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Asymptotic Stability Analysis for
Sheet Metal Forming—Part I:
Theory
In this paper is presented a general methodology for predicting puckering instabilitie
sheet metal forming applications. A novel approach is introduced which does not use
theory approximations. The starting point is Hill’s stability functional for a thre
dimensional rate-independent stressed solid which is modified for contact. By us
multiple scale asymptotic technique with respect to the small dimensionless thic
parameter«, one can derive the two-dimensional version of the stability functional wh
is accurate up to O~«4!, thus taking into account bending effects. Loss of positive d
niteness of this functional indicates possibility of a puckering instability in a sheet m
forming problem with a known stress and deformation state. An advantage of the
posed method is that the puckering investigation is independent of the algorithm us
calculating the deformed state of the sheet.@S0021-8936~00!00804-7#
t

t
e

i

t

h

c

o

o

f

o

of a
ell

r-
nd
on-
-
fyl-

of

sec-
d

ogy.

rly
ta-
l’s
ale
the

by
ll

s of
the
rate

nd

sec-
rt of

ins
pe
ility
fol-
he
of

nti-
he
o-
ac-

p
d
f
t
b

1 Introduction and Motivation
Stamping of sheet metal is one of the most widely used ind

trial manufacturing processes. There are three major problems
limit the formability of a stamped part which have to be accoun
for in its design: springback, tearing, and puckering/wrinklin
Springback is the change in shape of the part that occurs af
part is removed from the blankholder/die assembly and is du
the elastic unloading of the part. Tearing is the splitting of the p
in areas of high strain concentrations and is due to the local
necking of the sheet. Puckering, as defined by Devons@1# is a
waviness of the sheet that is not in contact with the tooling s
faces and is a bifurcation buckling phenomenon due to the p
ence of compressive in-plane stresses in the sheet. When the
phenomenon occurs in areas that come into contact with the
ing, usually the flat part of the binder, the surface waviness p
nomena is known as wrinkling.

In modeling a tearing problem, the difficulty is in the determ
nation of the proper constitutive law since the phenomenon
local in nature. The difficulty in modeling springback is due to t
geometry of the part and in the determination of its prestress s
from which an elastic unloading takes place. Modeling of pu
ering requires both an accurate description of the constitutive
havior of the material and the solution of a boundary value pr
lem. Moreover, experimental investigation of puckering faces
difficulty of the determination of the onset of the phenomen
since imperfections in the form of minute amounts of surfa
waviness are always present in stamped parts.

Of interest here is the modeling of puckering instabilities
general stamping geometries. The standard approach thus far
a shell-type analysis~usually in conjunction with a finite elemen
method code! and follows the deformation of the part all the wa
to the formation of finite amplitude wrinkles~e.g., Taylor et al.
@2#!. More refined analyses use a linearized stability method
check for bifurcation in a part with a known prestress state
tained by using a shell-type analysis~e.g., Neal and Tugcu@3#!.
The obvious shortcoming of this approach is the stability resu
dependence on the shell theory employed.
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MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS. Manuscript received by the ASME Applied Mechanics Division, Se
24, 1999; final revision, Jan. 30, 2000. Associate Technical Editor: S. Kyriaki
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cation of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
us-
that
ed
g.
er a

to
art
zed

ur-
res-
same
ool-
he-

i-
is
e

tate
k-
be-
b-

the
n,
ce

or
uses
t
y

to
b-

lts’

To overcome the inconsistencies associated with the use
particular shell theory to calculate the onset of bifurcation in sh
buckling problems, Triantafyllidis and Kwon@4# proposed revers-
ing the order of the limiting process in the analysis, by first fo
mulating the stability problem of the three-dimensional solid a
then finding its critical load and buckling mode as the dimensi
less thickness parameter,«, goes to zero. This asymptotic meth
odology has recently been applied by Scherzinger and Trianta
lidis @5# to another similar problem, namely the buckling
slender beams with arbitrary cross sections~there the« parameter
is the beam’s slenderness defined as the square root of its
tional area over its length! where the interested reader can fin
another comprehensive application of the proposed methodol

