load through the elastic range, reach the yield
predictions for thin sheets, usidly deformation theory, are very surface, and continue loading in the plastic range. For the middle
good, while those for thick sheets are not as accurate. For tha&face there is not a strong deviation from proportional loading
0.508-mm sheet the percent error, using both the shell and meafter yield. The top and bottom surfaces, however, do show strong
brane theories, is under 2.0 percent. But as the sheet thickndssiations from proportional loading after yielding has occurred.
increases, once again the error grows quite large. For tNetice, however, that the corresponding stresses are just out of the
1.016-mm sheet the percent error is 42.3 percent for the shieitial yield surface.
theory and 47.1 percent for the membrane theory. These results are compared to the stress histories for the thick-
Results are also examined for tests run with a smaller toolingst sheeth=1.016 mm, shown in Fig. 4. Again the stress histo-
S,, which gives higher curvatures, and a draw ratio ofies are plotted for a material point at an initial radius of 48.12
R, /RA,=1.7. These results are shown in Table 5. Here it is seemm. Here large deviations from proportional loading are seen
as in the previous cases, that the shell theory performs better thlaroughout the sheet and the stresses are now deeply into the
the membrane theory when estimating the critical punch heiglplastic range. The stresses in the sheet are redistributed after
The larger curvatures in this problem, especially near the dygelding in order to sustain equilibrium, and this stress redistribu-
throat, necessitate a shell theoryExperiments using the tion is greater if the sheet is thicker, resulting in larger deviations
0.813-mm and 1.016-mm sheets were not performed by Dorfoem proportional loading. Nearly proportional loading is neces-
ghue et al[3].) sary for the accuracy of a deformation theory, and as a result, the
The role of the constitutive theory in plastic buckling problemslasticity theory chosen to model the behavior of the thinner
is extremely important and is often the major reason for the disheets, i.e., deformation theory, is not necessarily valid for the
crepancy between theoretical buckling calculations and expettiicker sheets. To improve on the deformation theory, a corner
mental observationgsee review article by Hutchinsdir]). For theory is employed to predict buckling.
most commonly studied problems, the prebuckling solution hasThe effect of sheet thickness on the critical punch height for
proportional loading, and deformation theory of plasticity will
predict the instability. However, in the problem examined here
large deviations from proportional loading occur, especially fo
the thickest sheets. Deformation theory is inadequate when lar o2 f
deviations from proportional loading occur, and as a result, it i | yield surface
not expected to accurately predict instabilities for thicker sheet:
To examine the effect of sheet thickness on the deviation fro. o1
proportional loading, we follow the stress histories for materic
points in the unsupported region of the cup, which lie initiallyg y
near the die throat. This choice is dictated by the fact that tt%, oeoop---7------"o-—- SREEESVAEES
stress distribution in the unsupported region, has the greatest ©
fect on the stability calculations. Presented here are the stre
histories for the thinest sheet, 0.508 mm, and the thickest she .10

0.25 T T

middle surfaf:e top surface

bottom surface
-0.15

Table 5 Experimental and theoretical results using deforma- 020 F
tion theory with R, /R,=1.5 and the S, tooling

025 . 2 2 L 1 1 L 1
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25

Thickness 0.508 mm 0.635 mm 5. (GPa)
1"
H. (experimental 34.80 mm 38.86 mm . ) . o )
H. (shell theory 30.18 mm 31.32 mm Fig. 3 Stress history for material points initially at a radius of
H. (membrane theopy 21.09 mm 22.23 mm 48.12 mm for the 0.508 mm sheet. Stress history is shown for

the bottom, middle, and top surfaces of the shell.
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middle surface

i
critical punch height (mm)

AN
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2 r \ (b) shell prestress

( a) deformation theory

bottom surface membrane prestress

L
-0.15 -0.10 .05 0.00 0.05 .10 0.15 0.20

0 . L 2 N N L L
Gy, (GPa) 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

friction coefficient p.
Fig. 4 Stress history for material points initially at a radius of
48.12 mm for the 1.016 mm sheet. Stress history is shown for Fig. 6 Effect of friction on the critical punch height for 1.016
the bottom, middle and top surfaces of the shell. mm brass sheet with R,/R,=1.7, the S, tooling and a BHF
=41.316 kN. The trend in the results is the same as that seen in
Fig. 5, and it shows the great dependence of the results on the
friction boundary conditions, which are often difficult to mea-
various corner theories can be seen in Fig. 5. The coefficient safre. The experimental result for this case is shown by the
friction for all the cases shown is 0.04 and the BHF is 41.316 kNashed line.
These are the same boundary conditions for the case of the
1.016-mm sheet with theS; tooling and the draw ratio of

