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Abstract

Surface bifurcation is an instability mechanism which appears in the form of surface waviness on

traction-free surfaces in ductile solids subjected to large strains. In sheet metal forming, the practical

interest in this phenomenon stems from the fact that it occurs past the onset of localization, i.e. the

forming limit, but prior to the local fracture failure in a quasi-static, monotonic loading process. In

this work, we apply the general theory for surface bifurcation in a homogeneously strained, anisotropic,

rate-independent, elastoplastic half-space, to study the influence of material anisotropy on the onset of

surface instabilities. In particular, we calculate the critical principal strains εc
1, ε

c
2 and the corresponding

eigenmode orientation angle Ωc when the principal strain axes are at a fixed angle α with respect to the

rolling direction of the solid.

The presented calculations are for a 2024-T3 aluminum alloy, whose constitutive properties have

been determined experimentally. It is found that by varying the strain orientation angle α, the surface

bifurcation strains can vary up to an order of 80% for in-plane principal strains of a different sign, but

only up to an order of 10% for principal strains of the same sign. The eigenmode orientation angle Ωc is

calculated for a particular strain orientation (α = π/6), for which case it is found that Ωc is close to the

forming limit angle ψc only for positive principal strains. The presentation is concluded by a discussion

of the influence of the anisotropy and the yield surface parameters of the constitutive model on surface

bifurcation.
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1 Introduction and Motivation

An instability phenomenon occurring during a quasi-static loading of ductile solids at adequately high

levels of strain, is the development of surface waviness on the previously smooth traction-free boundaries.

The resulting surface roughness is in the form of same orientation surface wrinkles of a very short

wavelength. Upon further straining, the development of microcracks at the bottom of the wave troughs,

which eventually leads to fracture, justifies the interest in surface bifurcation as a precursor phenomenon

to the ultimate failure by fracture.

The credit for the theoretical explanation of this phenomenon within the context of large strain con-

tinuum mechanics goes to Biot (1965), who was the first to show the possibility of a bifurcation instability

occurring in an elastic, traction-free half-space subjected to large in-plane stresses. The corresponding

eigenmode decays exponentially away from the surface, but the analysis provides no characteristic wave-

length for the mode. Subsequent investigations at large deformations in finite size elastoplastic solids

showed that surface bifurcations always appear on the free surfaces after an adequate amount of straining

in compression as well as in tension. Examples of surface bifurcations in structures include the elastoplas-

tic rectangular block under tension and compression by Hill and Hutchinson (1975) and Young (1976)

respectively, the pure bending of elastic and elastoplastic rectangular bars by Triantafyllidis (1980) and

the internal pressurization of cylindrical tubes by Larsson et al (1982). It should be emphasized at this

point that the roughness resulting from a bifurcation, and which appears at high levels of strain in the

form of similarly oriented wavelets, is due to the interaction between the finite strain kinematics and the

nonlinearity of the constitutive law. This phenomenon should not be confused with the surface roughness

which can appear at any initially smooth surface and which grows linearly with strain in the small strain

regime, in the form of “orange peel” with no preferred orientation observed. The latter phenomenon is

due to the orientation mismatch of the surface grains in metal polycrystals and requires micromechanical

descriptions of the solid at the grain level, as the interested reader can see from the recent work by Becker

(1997).

The critical load at surface bifurcation is strongly dependent on the constitutive model as well as on the

in-plane stress state. For isotropic, incompressible, rate-independent solids, Hutchinson and Tvergaard

(1980) have studied the surface bifurcation of a traction-free half-space under proportional straining

conditions, using a finite strain generalization of the J2 deformation theory of plasticity. Their analysis is

capable of finding the lowest strain surface bifurcation only for isotropic solids, due to a particular form

assumed for the eigenmode. In a subsequent work, Triantafyllidis (1984) presented the general analysis

for the surface bifurcation in any anisotropic, rate-independent, traction-free half-space. The latter work
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investigates all the possible modes in order to find the wanted critical load. In the same work it is shown

that the bifurcation mode is polarized along a certain direction, i.e. it consists of waves whose crests are

parallel lines, exactly as observed in experiments involving approximately homogeneous principal strain

fields as in the case of bending of bars or bursting of internally pressurized tubes (see the corresponding

pictures in Hutchinson and Tvergaard (1980) and Larsson et al (1982)).

