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ABSTRACT 

This work addresses the stability of axially loaded prismatic beams with any simply connected cross- 
section. The solids obey a general class of rate-independent constitutive laws, and can sustain finite strains 
in either compression or tension. The proposed method is based on multiple scale asymptotic analysis, and 
starts with the full Lagrangian formulation for the three-dimensional stability problem, where the boundary 
conditions are chosen to avoid the formation of boundary layers. The calculations proceed by taking the 
limit of the beam’s slenderness parameter, E (8’ = area/length*), going to zero, thus resulting in asymptotic 
expressions for the critical loads and modes. The analysis presents a consistent and unified treatment for 
both compressive (buckling) and tensile (necking) instabilities, and is carried out explicitly up to 0(s4) in 
each case. 

The present method circumvents the standard structural mechanics approach for the stability problem 
of beams which requires the choice of displacement and stress field approximations in order to construct a 
nonlinear beam theory. Moreover, this work provides a consistent way to calculate the effect of the beam’s 
slenderness on the critical load and mode to any order of accuracy required. In contrast, engineering 
theories give accurately the lowest order terms (O(s*)-Euler load-in compression or O(l)-maximum 
load-in tension) but give only approximately the next higher order terms, with the exception of simple 
section geometries where exact stability results are available. 

The proposed method is used to calculate the critical loads and eigenmodes for bars of several different 
cross-sections (circular, square, cruciform and L-shaped). Elastic beams are considered in compression 
and elastoplastic beams are considered in tension. The O(E*) and O(E~) asymptotic results are compared to 
the exact finite element calculations for the corresponding three-dimensional prismatic solids. The O@) 
results give significant improvement over the O@) results, even for extremely stubby beams, and in 
particular for the case of cross-sections with commensurate dimensions. 0 1998 Elsevier Science Ltd. All 
rights reserved. 

Keywords : A. buckling, B. beams and columns, B. elastic-plastic material, B. finite strain, C. asymptotic 
analysis. 

1. INTRODUCTION AND MOTIVATION 

The stability of prismatic solids under axial load is one of the oldest and most 
classical problems in structural mechanics. More specifically, the first investigations 
of the buckling of columns under axial compression go back about two centuries to 
Euler and his study of the elastica, while the initial investigations of necking in bars, 
by Considere, are already more than a century old. 

*To whom correspondence should be addressed. 
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Although for a long time the stability problems in compression and tension were 
treated independently, the approach followed in each case was the standard one of 
structural mechanics: from the general equations of the three-dimensional solid an 
approximate one-dimensional (nonlinear) beam theory is derived for the prismatic 
structure in question ; the stability analysis follows by examining the resulting one- 
dimensional beam model under uniaxial loading. 

For axially compressed elastic beams, their critical load and mode depend essentially 
on the geometry of the cross-section. There is a voluminous engineering literature on 
this subject. Over the years the structural theories for the compressive stability of 
beams have been refined for the case of more complicated geometries and, in particu- 
lar, for thin walled sections where there is an interaction between bending and 
torsional modes (as opposed to simply connected sections with commensurate dimen- 
sions where the critical mode is a bending one). The interested reader is referred to 
the standard monographs of Timoshenko (1936) or Brush and Almroth (1975) for a 
classical treatment of this topic. 

For the case of bars in tension, their stability depends essentially on the constitutive 
equation. For the case of typical structural metals, their critical displacement occurs 
past the displacement corresponding to a maximum load for a uniformly strained 
bar. For certain elastomers which exhibit no maximum load in their uniaxial response, 
no necking instabilities are detected. Due to the essential dependence of necking on 
the constitutive law, the bulk of the engineering literature devoted to this subject 
pertains to the necking of circular or rectangular sections (e.g. see Bridgman, 1952). 

It should be mentioned that in the early structural mechanics literature, compression 
and tension problems were analyzed independently without recognizing that they 
were both treatable within the same framework, i.e. as bifurcation induced stability 
problems of the same prismatic structure under uniaxial loads of different signs. This 
latter approach started appearing in the 1950’s with the advent of nonlinear continuum 
mechanics for finite deformations, and the corresponding general methodology for 
hyperelastic solids was given by Green et al. (1952). 

It should also be pointed out that the above mentioned engineering approach, of 
first deriving a nonlinear structural theory and then investigating its stability under 
axial loads, gives an approximation of the critical load and eigenmode which depends 
on the nonlinear beam theory employed. It also makes difficult the correction of 
results to account for stubby beams. Knowledge of the exact results and of the validity 
of the engineering approximations is therefore highly desirable. 

The most straightforward way to assess the validity of the stability results obtained 
using the above mentioned structural approach is by comparing them to the critical 
loads and modes based on exact calculations involving the full three-dimensional 
formulation of the stability problem in question. For the case of relatively simple 
geometries, i.e. rectangular blocks in two-dimensions (under plane strain conditions) 
or cylinders in three-dimensions, one can obtain the stability results analytically. The 
first such calculations were applied to specific hyperelastic materials (e.g. Levinson, 
1968 for the compression of a rectangular block under plane strain, Wilkes, 1955 for 
a cylinder under end thrust or Green and Spencer, 1959 for combined extension and 
torsion). Subsequent investigations considered more general classes of constitutive 
equations. More specifically, Hill and Hutchinson (1975) and Young (1976) examined 
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the bifurcation instability of a rectangular block under plane strain in uniaxial tension 
and compression, respectively, for any incrementally linear hypoelastic material, thus 
covering both rubber-elasticity and rate-independent metal plasticity. In addition, by 
taking the limit of the block’s slenderness ratio going to zero, they provided asymptotic 
expansions for the critical load and modes. The leading order terms in these expansions 
correspond to the known structural theory results (the Euler buckling load in com- 
pression and the maximum load in tension). Similar asymptotic results were also 
obtained by Hutchinson and Miles (1974) for the bifurcation of an elastoplastic 
cylinder in tension. However, for the more general and, practically speaking, more 
interesting case of an arbitrary section where analytical expressions for the critical 
load and mode are not available, the only option thus far, besides the engineering 
theory, has been a full numerical solution to each problem. 

The motivation for our work is the following: is there any consistent and general 
way to find the critical load and mode of an axially loaded beam with any simply 
connected cross-section, as a function of its cross-sectional geometry and material 
properties to any degree of desired accuracy while still using a one-dimensional beam 
type analysis? Our answer is yes, and hinges on reversing the order of taking the 
structural approximation (to construct a beam theory) and performing the stability 
analysis (to find the critical load and mode). In the present work we follow the 
approach introduced by Triantafyllidis and Kwon (1987) for the stability of thin 
walled structures. First we formulate the exact stability problem for the three-dimen- 
sional prismatic solid and only afterwards do we take the limit of the beam’s slen- 
derness, E (c2 = area/length2), going to zero, in order to find the critical load and mode 
in terms of the slenderness. 

To achieve our task of taking the limit of the critical load and mode for the three- 
dimensional stability problem of a prismatic beam with a simply connected section, 
we make use of some recent developments in applied mathematics which use multiple 
scale asymptotic techniques to derive a consistent one-dimensional (beam) theory for 
prismatic, linearly elastic solids based on the general three-dimensional equations of 
linear elasticity. The rich history of the mathematical derivations of the engineering 
beam equations from the three-dimensional equations of elasticity-which is a classi- 
cal problem in mechanics and applied mathematics-is beyond the scope of this work. 
It suffices to say that the multiple scale asymptotic technique employed here has its 
origins in the work of Rigolot (1972) on the derivation of an asymptotic theory for 
linear elastic beams. Of the number of subsequent works that followed on the same 
subject and used the same technique, we mention the work of Trabucho and Viafio 
(1989) which has been of particular help to our analysis. In this work, the governing 
one-dimensional equations for a prismatic linear elastic solid up to O(E’) are derived 
from the three-dimensional equations of isotropic linear elasticity. Their methodology 
has been appropriately modified to account for an eigenvalue problem with stress- 
dependent incremental moduli. 

The outline of the present work is as follows: the general formulation for the 
stability problem of a finite strained, rate-independent three-dimensional prismatic 
solid, the resealing of the problem according to the beam’s slenderness parameter, 
and the corresponding asymptotic expansions for the critical load and mode are stated 
at the beginning of Section 2. The results for the asymptotic expansions of the critical 
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load up to 0(s4) and mode up to 0(c2) in both tension and compression are given, 
without a derivation, in the remainder of Section 2. The choice of constitutive laws is 
recorded in Section 3, while Section 4 contains a brief description of the numerical 
calculations for the exact three-dimensional problem and of the cross-section depen- 
dent constants involved in the asymptotic solutions. The results are presented in 
Section 5 and include the comparison of the exact and asymptotic critical loads up to 
O(E~) and eigenmodes up to O(E*) for both tension and compression of prismatic 
beams with several different cross-sections. In the interest of completeness of the 
presentation, all the derivations of the general asymptotic results of Section 2 are 
given in detail in the Appendix for the benefit of the interested reader. 

2. ASYMPTOTIC FORMULATION 

In this section, the stability theory for beams with simply connected cross-sections 
under axial loading is developed using an asymptotic approach. In the first part, the 
general stability problem for a rate-independent prismatic solid is formulated, fol- 
lowed by the description of the asymptotic method. In the second and third parts, 
respectively, the asymptotic expressions for the critical load and eigenmode for the 
cases of compression and tension are presented without proof. A detailed derivation 
of the asymptotic results for compression and tension is given in the Appendix. 

2.1. General formulation 

The geometry and boundary conditions for the stability problem are shown in Fig. 1. 
The p&matic- solid has a length L and a simply connected cross-section with 
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Fig. 1. Schematic representation of the geometry and boundary conditions of an axially loaded prismatic 
beam. 
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area A in its undeformed stress-free configuration, which is used as the reference 
configuration ( full Lagrangian description). To avoid the presence of boundary layer 
effects near both ends, it is assumed that the two ends, x3 = f L/2, remain flat and 
are free of shear tractions. Rate-independent, incrementally linear solids, which cover 
finite elasticity and elastoplasticity, are considered. It is additionally assumed that the 
material is initially isotropic, and due to the imposed axial loading, it remains isotropic 
in the xlxz plane. The x3 axis, the axis of loading, is an axis of orthotropy for the 
material. 

The load parameter for the problem is the axial stretch ratio, 2. In compression 
2 < 1, and in tension 1 > 1. For the stability problem we seek the critical stretch ratio, 
I,, which is the value of 1 corresponding to the first bifurcation encountered during a 
monotonic loading process. 

For the rate-independent solids considered here, the stability problem is governed 
by Hill’s (1957) stability functional? 

1 
p(uy 2) = 2 

s 
Li,kl(~)Uk,,Ui,j dI’> 

” 
(1) 

where ui is the velocity field1 and L,, are the incremental moduli relating the rate of 
the transpose of the first Piola-Kirchhoff stress, IJ1, to the rate of the deformation 
gradient, ZQ,, as follows 

n,, = L,kPk,l. 

The incremental moduli are evaluated on the principal path whose stability is under 
investigation. Positive definiteness of B along the principal path ensures a unique 
solution to the incremental equilibrium equations and stability for the structure. For 
a well posed problem9 9 is positive definite in the unstressed state, i.e. when ,? = 1. 
Assuming 5 to be a continuous function of A,9 will be positive definite for all values 
of ;I such that 1;1- 11 < 11, - 11. Loss of positive definiteness of B corresponds to a 
nontrivial solution to the eigenvalue equation 69 = 0. The associated eigenvalue 
problem can be more conveniently written as 

Jv 

s I-Ji6ui,, d I’ = 0. 
Y 

(4) 

Note that (3) are the linearized incremental constitutive relations for the material and 
(4) are the incremental equilibrium relations for the solid. 