The departing point for our analysis is Hill’s@6,7# stability
functional for a three-dimensional elastoplastic solid, prope
modified to account for contact with tooling surfaces. Since s
bility against puckering depends on the sign of the functiona
minimum eigenvalue, the present work consists of a multiple sc
asymptotic analysis to obtain the minimum eigenvalue and
corresponding eigenmode in terms of«. The multiple scale analy-
sis is a finite strain adaptation of the methodology proposed
Destuynder@8# for the consistent derivation of linear elastic she
theories from the corresponding three-dimensional equation
elasticity. The present method results in the calculation of
stability functional of a prestressed stamped sheet that is accu
to O(«4). The functional includes bending stiffness effects a
only requires a two-dimensional stress state and eigenmode~the
degrees-of-freedom are the displacements of the midsurface!. No
shell theory assumptions are required and normality of plane
tions and the plane stress assumption arise naturally as a pa
the analysis.

The outline of this work is as follows: The presentation beg
with a description of the kinematics for a shell of arbitrary sha
in Section 2.1. The treatment of contact, essential for the stab
of sheet metal forming problems, is presented in Section 2.2
lowed by the statement of the variational problem to find t
minimum eigenvalue in Section 2.3. The asymptotic analysis
the problem is presented in Section 3. Expansion of field qua
ties are given and substituted into the stability functional. T
stability functional is evaluated in Section 3.2 and its tw
dimensional form, suitable for sheet metal forming, is found
curate to O(«4).
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2 Formulation
To begin the stability analysis for a sheet metal forming pro

lem, one starts with Hill’s@6# stability functional evaluated at a
given equilibrium state1 of a solid of volumeV and boundary]V

F~l,v!5
1

2 EV
Li jkl ~l!vk,lv i , jdV1

1

2 E]V
Kikvkv idS. (2.1)

Here l is a load parameter, which determines the current st
state and the internal variables of the solid,v i are the covariant
components of a kinematically admissible perturbation away fr
the equilibrium state,v i , j denotes the covariant derivative wit
respect to the three-dimensional basis in the current configura
Li jkl are the contravariant components of the incremental mo
that relate the rate of the first Piola-Kirchoff stress to the rate
the deformation gradient (ṖT5L :Ḟ). The second integral in~2.1!
is a penalty term that is introduced to account for the con
between the tooling surfaces and the sheet. The symmetry o
incremental moduli,Li jkl , and the contact terms,Kik, implies real
eigenvalues forF. Positive definiteness of~2.1! ensures stability
of the structure at the given equilibrium state, in the sense
positive energy has to be externally supplied into the structure
any admissible perturbation. The idea proposed in this work i
take advantage of the slenderness of the structure to devel
two-dimensional form of the stability functional which is accura
to any desired order of the slenderness parameter.

2.1 Geometric Preliminaries. Consider a shell-like struc
ture in its current configuration as shown in Fig. 1. The so
occupies a volumeV and has boundary]V consisting of the top,
bottom and lateral surfaces (]V5]V1ø]V2ø]Vn). Material
points in the shell are identified by their convected coordina
u i5(ua,u3); a material point on the midsurface of the shell h
position vectorr (ua), and the domain of the midsurface of th
sheet is denoted byA. The position vector,p, for an arbitrary
material point in the shell can be written as

p~u i !5r ~ua!1u3n~ua!, 2
h~ua!

2
<u3<

h~ua!

2
, (2.2)

wheren(ua) is the unit outward normal to the midsurface of th
shell. At the material point on the midsurface, given byua, the
thickness of the shell ish(ua).

