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ABSTRACT 

Of interest here is the theoretical prediction of the onset of failure in aluminum honeycombs under arbitrary 
macroscopic loading conditions. A failure surface is defined in macroscopic stress space by the onset of the 
first buckling-type instability encountered along proportional load paths, where each load path is defined 
by a fixed macroscopic load orientation and a fixed ratio of principal macroscopic stresses. The influence 
of specimen size (i.e., geometric scale effects), and the influence of geometric microstructural imperfections 
on these failure surfaces, are investigated through a combination of analytical (i.e., Bloch wave) and 
numerical (i.e., finite element) techniques. 

All of the analyses presented here are carried out for commercially available honeycombs, and the results 
show an extreme sensitivity of the onset of failure in these materials to the macroscopic load orientation 
and the principal macroscopic stress ratio. In addition. the failure surface for a perfectly periodic honeycomb 
of infinite extent. is found to be an upper bound for the failure surfaces of the corresponding finite 
honeycomb specimens with microstructural imperfections. Moreover, the construction of the failure sur- 

faces for the imperfect specimens requires the numerical solution for large, multicell models, while the 
failure surface for the finite, perfectly periodic model is obtained with less computational effort. since 
calculations involving only the unit cell are required. The methodology proposed in this investigation. 
therefore, provides a useful predictive tool for the design of these materials. il 1998 Elsevier Science Ltd. 
All rights reserved. 

Keywords: A. buckling, A. microstructures. B. elastic-plastic material, B. tinite deflections, B. foam 
material. 

1. INTRODUCTION AND MOTIVATION 

Low density cellular solids, both natural and synthetic, are widely used in engineering 
applications, due mainly to their high stiffness-to-weight ratios. During the last two 
decades in particular, the manufacture and use of synthetic cellular materials have 
undergone enormous growth. These materials, which form an interconnected network 
of solid struts and plates (the edges and faces of the cells, respectively), can be broadly 
categorized into two groups. The first group, termed “honeycombs”, consists of 
cellular materials with essentially two-dimensional microstructures, while the second 
group, termed “foams”, includes those materials with fully three-dimensional micro- 
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structures. Until recently, synthetic cellular solids were manufactured primarily from 
polymers. Due to advances in materials science, however, cellular solids are now 
manufactured from ceramics, metals, and many other materials as well. In addition to 

their high stiffness-to-weight ratios, cellular materials, when subjected to compression, 
have excellent shock mitigation and energy absorption characteristics. As a result of 
these mechanical advantages, cellular materials are increasingly used in aerospace 

applications which require lightweight and high performance, and are virtually indis- 

pensable in all types of packaging applications for product transportation purposes. 
In spite of the long established and widespread use of cellular solids in engineering 

and structural applications, the study of their mechanical properties, and in particular 

the behavior of these materials under compression, is still in its relative infancy. 
Among the first important investigations in these areas are the works of Gent and 

Thomas (1963) Shaw and Sata (1966), and Pate1 and Finnie (1970). The book edited 
by Hilyard (1982) contains a series of articles which summarize the state of the art 

(at that period of time) for polymeric foams. Credit for refocusing the attention of 
the research community to the mechanics of cellular materials, must be given to 
Gibson and Ashby (1988) for their excellent monograph which presents a com- 

prehensive study of the structure, the properties, and the mechanical behavior of a 
wide range of honeycombs and foams, both natural and synthetic. The mechanics of 

honeycombs, which are of particular interest to the present work, have been studied 
more recently, both analytically and experimentally, and have been explored in greater 

detail by Ashby, Gibson, and their coworkers (e.g., Ashby, 1983 ; Gibson and Ashby, 

1982 ; Gibson et al., 1982,1989 ; Triantaffilou et al., 1989), by Klintworth and Stronge 

(1988, 1989), and by others. 
The aforementioned works constitute an excellent starting point for the subject at 

hand. Due to their broad scope, however, these investigations do not always address, 
in depth, the various mechanisms involved at the different stages of deformation in 
cellular solids. In particular, the crucial role played by instabilities, which are due to 

strong material and geometric nonlinearities, and which lead to microbuckling, fol- 

lowed by a localized failure mode, is not given appropriate attention. These issues 

have recently been addressed by Papka and Kyriakides (1994), who have conducted 
a series of careful experimental and theoretical investigations involving aluminum 
honeycombs under in-plane, uniaxial compression. Their work has shown that a 
consideration of plasticity, and geometric nonlinearities, can result in a significant 