In the problem considered here the mode, u(x,), satisfies the following essential 
(kinematic) conditions 

+(x,,x2, *L/2) = 0, (5) 

t Here and subsequently Greek indices range from l-2 and Latin indices range from l-3. 
$ To avoid notational confusion the velocity and stress-rate will not be shown with a superimposed dot. 
Q It is additionally assumed that L,jk, = Lkli, (major symmetry for incremental moduli) which ensures a 

self adjoint system and hence real eigenvalues. 
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j)&=[A ~,~x,u~dA = 0 at xj = 0, (6) 

with &tip defined as the alternating symbol in two dimensions 

(&,I = -522 = 0, q2 = ---Ed, = l), and where (5) is the flat surface boundary condition 
for the two ends while (6) exclude rigid body modes. In addition to the above 
conditions, the mode normalization is enforced by 

with appropriately chosen vector field ui and constant C. The eigenmode at A, does 
not have to be unique within the context of this analysis. 

To begin the analysis the domain of the problem is normalized by dividing the 
dimensions of the beam by its length L. The new domain has a length of one and an 
area of .s2 = A/L*. It can be seen that the domain depends on the parameter E. The 
goal of the analysis presented here is to solve the stability problem on a normalized 
domain that is independent of 8. It is assumed that the cross-section has commensurate 
x, and x2 dimensions. Consequently, the domain is resealed with the parameter E as 
follows 

To obtain the incremental equilibrium eqn (4) in the normalized domain with all 
terms of the same order, the mode and stress-rate are resealed in the following manner, 
leading to the redefinition of the problem on the normalized domain, o x [ - l/2, l/2], 
which has unit area, SW do = 1, and unit length, 

24, + &K’U,, u3 + u3 (9) 

IJaB + E2K$, K, + ax3, n3fl + En389 n33 + n33. (10) 

By introducing the resealed variables (8)-(10) into the governing eqns (3), (4) we 
obtain the following variational equations for the field quantities, U(E) and II(E), 

defined on the normalized domain 

E-‘[-b-2(L(l(E)), U(E), dn)l+ bo(n(E), an) -b(L(%E)), U(E), dn)l 

+E2b2(w), al-0 -~,(W(E)), U(E), WI +E4b4(w), WI = 0 (11) 

Co(rI(E), &I) = 0. (12) 

which are expressed in terms of the bilinear forms defined below 

i/2 
b-,(ww), U(E), w = 

s s 
[L 33yc+g,d~331 dodx3, (13) 

-l/2 w 

J/2 

hJ(UW), U(E), w = 
s s 

L&&,dq% + (L3,3&3 +L33&3,6)~fl3oI 
-l/2 0 

+(L3~y3+3 +L3~36~3.d8&3 +L3333~3,38n331 dwdx3, (14) 
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~*M~(~)), U(4, sn) = 
s s 

Lg~~wQ-borl dwdx3, 
-Ii2 (I, 

961 

(15) 

Notice that the governing equations, (11) and (12), depend solely on .s2. Consequently, 
for slender prismatic bars, those with E << 1, we adopt the following regular asymptotic 
expansions for the critical stretch ratio n,.(s), eigenmode U(E), stress-rate II(s), and 
incremental moduli L(E) in terms of ~2 

i, = A, +c2i2 +g4i4 f.. . (20) 

u = i+E2:+E4G+. . . 
(21) 

II = I!I+~~li+~~ii+~~~ (22) 

L = i+E2t+E4it+-‘. (23) 

From the governing eqns (1 l), (12) boundary conditions (5), (6) and mode 
normalization condition (7) for the stability problem, resealed in terms of the slen- 
derness parameter E’, asymptotic solutions to the actual stability problem are con- 
structed with the help of the expansions (20)-(23) for compressive and tensile loadings. 
Results for compression and tension are presented without proof in the following two 
sections. Appropriate references to certain key equations from the detailed derivations 
in the appendix are given along the way to help the more devoted reader. 

2.2. Compression 

To begin the analysis for the case of compression, it is noted that the buckling load 
for a beam with a finite length but a vanishingly small area is zero. Since the critical 
load vanishes, the critical strain should tend to zero, i.e. E,. = In & = 0 as E -+ 0, which 
implies 2, = 1. The expression for 3,,. can now be written as 

I.,. = 1+s2jV2+.... (24) 

Since 2, < 1 in compression, we must have I,, < 0. Also note that the lowest order 

incremental moduli, i = L(l), are isotropic, since the material is assumed to be 
initially isotropic. 

2.2.1. Derivation of j”2, A,. The next terms sought in the expansion of 1,. and u are ,I2 
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and i. From the asymptotic procedure just outlined, it can be shown that the lowest 
order terms in the expansion of the mode are found in terms of&(x,) [see (A41)], the 
transverse components of the mode along the x3 axis 

:, = &(x3), z?, = -x,&J(x3). (25) 

Examining (25) it is seen that the lowest order term for the mode agrees with the 
Bernoulli-Euler-Navier beam bending assumption, i.e. plane sections remain plane 
and normal to the deformed middle line. 

To completely determine & in (25) it is necessary to find &(x,). To this end we 
define the differential operator 

where Zma are the normalized moments of inertia, and 6,, is the Kronecker symbol 
in two dimensions (a,, = C& = 1, ~5,~ = 6,, = 0). The governing ordinary differential 
equations and boundary conditions for &(x3) are shown to satisfy [see (A47)] 

~:/&] = 0, (27) 

&3(~j) = 0 at x3 = &. (28) 

The solution of the eigenvalue problem, (27) and (28), gives ;1*, taken to be the lowest 
eigenvalue in absolute value, and the corresponding mode, &(x3) 

A* = --nV,,i,i,, (29) 

&(x3) = i, sin(rcx,), (30) 

where, from (6), the kinematical constraint against rotation, and (7), the model 
normalization, P, are found as the solution to the following system of equations 

&,,I&& = 0; z^,z^, = 1. (31) 

For the case where either I,, --Z2* # 0 or 1,2 # 0 the above homogeneous system in 
f, admits the solutions (f,, &) = (cosb, sin/?) or (sinp, cos/?) with -rc/4 < /3 d 71/4 
(the negative solutions give the same mode). The wanted solution 8, is the one of the 
two choices which minimizes I,,.@,, since according to (29) we are interested in the 
lowest buckling load. The case I ,, = Z,, and II2 = 0 gives an infinity of possible 
solutions (ir, z2) = (cos fi, sin 8) where /I is any arbitrary angle - 71/2 6 /? < 7c/2. For 
this latter case z^, are indeterminate from 3L2, but this special case will be discussed 
again following the presentation of 2, in the next subsection. 

2.2.2. Derivation of Ad, ii. Attention is subsequently turned to the derivation of ,I4 
and i. We begin with the expressions found for z$ [see (A49) and (A57)] 

:, = ~,(X3)+&,BXB~(X3)+V~,B(X,,X2)~B,33(X3), 

A, = ~3~x3~-xx,~,,3~x3~-w~x,~~2)~,3~x3~+~2~1+v~x,~,,3~x3~ 

+W&1,x2)+(1 +v)~,<x,~~2)l~or,333(x3)~ (321 
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where $crB(x,, x2), 0=(x,, x2), q,(x,, xJ, and w(x,, x2) are auxiliary functions defined on 
the normalized cross section, o [see (A50) and (A54)-(A56)]. The function w(x,, x2) 
is the well known warping function from the theory of torsion of prismatic beams. 
Another function arising from the theory of torsion of prismatic beams that also 
appears in the analysis is the Saint-Venant stress function, Ii/(x,, x2) [see (A60)]. The 
auxiliary constants, J, I$, Jr, H,, K, K$, K:,, L$, and L$, appearing in the following 
results, are defined with the help of these functions and are found in the Appendix. 

Using the functions presented above, simplified expressions for 2(x,) and i3(xj) 
can be determined. The governing differential equation and boundary conditions for 
i(x,) are found to be [see (A62)] 

L(x,> = 
[ 
vzl + (1+ v)ZZ 0 

.I I 
Z,,H33(%). (33) 

i(x,) = 0 at xX = 0, 

I.,(,,) = 0 at xj = +i. (34) 

Solving (33) subject to (34) gives 

&) = -Qc* 
[ 

vz:+(l+v)z: 

J 1 sin(rcx,). (35) 

The governing differential equation and boundary conditions for 2, (x,) are [according 
to (A67)] 

&.&3) = ~Hz&.~(xi)r (36) 

i3 (x,) = 0 at x3 = *i. (37) 

Solving (36) subject to (37) i3 (x,) is 

$(x,) = -&dvH,cos(q). (38) 

From (32) to fully determine hi the function &(x3) must also be found. The 
governing differential equations and boundary conditions for 2,(x,) are found to be 
[see (A8 1)] 

Yjp[$] = M, sin(nx,), (39) 

M, = -3.,n’f,+n6 

(vK% + vK(l,f, + (1 + v)KZ&) - (v/5&l,& + (1+ v)L$~ 

&,(x3) = 0 at xj = f k. (40) 
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From linear operator theory, and in view of the singularity of _Y& for &, a solution 
to (39) exists when M,i, = 0. Hence, the solution of the above problem, (39) and 
(40), gives & and the corresponding mode, 3,(x,) 

(41) 

&(xj) = {n-4[Z88-2ZBY~~~~]-‘Ma+~~a) sin(nx,), (42) 

where the constant C in (42) is found from the mode normalization condition [see 

(7)l 

112 

i s 
&&do dx, = 0. (43) 

-l/2 0 

According to our discussion at the end of the previous subsection, special provision 
must be made for the case I,, = Z22 and Z,, = 0. In this instance, from (39) and (40), 
.&(xX) = &,(xj) and compatibility dictates M, = 0. Observe from (39) that the system 
M, = 0 is homogeneous and linear in $ with R, as its eigenvalue and i, as the 
corresponding eigenvector, i.e. L4?, = C&i, where CEa are easily identifiable constants. 
Since the expression (41) is still valid for the special case at hand, the wanted z^, is the 
vector that maximizes I, [and hence provides the lowest critical strain according to 
(24)]. For the particular case that Ctis = C6,,, 1, = C but the eigenvector L, is no 
longer unique. This latter case is not just an academic curiosity but can easily occur 
in applications. For the case of D4 symmetry of the cross-section o, i.e. for the 
symmetry of the square, K$ = KB6,, K& = Kq6,,, L$ = L06,, L$, = Lv6,,, and 
Zf = Zz = 0, in which case t, is indeterminate from this step of the analysis. The 
circular, square and cruciform sections in the applications fall in that category of a 
double eigenvalue at i, for all values of the slenderness parameter E. To determine P, 
in this case, one needs to perform a nonlinear post buckling analysis for interacting 
modes (see Triantafyllidis and Peek, 1992) and find the correct initial tangent 5, of 
the eigenmode. 

2.3. Tension 

We begin the analysis for the case of tension by noting that a beam with a van- 
ishingly small area and a finite length has an instability corresponding to its maximum 
load. Consequently, &, the first term in the expansion for 2, is found when the nominal 
stress rate in the uniaxial tension is zero, or equivalently when the uniaxial tangent 
modulus, E(Q[(E(A) = l-I,,(A)/& see also (A91)], vanishes 

I!ITj = 0 3 E(I,) = 0. (44) 



Stability for prismatic solids 965 

It is also noted, unlike the analysis in compression, that & # ‘0. Therefore the lowest 

order terms in the expansion of the incremental moduli, L, will, in general, be 
orthotropic. 

2.3.1. Derivation of AZ, ii. The next terms sought in the expansion of 1, and u are i, 
and i. From the asymptotic analysis introduced in Section 2.1, the lowest order terms 
in the expansion of the mode are found to have the form [see (A87)] 

:, = 0, E1 = &(x3). (45) 

In analogy to the analysis in compression, the governing differential equation and 
boundary conditions for ;,(x,) give an eigenvalue problem where A2 is the lowest 
eigenvalue and i3 (x3) is the corresponding mode. We introduce the differential oper- 
ator,? 

d4[*l 
a-1 = -_(v2S)*L-p+& 

3 
(46) 

where v(n) is the instantaneous Poisson’s ratio [see definition in (A90)], and s(n) is 
the axial component of the second Piola-Kirchhoff stress in uniaxial tension. The 
governing differential equation and boundary conditions for &(x3) are shown to be 
[see (Al 07)] 

Y[&] = 0, (47) 

Z,=O atx,=+i. (48) 

The solution to the eigenvalue problem, (47) and (48) is 

&(x3) = PCOS(7rX)), (49) 

(50) 

Using once more the mode normalization condition (7) in conjunction with the 
asymptotic expansion in (21), and choosing C = l/2, gives z^ = 1. 