The basis vectors for the midsurface,ai , and the three-
dimensional solid,gi , are defined as follows:

aa5
]r

]ua , a35n; gi5
]p

]u i . (2.3)

The midsurface and three-dimensional metrics are given
ai j 5ai•aj andgi j 5gi•gj with inversesai j andgi j . From~2.3! the
relation between theai basis and thegi basis is established with
the help ofm i

j ,

gi5m i
jaj ; mb

a5db
a2u3bb

a , m i
35m3

i 5d i
3,

(2.4)

ai5qi
jgj ; qi

j5~m j
i !21,

wherebb
a are the mixed components of the curvature tensor

the midsurface. The evaluation of the gradient of the perturbat
introduced in~2.1!, requires the derivatives of the midsurface b
sis vectors with respect to the convected coordinates

]ai

]u j 5t i j
k ak . (2.5)

1Here and subsequently Greek indices range from 1 to 2 and Latin indices r
from 1 to 3.
686 Õ Vol. 67, DECEMBER 2000
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Sinceaa are the basis vectors for the midsurface, the coefficie
tab
g 5gab

g are the Christoffel symbols for the midsurface. Fro
differential geometry~e.g., Goetz@9#!, the only other nonzero
components oft i j

k are

tab
3 5bab5aagbb

g , t3b
g 52bb

g . (2.6)

The components of any tensor in the subsequent analysis ca
defined with respect to the three-dimensional basis,gi , or the
midsurface basis,ai ~e.g.,v5v igi5 v̄ iai!.

2 The tensor component
in ~2.1! are referred to the three-dimensional basis; however,
following analysis naturally employs the midsurface basis. The
fore, relationships between the components of tensors referre
the two bases are needed. In particular, relationships are so
with the help of~2.4! and ~2.5!, for the components of the incre
mental moduli,L , and the gradient of the perturbation,v¹,

Li jkl 5L̄mnrsqm
i qn

j qr
kqs

l ; v i , j5S ] v̄k

]u j2tk j
l v̄ l Dm i

k5 v̄k, jm i
k .

(2.7)

2.2 Treatment of Contact. In metal forming applications,
the sheet is in contact with the rigid surfaces of the punch,
and blank holder, and this contact will constrain any kinematica
admissible perturbation,v. Therefore the effect of contact must b
accounted for in the statement of the stability problem; this
done using a penalty-type formulation.

It is assumed, without loss of generality, that contact occ
between the tooling and the bottom surface of the sheet (]V2).
Denoting the energy due to contact as

nge2Here and subsequently components of tensors with respect to the midsu
basis will be denoted with a bar surmounting the symbol, (•̄).

Fig. 1 Three-dimensional kinematics for a shell-like structure.
The midsurface is defined by the vector r while a point off the
midsurface is defined by position vector p. The covariant mid-
surface basis is a i and the covariant three-dimensional basis is
gi .
Transactions of the ASME
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1

2 E]V2

kH~D !D2dA, (2.8)

wherek is a foundation stiffness for the tooling,D(u), a function
of the displacementu, is the interpenetration distance between t
bottom surface of the sheet and the tooling surface, andH(D) is
the Heaviside step function~H(D)51 if D>0 andH(D)50 if
D,0!, the contact term for the stability functional is augment
by

1

2
~E,uudu!du5

1

2 E]V2

kH~D !~dDdD1Dd~dD !!dA,

(2.9)

where E,uu denotes the second functional derivative ofE with
respect to the displacementu. Given a parameterization of th
rigid surface in terms of the coordinatessa, the position vector for
a point on this surface is given byps5ps(s

a). The interpenetra-
tion distance between the sheet and the surface is defined a
lows ~see Fig. 2!:

D25@ps~sa!2p2~ua!#•@ps~sa!2p2~ua!#, (2.10)

wherep2(ua)5p(ua,2h(ua)/2) is the position vector of a ma
terial point on the bottom surface of the sheet that is in con
with the rigid surface. The distanceD is taken positive if there is
a penetration of the sheet on the rigid surface, i.e., whenps2p2 is
on the same direction as the outward normal to the rigid surf
ns .