The present work is motivated by problems in sheet metal forming involving alloys subjected to finite

strain and for which a high quality of the finished surface is required. Since the alloys in question are

in general anisotropic, the investigation of surface bifurcation requires the general methodology given

by Triantafyllidis (1984). Of particular interest is the influence of anisotropy, measured by the angle

α formed between the principal strains and the rolling direction, on the surface bifurcation. All the

corresponding calculations are based on the recently proposed anisotropic plasticity theories by Karafillis

and Boyce (1993). The numerical results presented in this work correspond to a particular aluminum

alloy 2024-T3 whose material properties have been determined experimentally by Barlat et al (1991).

Results are presented for three different values of the principal strain orientation angle α and show a

strong influence of plastic anisotropy on the critical strains for principal strains of a different sign. The

eigenmode orientation angle Ωc is also calculated as a function of the principal strain ratio tanϕ for a

particular value of the principal strain orientation angle α. Finally, to study the influence of the yield

surface, the critical strains for the anisotropic material are compared to their counterparts of two fictious

isotropic materials, both with the same uniaxial stress-strain curve in the rolling direction as the alloy

under investigation.
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2 General Theory for Surface Bifurcation

The general theory for the surface bifurcation of a traction-free half-space, consisting of an anisotropic,

homogeneous, rate-independent material, which is subjected to a homogeneous, in-plane state of stress,

has been derived by Triantafyllidis (1984). However, for reasons of completeness, a brief outline of this

theory is presented here.

In the current configuration, a Cartesian coordinate system is used, in which the solid occupies the

half-space x3 ≤ 0. An updated Lagrangian formulation of the problem is presented, with ∆f denoting the

perturbation of any field quantity from the spatially constant principal solution whose uniqueness is under

investigation. The perturbed equilibrium equations and the traction-free surface boundary conditions are

expressed in terms of the first Piola-Kirchhoff stress Π as follows

∆Πij,i = 0 (xα ∈ <, x3 ≤ 0)1 (1)

∆Π3i = 0 (xα ∈ <, x3 = 0). (2)

For any rate-independent material, the perturbation of the first Piola-Kirchhoff stress is related to

the perturbation of the deformation gradient F by the linearized constitutive relation

∆Πji = Lijkl∆Fkl (3)

∆Fkl = ∆uk,l (4)

where ∆u is the perturbation of the displacement.

The incremental moduli tensor L is a function of the material properties and the current state of

stress. Explicit expressions for the case of some finitely strained aluminum alloys will be given in the

next section. At this point it suffices to say that the half-space is assumed homogeneous, incrementally

linear and under a spatially constant state of stress which has been achieved through a given strain history.

The loading path in question is parameterized by a “time-like” scalar λ which increases monotonically

from zero and is assumed to uniquely characterize the present state of the material. Consequently the

components of the incremental moduli tensor are λ-dependent constants Lijkl(λ).

1Here and subsequently, Latin indexes range from 1 to 3, while Greek indexes range from 1 to 2. Einstein’s summation
convention is implied over repeated indexes. Repeated indexes in parentheses are not summed, unless indicated explicitly.
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The governing equations (1), (3), (4) and the boundary conditions (2) have to be complemented by the

requirement of bounded displacement and deformation gradient perturbations, which in addition must

decay to zero away from the surface, i.e.

∆ui → 0, ∆Fij → 0, as x3 → −∞. (5)

The above system of linear partial differential equations with constant coefficients can be reduced to

a system of ordinary differential equations in x3 by considering its Fourier transform with respect to xα.

By substituting the constitutive (3) and kinematic equations (4) into the equilibrium equations (1) and

subsequently considering the Fourier transform of the resulting equations with respect to xα, we obtain

the following system of ordinary differential equations in x3

(iωα)(iωβ)Liαkβ∆ûk + (iωγ)(Li3kγ + Liγk3)∆ûk,3 + Li3k3∆ûk,33 = 0 (6)

where ∆ûk(ωα, x3) is the double Fourier transform of ∆uk(xα, x3), with ωα the Fourier transform variable

corresponding to xα. In deriving (6) it is tacitly assumed that the perturbation fields ∆uk are adequately

smooth (at least twice continuously differentiable) and uniformly bounded with respect to all coordinates.

The boundedness requirement for ∆uk implies that the Fourier transforms ∆ûk are not functions of their

arguments in the classical sense, but distributions in the ωα plane.