2.3.2. Derivation of A,, &,. Attention is next focused on the derivation of A4 and & 
We start with the results obtained for & [see (A95) and (A98)]. The following 
expressions for ii are found 

2 0 
u, = -v&M, 

L 
& =$(x3)+ v* ( 1 L 

P(G&.33(XA 
3131 0 

(51) 

where the auxiliary function p(x,, x2) is defined on the normalized cross-section o [see 
(A97)]. The only unknown function required to fully determine ii in (51) is 2, (x3). 

The governing differential equation for i3 (x3) will also give &. 
The finding of :,(x3) requires introducing the auxiliary function $,(x1, x2), also 

t4A zero subscript, (.)O, denotes the evaluation of the quantity c) at A, 
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*fined on the normalized cross-section o [see (Al 14)]. Upon closer inspection, since 

L 01876 are isotropic in the x,x2 plane, the equation for GX is the variational statement 
of a plane elasticity problem which can be solved numerically for an arbitrary section 
0. 

The governing differential equation and boundary conditions for I, (x3) are 

Y$j] = Mcos(7cx,), (52) 

A4 = - ‘4rr2’+ (d;,&, 2 dl dE/dR 
6” F[“(Z)]0_(YS)0A9 

i3 = 0 
1 

at xX = + - 
-2’ (53) 

where the constants A,, A, and A,, are given in terms of the above introduced 
auxiliary functions p and & [see definitions (A126)]. From linear operator theory, 
and in view of the singularity of 9’ for R2, a solution to (52) exists when A4i = 0. 
Since it is assumed that f # 0, A4 = 0 and (52) reduces to the homogeneous equation 
which, in view of the mode normalization condition, gives g, = 0. Also, in view of 
the fact that M = 0, the following expression for A4 is found 

‘4 = (d&), ~[$(&&)]o-(vS)OAI 

This concludes the analysis in tension up to fourth order for 1,. Higher order terms 
can be found in a similar manner. 

3. CONSTITUTIVE LAWS 

In this section specific material models are proposed for the stability analysis of the 
axially loaded beam. For the compressive case, the lowest bifurcation strain of the 
beam goes to zero for a vanishingly small cross section, and the corresponding 
asymptotic analysis, presented in the previous section, requires all material properties 
evaluated at zero strain. Since the response of most common structural materials 
about their unstressed state is elastic, a hyperelastic model has been adopted for 
the corresponding stability calculations, This choice gives us a consistent way of 
considering finite strains within the same material formulation, a necessary feature in 
view of our calculations for very stubbly beams (up to E = 1). 

For the tensile case, the lowest bifurcation strain of the beam approaches the 
necking strain (i.e. strain at maximum load) of the material as the cross sectional area 
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goes to zero. Motivated by metal plasticity, a .Z2 deformation theory, which is fitted 
to a power law type uniaxial response capable of exhibiting a maximum load at 
reasonable levels of strain, is adopted for the stability calculations. The choice of the 
deformation theory version of the most popular theory of plasticity is due to its 
advantages for predicting experimental results involving a proportional loading path. 
The interested reader is referred to the detailed discussion of this subject in the review 
article by Hutchinson (1974). 

3. I. Elastic material 

The hyperelastic material model used in compression is a compressible version of 
the Mooney-Rivlin material. Assuming some compressibility, with an initial Poisson’s 
ratio v (0 < v < I /2), a generalization of the standard incompressible Mooney-Rivlin 
material can be constructed (see Ogden, 1984) with the following strain energy density 

w=.(~-3),,(~-3)+~~(,i-~~, (55) 

where I,, Z2 and I3 are the three invariants of the right Cauchy-Green tensor, 
C, = FkiFkj where Fij is the deformation gradient, namely 

Z, = C,,, I* = i ttcii)’ - ct~ci,l, z3 = ~EdxmE~lnC~jCklCmn~ (56) 

where &i/k is the alternating symbol in three dimensions. 
The incremental moduli for this hyperelastic material, required in the general 

stability analysis [see (2)], are given by 

a2 w 
Lvkl = aF,aF, (57) 

The uniaxial tangent modulus, E(A), relating the rate of the first Piola-Kirchhoff 
stress to the rate of the axial stretch ratio, defined in Section 2.3, is calculated 
numerically in terms of the incremental moduli, L,jk((;l), which are evaluated on the 
principal equilibrium path [see definition (A91)]. For the asymptotic analysis in 
compression, the material properties enter through E(A) and dE(;l)/dl evaluated at 
I = & = 1. For the exact FEM calculations, the incremental moduli are derived from 
(55) and (57). 

3.2. Elastoplastic material 

The hypoelastic model used in tension is a rate-independent plasticity model intro- 
duced by St&en and Rice (1975). It is a finite strain version of J2 deformation theory 
of plasticity and its merits as a constitutive choice for stability calculations involving 
finitely strained metallic structures under a proportional loading path are extensively 
discussed in that reference. The incremental moduli of that theory expressed in the 
full Lagrangian formulation required by our general analysis are given by 
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I 

- ;(S,,C,’ +X,C;’ +S,c;’ -S,,C,‘), (58) 

where Es is the secant modulus and E, is the tangent modulus for the uniaxial stress- 
strain curve 

(59) 

with z being the Kirchhoff stress and E the natural (logarithmic) strain. Both functions 
are taken to depend on the equivalent stress, z,, by considering a specific uniaxial 
response as it will be specified in the sequel. The physical components of the right 
Cauchy-Green tensor are C,j, and C,: ’ are the components of its inverse. The devi- 
atoric stress components of the second Piola-Kirchhoff stress, Sij, are given by 

and the equivalent stress, z,, is expressed in terms of the second Piola-Kirchhoff stress 
deviator by 

z; = f s;,s:,. (61) 

Finally, the secant Poisson ratio, v,, which is also a function of z,, is defined as follows 

1 E, 1 
vs=2-E 2-v. 

( 1 
(62) 

It can be seen that for a material in the elastic range, E, = E and v, = v, and as the 
material deforms deep into the plastic range, 4, -+ 0 and v, -+ l/2. 

Some additional relations for the case of uniaxial tension, involving the Young’s 
modulus E(A), the Poisson’s ratio v(A), and the second Piola-Kirchhoff stress S(A), 
which enter the asymptotic stability results for tension need to be recorded at this 
point. In uniaxial tension the only non-zero component of the stress is the axial 
component 

S(A) = ;, (63) 

The uniaxial tangent modulus, E(A), introduced at the beginning of Section 2.3, is 
related to the tangent modulus, E,, by 
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E(1) = $ -S(l). 

The secant Poisson’s ratio can be found by considering the following relation between 
the axial logarithmic strain, E = In A, and the transverse logarithmic strains, 8, = In A,, 

E, = E2 = -VY,& (65) 

from which the following expression can be deduced for the instantaneous Poisson’s 
ratio, v(A), [see definition (A90)] 

v(A) = - $J = 2, (66) 

All the above recorded results are valid for a J2 deformation theory model with an 
arbitrary uniaxial response. The specific uniaxial stress-strain behavior used in our 
calculations is a piecewise power law. Given the Young’s modulus, E, and the yield 
strain, E, (and hence the yield stress, r, = EC,), the stress-strain behavior for this 
model is assumed to be 

IEE 
ifr <r, 

where m > 1 and E is the natural (logarithmic) strain (E = In 2). The secant modulus 
for the piecewise power law is then found to be 

E ifr d 5, 

E, = 
EL 

0 

1. m 

r, 
if 5 > r,, 

(68) 

while the tangent modulus is given by 

I 
E ifr 6 T) 

E,= E. 2 if r > r,.’ 
(69) 

m 

For the power law material model the evaluation of the material properties at A0 can 
be simplified by noting that e. = In 2, = l/m. Using this observation along with (67)- 
(69) in (63) (64) and (66) we can evaluate at lo, S(2), E(A) and v(n) and their 
derivatives with respect to 1. 

4. NUMERICAL SOLUTIONS 

Accurate numerical solutions are sought for the three-dimensional stability problem 
for beams with several simply connected cross-sections. Their results, which by abuse 
of language are subsequently referred to as “exact” solutions, are compared to the 
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approximate asymptotic solutions presented in Section 2. It should be pointed out 
that the auxiliary geometric functions defined on the cross-section (i.e. 8,, qa, w and 
$), which are required for the asymptotic solutions, are also calculated numerically. 

4.1. Three-dimensional solution 

The exact three-dimensional solution to the bifurcation problem is found numeri- 
cally by assuming a Fourier decomposition of the mode that satisfies (5), the flat 
surface kinematic boundary conditions at x3 = &-L/2 

24,(x,)= f G(x)sin n=, { 2 P ((2n-:)nx3)+1;:(4)Cos (F)}, 

U,(Xi)= f $ (X)COS n=, { 3 B ((2n-j)nx3)+I;XxP)sin (T)}. (70) 

Substitution of (70) into the stability functional of Hill (1957), given in (l), reduces 
the three-dimensional stability problem to a two-dimensional one defined on the 
cross-section of the beam. The reduced problem is then solved by using a finite element 
discretization the cross-section. For the results shown here the discretization is based 
on four node quadrilaterals with bilinear shape functions. 

For the stability of a beam with a circular cross-section another simplification can 
be made by taking advantage of axisymmetry. Making the coordinate transformation 
from Cartesian, x, and x2, to polar, r and B (where x, = r cos 8 and x2 = r sin 0), an 
additional Fourier decomposition of the mode can be made in the 0 direction. For 
this case the mode is assumed to be of the form 

it (r) sin(k0) sin ((2’-j)nx3)+ i;(r) sin(k@ cos f2)}, 

u2(r,Rxj) = f f 
n=l k=O i 

i:(r) cos(kt9) sin (““-i’““)+ &rj cos(k0) cos (F)] 

u3(r,f%x3) = f ii, 
n=lk=O 

With the substitution of (71) into (1) the three-dimensional problem is reduced to its 
one-dimensional counterpart. 

An LDU Cholesky decomposition of the resulting stiffness matrix for the discretized 
problem is performed at each load level, A, and the minimum entry, D,, of the 
diagonal matrix, D, is found. The first bifurcation is signaled by the change in sign of 
D, from positive to negative as the stretch ratio increases monotonically away from 
one. A bisection method is combined with the incremental change of /2. for a greater 
accuracy in the numerical determination of A,. The analysis is repeated for several 
values of the axial wave number, n, but the lowest critical load is invariably found to 
correspond to n = 1, in agreement with the asymptotic results of Section 2. In addition, 
for the axisymmetric formulation of the circular beams, the lowest critical load 
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corresponds to a circumferential wave number k = 1 for compression and k = 0 for 
tension, as expected from the asymptotic results of Section 5. 

4.2. Asymptotic solution 

For the case of compression the auxiliary functions 19~(x,,x~), r~~(x,,x~), w(x,,x~) 
and $(x,, x2) are required. The governing equations for these functions, (A54)-(A56) 
and (A60), are given in variational form which leads naturally to a numerical solution 
scheme based on the finite element method. 

For the case of tension it is necessary to find the auxiliary function 4,(x,, x2). The 
variational formulation of this problem is given in (Al 14). Since the moduli are 
isotropic in the x,x2 plane, finding a solution to (Al 14) is equivalent to solving a two- 
dimensional elasticity problem on the domain of the cross-section. Once again these 
functions are found using the finite element method. 

To solve for the auxiliary functions used in compression and tension, the same 
discretization of the cross-section was used as in the calculation of the three-dimen- 
sional solution. The cross-sectional constants necessary for the evaluation of 2, for 
both compression (42) and tension (53) are calculated by numerical integration of 
the auxiliary functions. 

5. RESULTS AND DISCUSSION 

Since analytical solutions for the asymptotic problem can be found for the case of 
a circular cross section, this is the first case examined. The asymptotic analytical 
solution for the stability problem of a cylinder in compression and tension is compared 
with the numerical solution of its three-dimensional counterpart. The connection of 
our results to existing slenderness corrections of the Euler buckling load is also 
discussed. 