reduction in the initial buckling load of the honeycomb material, as compared to the 
simpler, Euler-type, elastic buckling loads obtained in the previously mentioned 

references. Moreover, their work has also shown that the localized failure mode is 

due to the subcritical (Le., occurring under a lower than critical load) nature of the 
postbuckling behavior of the unit cell. Full scale numerical calculations, involving 
finite sized honeycomb specimens, complete their experimental studies, by modeling 
the deformation of the honeycomb specimens from rest, through initial bifurcation 
and subsequent localization of deformation in a row of cells, all the way to complete 
collapse of the entire specimen. Their work, in addition to all of the previously 
mentioned research, however, pertains to uniaxial or biaxial loading aligned with the 
initial axes of orthotropy of the honeycomb material. Important issues concerning 
the dependence of the mechanical behavior of these materials on the macroscopic 
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load orientation and the specimen size have not been systematically addressed, to the 

best of the authors’ knowledge. 

On the theoretical side, the motivation for the present work stems from some closely 

related, earlier research, conducted by the first author, on the stability of finitely 
strained, rate-independent, periodic composite materials. The periodic nature of their 
microstructure allows exact calculations for the onset of instability in these solids, 

under arbitrary macroscopic loading conditions. Given that the onset of a bifurcation- 
type instability is the precursor to the ultimate failure mode in these materials, it 

seems logical to investigate the critical macroscopic stress state, and also to determine 

the nature of the corresponding critical bifurcation mode. The critical mode for an 
infinite, perfectly periodic medium is characterized by a dimensionless wave number 

w,, which is defined as the ratio of the unit cell size to the wavelength of the bifurcation 
mode shape. The value of this wave number provides an indication as to whether or 

not a localized failure mode is possible. Moreover, a theoretical failure surface can be 

constructed in macroscopic stress or macroscopic strain space, based on calculations 

involving only the unit cell, for any rate-independent, perfectly periodic composite of 
infinite extent. The usefulness of this failure surface for applications lies in the fact 

that it provides an upper bound for the onset of failure in the corresponding actual 
composite materials, which necessarily contain imperfections in the periodicity of 

their underlying microstructures (see Schraad and Triantafyllidis, 1997). 

More specifically, for the simplest possible microgeometry (i.e., for the case of 
axially deformed, layered composites under plane strain conditions), the cor- 

responding analytical determination of the critical dimensionless wave number (,FI~ 
was given by Triantafyllidis and Maker (1985). Subsequent work by Geymonat rr ~1. 

(1993), has illustrated the completeness of the Bloch wave representation for capturing 

the initial instability in finitely strained, rate-independent, perfectly periodic com- 

posites in three dimensions, and has proven that, in the case for which 0,. + 0, the 
tirst instability can also be determined from the macroscopic properties of the infinite 

medium, as the first loss of ellipticity in the homogenized moduli of the material. 

Lastly, the concepts of the micro- and macro-failure surfaces in macroscopic stress 

or macroscopic strain space for finitely strained, periodic media, were introduced by 
Triantafyllidis and Schnaidt (1993), for the case of biaxially loaded frame models. 

All of the aforementioned research concerns perfectly periodic media of infinite 
extent. The influence of specimen size, also termed the “geometric scale effect”, and 

the influence of microstructural imperfections on the onset of failure in these materials 
have not been addressed systematically, since the required calculations are orders of 

magnitude more complicated. These topics were the subject of a recent investigation 
by the present authors (see Schraad and Triantafyllidis, 1997), in which all of the 

calculations were, for reasons of computational efficiency, based on simple, two- 
dimensional lattice models. The use of aluminum honeycombs in engineering and 

structural applications makes these materials an excellent subject for the extension of 
the previously described general ideas, concerning the stability of periodic and nearly 
periodic media, to an actual microstructured material. 

The present investigation pertains to the stability, and the associated geometric 
scale effects and imperfection sensitivity of aluminum honeycombs, which exhibit 
rate-independent, elasto-plastic stress -strain behavior, and which are subjected to 
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arbitrary, in-plane, macroscopic stress states. The outline of the work is as follows. 
Presented in Section 2 is the general formulation of the principal solution and the 
initial bifurcation instability for a hexagonal cell honeycomb material of infinite 
extent. In Section 3, following a description of the numerical algorithm used in the 
present calculations, the principal solutions for the infinite honeycomb models, as 
well as the corresponding onset of plasticity and maximum load surfaces, determined 
under general, in-plane loading conditions, are discussed. Next, the initial bifurcation 
surfaces for the infinite honeycomb models are examined, followed by an investigation 
of the geometric scale effects on these failure surfaces. Finally, the influence of 
imperfections in the material microstructure on the initial bifurcation surfaces of the 
honeycomb models are explored. The presentation is then concluded in Section 4 with 
a detailed discussion of the results, and suggestions for future research. 