The general solution to the system of ordinary differential equations with constant coefficients in (6)

is found to be the sum of three linearly independent partial solutions

∆ûk(ωα, x3) =
3

∑

j=1

ξ(j)(ωα)A
(j)
k exp[iωz(j)x3] (7)

where the following notations have been employed: The quantity ω is the norm of the vector ωα (i.e.

ω ≡ |ωαωα|
1/2) and z(j) denote the three roots with negative imaginary part of the following sixth order

polynomial in z

det[Liαkβnαnβ + (Li3kγ + Liγk3)nγz + Li3k3z
2] = 0 (8)

where ωα = ωnα, n1 = cosΩ, n2 = sin Ω and z(j) = a(j)(Ω, λ) + ib(j)(Ω, λ) such that b(j) < 0 (j = 1–3).

The requirement that for the load parameter λ values of interest no real roots of (8) are allowed for

any angle Ω, stems from the fact that we seek surface instabilities occurring in the elliptic regime of the

material response, i.e. prior to the occurrence of any localized mode of deformation. Recall (e.g. Rice

(1976)) that the mathematical expression for the strong ellipticity condition is Lijkl(λ)njnl > 0 for all

three-dimensional unit vectors n, which implies the necessity of non-real roots for (8). The selection of
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the three roots of the sixth order polynomial in (8) which have a negative imaginary part, follows from

(5) which requires the perturbation to decay away from the free surface. The unit vector A(j), which is

associated with the root z(j) is the eigenvector of the following 3× 3 matrix

[Liαkβnαnβ + (Li3kγ + Liγk3)nγz(j) + Li3k3z
2
(j)]A

(j)
k = 0. (9)

For a simple root z(j), the corresponding eigenvector A(j) in (9) is unique, while for a double root,

one has two corresponding eigenvectors which are chosen to be mutually orthogonal2. Finally, ξ(j)(ωα)

is the amplitude of the j-th partial solution A
(j)
k exp[iωz(j)x3] and is a distribution defined in the Fourier

transform space ωα to be specified subsequently.

The Fourier transform of the surface boundary conditions (2), after substituting the constitutive (3)

and kinematic equations (4) and the general expression for the transform of the displacement perturbation

in (7), gives the following result

3
∑

j=1

Sij(Ω, λ)ξ(j)(ωα) = 0, Sij(Ω, λ) ≡ [Li3kα(λ)nα + Li3k3(λ)z(j)]A
(j)
k . (10)

For the homogeneous system in (10) to admit a non-trivial solution ξ(j)(ωα), the matrix of constants

Sij must be singular. Thus, onset of the surface bifurcation corresponds to the first such occurrence of a

singular matrix Sij (at a load level λc and for an angle Ωc), as the load parameter λ increases from zero.

Hence

det[Sij(Ωc, λc)] = 0;

det[Sij(Ω, λ)] 6= 0, for Ω ∈ [0, π) and 0 ≤ λ < λc. (11)

Note that in the above procedure of searching for the critical load λc, only the domain [0, π) has to be

scanned for Ω, at each increment of λ. Indeed from (8), one obtains that z(j)(Ω + π) = −z(j)(Ω), which

will result in the equivalent condition det[Sij(Ωc, λc)] = 0 at criticality.

At this point we present an important remark about the shape of the eigenmode. For the homogeneous

system in (10), to admit at λc a non-trivial solution in the ωα plane, the corresponding eigenmode ξ(j)

should vanish in all points except those along the direction ω2/ω1 = tanΩc. In this case the distribution

ξ(j)(ωα) has a line support along the above mentioned direction, i.e.

ξ(j)(ωα) = Ξ(j)f, suppf = {ωα | ω2/ω1 = tan Ωc} (12)

2This choice is always possible in the case where the moduli have the major symmetry Lijkl(λ) = Lklij (λ), a condition
met in all plasticity theories leading to self adjoint problems.
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where Ξ(j) is a unit vector obtained from (10), at λc, Ωc and f is a scalar distribution in the Fourier

plane ωα, with a line support indicated in (12). It follows from (12) and (7) that upon inversion of the

Fourier transform for the perturbed displacement one obtains

∆uk(x1, x2, x3) = ∆uk(x1 cosΩc + x2 sin Ωc, x3), (13)

i.e. the bifurcation eigenmode is in the form of waves polarized along the direction tan Ωc, which is

graphically represented in Figure 1. The amplitude of these waves as well as their shape cannot be

specified by this analysis in view of the arbitrariness of the distribution f in (12).