More complex sections are subsequently examined in compression and tension 
using finite element solutions for the asymptotic and three-dimensional problems. 
A square section, a symmetric cruciform section and an asymmetric L-section are 
investigated. As an aid to the reader the O(E~), 0(c4) and exact critical strains are 
depicted in all subsequent figures by dashed, dotted and solid curves, respectively. 

5.1, Compression 

The hyperelastic material model used in compression is a compressible version of 
the Mooney-Rivlin solid whose strain energy density is given by (55). The O(E’) and 
O(E~) asymptotic results for the critical load and mode as well as the corresponding 
classical engineering approximations are compared with the finite element solution to 
the three-dimensional stability problem. For all calculations reported here the material 
constants in (55) are nondimensionalized such that A = 1, B = 0.8, and v = 0.3. This 
nondimensionalization gives an initial Young’s modulus E = 4(A + B)(l + v) = 9.36. 

5.1.1. Compression : circular section. The first section examined is a circular cyl- 
inder with initial radius R and length L. For this case E = &R/L. The circular 
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cylinder in compression has the advantage of having an analytical asymptotic solution. 
In addition, the numerical solution of the three-dimensional problem is considerably 
simplified by making use of the axisymmetry of the cross-section thus reducing the 
three-dimensional stability problem to a one-dimensional problem according to (71). 
In order to study the mesh effects for the four node quadrilaterals, which are used in 
all subsequent calculations, the results of the numerical solution, which follows the 
general formulation of the problem in (70) have been compared with the axisymmetric 
numerical solution. 

For a circular section with a normalized area, A = 1, the radius is R = I;&. The 
following area constants, defined in (A45), (A66) and (A80), are found to be 

1 
I,, =Z2* =&, H, =H2 =O, K=- 

127c2. 
(72) 

For the constants involving the Saint-Venant torsion function, defined in (A60) and 
found in this case to be $ = (1 /n-x: -x:)/2, the following results are obtained from 

(A61) 

J=&, rf=rf=o. (73) 

As expected for a circular section, no warping occurs, i.e. w = 0, and the related 
constants, defined by (A61) and (A80), vanish 

I; = K; = 0. (74) 

The auxiliary functions, 8, and qol, defined in (A54) and (A55), take the following 
form : 

em = -;(xT+x:-;)xm, 

fl2 =;(x:+li-gx,. 

(75) 

(76) 

The area constants which depend on 0, and qX are subsequently calculated from (A78) 
and (A79) 

(77) 

(78) 

Substituting the above results into (20), the asymptotic expression for A,, the following 
expression is found for the critical stretch ratio 

I, = i-4- 
v(l+2v) 

l+v 
-I- O(P). (79) 
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Fig. 2. Critical buckling strain, In(&), as a function of the slenderness parameter, E, for the axial compression 
of an elastic beam with a circular cross section. Exact results are denoted by the solid curve (-), while the 
O(c’) (engineering theory) and 0(e4) asymptotic results are depicted by dashed (-- -) and dotted (.-.) 

curves, respectively. 

The results for a circular cylinder, comparing the exact solution of the three- 
dimensional problem, found numerically, and the asymptotic solutions up to second 
order (Euler beam buckling theory) and fourth order, are shown in Fig. 2. The second 
order (Euler) solution gives good results up to E = 0.40 where the percent error is still 
under 5%. The fourth order solution gives comparable results (percent error less than 
5%) for values of e up to 0.65. This shows a considerable improvement over the Euler 
solution. For stubbier beams (E > 0.65) the fourth order asymptotic solution and the 
exact solution begin to diverge. Notice also that the exact solution is bounded between 
the second and fourth order solutions. 

The O(s4) term in (79), which provides the first slenderness correction to Euler’s 
critical strain, merits a more detailed discussion due to the interesting history of the 
subject. Efforts to correct Euler’s critical load to account for the beam’s slenderness 
can be dated back to Engesser, according to Timoshenko (1936) who gives an approxi- 
mate correction for Euler’s formula due to shearing effects in columns with arbitrary 
sections. Recently, Kardomateas (1995), revisited the same question and used a three- 
dimensional calculation to find the critical load of an orthotropic elastic cylinder 
under finite compressive strain. The approximate method of Timoshenko and the 
exact results of Kardomateas produce critical loads for an isotropic elastic cylinder, 
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which are lower than the Euler load. This result is in contrast to our result in Fig. 2, 
where the U(s4) correction to the critical strain is always larger in magnitude than its 
Euler, O(E’), counterpart. This difference is attributed to the presence of the initial 
curvature of the stress-strain (dE/dl),=, term in the 0(a4) term appearing in the 
expression for AC in (79). It must be pointed out that the initial curvature of the stress- 
strain curve, which is absent from both Timoshenko’s (1936) and Kardomateas’ 
(1995) results, depends strongly on the finite strain formulation adopted for the 
material, even for the linear elastic range of its response. To be more specific, consider 
three elastic materials with the following uniaxial responses : 

(i) 7c=E(1-1) ( engineering stress, r-c,? is proportional to engineering strain, /1- 1) 
(ii) d = Eln /z (true stress, 0, is proportional to true strain, In 2) 

(iii) r = Eln 1 (Kirchhoff stress, z, is proportional to true strain, In n). 

All three solids share the same linearized uniaxial behavior for infinitesimal strains. 
Noting the definition of the stretch-dependent Young’s modulus (E(1) = drc(;l)/dA) 
and recalling the relations between the different stress measures (7 = hc = Jo) as well 
as the kinematic relations for the volume change in uniaxial stretching (J = E,i:), 
where the lateral strain, &(A), is related to Poisson’s ratio by (66) we obtain the 
following results for the corresponding initial curvature of the stress-strain curve 

(dE/dl), = 1 

(i) (dE/dl),=, = 0 
(ii) (dE/dA),=, = - E( 1+4v) 

(iii) (dE/dl),=, = -3E. 

The first choice (i) gives an 0(.s4) critical strain for the cylinder lower in absolute value 
than the Euler [O(E’)] strain, while the last choice (iii) gives an 0(s4) result larger in 
absolute value than the Euler strain. For the constitutive choice adopted in (55) 
(dE/dQ,,, = -4.66, which, in view of (79) explains why the O(s4) correction gives 
a critical strain higher in absolute value than its Euler counterpart. 

The influence of the initial curvature of the uniaxial stress-strain response to the 
first order slenderness correction for the Euler load, and the importance of the choice 
for the stress and strain measures, even for a linear elastic behavior, has not been 
discussed in the literature, to the best of our knowledge. In our asymptotic approach, 
we adopt a constitutive equation in its finite strain version ab initio and follow a 
full Lagrangian description of the stability problem, thus obtaining a consistent 
approximation of the critical load which is accurate to any order desired. 

The circular cylinder is also used to determine the accuracy of the finite element 
discretization employed for arbitrary sections. The three-dimensional stability analysis 
is carried out by using the Fourier decomposition in xj and 0 [see (7f)J, thus reducing 
the three-dimensional problem to a one-dimensional problem. The results of this 
calculation are compared with the general Fourier decomposition in xj [see (70)], 
used for arbitrary sections, where the circular section being meshed with four node 
quadrilaterals. For quadrilaterals with a maximum mesh size of O.lOR, and for 

t The engineering (1st Piola-Kirchhoff) stress, 7~, is not to be confused with its more standard definition 
as the constant 3.14 159, which is used in the rest of this paper. 
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Fig. 3. Critical buckling strain, In@,), as a function of the slenderness parameter, a, for the axial compression 
of an elastic beam with a square cross section, Exact results are denoted by the solid curve (-), while the 
O(E’) (engineering theory) and 0(e4) asymptotic results are depicted by dashed (- - -) and dotted (. ,) 

curves, respectively. 

axisymmetric radial elements of the same size, the difference in the predicted loads is 
approximately 0.05% for E = 0.5. 

5.1.2. Compression : square section. The next shape examined is the square cross- 
section. The corresponding critical strain dependence on F = a/L is shown in Fig. 3. 
Similar to the circular case, the exact solution lies between the second (Euler buckling) 
and fourth order asymptotic curves, with the latter overestimating and the former 
underestimating the size of the critical strain. The band between the second and fourth 
order asymptotic curves is narrower than in the case for the circular section, but the 
corresponding E region of validity of the asymptotic solution is smaller (up to about 
F = 0.5). Hence, for E = 0.4 the percent error between the fourth order solution and 
the exact solution is 1% while for the Euler solution the percent error is only 2%. As 
E increases to 0.50 the percent error between the fourth order and exact solutions 
increases to 3% and for E = 0.60 the error is up to 8.5%. A temporary improvement 
in the Euler solution occurs here only because the exact solution is crossing over the 
second order curve as the solutions diverge. 

The calculations for the square section show that the asymptotic results up to 
fourth order improve the estimation of the critical strain, but only up to a lower value 
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Fig. 4. Critical buckling strain, In(&), as a function ofthe slenderness parameter, E, for the axial compression 
of an elastic beam with a thick cruciform cross section. Exact results are denoted by the solid curve (-), 
while the O(s’) (engineering theory) and 0(s4) asymptotic results are depicted by dashed (- --) and dotted 
(. .) curves, respectively. The discontinuity in the exact solution is due to the change of the critical mode 

from bending to torsion. 

of E than the improvement for the circular section. Moreover, the improvement is not 
as close to the exact critical load when compared to the case of the circular cylinder. 

5.1.3. Compression : cruciform section. The investigation continues with the sym- 
metric cruciform section which has two orthogonal axes of symmetry with four arms 
of length a and thickness t. From stability theory for linear elastic thin-walled beams 
(hereafter referred to as the engineering theory) it is known that as the ratio t/a 
becomes smaller shear effects become more important. Consequently the engineering 
theory coincides with the second order asymptotic result only for the case when the 
bending mode is dominant (i.e. for adequately low values of s). The engineering theory 
also gives uncoupled bending and torsion modes, since the shear center coincides with 
the centroid of the section (see Brush and Almroth, 1975). 

The critical strain’s dependence on E for the thick cruciform section, which has a 
r/a ratio of 0.40, is shown in Fig. 4. As expected, the critical mode for a slender beam 
is a bending mode as evidenced by the coincidence between the asymptotic results 
and exact results as E + 0. For this thick walled section the second order asymptotic 
results always coincide with the engineering theory, which cannot predict any torsional 
critical mode. Notice that unlike the circular and square sections, the magnitude of 
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Fig. 5. Critical buckling strain, In(&), as a function of the slenderness parameter, E, for the axial compression 
of an elastic beam with a thin cruciform cross section. Exact results are denoted by the solid curve (-), 
while the O(E*) (engineering theory for bending) and 0(s4) asymptotic results are depicted by dashed 
(- - -) and dotted (, .) curves, respectively. The results of the complete engineering theory for bending and 

torsion, plotted in dasheddotted curve (- - .). under-predict the critical strain of the torsional mode. 

the exact critical strain is consistently overestimated by both the second and fourth 
order theories, although the latter gives a much improved estimate of the exact results 
than the former. Even for beams as stubby as E = 0.25 the discrepancy between the 
fourth order and the exact solution is only 4.5% as compared to the corresponding 
discrepancy for the second order (engineering theory) result which is 23%. For beams 
stubbier than the characteristic value of E = 0.25, the accuracy of the two asymptotic 
approximations is a moot point since the torsional mode becomes the critical buckling 
mode, as evidenced by the abrupt change in slope of the exact critical strain curve at 
& = 0.25. 

The critical strain’s dependence on E for the thin cruciform section, with a t/a ratio 
of 0.20, is depicted in Fig. 5. For relatively slender beams, E < 0.08, where the critical 
mode is the bending one, the trends are similar to the results for the thick cruciform 
section case, with the exact critical strain overestimated by the two asymptotic curves 
and with the fourth order curve giving a better approximation than the second order 
curve. Notice that for this thin-walled beam, and in contrast to the thick beam, the 
engineering theory, depicted by the dashed-dotted curve, predicts that a torsional 
mode is the critical mode for E > 0.08 which explains the horizontal line emerging from 
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the second order curve. (In the engineering theory the critical strain corresponding to 
the torsional mode is independent of the length of the beam.) Although the E range 
of validity of the asymptotic approximations is limited by the presence of the torsional 
mode, the fourth order asymptotic results provide a better approximation of the 
exact critical strain. It is also interesting to note that the engineering theory slightly 
overestimates the critical strain of the torsional mode, but underestimates the tran- 
sition value of the slenderness parameter E. 