2. PROBLEM FORMULATION 

Presented in this section is the general formulation of the principal solution and 
the onset of instability for hexagonal cell, honeycomb specimens. Contained in the 
first part of this section is a discussion concerning the geometry of the models, the 
material properties, and the imposed loading conditions. In the second part, the initial 
bifurcation problem for a perfectly periodic honeycomb model of infinite extent is 
formulated, under the conditions of general in-plane loading. 

2.1. Model description and loading conditions 

A typical planar section (i.e., a section perpendicular to the cell walls) of a perfectly 
periodic honeycomb material, which consists of a regular hexagonal lattice, is shown 
in Fig. 1 (a). The cell walls are very thin (thickness-to-length ratios are typically of the 
order of O.Ol), and for the loading presently considered, deform essentially through 
bending. Consequently, each cell wall of the honeycomb material is idealized as a 
nonlinear beam, capable of undergoing arbitrarily large displacements and rotations. 
The corresponding beam theory is a generalization of the elastica beam theory due to 
Euler, which allows for axial deformations as well. This theory has already been 
proposed elsewhere (see, for example, Love, 1944; Antman, 1968), however, for 
reasons of completeness, a short presentation of the theory is included here. 

Consider an initially straight beam of length 1 and thickness t (the width of the 
beam is taken to be h = l), as shown in Fig. 1 (b). Due to the action of the forces and 
moments at the ends of the beam (i.e., at points A and B in Fig. 1 (b)), a point on the 
middle line of the beam (shown as a dotted line in Fig. l(b)), initially at distance s 
from end A, displaces by u(s) and w(s) along the tangential and normal directions to 
the initial configuration, respectively. By adopting the classic Bernoulli-Navier-Euler 
hypotheses, that cross-sections perpendicular to the initial middle line remain per- 
pendicular to the deformed middle line, and undergo negligible extension, the axial 
strain E(S, z) at a material point with initial coordinates (s, z) is found to be 

E = e+zk. (1) 
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Fig. I. The aluminum honeycomb model. (a) Typical planar section of a perfectly periodic honeycomb 
material, and the corresponding choice for the unit cell. (b) Undeformed and deformed configurations for 

the honeycomb cell wall beam model, with undeformed length 1 and thickness t. 

Here, the axial strain measure e(s), and the middle line stretch ratio A(s), are expressed 
in terms of the middle line displacements U(S) and w(s), such that 

e = A- 1 and A = [(l +a,,)‘+(~,,)~]“~, (2) 

and the bending strain measure k(s) is expressed in terms of the same displacement 
components, such that 
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k = [(I +~,.Jw,,, - ~,~,ssl/~~. (3) 

The two quantities which are work-conjugate to the previously defined axial strain 

measure e(s) and bending strain measure k(s), are the axial force N(s) and the bending 
moment M(s), respectively, which are related to the axial stress CT@, z) by 

s 

f/Z 

s 

1.2 

N= odz and A4 = GZ dz. (4) 
-- 1,'2 --1/z 

The variational form of the equilibrium equations for the beam, assuming that 

there are no distributed loads, and under displacement controlled end loading, is 

given by 

s 

L 

(Nde + M6k) ds = 0. (5) 
0 

The pointwise equilibrium equations for the beam are the Euler-Lagrange equations 

corresponding to eqn (5). A straightforward calculation of these equations, based on 
the kinematics introduced in eqns (2) and (3), shows that they are identical to the 

exact equilibrium equations of the beam in the current configuration. This latter set 
of equations can be derived directly from equilibrium considerations of a beam 

segment with no distributed load, which is subjected to end axial forces N(s), end 

shear forces Q(s) (which can be eliminated from the final equilibrium equations), and 

end bending moments M(s). 
It should be emphasized here that the particular choice, made in eqns (2) and (3) 

for the kinematics of the beam, is what leads to the consistency of the theory; that is, 

the coincidence of the Euler-Lagrange equations with the exact equilibrium equations 
of the beam in the current configuration. This consistency is the exception rather than 