To complete the general theory, one needs to specify the loading path followed from the stress-free

configuration. An in-plane stress state is required, which dictates that the Kirchhoff stress3 components

on the free surface vanish, namely

τ3i(λ) = 0. (14)

The stress state in the half-space is achieved through a proportional straining path, where the in-plane

principal logarithmic strains εα are oriented at a fixed angle α with respect to the xi material axis of

orthotropy and have a constant ratio tanϕ, i.e.

ε1 = λ cosϕ, ε2 = λ sinϕ (15)

while the in-plane components of the strain rate tensor Dαβ are given by

Dαβ =

[

cosα − sinα
sinα cosα

][

cosϕ 0
0 sinϕ

] [

cosα sinα
− sinα cosα

]

. (16)

From the above relations (14)-(16) for the loading path, one can calculate the stress state τττ(λ) and

consequently the incremental moduli L(λ) in (3) which are given as functions of the current stress state.

The functional dependence L(τττ ) depends on the constitutive model adopted and a specific selection for

aluminum alloys will be proposed in the next section. At this point it suffices to say, that for finitely

strained elastoplastic solids a convenient form of the constitutive law is given by the incremental moduli

tensor LLL(τττ ) which relates the Jaumann rate of the Kirchhoff stress
∇

τττ to the strain rate tensor D. In the

absence of a rigid body rotation of the solid,
∇

τττ= dτττ/dλ, and hence

dτij
dλ

= Lijkl(τττ (λ))Dkl. (17)

3Use of the Kirchhoff stress measure leads to the incremental moduli L with the major symmetry Lijkl = Lklij if the
same symmetry is adopted for the incremental moduli LLL.
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From (17) the relations between the known constant strain rates Dαβ and the non-zero stress rate

components are

dταβ

dλ
= Pαβγδ(τττ (λ))Dγδ, Pαβγδ ≡ Lαβγδ −

Lαβ33L33γδ

L3333
. (18)

In deriving the plane stress incremental equations in (18) it is tacitly assumed that x3 is a material

axis of orthotropy, a property which when combined with the plane stress assumption (14) gives for the

out of plane strain rates D3α = 0, D33 = −L33γδDγδ/L3333 and hence the expressions for the plane stress

moduli PPP(τττ ) recorded in (18).

The determination of the stress state τττ (λ) from (16) and (18) leads to the calculation of the complete

moduli tensor LLL(τττ ) from which one can find the moduli tensor L(λ), required by the general analysis in

(3) to be

Lijkl = Lijkl −
1

2
(τikδjl + τilδjk + τjkδil − τjlδik). (19)

The above result follows from the definitions of the moduli L (dΠji/dλ = Lijkl(λ)(dFkl/dλ)) and LLL in

(17), the relations between the two stress measures (Π, τττ ) and their work conjugate strain rate measures

(dF/dλ,D), and is a straightforward calculation in continuum mechanics. The above discussion gives

the physical meaning of the time-like parameter λ as a measure of the principal strain size (see (15)) and

provides an explicit methodology for the determination of the moduli L(λ) which enter the calculations

for the onset of the surface bifurcation.
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3 Constitutive Model

As mentioned above, the application of the general surface bifurcation analysis to a specific solid

requires the material properties of the solid, which enter through the incremental moduli tensor LLL(τττ) that

relates the Jaumann rate of the Kirchhoff stress
∇

τττ to the strain rate tensor D. For buckling problems

in metals, which occur during a proportional loading path, as is the case here, it has been established

that the deformation theory of plasticity gives better correlation to experiments, as compared to the

standard flow theory with a smooth yield surface (see the review article by Hutchinson (1974)). Following

Stören and Rice (1975), an attractive way to obtain a finite strain version of the deformation theory of

plasticity is by assuming that the incremental moduli, derived for deformation theory under a small strain

assumption, are also the ones relating the Jaumann rate of the Kirchhoff stress to the strain rate. Their

method, which also assumed a von Mises isotropic yield function Φ(τττ ), was applied to the prediction

of the forming limit diagrams of biaxially stretched metallic sheets. The generalization of this model

for the case of anisotropic yield functions Φ(τττ ), which has been used by Triantafyllidis and Needleman