The mode switch behavior of the cruciform columns is depicted in the axonometric 
plots of Fig. 6, which shows the bending and torsional modes of the thin-walled beam 
at its middle section, x3 = 0, for E = 0.05 and E = 0.10, respectively. These results are 
based on the exact finite element calculations. A comparison of the exact mode (shown 
in the solid curve) in Fig. 6(a) with the corresponding O(s4) asymptotic result (shown 
in the dotted curve) show an excellent agreement in all three components of the mode 
(maximum discrepancy in any component of the order of 1%). Unlike the bending 
mode in Fig. 6(a), the torsional mode in Fig. 6(b) has no bending and considerable 
warping. Had this mode been plotted also at the ends x3 = f L/2 the torsional nature 
of the mode would have been obvious, which in this case is a rotation about the x3 
axis. 

One can thus conclude for the cruciform section the O(s4) approximation of the 
critical strain is a considerable improvement over the 0(c2) engineering theory 
approximation, assuming that the critical mode is a bending mode and not a torsional 
mode. The range of validity in E of these asymptotic approximations increases, and 
their accuracy improves, for thicker beams (t/a + l), i.e. as all dimensions of the cross 
section become commensurate. Similar conclusions are expected for other doubly 
symmetric sections. 

5.1.4. Compression : L-section. All the cross-sections investigated up to this point 
have at least two orthogonal axes of symmetry. This symmetry implies, from the 
classical engineering buckling theory (e.g. Brush and Almroth, 1975), the separation 
between the bending and torsional modes due to the coincidence of the shear center 
and the centroid of the cross-section. Moreover, for slender enough beams, the 
bending mode is the critical mode, in agreement with the asymptotic analysis. For 
asymmetric cross-sections the engineering buckling theory predicts a coupled critical 
mode with bending and torsional components. According to the proposed general 
asymptotic analysis, the torsional information is first included in the O(s4) terms of 
the expansion of the critical stretch ratio. Hence a considerable improvement in the 
approximation of the critical strain is expected for the asymmetric cross-section case 
by using the O(s4) asymptotic results. 

An L-section with two legs of unequal lengths, a and b = 0.6a, but of equal 
thickness, t, is the asymmetric section used to verify the hypothesis made above. 
Similar to the cruciform section, the leg thickness parameter, t/a, is taken to be 0.4 
for the thick L-section and 0.2 for the thin L-section. 

The exact and approximate critical strains for the thick L-section are shown in Fig. 
7. In contrast to the cruciform section, the exact critical strain is bounded from above 
and below by the O(E’) and 0(s4) asymptotic curves. As the slenderness parameter, E, 
increases there is a larger discrepancy between the second order curve and the exact 
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critical bending mode for an elastic beam with E = 0.20 for the exact (-) and O(s4) asymptotic (- - -) 

modes. The exact critical torsional/warping mode for a stubbier beam with E = 0.275 is depicted in (b). 
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Fig. 7. Critical buckling strain, In(&), as a function of the slenderness parameter, E, for the axial compression 
of an elastic beam with a thick L cross section. Exact results are denoted by the solid curve (-), while the 
O(s’) (engineering theory) and U(s4) asymptotic results are depicted by dashed (---) and dotted (.. .) 
curves, respectively. Note the absence of a discontinuity in the exact critical load curve due to the mixed 

(combined bending and torsion) nature of the mode. 

results for the L-section due to the presence of the torsional component of the 
eigenmode. As expected, the fourth order correction brings a considerable improve- 
ment in the prediction of the critical strain for values of s up to 0.15. At this point the 
error between the fourth order asymptotic approximation and the exact solution is 
about 5%, while the second order asymptotic approximation differs from the exact 
critical load by 17% : for E > 0.25 there is a severe divergence between the exact and 
approximate critical strains. 

The exact and approximate critical strains for the thin L-section are shown in Fig. 
8. Although the general trends are very similar to those of the thick L-section of Fig. 
7, the E range of validity of the approximate result is considerably smaller, about a 
third of the range for the thick section. As for the thin cruciform column, the classical 
engineering buckling prediction, plotted with a dashed-dotted curve, has been added 
to the results in Fig. 8. It is worth noting that the classical buckling theory for thin- 
walled beams gives the better overall prediction over a wider range of E (up to E = 0.1) 
than the asymptotic results up to fourth order. 

The coupling between the bending and torsion that is always present in the eig- 
enmodes of the L-section is depicted in Fig. 9. More specifically the results for the 
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Fig. 8. Critical buckling strain, In(&), as a function of the slenderness parameter, E, for the axial compression 
of an elastic beam with a thin L cross section. Exact results are denoted by the solid curve (-), while the 
O(s2) and O(E~) asymptotic results are depicted by dashed (- - -) and dotted (. .) curves, respectively. The 
results of the engineering theory, plotted in dashed-dotted curve (-. - .), give in this case the best approxi- 

mation of the exact critical load. 

exact mode, depicted in Fig. 9(a), correspond to a thick L-section beam with E = 0.15 
where the bending and twisting of the cross section are evident, as is also the planarity 
of the deformed cross-section. The mode for a stubbier beam, E = 0.25, with the same 
thick L-section, is depicted in Fig. 9(b). This mode shows a considerable amount of 
warping added to the bending and torsional components of the mode. 

5.1.5. Compression: critical mode comparison. All the discussions thus far per- 
tained to the accuracy of the different order asymptotic results for the critical strain. 
The investigation of the accuracy for the asymptotic expressions for the critical mode 
is also of interest and the corresponding results are plotted in Fig. 10 for two different 
cross-sections. In each case we calculate the relative error of the approximate eigen- 
mode, II,, by taking the L, norm of the error, /III,-II,\/ over the L, norm of the exact 
eigenmode, I/u,I(. The errors for the O(E’) and 0(e4) approximations as functions of 
the slenderness parameter, E, are presented with the solid and dashed curves, respec- 
tively, for the square section in Fig. 10(a) and the cruciform section in Fig. 10(b). 

For both sections the error in the mode increases monotonically with the slenderness 
parameter E. For E < 0.20, the error in the 0(e4) approximation is almost an order of 
magnitude less than the error for the O(E~) approximation. Even for much stubbier 
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Fig. 9. Axonometric plot of critical modes at x3 = 0 for a thick L-section. Results in (a) show the critical 
mode for a relatively slender beam with E = 0.15. The mode is a combined bending/torsional mode, as 
expected from the engineering and asymptotic theories. The plot in (b) corresponds to a stubbier beam 
with E = 0.25. Notice the presence of a strong warping effect in addition to the primary bending/torsional 

mode. 
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(a) and with a thick cruciform section (b). 
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beams, as in the case of the square section with E = 0.60, the error in the O(E~) 
approximation of the mode is still less than 1%. 

5.2. Tension 

The hypoelastic model used in tension is a finite strain version of the J2 deformation 
theory of plasticity described in Section 3.2. The results from the O(s2) and O(.s4) 
asymptotic analyses are ;ompared with the finite element solution to the three- 
dimensional stability problem for beams with several different cross-sections. The 
sections investigated are the same as those for compression with the exception of the 
two L-shaped sections. For ah calculations reported here the hardening exponent for 
the material’s uniaxial stress strain curve is m = 10 and the yield strain is E, = 0.001. 
Consequently the strain at maximum load is E,, = In & = l/m = 0.10. 

5.2.1. Tension: circular section. As in the case of compression, the asymptotic 
solution for a circular cross-section beam with an initial radius R and length L can 
be found analytically. In addition to the moments of inertia [see (72)] and the material 
constants, which are calculated from the solid’s uniaxial response [see (50) and (54)], 
the complete determination of the expansion of 1, up to 0(s4) requires the constants 
A,, and A, which depend on the auxiliary functions &. These functions, defined in 
(Al 14), can be solved for analytically and are found to be 

;. = [A(x? +x:> + B]x,, 

where the coefficients A and B are given by 

(80) 

Recalling also the definition of p(xJ given by (A97), the constants A,, A,, and A,, 

in (54) can be evaluated as follows 

A, = 
2A+3Bx 1 

67c2 
> &=$. A,,=- 

48n2 ’ 
(82) 

Using (82) in (54), and recalling the constitutive relations from Section 3.2, we obtain 
the wanted analytical result for the 0(s4) asymptotic expansion for the critical stretch 
ratio of a power law type elastoplastic circular cylinder in tension. The expressions 
for the material constants based on the solid’s uniaxial response, although straight- 
forward, are cumbersome and will not be displayed. 

The critical strain results comparing the exact solution of the three-dimensional 
problem, found numerically, and the analytically calculated asymptotic expansions 
up to second order and fourth order are shown in Fig. 11. All curves emerge at 
E,, = 0.10, the strain at maximum load. Note the extended range of validity of the 
O(s4) asymptotic results for very stubby cylinders. Even for E = 1 .O the fourth order 
solution shows considerable improvement over the second order solution where the 
percent errors are 3.6 and 17%, respectively. As expected from previous analytical 
and numerical investigations of the elastoplastic cylinder in tension (e.g. Hutchinson 
and Miles, 1974) the bifurcation in uniaxial tension occurs after the maximum load, 
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Fig. 1 I. Critical necking strain, In(,Q, as a function of the slenderness parameter, E, for axial tension of a 
power-law type elasto-plastic beam with a circular cross-section. Exact results are denoted by the solid 
curve (-). while the CJ@) and O(E~) asymptotic results are depicted by dashed (- --) and dotted (. .) 

curves, respectively. 

and the difference between the bifurcation and maximum load strain increases mon- 
otonically away from zero with increasing e. Our O(E’) result coincides with Hut- 
chinson and Miles (1974), but our 0(s4) cannot be directly compared in view of the 
simplifying assumptions introduced in their calculations. 

As in the case of compression, the circular cross-section is used to check the accuracy 
of the finite element discretization used for arbitrary sections. Good agreement was 
found between the numerical results for the three-dimensional problem using the one- 
dimensional formulation and the two-dimensional formulation where the circular 
section was meshed with quadrilaterals. The constants in the asymptotic analysis (82) 
were also compared to constants found numerically, and the agreement was found to 
be within the same upper bounds as for the compressive case. 

5.2.2. Tension: square section. For the case of a prismatic solid with a square 
cross-section loaded in tension, the exact and asymptotic strains are shown in Fig. 
12. The results are similar to the case of the circular section with all the curves 
emerging from &, = 0.10. As E increases the critical strain at bifurcation increases 
monotonically. 

The exact solution is again approximated very well by the fourth order asymptotic 
solution, even for large values of E. It is interesting to note that for E = 1 .OO, the solid 
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Fig. 12. Critical necking strain, In(&), as a function of the slenderness parameter, a, for axial tension of a 
power-law type elasto-plastic beam with a square cross-section. Exact results are denoted by the solid curve 
(-), while the O(E’) and 0(s4) asymptotic results are depicted by dashed (---) and dotted (...) curves, 

respectively. 

under consideration is a cube. For this case the percent error between the fourth order 
solution and the exact solution is only 3.6% while the percent error between the 
second order solution and the exact solution is 14%. 

The shapes of the bifurcation modes for the square section can be seen in the 
axonometric plots in Fig. 13, with the exact results depicted in solid curves and the 
asymptotic results in dotted curves. As expected from the O(E’) asymptotic result 
(45) for small E the mode corresponds to a uniform flow of material across each 
section, exactly as seen in Fig. 13(a). For larger values of E, Fig. 13(b) shows the 
mode changing to a nonuniform flow of material where the edge effects of the cross 
section are more pronounced. Note also the discrepancy between the exact and 0(s4) 
approximate mode in Fig. 13(b). 