Given a material pointp2(ua), for a given equilibrium state
the point on the tooling surface,ps(s

a), is sought such tha
it minimizes D. This point is found to satisfy the following
condition:

@ps~sa!2p2~ua!#•
]ps

]sb 50, (2.11)

which states that the vectorps2p2 is orthogonal to the tangen
plane of the surface at the pointps . With the above relationship
the penalty term used for modeling contact in the stability fu
tional becomes

Fig. 2 Contact between tooling surface and sheet. A point on
the sheet’s lower surface with position vector p À is at a dis-
tance D from the rigid surface. The penetration distance is
positive when p ÀÀps has the same orientation as n s , the out-
ward unit normal to the rigid surface.
Journal of Applied Mechanics
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2 E]V2

v•K•vdA

5
1

2 E]V2

kH~D !Fv•v2S v•
]ps

]saD S v•
]ps

]sbDcabGdA,

(2.12)

wherecab is

cab5F ]ps

]sa •

]ps

]sb 1~ps2p2!•
]2ps

]sa]sbG21

. (2.13)

Finally, it is noted that the effect of friction is seen only throug
the principal solution of the sheet metal forming process; it
assumed that friction does not affect the stability calculations

2.3 Problem Statement. Stability of the prestressed solid i
guaranteed~see Hill @6#! if the functional~2.1! is positive definite,
i.e., if its minimum eigenvalue, defined below, is positive

b5min
vPD

2F
^v,v&

. (2.14)

HereD is the space of kinematically admissible perturbations a
^v,v& is an appropriately chosen inner product. For the probl
examined here, the following choice for the inner product
adopted:

^v,v&5E
A
E

2h/2

h/2

aikv̄kv̄ idu3dA. (2.15)

The minimization problem in~2.14! can be reformulated as
variational problem

bE
A
E

2h/2

h/2

aikv̄kd v̄ idu3dA5E
A
E

2h/2

h/2

L̄ i jkl v̄k,ld v̄ i , jmdu3dA

1E
A
@K̄ ikv̄kd v̄ im#u352h/2dA.

(2.16)

In addition to the minimum eigenvalue, a mode uniquen
condition is also introduced:

^v,u&5E
A
E

2h/2

h/2

aikv̄kūidu3dA5C (2.17)

whereu andC are an appropriately chosen vector field and co
stant, respectively.

3 Asymptotics
The solution of the stability problem for a sheet metal formi

application is found using the following approach: Given an eq
librium state for the solid, an asymptotic analysis is employed
deduce a stability criterion for the shell-like structure based on
minimum eigenvalue of Hill’s functional for the three
dimensional solid. In this approach, the current geometry, st
state, and as a result, the incremental moduli are known a pr
Since the thickness is assumed to be small relative to the dim
sions of the sheet and the minimum radius of curvature of
midsurface, the asymptotic analysis is performed using the rati
the sheet thickness,h, relative to a characteristic length of th
sheet, l, as the small parameter in the problem. Denoting t
small parameter by«[h/ l , asymptotic expansions are carried o
in terms of«. The scaled thickness coordinate,j5u3/«, is also
used in the subsequent analysis and varies between2z<j<z,
wherez[h/2«.
DECEMBER 2000, Vol. 67 Õ 687
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The minimum eigenvalue and all the field quantities are
panded in a regular perturbation series in terms of«n,
n50,1,2, . . . . By taking the expansions for these quantities, su
stituting them into~2.1!, and evaluating the minimum eigenvalu
of the stability functional, the stability of the sheet metal part
examined.

3.1 Expansions. For the analysis of the stability functiona
the minimum eigenvalue, corresponding eigenmode, con
terms, and incremental moduli are expanded in a regular pe
bation series in«,

b~«!5b
0

1«b
1

1«b
2

1¯ , (3.1)

v̄ i~u j ;«!5 v̄
0

i~ua,j!1« v̄
1

i~ua,j!1«2v̄
2

i~ua,j!1¯ , (3.2)

K̄ ik~ua;«!5K̄
0

ik~ua!1«K̄
1

ik~ua!1«2K̄
2

ik~ua!1¯ , (3.3)

L̄ i jkl ~ua;«!5L̄
0

i jkl ~ua!1«L̄
1

i jkl ~ua,j!1«2L̄
2

i jkl ~ua,j!1¯ .
(3.4)