(1980) for wrinkling calculations in the cup drawing test, is adopted for our purpose and has the following

incremental moduli tensor LLL(τττ ) components

Lijkl = Q−1
ijkl −

[Q−1
ijmn(∂τe/∂τmn)][(∂τe/∂τpq)Q

−1
pqkl]

[(Et)−1 − (Es)−1]−1 + [(∂τe/∂τpq)Q
−1
pqrs(∂τe/∂τrs)]

(20)

Qijkl =
1 + ν

E
[
1

2
(δikδjl + δilδjk)−

ν

1 + ν
δijδkl] + (

1

Es
−

1

E
)(
∂τe
∂τij

∂τe
∂τkl

+
∂2τe

∂τij∂τkl
). (21)

In the above expressions, E is the Young’s modulus, ν the Poisson’s ratio of the material’s uniaxial

response and τe(τττ) is the effective stress (τe is a function of Φ) which is a homogeneous function of τττ ,

of degree one. In addition, Es(τe) and Et(τe) are the secant and tangent moduli evaluated at a stress

level τe on the uniaxial stress-strain curve. Finally, the rank four tensor Q−1 is the inverse of Q in

(21) and is assumed to have the same symmetries as Q, i.e. QijpqQ
−1
pqkl = (1/2)(δikδjl + δilδjk) and

Q−1
ijkl = Q−1

klij = Q−1
jikl = Q−1

ijlk . It should also be mentioned that the moduli in (20) and (21) assume

loading of the solid in the plastic regime of the response, i.e. τe ≥ τy, where τy is the yield stress.

The above proposed formulation is applicable to anisotropic rate-independent elastoplastic materials

which do not exhibit the Bauschinger effect, i.e. materials which exhibit no difference between their

tensile and compressive responses. Instead of expressing the equivalent stress τe, or the yield function

Φ (τe = (Φ/2)1/m)4 as anisotropic functions of τττ (e.g. Hill (1950)), Karafillis and Boyce (1993) have

proposed the concept of an “Isotropic Plasticity Equivalent” (IPE) material, for which τe is an isotropic

4Φ is usually a homogeneous polynomial in τττ of order m. For the von Mises case m = 2.
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function of the IPE material’s stress. The IPE material’s stress tensor s is related to the actual stress

tensor τττ of the anisotropic material by a rank four symmetric tensor A which characterizes the anisotropy

of the material. Thus, it is assumed that

τe =

(

|s1 − s2|
m + |s2 − s3|

m + |s3 − s1|
m

2

)1/m

(22)

where sI are the principal values of sij = Aijklτkl.

The specific choice of τe(s) in (22) used here has also been employed by Barlat et al (1991) and

was first proposed for isotropic materials by Hershey (1954). For the case of orthotropic materials, like

the aluminum alloys of interest, the transformation tensor A contains only six independent non-zero

components cJ , namely

A1111 = (c2 + c3)/3, A2222 = (c1 + c3)/3, A3333 = (c1 + c2)/3,

A1122 = A2211 = −c3/3, A1133 = A3311 = −c2/3, A2233 = A3322 = −c1/3,

A2323 = A2332 = A3223 = A3232 = c4/2,

A1313 = A1331 = A3113 = A3131 = c5/2,

A1212 = A1221 = A2112 = A2121 = c6/2. (23)

In addition to the equations (20)-(23), the complete characterization of the material model requires

the uniaxial stress-strain curve of the material, which is determined experimentally, as are the constant

exponent m, appearing in the equivalent stress determination in (22), and the six anisotropy coefficients

cJ in (23).
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4 Results and Discussion

The numerical calculation of the critical load λc at the onset of surface bifurcation and of the corre-

sponding eigenmode direction Ωc proceeds as follows:

The construction of the stability matrix Sij(Ω, λ) defined in (10), which is required for the calculation

of λc and Ωc according to (11), involves the determination of the current stress state ταβ(λ). The

calculation of the stress state at load parameter λ is based on the system of first order ordinary differential

equations in (18), which are numerically integrated using a second order Runge-Kutta method with a

step size ∆λ = 10−4. To verify the accuracy of the numerical stress integration algorithm, the results

have been compared with the known analytical solution for the special case of a von Mises isotropic

material. For this isotropic material, the constitutive equations reduce to the J2 deformation theory, i.e.

the exponent in the definition of the equivalent stress τe in (22) is m = 2 and the all six coefficients in

(23) which characterize the orthotropy of the material are cJ = 1. For this case it can be shown (e.g.