5.2.3. Tension: cruciform section. The discussion of the tension case continues 
with the investigation of stability for the cruciform section. As seen in Figs 14 and 
15, the results are similar to those found for the square section. For the thick cruciform 
section in Fig. 14, the asymptotic results for the critical strain up to fourth order are 
in excellent agreement with the exact three-dimensional calculations. For E = 1 .OO the 
percent error between the fourth order solution and the exact solution is 3.3% while 
the percent error between the second order solution and the exact solution is 17%. 
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Fig. 13. Axonometric plot at x3 = 0 of the exact (-) and 0(a4) asymptotic (- - -) critical necking mode (a) 
for a slender, E = 0.10, and (b) for a stubby, E = 1 .OO, square section power-law type elasto-plastic beam. 
Notice the uniform flow of material through the section for the slender beam compared to the corresponding 

nonuniform flow for the stubby beam. 
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Fig. 14. Critical necking strain, In(&), as a function of the slenderness parameter, E, for axial tension of a 
power-law type elasto-plastic beam with a thick cruciform cross-section. Exact results are denoted by the 
solid curve (-), while the O(E*) and O(E“) asymptotic results are depicted by dashed (- - -) and dotted (, .) 

curves, respectively. 

For a thin cruciform section the behavior is different. Figure 15 shows that for 
relatively slender beams (E < 0.65) the behavior is similar to that of the thick section 
beams with the approximate critical strains underestimating the exact one. However, 
for E > 0.84 the behavior changes drastically due to a switch in the type of critical 
mode. The new mode is only available for stubby beams and cannot be predicted 
from our asymptotic analysis. Since no engineering theory analogous to the one used 
for thin-walled beam stability in compression exists for the stability of thin-walled 
beams in tension, the behavior after the mode switch is examined only with the help 
of the exact finite element solution of the stability problem. Note also that for E > 0.65 
the 0(c4) asymptotic results start overestimating the exact critical strain. 

An axonometric representation of the two different critical modes of the thin 
cruciform section are depicted in Fig. 16. The mode in Fig. 16(a) is calculated for a 
relatively slender beam, E = 0.2, and is essentially the uniform flow through the section 
at x3 = 0, which is the primary component of the mode as E + 0. The new mode which 
occurs for the stubby cruciform beam is depicted in Fig. 16(b) is calculated for E = 1 .O. 
Notice that the flow is antisymmetric in one part of the cross-section while in the 
other part the eigenmode vanishes rapidly away from the center. This behavior, like 
that of torsion for the cruciform in compression, cannot be predicted by the asymptotic 
method presented here. 
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Fig. 15. Critical necking strain, In(&), as a function of the slenderness parameter, E, for axial tension of a 
power-law type elasto-plastic beam with a thin cruciform cross-section, Exact results are denoted by the 
solid curve (-), while the O(s*) and O(E“) asymptotic results arc depicted by dashed (- - -) and dotted (. .) 
curves, respectively. The discontinuity in the exact solution is due to the change of the critical mode from 
a symmetric flow of material through the section x3 = 0 to a nonsymmetric flow of material through the 

section x3 = 0. 

5.2.4. Tension : critical mode comparison 

Similar to the compressive case, we devote the last part of the section describing 
the tension results to the discussion of the error in the O(E~) and 0(a4) asymptotic 
critical modes as a function of the slenderness parameter, E. The results of these 
comparisons are given in Fig. 17(a) for the square section and Fig. 17(b) for the thick 
cruciform section. The error definitions are the same as the ones used in compression. 
Again the errors are monotonic functions of E with the 0(e4) approximation being an 
order of magnitude better than the O(E*) approximation. Note that even for the case 
of extremely stubby beams, with E = 1, the O(E~) approximation gives an error on the 
order of 5% for both sections. 

6. CONCLUSIONS 

The present work addresses the classical engineering problem of stability for axially 
loaded prismatic beams with arbitrary sections. Our aim is to provide a consistent 
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Fig. 16. Axonometric plot at x3 = 0 of the exact critical necking mode (a) for a slender, E = 0.20, and (b) 
for a stubby, E = I .OO, power-law type elasto-plastic beam with a thin cruciform cross-section. Notice the 

nonsymmetric flow of material through the section for the stubby beam. 
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and general approach for the calculation of the critical load and mode as a function 
of, E, the bar’s slenderness parameter (E* = area/length*). For reasons explained in 
detail in the introduction, we reverse the process of the standard structural engineering 
approach: we first formulate the stability problem for the three-dimensional solid 
and then, using some recently developed multiple scale asymptotic techniques, we 
find the asymptotic expansions of the critical load and mode as a function of the 
slenderness parameters. The importance of adopting a finite strain version of the 
constitutive law and starting with the three-dimensional, full Lagrangian description 
of the stability problem is perhaps better appreciated from the example of the first 
slenderness correction to the Euler load of an elastic cylinder. For this case we found 
that even the sign of the correction is sensitive to linear constitutive law adopted, in 
spite of the fact that we are dealing with slender beams under small strains. 

For beams with sections that have commensurate dimensions, the lowest order 
term in the asymptotic expansions for the critical load and mode correspond to the 
known classical engineering results for slender bars, while the next higher order terms 
provide the novel, sought after corrections for stubbier beams. To evaluate the validity 
of the proposed corrections, our asymptotic results are compared, for several different 
cross-sections, with numerically obtained solutions of the corresponding three-dimen- 
sional stability problems. 

The proposed approach is valid for a homogeneous prismatic bar with any simply 
connected cross-section and any rate-independent material that is isotropic at zero 
load. As the axial loading increases, the bar becomes orthotropic about its longitudinal 
axis but remains isotropic in the plane of its section. The analysis can be easily 
generalized to orthotropic materials which are transversely isotropic with respect to 
the loading axis even at zero load (e.g. unidirectional reinforced materials loaded 
along their fiber axis). 

To avoid the presence of boundary layers at the two ends, we consider the case of 
flat end, shear-free clamping boundary conditions. Simple support or free boundary 
conditions which produce no boundary layers could have been easily considered (see 
Trabucho and Viafio, 1989) thus covering all the boundary conditions of practical 
interest. For the case of more complicated boundary conditions, the method would 
also require the matching of asymptotic expansions at the boundary layers. By appeal- 
ing to Saint-Venant’s principle one can speculate that these boundary layers will have 
a limited effect for slender beams, unless the load induced orthotropy is important. 
Further investigation is necessary to address this difficult problem. 

In evaluating the accuracy of the proposed asymptotic slenderness corrections of 
0(s4) and also of the lowest order (engineering theoryPO(e2) for compression and 
O(1) for tension) expressions for the critical load and mode, we consider circular 
sections, square and cruciform sections (all D4 symmetric), and L-sections (asym- 
metric). In each case the proposed next order slenderness correction to the engineering 
formula gives significant gain in the accuracy of the critical load and mode. The 
improvements are most dramatic in the case of the circular and square sections, 
particularly for results in tension where the proposed O(e4) approximation gives the 
critical load within 10% error even for extremely stubby beams with E - 1. For the 
thick cruciform section in compression, the validity is restricted by the change of 
critical mode for stubby beams. Even for the completely asymmetric thick L shaped 
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section in compression, the proposed O(E~) correction for the critical load significantly 

improves the accuracy of the engineering predictions up to E w 0.2. 
For thin-walled beams, the range of validity of our asymptotic expansions is 

considerably smaller due to the unaccounted presence of warping effects of O(E~) and 
higher. For this particular case, where the dimensions of the cross-section are not 
commensurate, one needs to introduce an additional small parameter (d2 = thick- 
ness2/area) and repeat the multiple scale asymptotic procedure for 6 = cn. By extending 
the multiple scale methodology used here to the thin-walled case, one should obtain 

to any desired order of accuracy, the critical load and modes without the requirement 
of structural approximations or any hypothesis about the magnitude of the strains. 

This is a worthwhile future research direction to complete the present investigation 

for the technologically interesting case of thin-walled beams. 

ACKNOWLEDGEMENTS 

The partial support of ALCOA and NSF under grant G-CMS-9503956 are gratefully 
acknowledged. One of us (N.T.) would also like to thank L. Trabucho for bringing his work 
on asymptotic derivations of linear elastic beam theories to our attention. The continuing 
encouragement and support ofDr 0. Richmond and Dr E. Chu (ALCOA) and Dr R. Stevenson 
(GM) during the course of this work are sincerely appreciated. 

REFERENCES 

Bridgman, P. W. (1952) Studies In Large Plastic Flow and Fracture. McGraw-Hill, New York. 
Brush, D. 0. and Almroth, B. 0. (1975) Buckling of’ Bars. Plates, and Shells. McGraw-Hill, 

New York. 
Green, A. E., Rivlin, R. S. and Shield, R. T. (1952) General theory of small elastic deformations 

superimposed on large elastic deformations. Proceedings of’ the Royal Societ?, A211, 128% 
154. 

Green, A. E. and Spencer, A. J. M. (1959) The stability of a circular cylinder under finite 
extension and torsion. J. Math. Phys. 37, 316338. 

Hill, R. (1957) On uniqueness and stability in the theory of finite elastic strain. Journal CI~ the 
Mechanics and Physics qf Solids 5, 229-241. 

Hill, R. and Hutchinson, J. W. (1975) Bifurcation phenomena in the plane tension test. Journal 
qf the Mechanics and Physics qf Solids 23,239-264. 

Hutchinson, J. W. (1974) Plastic buckling. Aduances in Applied Mechanics 14, 67-144. 
Hutchinson, J. W. and Miles, J. P. (1974) Bifurcation analysis of the onset of necking in an 

elastic/plastic cylinder under uniaxial tension. Journal of the Mechanics and Physics ofSolids 
22,61-71. 

Kardomateas, G. A. (1995) Three-dimensional elasticity solution for the buckling of trans- 
versely isotropic rods : the Euler load revisited. Journal @Applied Mechanics 62, 346-355. 

Levinson, M. (1968) Stability of a compressed neo-Hookean rectangular parallelopiped. Jour- 
nal of‘the Mechanics and Physics qf Solids 16, 875-900. 

Ogden, R. W. (1984) Nonlinear Elastic Dejtirmations. Halsted Press, New York. 
Rigolot, A. (1972) Sur une thtorie asymptotique des poutres. J. M&unique 11,673-703. 
St&en, S. and Rice, J. R. (1975) Localized necking in thin sheets. Journal of the Mechanics and 

Physics qf Solids 23,42 l-44 I. 
Timoshenko, S. P. (1936) Theor), of Elastic Stabilit,v. McGraw-Hill, New York. 



994 W. SCHERZINGER and N. TRIANTAFYLLIDIS 

Trabucho, L. and Viaiio, J. M. (1989) Existence and characterization of higher-order terms in 
an asymptotic expansion method for linearized elastic beams. Asymp. Anal. 2,223-255. 

Triantafyllidis, N. and Kwon, Y. J. (1987) Thickness effects on the stability of thin walled 
structures. Journal of the Mechanics and Physics of Solids 35, 643-674. 

Triantafyllidis, N. and Peek, R. (1992) On stability of the worst imperfection, shape in solids 
with nearly simultaneous eigenmodes. International Journal of Solids and Structures 29,228 l- 
2299. 

Wilkes, E. W. (1955) On the stability of a circular tube under end thrust. Quarterly Journal of 
Mechanics and Applied Mathematics 8, 88-100. 

Young, N. J. B. (1976) Bifurcation phenomena in the plane compression test. Journal of the 
Mechanics and Physics of Solids 24,77-91. 

APPENDIX 

The starting point for the asymptotic analysis is the governing equations for the beam 
stability problem on the normalized domain o x [ - l/2, l/2] which are recorded in Section 2.1. 

Introducing the asymptotic expansions (20)-(23) into (11) and (12) and grouping terms of 
like order in E, results in a sequence of governing equations, each corresponding to a term of 
order O(E”‘), n = - 1, 0, 1,2, . The lowest order equations are those of O(E-‘) 

The next higher order equations are for 0(&O) 

112 s s cE,,,,e:, +~33,,2:,, +e 3333i3.3 -fi33)dn33 dwdx3 : 

-112 w 

($du,,, + ~3&,,,) dw dx, = 0, 

(l?g&.+,p + l?336u(3,3) dwdx, = 0. 