the rule in kinematically nonlinear structural theories of mechanics, in which the 

adoption of a particular kinematic approximation dictates the form of the Euler- 

Lagrange equations of the theory, which do not, in general, coincide with the exact 

equilibrium equations of the structure in the current configuration. In the previously 
defined sense, consistent, kinematically nonlinear, structural theories exist, only for 
planar deformations of beams, and axisymmetric deformations of shells. The inter- 

ested reader is referred to Triantafyllidis and Samanta (1986) for further details. 
The last element required to complete the description of the behavior for the cell 

walls, under general in-plane deformations, is the constitutive law for the honeycomb 
material. The relationship between the only non-negligible stress component (i.e., the 

axial stress a(s, z), acting on the cross-section at coordinates of the beam, at a distance 
z from the current middle line, in a direction parallel to the middle line), and the 
corresponding axial strain E(S, z), given in eqn (l), is assumed to be a standard bilinear 
relationship of the form 

I 

Es, forr < F> 
CJ= 

~!?++fC,(s--~.), fore > a,’ 

This relationship was determined by Papka and Kyriakides (1994) to best fit the 
experimental results, measured from thin strips of aluminum obtained from their 
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experimentally studied aluminum honeycomb specimens (Aluminum 5052-H39 
manufactured by Hexcel Corporation). The stress-strain relationship, given in eqn 
(6), holds for the case of monotonic loading. In the present formulation, elastic 
unloading has also been accounted for, by including a kinematic hardening response to 
eqn (6). It should be emphasized at this point that the proposed general methodology 
described in this section is independent of the specific form of the constitutive law 
used to model the material stress-strain response. 

Having discussed the modeling of the cell walls, the next issue to be addressed 
concerns the selection of a “unit cell” for the perfectly periodic honeycomb model. 
Recall that the unit cell is the fundamental building block of the honeycomb model, 
and is defined as the smallest representative microsection of the specimen, for which 
repetitive translation along the coordinate axes (without gap or intersection) recon- 
stitutes the infinite structure. Of the several unit cells that can be selected, the one 
chosen is shown in Fig. 1 (a). This unit cell has initial (i.e., undeformed) dimensions 
A, = c and AZ = $c, where c is the nominal hexagonal cell size, and c/fi is the 
length of each cell wall. Due to the manufacturing process, all of the vertical cell walls 
of the honeycomb have thickness 2t, while the remaining cell walls have thickness t, 
where t is the thickness of the aluminum strips that are partially bonded together, 
and subsequently expanded to produce the honeycomb material. The selection of this 
particular microsection is motivated by the desire to deal with a unit cell that has only 
nodes (and no cell walls) on its boundaries. Note also that the unit cell selected has 
point symmetry with respect to the center node 0. 

All of the components are now in place for finding the principal equilibrium solution 
for the honeycomb model under general in-plane loading. Either the macroscopic 
deformation gradient components F;,, or their work-conjugate, macroscopic, first 
Piola-Kirchhoff stress components H,, can be prescribed. Since, in the applications of 
interest, the honeycombs are essentially deformed in compression (tensile loadings, 
in general, result in debonding along the honeycomb walls), attention is focused on 
macroscopic loadings where both principal macroscopic stresses remain compressive. 
More specifically, it is assumed that the macroscopic, first Piola-Kirchhoff stress 
tensor can be decomposed into the following form, which eliminates the 
rigid body rotation in the system : 

coso -sin0 Acos4 

sin 8 COSQ I[ 

0 

0 A sin 4 I[ 

cos e 

-sin0 

arbitrary 

(7) 

where II, = A cos b/A ,A1 and II2 = A sin d/A,A2 are the principal macroscopic 
stresses, and 8 is the orientation angle of the principal stress axes with respect to the 
reference (undeformed) coordinate system (i.e., with respect to the initial axes of 
material orthotropy). 