Triantafyllidis et al (1982)) that the principal stresses τα are related to the principal strains εα by

τα =
Es

1− ν2
s

[(1− νs)εα + νs(ε1 + ε2)]

νs =
1

2
+
Es

E
(ν −

1

2
) (24)

where Es(τe) is the secant modulus evaluated at the equivalent stress τe = (τ2
1 − τ1τ2 + τ2

2 )1/2. When

comparing the stresses obtained by the previously described numerical integration algorithm to their

exact counterparts in (24), for the isotropic material case, the error in the stresses is of the order 0.1%.

The numerical determination of the critical load λc is based on the evaluation of the minimum value,

with respect to the angle Ω, of the determinant of the stability matrix in (11) every ten load increments.

The Ω minimum of the determinant is also obtained numerically by scanning the [0, π) interval in 315

equal increments. Further verification of the accuracy of our algorithm is obtained by comparing our

results with those of Hutchinson and Tvergaard (1980) for an isotropic, incompressible, rate-independent

material with a hardening exponent of n = 0.1.

The material investigated for surface bifurcation is a 2024-T3 aluminum alloy, whose anisotropy coeffi-

cients cJ and exponent m appearing in the definition of the equivalent stress τe have been experimentally

determined by Barlat et al (1991). The alloy’s experimentally obtained uniaxial stress-strain response

along the rolling direction (α = 0) is fitted to a power law of the type (τ/τy) = (ε/εy)
n or equivalently

τ = Kεn where τy = Eεy. The numerical values used in the calculations are summarized in Table 1 for

the anisotropic yield function coefficients and the uniaxial stress-strain constants are: E = 69000 MPa,
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Material m c1 c2 c3 c4 c5 c6
2024-T3 8 1.378 1.044 0.955 1.000 1.000 1.210

Table 1: Coefficients of the anisotropic yield function

ν = 0.31, K = 667.69 MPa and n = 0.114.

The results of the calculations are plotted in the principal logarithmic strain space ε1 − ε2 in Figures

2-4 and Figure 6 with the surface bifurcation points in each figure corresponding to the solid curve. The

dashed curve represents the loss of ellipticity in the three-dimensional incremental equilibrium equations,

i.e. the possibility of the onset of a localized deformation band in three-dimensions. The corresponding

load parameter λ for each point on the dashed curve is the lowest load parameter at which Lijkl(λ)njnl

loses positive definiteness on the radial loading path in question. According to the general theory pre-

sented in Section 2, we seek surface bifurcations in the elliptic regime of the material, which explains why

the surface bifurcation curves are entirely inside the loss of ellipticity curves. For comparison purposes we

also plot by a dotted curve, in the same figures, the forming limit curve which corresponds to the onset

of localized necking in a biaxially stretched thin sheet. The corresponding load parameter λ for each

point on the dotted curve is the lowest load parameter at which Pαβγδ(λ)nβnδ loses positive definiteness

on the radial loading path in question, where the plane stress incremental moduli P(λ) are derived from

their three-dimensional counterpart L(λ) by

Pαβγδ = Lαβγδ −
Lαβ33L33γδ

L3333
. (25)

The forming limit curves are meaningful for tensile principal stresses and hence are plotted only for

σ1 > 0 and σ2 > 0. It should be remarked here that the plotting of the forming limit curve in the principal

strain space is a popular tool for assessing the formability of alloys in sheet metal forming industry and

the corresponding diagrams, termed forming limit diagrams (FLD) have been produced experimentally

and predicted analytically for an infinite variety of alloys (see discussion in Stören and Rice (1975)).