The equations for 0(e2) are recorded next 

= 0, (A21 

(A3) 

(A4) 

(A5) 

(‘46) 

(A7) 

ii2 s s (t33~a;;y.s+t,3;a;i.sf~ 4 t o a 2 33p4&5+ 3333u3.3 +L,,,,u3,3 - i;33)6H33 dodx, = 0, 
-l/Z t” 
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Finally, the equations of O(E“) are 

+&H,&,, 4 +&,,,:,,, 2 +L,,,,&,, 0 -n,,)sn,, 4 dwdx, = 0, 

s 1:2 s (t3Pr3i_.3 t 2 0 4 4 0 + 

3p,3$3 + L3B;34,3 + L3p36U3.a 

-Ii2 <” 

+ t3835:3.1) + 2383~:3.d - fi,,)d&, do dx, = 0, 

I,‘2 s s cL34.3 + t,3s3:,.3 + i,,,,,, + t,,,,~,, 

- I 2 <I, 

+ i3,,:3., + 2,,?,:,, - fI3,)6II,, dw dx3 = 0, W6) 

995 

(A9) 

(AlO) 

(Al 1) 

(A12) 

(A13) 

(A14) 

(A15) 

sp33:3,3 +&733~3.3 - fI,)6II,, dw dx, = 0, 

(A17) 

l/2 

s s 
(&&Q + h3&,,3) dw dx, = 0, (‘418) 

Ii? II, 

(LZP38U3.8+~336~),3)dWdx3 = 0. (A19) 

Substituting the asymptotic expansions for the displacement (9) into the essential (kinematic) 
conditions (5) and (6) one obtains 

i, =O, (n=0,2,4...) atx, = & (A20) 

;, dw = 0, (n = 0,2,4. .) at xi = 0, (A21) 

1 E,~x,& dw = 0, (n = 0,2,4.. .) at x, = 0, 
0, 

while the mode normalization condition (7) for the choice of c, = & yields 

(A22) 
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l/2 s I &&dwdx, = c, 
-I,2 w 

(~23) 

I12 s s hi&dwdxj = 0 (n = 2,4,6.. .). (A24) 
-112 co 

From the governing equations (Al)-(A19), kinematic conditions (A20)-(A22) and mode 
normalization conditions (A23), (A24), asymptotic solutions to the stability problem are 
constructed for compression and tension. 

The incremental moduli, L, are evaluated on the principal solution, and hence they are 
functions of the stretch ratio, i.e. L(l), and since /I, is a function of E, the following useful 
relations are recorded 

i = L(&), (A251 

WW 

(A27) 

A. 1. Compression 

Derivation of 1,. Recall from eqn (24) that the lowest order term in the expansion of the 
stretch ratio in compression is 

L, = 1. (A2g) 

From (A25), the lowest order terms in the expansion of the incremental moduli are the moduli 
in the unstressed state, which, for an isotropic hyperelastic material, are the isotropic moduli 
for linear elasticity 

6429) 

Derivation of i,, &. The determination of the next higher order term in the expansion of the 
critical stretch ratio and the lowesot order terms in the expansion of the mode proceeds as 

follows. In view of the isotropy of Ltlkl, eqn (A5) gives 
0 
u,,, = :,,, = 0 (A30) 

when the cases CI = /l= 1 and tl = /I = 2 are considered. Equation (A5), with CI = 1 and B = 2 
(or equivalently CC = 2 and /I = l), yields 

0 
ui.2 +&J = 0. (A31) 

From (A30) and (A31), the following expression for & is found 

:, = i.(xx) +c&&X~). (~32) 

From eqn (A4) we obtain 

E..x +&, = 0. (A33) 

Upon substitution of (A32) into (A33) we deduce 

i., = 0. (A34) 
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Removing the rigid body rotation from i, in (A32) by using (A22) gives $(O) = 0. Consequently 

:(xX) = 0 and the expression for & is found from (A33) to be 

& = &(x3)-&~&~). (A35) 

Governing equations for $(x3) 

The function !, (xX) can be found in the following manner. Since & = &(x,) are independent 
of x,, the following equations can be found from (Al 1) 

L&J +L*:2,2 = -L&.3 (no sum) (A36) 

which give 
2 Z 0 
MI.1 = u2.2 = --us i. (A37) 

Using (A37) in (A2) we find Hooke’s law 

A,, = &,, (A38) 

which, when substituted into (A7) with 6u, = &,(x3), gives [in conjunction with (A35)] 

From (A39), and assuming the coordinate axes pass through the centroid of the section, the 

governing ordinary differential equation for i, (xi) is found to be 

; -0 3.33 - (A40) 

With the boundary condition from (A20) the solution to (A40) is found to be i,(x,) = 0. 

Substituting this result into (A32) and (A35), we find for &, the lowest order terms in the 
expansion of the eigenmode, the familiar equations for Bernoulli-Euler-Navier beam bending 

:, = %,)> 
0 
lfj = -x,&(xj). (A4l) 

Governing equations for $,(x3) The governing differential equation for $(x,) can be found 
by considering (A6) and (A7). Taking 6u, = Sv,(x,) in (A6) and 6u, = X,&I,,, in (A7), the result 
is 

(A42) 

&&,,j +fi,,x&& dtudx, = 0. (A43) 

Subtracting (A42) from (A43), using the expression for I!,, in (A38), A,, in (A9) and I?,, in 
(AlO), and simplifying the result, we find 

where Imp are the moments of inertia of the normalized cross section, which are defined as 
fo11ows 

La = s x,x0 do. (A45) 
,” 

Making use of (A26), with the help of (A38), it can be shown that 
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(A46) 

where S,, = 2 a W/X,, is the axial component of the second Piola-Kirchhoff stress and E is 
the initial Young’s modulus. Using (A46) in (A44), we find the governing differential equations 

for $(x3) in variational form 

Integrating (A47) by parts gives the governing ordinary differential equation for&(x,) in (27). 
The solution for (27), which includes the boundary conditions found by combining (A41) and 

(A21), gives i,(x,) and 1,. 

Derivation of&, A,. The derivation of the next higher order terms in the critical stretch ratio, 

L,, and eigenmode, ii, is presented here. Equation (Al l), with a = 1 and /I = 2 (or equivalently 
with tl = 2 and p = 1), gives 

:,., +i,,, = 0. (A48) 

Using (A37), (A41) and (A48), the following expression for z?i, is found 

:, = &(x,) +s&?:(xJ) + v&(x, > x2)&,33 t.-d, (A@) 

where &(x,, x2) are defined by 

Aa = X& - &, 
x:+x: 
___ ( > 2 

The next step in the analysis is to find a general expression for i,. Beginning with (A7), and 
taking 6u, = ~~(x,)&,(x,, x2), where 6~ = 0 at xX = f l/2, we find 

112 

j j 
(~~~~~60,.,+~,,6~,,6v,)dwdx~ = 0. (A51) 

-1/z w 

Integrating (A51) by parts, and making use of the expressions for If,, from (A9) and I?,, from 
(A2), gives 

j 
rrct,.,, &J9B,3 +&(:B.J +c&., +%$,.X33) (” 

0 
+L,,,:,.~l~~,,,+ [E.&.,,,l~~,J da = 0. (A52) 

Evalyating the expression i,.,X -LX,,, in (A52), by making use of the definition of L in (2) 

and L in (A26), yields 

2 2 

&I31 -&II3 = 2-. 
c 

(A53) 

At this point it is necessary to introduce the following auxiliary functions defined on the 
normalized cross-section 

&(x,,xz): 

s 

%ph,~ dw = - 4,pG.p dw> 0, dw = 0, G454) 
0 s 

r/,&‘P,sdw = -;ix&od,,. 

s 

%(X1 > x2) : 

s 

j:n,iiil = 0, (A55) 
w 
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w(x, ) XJ : 
5 ,I) 

w,,h,, dw = [, wgfiv.o> l,, wdo = 0. 6456) 

Substituting (A53)-(A56) into (A52), and making use of the arbitrariness of &I,, we find the 

expression for & 
2 
24? = &(x,,- &L(X,) - M.x,, x*)~3(x))+3~2(1+“)x,~,,?(.Y1) 

+[v~z(x,,x2)+(1 +v)rl,(x,,X*)l~r,333(Xj). (A57) 

With the general expressions for :, and & in (A49) and (A57), we need to find the governing 

differential equations for 5(x,), iz(x3) and ;,(x~). 

Gooerning equation $(x3). To find the expression for $x1), we use (A6) and choose 
6u, = ~,~x~&(xJ. Simplifying the result gives 

Substituting the expression for I?,, from (AlO), and simplifying the result with the help of 
(A35), (A49) and (A57), we find 

’ * S’ s W,L&s-W )E x I2 .a a~ s 2.3 + [(“(d’s, + f&m) + (1 + v)~~.~)E~~x;]~~.~~~}~u,) dwdx, = 0. 
- I,‘2 (8, 

(A59) 

Equation (A59) is simplified by introducing the Saint-Venant torsion function, $(x,, x2). The 
equation for $(x1, x2) can be written in variational form as follows 

Nx,,x*): 

5 

$,,tiq,, dw = 2 
s 

&pdw, $ = 0 onaw. 
<I, w 

From (A56) and (A60), the following constants can be defined 

(A60) 

J = 2 $ dw, I: = 2 eXpx&dw, I; = 2 x,wdw. 
5 

(A61) 
m I w s Ci, 

Using (A61) in (A59), and recalling the definitions (A54)--(A56), the governing equation for 

:(x,) is found in variational form 

s 

112 
{J& -[VI: + (1 +v)l$,.333}h,j ds, = 0. (A62) 

- 1:2 

Integrating the parts and consideration of the boundary conditions results in (33). 

Governing equationfor &(x3). To find s,(.x,) we begin with (A13), taking 6u3 = L&(x,), which 
gives 

112 

s s 
I?,,&, dw dx, = 0. (A63) 

-112 <v, 

Using the expression for I?,, from (A8), and simplifying the result with the help of (A35), 
(A49) and (A57), we find 
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At this point an expression for I(,, &. do is needed (recall i,, ,z = ,!,,,, = 0). To find this 

expression we begin with (A6), taking au, = x,Sv(.u,). Substituting the expressions for I?,). and 

I!Ijo from (A17) and (AlO), and simplifying the result, we find, after considerable manipulation, 

Substituting (A65) into (A64), introducing the following area constants 

and simplifying the result, we obtain, after considerable manipulation in which (A49), (A57), 

and the definitions (A54)-(A56) are used, the equation for t, (xi) in variational form 

The corresponding Euler equation and boundary conditions given in (36) and (37). 

Governing equatiomfor .$(x3). The last function missing for the complete determination of 

Z$ in (A49) and (A57) is $(x3). Starting with (A12) and (A13) and successively taking 
(6u,, Suz, 8uJ = (&(x,), 0, x,Stl,,(x,)) and (CL,, 6u,, au,) = (0, 6v(x,), x,6z~,,(x1)) and combining 
the results we find 

(‘468) 

Using (A8), (A15) and (A16) in (A68), the following result is obtained 

In (A69) it is necessary to find an expression for S,,,(2,,;.,;;..,).~,do. This can be done by 
considering (A6) and taking &L, = 6~~Qx,)6v,(x,, x2) : 

I’* 
s s 

{~p,6~kt.~,r+~,,610,,br;,} dwdx, = 0. (A70) 
-1,2 t0 

Integrating by parts [from kptic admissibility in (A20) 6~( - l/2) = S(p(1/2) = 01, and sub- 

stituting the expressions for IIJa and II,, from (A9) and (AI7), we find 

i(LL +L&a +L,GL, + 2./?&J)6%,, 
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Substituting (A72) into (A69), and using the results for i, in (A41) and fi in (A49) and (A57). 
we find 

I>? s s ,,z ,,, U(L3 -L -Lp+brz$p.3 + (L -t.3,j3)(iB.3 +Eg;-& 

+ v4g:Q + (L,< -L33,d(&(l + \‘)$i_i + (vu,.,,+ (1 +el.;.,1)2:.,,, 
_f 

-,I.? --"..,A)lb + M&3; i - tlizl:)~,.J3 IG((C,,;..U;- y,j)L 
+j.z(l +d/m +(+I: +$,,c+U +v)rl..,i)ll-.;.~,il))~,~~ 
+((-2~‘t,~~,,+4~‘t;,,,-t,,,?).r~:,?,+E(~,,-.\.,ij,~.~: 

- &, +12(1 +\.).v,j!,j,~3 + (v&+ (1 +v)~?,~)~,~,~~~~))u,]~~.,~~~ dodx, = 0. (A73) 

TO simplify the above equation we must find expressions for t, 3, 3 +t,, 3, -2i,,3,, 

t t,,,,im, ,?,I- -t,,,,. and t?,,,-4vt,,,,+2v’t,,,,. TO accomplish this we use (A26) 

and (A27) which, upon rearrangement, results in the following 

(A74) 

t t 
, E 

,1,1- ,111 = A? -1 
2 

(A75) 

(A77) 

Introducing the following constants, which depend only on the geometry of the cross-section. 

and making use of the previous results, (A74)-(A77), we can simplify (A73) to obtain the 

variational form of the equations for S,(.Y,) : 
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- = 0. C-481) 

From (A81) we deduce (39), the governing equations for &(xX) and 1,. This concludes the 
derivation of the equations governing the asymptotic stability problem for compression. 