RL/Ra=1.7. It is recalled that this case had the largest discreps2, the critical punch height increases. Flow theory is obtained
ancy between the experimental and theoretical results. The fwﬁengc:ﬂ-/z. This case is examined, but no puckering instability
two curves,(@) and (b), show the results found using the deforis found regardless of the sheet thickness.
mation theory of plasticity with a membrane and shell theory, Finally, the sensitivity of the results to the boundary conditions
respectively. Here it is seen that the bending terms and thicknegé examined by varying the coefficient of friction between the
distribution of the stress, both ignored in the membrane formulmoﬁng surfaces and the sheet. The friction, combined with the
tion, have the effect of raising the critical punch height. AlteringHF, supplies a restraining force on the sheet that prevents mate-
the response of the material by changing the corner characteristig from flowing into the die. The amount of material that flows
can further increase the critical punch height. Curtes(d), and into the die determines the compressive hoop stresses that cause
(e) show the effects of different corner theories with no forwargyckering. Therefore, the coefficient of friction plays an important
loading conefy=0. As the unloading cone anglé, , approaches role in determining the critical punch height, as can be seen in
Fig. 6. Once again the cases shown in Fig. 6 are variations of the
case for the 1.016-mm sheet with tBgtooling and the draw ratio
of R /R,=1.7. The blank holder force for all the cases is 41.316
kN and the coefficient of friction is varied from 0.00 to 0.16. The
() 550 dc=2u N M e effect of the coefficient of friction is greater for the shell the(_)ries
N (curves(b)—(e)) than for the membrane theofgurve (a)) as evi-
denced by the lower slope for the membrane theory curve. The
— (C) o= 0: 6= s effects for the different plasticity theories is the same for the shell
shellprestress ] theories since they have similar slopes. Looking at the region near
the experimental resultg,=0.04, it is seen that a slight change,
say about 0.02, in the coefficient of friction can result in a change
of up to 5 mm in the critical punch height. Therefore, it is deter-
mined that the boundary conditiofthe coefficient of friction and

60 T T T T T T T

50 |

0,0 0= 3n/4 ’
(d) s?\ell presctress AN “

critical punch height (mm)

20 soormaton hoory / (b) Seformation heary 1 BHF) have a very large effect on stability in the hemispherical
(a) membrane prestress cup test.
10F -
4 Conclusions
o . . . . . . . The general method proposed in Part | is applied to the model-
04 08 06 o7 o8 09 1o “‘ 2 ing of the hemispherical cup test. The goal is to check how the
shest thickness (mm) method performs for different sheet thicknesses and to investigate
the influence of simplefmembrang prestress states versus more
Fig. 5 Effect of sheet thickness on the critical punch height accurate(shel) prestress states.
for a brass sheet with R, /R,=17, the S, tooling, BHF As expected, better agreement with experimental results is ob-

=41316kN a Coeﬁ.ide”; of ;riﬁ“%” "=0i04-f Thﬁ membrane  tained for thinner sheets usidg deformation theory of plasticity.
prestress underpredicts the shell theory results for the same As the sheet thickness increases, so does the discrepancy between

constitutive relations. Using a corner theory, and varying its : - L .
comer geometry so as to approach a flow theory, the critical the experimental results and the theoretical predictions. The main

punch height increases. It is noted that the BHF used for all the reason for this discrepancy is the presence in the principal solution
numerical calculations is the experimental value correspond- of large deviations from proportional loading, which requires
ing to the thickest blank. Experimental results are marked by more sophisticated constitutive modétorner theoriesto accu-

(®). rately predict the critical punch height.
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In the application at hand, the minimum eigenvalue of the st&. StevensofGM) during the course of this work are sincerely
bility functional goes through zero at the onset of bifurcatiorappreciated.
since a bifurcation type instability is guaranteed by the axisym-
metry of the principal solution. For the general case of a nonaxi-
symmetric geometry, as for example for the punch test of noncir-
cular blanks or blanks with some initial asymmetric imperfectioriReferences
recent calculations done by the authors show that the minimunpi] bevons, J. D., 1941The Metallurgy of Deep Drawing and Pressji@hapman
eigenvalue will not change sign at criticality. Consequently the  Hall, London. _ o _ )
onset of instability is not clearly defined, although it must still be [2! Traniabidls, N 1982, rackerng Instapity in the Hemispherical Cup
connected to the minimum eigenvalue of the stability functional 4, Diitc’Jgh.ue,el\j.,.Ste\);:ﬁsgnl, |§.,'|<')v56n, v. 3. and Triantafylidis, N., 1989, “An
which measures the stiffness of the structure. Current wonk Experimental Verification of the Hemispherical Cup Puckering Problem,”
published examines a nonaxisymmetric blaf& circular blank ASME J. Eng. Mater. Technoll1l, pp. 248—254.
with a small initial imperfectionand a square blank deformed by [4] Triantafyllidis, N., and Samanta, S. K., 1986, “Bending Effects on Flow Lo-

. . . . calization in Metallic Sheets,” Proc. R. Soc. London, Ser.486, pp. 205—
a hemispherical punch and correlates the minimum eigenvalue 554

with the initial appearance of surface wrinkles. [5] Christoffersen, J., and Hutchinson, J. W., 1979, “A Class of Phenomenologi-
cal Corner Theories of Plasticity,” J. Mech. Phys. Solidg, pp. 465—487.

Acknowledgments [6] Goetz, A., 1970Introduction to Differential GeometynAddison-Wesley, New
York

The partial support of ALCOA and NSF under grant G-CMS- [7] Hutchinson, J. W., 1974, “Plastic Buckling,” Adv. Appl. MectL4, pp. 67—
9503956 are gratefully acknowledged. The encouragement of 144.

696 / Vol. 67, DECEMBER 2000 Transactions of the ASME