For the loading conditions considered here, the ratio of the principal macroscopic 
stresses tan4, and the macroscopic load orientation angle 8, are kept fixed. Given 
that the macroscopic force parameter A (which is also a measure of the macroscopic 
stress amplitude) reaches a maximum for the majority of the load paths considered, 
the work conjugate quantity A, which is found from the requirement that 
ll,,(F,, - 6,,).4 ,Z42h = AA, is prescribed instead. Consequently, the dimensionless dis- 
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placement parameter A/h, which is applied to the unit cell, is found from the previous 

requirement and eqn (7) to be 

A/h = (cos’ 8 cos C$ + sin2 19 sin c$)(F, , - 1) + (sin’ Q cos 4 + co? 9 sin 4)(F22 - 1) 

+cos6sin~(cos~-sin~)(F,2+Fz,). (8) 

Due to the previously mentioned point symmetry of the unit cell, the principal 
solution can be found by applying the above prescribed loading to the lower left 

quarter of the unit cell (the portion of the unit cell bounded by nodes 1, 2, 0, and 3, 

as shown in Fig. 1 (a)). Details concerning the numerical calculations implemented in 
the solution of the equilibrium equations will be given in Section 3. 

2.2. Onset of,failure for kjinite honeycombs 

As explained in Section 1, the primary tool used in this investigation to study the 

onset of failure in honeycomb materials, is the concept of an initial bifurcation surface, 
which is determined for the corresponding perfectly periodic honeycomb models of 

infinite extent. The onset of failure surfaces, for the aluminum honeycombs under 

investigation, are presented in principal macroscopic stress space (ff, and If, are the 
principal values of the macroscopic, first Piola-Kirchhoff stress tensor II, defined in 
eqn (7)), for different values of the macroscopic load orientation angle 0. These failure 

surfaces are constructed as follows. Of interest, for each radial load path in principal 

macroscopic stress space (defined by the load path angle c$), is the lowest value of the 
displacement parameter A (defined in eqn (8) as the work-conjugate quantity to the 

macroscopic force parameter A), for which the principal solution for the honeycomb 

model loses uniqueness. The principal solution in question is the solution for which 

all unit cells of the honeycomb model deform identically. The values of the principal 

macroscopic stresses, corresponding to this value of the displacement parameter, can 
be plotted in macroscopic stress space for each value of the load path angle 4, and 

for a fixed value of the orientation angle 0, to obtain the desired failure surface. 

To find the critical displacement parameter A, (and consequently, the critical force 
parameter A,, and also the critical principal macroscopic stresses fI’; and fI;), the 
uniqueness of the incremental equilibrium solution, for the entire honeycomb model, 

must be examined for each principal solution along the load path under investigation. 
Since the principal solution in question is periodic, with the same spatial periodicity 
as the hexagonal lattice model, the uniqueness of the incremental equilibrium equa- 

tions for the infinite honeycomb model can be explored by restricting attention to the 

incremental response of the unit cell. The method used here is based on Bloch wave 
theory, and has already been described in Triantafyllidis and Schnaidt (1993) for 
planar frame models. For reasons of completeness, however, a brief description of 
the method, applied to the honeycomb models, is presented here. 

Unlike the principal solution, which due to symmetry arguments (see the discussion 
at the end of Section 2.1), requires calculations involving only a portion of the unit 
cell, the stability calculations for the infinite honeycomb model require consideration 
of the entire microsection (see the definition in Section 2.1). The reason for these 
considerations can be found in the assumptions made in the Bloch wave theory 



Failure in aluminum honeycombs 1097 

representation of the critical bifurcation eigenmode (see eqn (10) below). According 
to Bloch wave theory, the complete representation of the eigenmode for the infinite 

honeycomb model is based on the unit cell of the microstructure. For a bifurcated 
solution to exist, at a given state of deformation for the infinite, perfectly periodic 
honeycomb model, the incremental force vectors ii, which correspond to the bifur- 
cation eigenmode, and which act on the boundary nodes of each unit cell (i.e., nodes 

1-6, shown in Fig. 1 (a)), must be related to the corresponding displacement increment 
vectors ti,, by the tangent stiffness matrices K,, : 

f, = i Ki;iq i= 1,....6. (9) 
/=I 

For discrete, periodic systems of infinite extent, it can be shown that, at bifurcation, 
the eigenmode 6(X,, XJ can be cast in the following form : 

WX,,Xz) = exp[i(w,X, +o~X~)IP(X,.X~L (10) 

where w, and (oz. are the wave numbers of the bifurcation eigenmode along the X, and 

X, coordinate directions, respectively, and where p(X,, X2) is a doubly periodic func- 
tion of the spatial coordinates X, and X2, with fundamental periods equal to the unit 

cell dimensions (i.e., p(X, +mA,, X2+nA,) = p(X,, X2) for any pair of integers m and 
n). Consequently, at bifurcation, the following relations involving the nodal force and 

displacement increment vectors i, and ir,, at the boundaries of the unit cell, can be 

deduced from eqn (10) : 