Similar expansions can be obtained for the geometric quant
m j

i and its inverseqj
i which relate the midsurface and thre

dimensional covariant basis vectors~see~2.4!!. Finally, it is noted
that the foundation stiffness for the contact term in the probl
must also be scaled with«, k→«k. In order to physically motivate
this rescaling, we recall from the theory of shells that the norm
and shear stresses are on the order of«2 and«, respectively. The
rescaling is necessary to enforce this condition as«→0. It should
also be noted at this point that the adopted asymptotic expans
for the various field quantities are expected to be valid sev
thicknesses away from the midsurface boundary. Moreover,
tacitly assumed that the corresponding boundary layer effects
inconsequential for the overall stability analysis of the structu

3.2 Evaluation of Stability Functional. Using the above
introduced rescaled expressions foru3 andk, the variational equa-
tion for the minimum eigenvalue of the stability functional
~2.16! is rewritten as

«bE
A
E

2z

z

aikv̄kd v̄ idjdA

5«E
A
E

2z

z H 1

«2 L̄ i3k3
] v̄k

]j

]d v̄ i

]j
1

1

«
~ L̄ i3kgqg

d !v̄k,d

]d v̄ i

]j

1
1

«
~ L̄ iak3qa

b!
] v̄k

]j
d v̄ i ,b1~ L̄ iakgqa

bqg
d !v̄k,dd v̄ i ,bJ mdjdA

1«E
A
@K̄ ikv̄kd v̄ im#j52zdA. (3.5)

Substituting the expansions~3.1!–~3.4! into ~3.5!, and collecting
terms of like order, the following governing equations are fou
that must be satisfied for the various orders of«.

Equations of O(«21). The lowest order governing equation
are those of O(«21), namely

E
A
E

2z

z

L̄
0

i3k3
] v̄

0

k

]j

]d v̄ i

]j
djdA50. (3.6)

Integrating by parts, and in view of the arbitrariness ofd v̄ i , the

governing differential equations and boundary conditions forv̄
0

k
are found

]
]j F L̄

0
i3k3

] v̄
0

k

]j
G50 in 2z<j<z

(3.7)
688 Õ Vol. 67, DECEMBER 2000
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L̄
0

i3k3
] v̄

0

k

]j
50 at j56z.

The solution of~3.7! is

L̄
0

i3k3
] v̄

0

k

]j
50, ⇒ ] v̄

0

k

]j
50. (3.8)

SinceL̄
0

i3k3 is nonsingular for all applications~the material is as-
sumed to be in the elliptic range of its response!, the solution of

~3.8! implies v̄
0

k5 v̄
0

k(u
a), which states that the lowest order ter

in the expansion of the mode is only dependent on the midsur
coordinates.

Equations of O(«0). Terms of O(«0) are collected next and
making use of~3.8!, the following governing equations are found

E
A
E

2z

z F L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,dG ]d v̄ i

]j
djdA50. (3.9)

Following the same steps as in~3.6!, we obtain the governing

differential equations and boundary conditions forv̄
1

k :

]
]j F L̄

0
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

0

k,dG50 in 2z<j<z

(3.10)

L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,d50 at j56z.

Solving ~3.10! gives the following result for] v̄
1

k /]j:

L̄
0

i3k3
] v̄

1

k

]j
1L̄

0
i3kdv̄

0

k,d50. (3.11)

Recalling the plane stress assumption for the principal solut
t i350 andṫ i350, and the resulting orthotropy of the increme
tal moduli, the Kirchoff-Love hypothesis for the deformation
thin shells is recovered for the eigenmode

] v̄
1

a

]j
52 v̄

0

3,a . (3.12)

Equations of O(«1). The next lowest order equations are tho
of O(«1). Making use of~3.8! and~3.11!, the governing equations
of O(«1) are derived:

E
A
E

2z

z H F L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d

1 S L̄
1

i3kd1L̄
0

i3kgq
1

g
d D v̄0 k,dG ]d v̄ i

]j

1S L̄
0

ibk3
] v̄

1

k

]j
1L̄

0
ibkdv̄

0

k,dD d v̄ i ,bJ djdA

1E
A
@K̄

0
ikv̄

0

kd v̄ i #j52z dA

5b
0 E

A
E

2z

z

aikv̄
0

kd v̄ i djdA. (3.13)

From the results in~3.11!, it becomes convenient to introduce th
plane stress incremental moduli,P̄ ibkd,
Transactions of the ASME
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P̄ ibkd[@ L̄ iakg2L̄ iam3~ L̄n3m3!21L̄n3kg#qa
bqg

d . (3.14)

Using ~3.14! and integrating~3.13! by parts, and assuming
the thickness varies slowly throughout the sheet~i.e.,
]z/]ua5O(«n), n>2!, the following governing partial differen-
tial equations and boundary conditions are found:

]
]j F L̄

0
i3k3

] v̄
2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,dG
1

]

]ub
FP̄0 ibkdv̄

0

k,d
G1~P̄

0
ibkdtbg

g 1P̄
0

mbkdtmb
i !v̄

0

k,d1b
0
aikv̄

0

k

50 in 2z<j<z

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

5K̄
0

ikv̄
0

k at j52z

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

50 at j5z. (3.15)

Considering~3.13! with d v̄ i5d v̄ i(u
a), one finds the following

governing equations forv̄
0

i(u
a) in variational form

E
A
H P̄

0
ibkdv̄

0

k,dd v̄ i ,b1
1

2z
K̄
0

ikv̄
0

kd v̄ i J dA5b
0 E

A
aikv̄

0

kd v̄ idA,

(3.16)

while the equations for] v̄
2

k /]j are found from~3.15! and~3.16!:

L̄
0

i3k3
] v̄

2

k

]j
1L̄

1
i3k3

] v̄
1

k

]j
1L̄

0
i3kdv̄

1

k,d1~ L̄
1

i3kd1L̄
0

i3kgq
1

g
d !v̄

0

k,d

5 f ~j!K̄
0

ikv̄
0

k , (3.17)

where f (j)[(z2j)/2z.

Equations of O(«2). The next lowest order equations are tho
of O(«2). Making use of~3.8!, ~3.11!, ~3.14!, and ~3.17!, the
governing equations of O(«2) are found:
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2z

z H F L̄
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i3k3
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]j
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1FP̄0 ibkdv̄
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0
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0
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0
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0

k
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1E
A
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0

ikv̄
0

k1K̄
1
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0
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0
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1
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0

v̄
1

k1b
1

v̄
0

k!d v̄ idjdA. (3.18)

Choosingd v̄ i5d v̄ i(u
a), and integrating through the thicknes

gives the following equations for thej independent part ofv̄
1

i :
Journal of Applied Mechanics
se

,

E
A
H S P̄

0
ibkd^v̄

1

k,d&1^P̄
1

ibkd&v̄
0

k,d1
1

2
L̄
0

ibm3~ L̄
0

n3m3!21K̄
0
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0

kD d v̄ i ,b

1
1
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F~m
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ik1K̄
1

ik!v̄
0
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0
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1

k
G
j52zd v̄ i J dA

5E
A
aik~b

0

^v̄
1

k&1b
1

v̄
0

k!d v̄ idA, (3.19)

where the thickness average of a functionf is defined as

^ f &[
1

2z E2z

z

f dj. (3.20)

With the solution of~3.19!, the mode, including first-order bend
ing terms, is determined up to order«:

v̄ i5 v̄
0

i1«~^v̄
1

i&2j~ L̄
0

n3i3!21L̄
0

n3kdv̄
0

k,d!1O~«2!. (3.21)

An expression for the stability functional, accurate to O(«3), can
be found using this form of the mode that includes bending ter

Stability Functional up to O(«3). Using the previous results
the stability functional is assembled with accuracy up to O(«3).
Starting with the following expression forF,