The results in Figures 2-4 correspond to straining paths with the principal axes oriented at α = 0,

π/6 and π/4 respectively to the rolling direction of the alloy. It should be mentioned here that due to

the orthotropy of the material the results are symmetric about α = π/4. For the principal strains of the

same sign ε1ε2 > 0 (first and fourth quadrant of the graphs) the effects of the change of the orientation

angle α are not that pronounced, i.e. the forming limit, surface instability and loss of three-dimensional

ellipticity results never differ by more than 12%, between the three different values of α, except in a

small region near ϕ = π/18. Notice the discontinuity in the slope of the curves for ϕ = π/18 when
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α = 0 and for ϕ = π/4, 5π/4 when α = π/6, π/4. For ε1 = ε2 (ϕ = π/4, 5π/4), the forming limit,

surface instability and loss of ellipticity curves in Figures 2-4 all coincide respectively, as expected from

the resulting isotropic strain state.

The influence of the orientation angle α is considerably more pronounced in the case of the principal

strains of a different sign ε1ε2 < 0 (second and fourth quadrant of the graphs). The biggest changes,

for the different orientation angles, occur in the neighborhood of ϕ = 3π/4, 7π/4. Notice in particular

the changes in the critical surface strains between α = π/6 and α = π/4, which can differ by up to 83%

between the two cases. It should also be remarked that unlike the case of the principal strains of the same

sign, for certain strain paths with ε1ε2 < 0 the loss of ellipticity and surface instability curves coincide,

i.e. there is no surface instability in the elliptic regime of the material response.

A typical graph for the orientation angle of the surface mode Ωc as a function of the load path angle

ϕ is depicted by a solid line in Figure 5 and corresponds to the principal strains oriented at α = π/6 with

respect to the rolling direction. On the same graph is also plotted in a dashed line the orientation angle θ

of the principal stresses corresponding to the onset of the surface bifurcation and the forming limit curve,

since the orientation of the principal stresses remains almost constant during a proportional straining

path. The orientation angle of the localized failure zone corresponding to the forming limit curve ψc is

plotted in a dotted line for σ1 > 0 and σ2 > 0. It is interesting to note that the orientation angles Ωc and

ψc do not coincide, but are close for positive principal strains, and are both different from the principal

stress orientation angle θ. The two curves for θ as a function of ϕ are due to the fact that one corresponds

to σ1 and the other to σ2. It is also worth mentioning that for each load orientation angle ϕ there is only

one value of Ωc and ψc with the obvious exception of the hydrostatic straining at ϕ = π/4, 5π/4, due to

symmetry, and near three of the four locations of the change of sign in the principal stresses.

All of the above reported calculations correspond to a 2024-T3 anisotropic aluminum alloy with a yield

surface exponent m = 8. The influence of the anisotropy and the yield surface exponent m on the surface

bifurcation curves is investigated in Figure 6, which depicts the surface bifurcation results for the 2024-T3

alloy plus two additional hypothetical comparison materials. An isotropic solid cJ = 1 with the same yield

surface exponent m = 8 as the actual 2024-T3 alloy and a J2 isotropic material cJ = 1 with m = 2 which

only shares the same uniaxial stress-strain curve as the actual alloy for α = 0. Notice the significant

influence of m which results in a consistent over-prediction of surface bifurcation by the isotropic J2

deformation theory by as much as 30% for the isotropic straining case. In comparing the m = 8 isotropic

to the anisotropic cases the changes are not monotonic. In addition to the expected differences between

the critical strain predictions for principal strains of the opposite sign, notice the significant differences

(maximized for ϕ = π/4) in the predictions of the two different isotropic comparison solids for principal
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strains of the same sign. The latter observation indicates that the correct yield surface characterization is

more important for the prediction of surface bifurcation than the anisotropy for the same sign principal

strains.

15



5 Conclusion

The development of strain induced surface roughness is an important factor which limits formability

of alloys with a desired high quality surface finish. For small strains, the development of surface roughness

is due to the surface grain misorientation and appears in the form of random “orange peel”. This effect

can be reduced by surface treatment which results in the smaller grain size. Surface roughness for large

strains, which appears in the form of same orientation wavelets several grains wide, is a surface bifurcation

instability due to the nonlinear kinematics and the constitutive response of the solid. This instability is

inevitable at high strains and is a precursor to the ultimate fracture failure of the material. Unlike the

previous phenomenon, it is amenable to a continuum description which admits analytical solutions for

the case of a half-space idealization.

Surface bifurcation is extremely sensitive to the constitutive description of the material. Past work

was available only for the von Mises type isotropic materials, thus motivating the present study on

the influence of anisotropy on surface bifurcation. The present calculations for an actual aluminum

alloy, although indicative due to the extreme difficulty in obtaining experimental verification, show that

anisotropy is extremely important for the case of principal strains of the opposite sign. Moreover, it is

also found that the yield surface characterization plays an important role near balanced biaxial strains.