A.2. Tension 

Derivation of&. The begin the analysis for tension it is noted that the incremental moduli 
are isotropic in the xlxz plane for all values of the axial stretch ratio i 

L,,,(n) = 2P(&,&, + L&J + ~~,,~,*, (A82) 

where p and 1 are dependent on the material and the axial stretch ratio. To show that 1, is the 
axial stretch ratio corresponding to the maximum load in tension, we proceed as follows. We 
begin with (A7). Taking 6u, = 6v(xJ, we obtain 

l/Z 

s s 
&,6v,, dwdxj = 0. (A83) 

-l,Z (u 

The expression for I?,, in (A2) requires expressions for z?, and &. Starting with (A5), and in 
view of the in-plane isotropy of L, and choosing the cases a = /? = 1 and CI = /I = 2, we have 

0 
ll,,, = il.2 = 0 (A84) 

while choosing GI = 1 and p = 2 (or equivalently LX = 2 and /I = I), gives 
0 

&,, +%,I = 0. (A85) 

In view of the orthotropic material behavior (since & # 1), we find from (A3) and (A4) 
0 II 0 0 
u1.3 = u3.1 = 112.3 = 4.2 - - 0. (‘486) 

The results of (A84)-(A86), combined with the removal of any rigid body rotation using (A22), 

give for & 

:, = 0, & = &(x,,. (A87) 

To find an expression for & for use in (A83), we make use of (A87) and (Al 1), with a = p = 1 
and a = /I = 2, to obtain 

L,:,., +LX122~2.2 = -L&,3 (no sum), 6488) 

from which we find, with the help of the in-plane isotropy of L in (A82), 

2 z -L 0 
aI.1 = u2.2 = (j 0 u3.3. 6489) 

‘%I,, t&,22 

Defining the tangent Poisson’s ratio, v(L), and the tangent modulus under uniaxial tension, 
E(1), as follows 

Jw = t,,,, -2v&,,, 6491) 

and substituting the results into (A2), we find !I,, = E(1 o zj,) which, from (A83), implies )’ 

E&I) &,, = 0 => E(1,) = 0 (A92) 
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since it is assumed that ;,(x~) # 0. The value of A,, found from (A92), corresponds to the 
maximum load in uniaxial tension. 

Derivation of,&, &. To determine the next higher order term in the stretch ratio and the 
lowest order term in the eigenmode, we proceed as follows. Starting with (A13) and taking 
6ux = 6u(x,) 

,;z 

I s 

2 
II,,&,,, do dx, = 0. (A93) 

I 2 0, 

According to (A8), evaluation of fi,, requires (in addition to &) A, and &, which are unknown 

at this point. An expression for & can be found bv starting with (Al 1). Taking CI = 1 and 
p = 2, and making use of the in-plane isotropy of L in (A82), we find 

:,., +:,,, = 0. (A94) 

Combining (A94) with (A89) we obtain 

:, = :,<x,> + E,pxp:(xl) - YX,&j (x3). (A95) 

An expressionOfor I$ can be found by considering (A7), and choosing 6uj = 6&c,, xJ6u(x,), 

and recalling rIj3 = 0, which gives 

j+;;,z {~J+,&%?,d+~dx, = 0. (A96) 

0 
Using the definition for IIs in (A9), recalling the definition of the warping function w(x,, x1) 
in (A56), and introducing the function p(x,, x2) 

p(x, , x2) = f(.Kf + xi -I,,) (A97) 

we find, with the help of (A95) and (A87), the following expression for I$ 

u3 = ;3(x3)_ L 2 

--(~~,:,.3(X3)+~(X.,,-Y2)~.3(X.3)--~(.~,rX*)~3.33(X3)). 
I! 

(A98) 
3131 

Governing equationfor &x3). The function i(x,) can be determined in the following manner. 

Considering- (A6) with 6u, = F,~x~~u(x,), and noticing Amp = !I,,. in view of the in plane 
isotropy, we find 

I,2 

s s 
;L,,E,~x,&, dwdx, = 0. (A99) 

-I,2 “, 

Substituting the expression for I? 3a from (AlO) into (A99), recalling the expressions for b, in 
(A95) and (A98), and simplifying the result, we find the variational form of the equation for 

%(x1) 

E hz,+JL,33, zC!Z 
E 

au., dx, = 0, 

3131 

(AIOO) 

where in the derivation of (AlOO) we made use ;f the definitions of the warping function, W, 

in (A56), the torsion function, II/, in (A60) and S is the axial component of the second Piola- 

Kirchhoff stress evaluated at ,I = I,. The governing differential equation for :(x,) is :,3? = 0 
which, in view of the boundary conditions (A20) and (A22), gives 

$x3) = 0. (AlOl) 



1004 W. SCHERZINGER and N. TRIANTAFYLLIDIS 

Governing equationfor k!, (x3) To determine ;3(xj) we begin with (A13). Taking au, = 6v(x,) 
gives 

112 s s h,,6v,, dw dx, = 0. 
-I!2 “, 

(A102) 

Substituting the expression for I? 33 in (A@, and simplifying the result with the help of (A87), 
(A95) and (A98), we find 

where it can be seen that we need to find an expression for l,,, fi,, do. To this end we use (A6) 
with 6u, = x&(x,) 

(A104) 

Using the expressions for I!,, and I?,, from (A17) and (AlO), and simplifying the result with 
the help of (A87), (A95) and (A98), we find 

Substituting (A105) into (A103), and noticing the generalization of (A77) for 1, # 1, namely 

we find the equation for 2, (xX) in variational form 

c?v,~ dx, = 0, (A107) 

to which we have to add the essential boundary condition (48). The equation for i, (x3) is an 

eigenvalue equation that also gives 1,. The solution of the eigenvalue problem for i, (x3) and 
1, is given in (49) and (50). 

Governing equation for &(x3). Before we derive an expression for 1, we need to find the 

governing equation for h,(x,). To this end we use (A6) and successively taking 
(au,, au,) = (WC,), 0) and (au,, Bu2) = (0, Mx,)) 

l/Z 

s s 
!I,&, dwdx, = 0. (A108) 

-,i2 w 

Using the expression for !I,, in (AlO) in conjunction with (A87), (A95) and (A98) we obtain 

which gives the governing differential equation for :.(x3), &33 = 0, which in view of the 

boundary conditions (A20), .&( f l/2) = 0, we find 

&(x1, = 0. (Al 10) 

Derivation of &, i,. To begin the derivation of 1, we use (A19) with 6u, = 611(x,) 
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112 

5 s 
&c~v,~ dwdx, = 0. (Alll) 

-Ii2 w 

To evaluate A,, using (A14) it is necessary to find expressions for A,. To find an expression 

for i, we begin with (A6), taking au, = 8q(x3)6v,(x,, x2), and simplify the result to find 

j 

0 0 
(f&?~,,~ - fIX1,16z~,) dw = 0. (Al 12) 

0, 

Substituting the expressions for l? BU and ?I,. from (A17) and (AIO) into (A112), and using 
(A87), (A95) and (A98), we obtain 

j ii 

0 II Z 7 
&6&6 + L/J&3 + (&/Jij -%,,,)L 

I’, 
0 

+2,p~,~~p(XirX2)~;,~~l 
L 3131 1 &p,, +x.:2 3,3336& 

i 

dw = 0. (Al 13) 

Introducing the auxiliary function&(x, , x,), defined on the normalized cross-section as follows 
0 

kw2): 

j 
(~~fic&P~,,d~ = - TV 

<" s[ 

k,33 $h~~w.p+~wW, da 

111 

L3'3' jW;.dm = j,, 

1 

E,~x& dw = 0 (Al 14) 

we can find the expression for & from (Al 13) 
2 

[ 

02 

ii, =2,(x3)+ E,gXp:(X3)-:x, :3,3(x,)+ L~133-vL~193.3(x3) 

E 1133 
1 
+~o(x,,x2)~3,333(~3). (A119 

To obtain an expression for i, we begin with (A13), taking au, = 6q(x,)&(x,, x2), and simplify 
the result 

j 
{i;.3S~,.-i;33,36~} dw = 0. (Al 16) 

W 

Substituting the expressions for ;rX3 and h,, from (A16) and (A8). we find, with the help of 
(A87), (A95) and (A98) 

” 

+&333-~t33.$3.33+~3333 :3.33+ 

( 

oL3,,3 
v----ph-&3.3333 

t 3131 
)I 1 60 dw = 0. (Al 17) 

Introducing the auxiliary functions p*(x,, x2), $,(x, , x*),,h(x, ,-x2) and &(x,, x2), defined as 
follows 

P*(xI 1 -y*) : 
s 

p:6v,,dw = j/hl;dcu. j/*dw = 0, (Al 18) 
00 
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ihx2): 
I (0 

;, dw = 0, 

(Al 19) 

we can find the following expression for & from (Al 17) 

ii, = $(x3)- ~ E3,,3 [ 4 

E 
x,z..3(x3)+~(x,,x*)~.3(x3)+~(x,~x*)~3,33(x3)1 

3131 

1 2 2 E 
+r -&,,I 0 ~p(xl,x,)-(~,,,,-~t,,,,) 

L 1131 

K L,I,, 3113 > 

L 3131 

b~x,,x*+3 
E 1133 

1 i 
+o ~3311~3(XI,X2)-~3113~T(XIiXZ)+t3333~~P*(X,~X2) ;3,333. 

L 3131 E 3131 I 
(A122) 

Recall that the starting point, to evaluate I, and 5, (x3), is (Al 11). The only missing ingredient 

is to find an expression for s,,, i,,, dw. To do this we begin with (A 12), using 6u, = X&(X,) 

s 

z 2 
FL, -.@3g,31 da = 0. (A123) 

I” 

Substituting the expressions for I?,, and I?,, into (A123), we find 

s i, ,&w da = 
04 02 L1,33-ElL,ll 4 

2vL,,, I +2$fp, I 
E 

-&7p33 
II 
23.3 

<” ,133 1 

0 

-2 ( 3113- 
t ‘t 3113 > t3,,3 

3,317 ~ 

L E3,3, 

-ct,,,,-k,;,., &E 

3131 ( E J7I 
L333 

3131 

0 E 1331 
&313xp&+ __ 

; 4 0 4* 
0 2 

+ 
3113 0 

E 

33,,~a93,p-~3,13~Pg3.B+~3333~ VXsP$ ; 3,33333 

3131 L 3131 >I 

-[t@033 -2;&B,,]L3,3 - 
[ 

G,,3,3xpxD+ (E13J ---x~.k~ 
t I i3.333 -&~33:3.3 do. I (A124) 

3131 

Substituting (Al 15) (A122) and (A124) into (A14), the expression for h,,, we can obtain the 

governing equation for i, (x3) in variational form 
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where the constants A,, A,,g and A,, are given by 

(A126) A, = 
s 

x,;, dw ; A,, = 
(1, s 

p;,,, dcc, ; A,, = 
s 

p* dw. 
C,> I0 

From (A125) we find $,(x3) = 0 and the expression for 1,. This concludes the derivation of the 

(A125) 

1007 

governing equations to the tensile stability problem. 