F5
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2 EA
E

2z

z H L̄ i3k3
] v̄k

]j

] v̄ i

]j
1L̄ i3kgqg

d v̄k,d
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]j

1L̄ iak3qa
b
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v̄ i ,b1L̄ iakgqg

dqa
bv̄k,dv̄ i ,bJ mdjdA

1
«

2 EA
@K̄ ikv̄kv̄ im#j52z dA, (3.22)

making the substitutions of the expansions~3.1!–~3.4! into ~3.22!,

using~3.8!, ~3.11! and choosingd v̄ i5^v̄
2

i& in ~3.16! and invoking
the mode uniqueness condition, we find the following simplifi
expression forF:
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1
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n3kgq
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1
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0
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0

q3kd!v̄
0

k,d1L̄
0

n3kdv̄
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n3m3!21K̄
0

nkv̄
0

kv̄
0

i #djJ dA1O~«4!. (3.23)

Examining the«3 contact terms in~3.23! it is recalled that for
adequately large values of the foundation stiffness, the m

v̄
0

i5O(«) in the areas of contact. This makes the second inte
though the thickness O(«4). In metal forming applications, the
tooling is assumed to be rigid, and thus the foundation stiffn
will be very large, and an expression for the stability function
accurate to O(«4) is found:

F5
1

2 EA
H E

2h/2

h/2

@P̄ ibkdv̂k,dv̂ i ,bm#du31@K̄ ikv̂kv̂ i #j52zJ dA

(3.24)

where the modev̂ i is given by
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0
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2u3~ L̄m3i3!21L̄m3kdF ] v̄
0

k~ua!

]ud
2tkd

r v̄
0

r~ua!G ,

(3.25)

and the plane stress incremental moduli,P̄ ibkd, and the contact
terms,K̄ ik, can be found to the accuracy of the prestressed s
tion.

For puckering problems in metal forming operations, the mo
of the instability is a bending mode. Whenb50, and assuming

^P̄
1

ibkd&'0, a reasonable assumption in metal forming proble

it can be shown that̂v̄
1

i&'0, i.e., the mode is a bending mod

When this is the case, thev̂ i only depends onv̄
0

i and the expres-
sion for the stability functional simplifies further.

In practice, the positive definiteness of~3.24! is determined
numerically. It is assumed that the stress state, and therefore
incremental moduli for the material, are known at any point of
loading path. For the sheet metal forming applications of inter
the load parameterl is taken to be the punch displacementH. A
stamping process is stable against puckering at a heightH, if for
all punch displacements between 0 andH the functional~3.24! is
positive definite. An application of the general theory for the c
of the hemispherical cup test is discussed in detail in Part II.

4 Conclusions
The goal of the present paper is to present a general and

sistent methodology to model puckering in sheet metal form
processes. The starting point is Hill’s three-dimensional stab
functional for rate-independent solids, appropriately modified
contact. Positive definiteness of this functional, i.e., a posit
minimum eigenvalueb, ensures the stability of the correspondin
prestressed elastoplastic solid, while the onset of buckling co
sponds to a vanishingb. The slenderness of the solid, i.e., th
dimensionless thickness parameter«!1, permits using a multiple
scale asymptotic method, the construction of a two-dimensio
stability functional which is accurate up to O(«4) and which takes
into account bending effects. The advantage here lies in the av
ance of any shell theory type approximation. The result is a c
sistently derived stability functional which is defined on t
middle surface of the sheet.
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The method is meant to be employed with the finite elem
discretization of the sheet forming problem of interest and
several advantages. It can use any equilibrium prestress to c
for the stability of the corresponding deformed state. It is parti
larly useful when a membrane solution is available, as in the c
of tearing calculations, where the present methodology also
lows a check for puckering. The stability functional is defin
independently of the algorithm used for the principal solution, a
hence one can selectively refine the mesh in those areas pro
puckering. It also providesb which is a measure of the stability o
the sheet against puckering. Since the stability functional is s
metric, the criterion forb is equivalent to the minimum diagona
entry of D in an LDU decomposition of the stiffness matrixK
which results from the finite element discretization of the stabi
functional. The application to puckering experiments for t
hemispherical cup test are presented in Part II.
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