The above proposed continuum approach can be improved by the incorporation of grain size effects

to predict the characteristic length of the surface mode. Improvements on the continuum approach

always provide an analytically tractable alternative to the full scale micromechanical calculations in

three-dimensions which involve fine meshing of many grains.

16



ACKNOWLEDGMENTS

The partial support of ALCOA and NSF under grant G-CMS-9503956 are gratefully acknowledged.

17



References

[1] Barlat, F., Lege, D. J. and Brem, J. C. (1991) A Six-Component Yield Function for Anisotropic

Materials, Int. J. Plasticity, 7, 693–712.

[2] Becker, R. (1997) Effects of Strain Localization on Surface Roughening During Sheet Forming, to

appear in Acta Materialia.

[3] Biot, M. A. (1965) Mechanics of Incremental Deformations, Wiley, New York.

[4] Hershey, A. V. (1954) The Plasticity of an Isotropic Aggregate of Anisotropic Face Centered Cubic

Crystals, J. Appl. Mech. Trans. ASME, 21, 241–249.

[5] Hill, R. (1950) The Mathematical Theory of Plasticity, Clarendon Press, Oxford.

[6] Hill, R. and Hutchinson, J. W. (1975) Bifurcation Phenomena in the Plane Tension Test, J. Mech.

Phys. Solids, 23, 239–264.

[7] Hutchinson, J. W. (1974) Plastic Buckling, Adv. Appl. Mechanics, 14, 67–144.

[8] Hutchinson, J. W. and Tvergaard, V. (1980) Surface Instabilities on Statically Strained Plastic

Solids, Int. J. Mech. Sciences, 22, 339–354.

[9] Karafillis, A. P. and Boyce, M. C. (1993) A General Anisotropic Yield Criterion Using Bounds and

a Transformation Weighting Tensor, J. Mech. Phys. Solids, 41, 1859–1886.

[10] Larsson, M., Needleman, A., Tvergaard, V. and Storakers, B. (1982) Instability and Failure of

Internally Pressurized Ductile Metal Cylinders, J. Mech. Phys. Solids, 30, 121–154.

[11] Rice, J. R. (1976) The Localization of Plastic Deformation, Theoretical and Applied Mechanics, W.

T. Koiter, editor, 207–220, proceedings of the 14th IUTAM Congress, Delft, Netherlands.
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FIGURE CAPTIONS
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Figure 1: Schematic representation of the half-space indicating orientation angle Ωc of the surface mode.

Figure 2: Surface bifurcation depicted by a solid line, three-dimensional loss of ellipticity and forming

limit curves depicted by a dashed and a dotted line respectively, are plotted in principal strain space for

a 2024-T3 aluminum alloy strained at an angle α = 0 with respect to its rolling direction.

Figure 3: Surface bifurcation depicted by a solid line, three-dimensional loss of ellipticity and forming

limit curves depicted by a dashed and a dotted line respectively, are plotted in principal strain space for

a 2024-T3 aluminum alloy strained at an angle α = π/6 with respect to its rolling direction.

Figure 4: Surface bifurcation depicted by a solid line, three-dimensional loss of ellipticity and forming

limit curves depicted by a dashed and a dotted line respectively, are plotted in principal strain space for

a 2024-T3 aluminum alloy strained at an angle α = π/4 with respect to its rolling direction.

Figure 5: Orientation angle Ωc for the onset of surface bifurcation depicted by a solid line and angle ψc

for the onset of plane stress necking, i.e. forming limit, depicted by a dotted line, are plotted as functions

of the principal strain ratio angle ϕ. The principal stress orientation angle θ which is essentially constant

during proportional straining is plotted in a dashed line.

Figure 6: Surface bifurcation curves plotted by solid lines in principal strain space for a 2024-T3 aluminum

alloy strained at α = 0, π/6 and π/4 with respect to its rolling direction. For comparison purposes, surface

bifurcation of two isotropic materials with the same uniaxial stress-strain curve as the actual alloy for

α = 0 are also plotted. The dotted curve corresponds to the finite strain generalization of J2 deformation

theory of plasticity while the dashed curve corresponds to an isotropic material which shares the same

yields surface with the actual alloy.
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