% = P,Pz~,, e4 = p,&, tig r= /lziI,, 

ifj = p,p&, id = -p,i,, f, = -priz, (11) 

where the following definition of the complex coefficients nL, is introduced 

(here i E 61) : 

pa = exp(io,A,), CI = 1,2. (12) 

By introducing relations (11) and definition (12) into the incremental equilibrium 
eqn (9), one obtains the following equivalent system for the equilibrium of the infinite 
honeycomb model : 

‘il, = 0, i = 1,2,3. (13) 

A nontrivial solution to eqn (13) exists when the matrix R (which is the direct assembly 
of the submatrices &,) satisfies 

deti%(A,,,,o, A,,w,A2) == 0. (14) 

The reduced stiffness matrix ii is Hermitian (deduced from the symmetry of K), 
and depends on the dimensionless wave numbers w,,4, and wzAz, as well as on A, the 
displacement parameter of the principal solution. For A = 0, the stiffness matrix iz is 
positive definite for all dimensionless wave numbers w,A, and u2A2. As the loading 
increases, however, one can find, for each fixed pair of wave numbers, a critical 
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displacement parameter A,,,(w,A,,+4J for which eqn (14) is satisfied for the first 
time. Of interest is the minimum value of the critical displacement parameter A, for 
all possible wave numbers; that is, for (o,A,, o+IJ E [0,27c) x [0,27r). This minimum 
value of the critical displacement parameter is denoted by A,. 

For each load path through principal macroscopic stress space, that is, for each 
fixed value of 6 and C#I (see the definitions in eqn (7)), the critical displacement 
parameter surface, defined by A,(w,A,, w~AJ, is determined. Two of these surfaces, 
which are typical for the present investigation, are shown in Fig. 2(a), for 6 = 0 and 
tan 4 = 0.839, and in Fig. 3(a), for (3 = 0 and tan $ = 0.700. Two important remarks, 
which are applicable, in general, to these surfaces, should be made at this point. 

The first remark pertains to the possibility of a singularity existing in the critical 
displacement parameter surface at the origin of the dimensionless wave number 
domain; that is, at (o,A,, wzAz) = (0,O). Note that two different classes of bifurcation 
mode shapes are mapped in the neighborhood of the origin. The first class are periodic 
modes, since the modes corresponding to w,A, = wzAz = 0 are spatially periodic, with 
a wavelength in each coordinate direction which is equal to the dimensions of the unit 

cell. The second class are long wavelength modes (i.e., modes with wavelengths 

L, >> A,), since the corresponding wave numbers approach zero (i.e., 

(w,A,, o,A,) = (27tAi/L,, 2nA,/L,) -(O, 0)). The magnified portions of the critical 
displacement parameter surfaces near the origins of the dimensionless wave number 

domains are shown in Fig. 2(b) and Fig. 3(b). Notice that the critical displacement 

parameter surface in Fig. 2 is regular at the origin (i.e., there is no singularity). 
Moreover, the minimum value of the critical displacement parameter AC is achieved 

exactly at (o,A,,~+t~) =(O,O). This implies that the first bifurcation mode enco- 

untered during the biaxial (0 = 0) loading of an infinite honeycomb model with 
tan 4 = 0.839, is a periodic mode with wavelengths in each coordinate direction which 

are equal to the unit cell dimensions. In contrast, the critical displacement parameter 

surface in Fig. 3 is singular at the origin. In addition, the minimum value of the 
critical displacement parameter is achieved for (w,A,, w,A,) -(O, 0), for a fixed ratio 
o,A ,/w,A,. This implies that the first bifurcation mode encountered during the biaxial 

(0 = 0) loading of an infinite honeycomb model with tan 4 = 0.700, has wavelengths 
in each coordinate direction that are much larger than the unit cell dimensions. Similar 

results, concerning the dependence of the critical displacement parameter surface on 
the dimensionless wave numbers, have already been observed by Triantafyllidis and 
Schnaidt (1993), for the case of biaxially loaded frame-type models. 

The second remark pertains to the symmetries of the critical displacement parameter 

surface on the dimensionless wave number domain [0,27r) x [0,27c). Note that, for 
biaxial loading (0 = 0), the principal solution is symmetric with respect to both the 
X, and X, coordinate axes, as well as point symmetric about the center of any unit 
cell. For the reduced stiffness matrix it, defined in eqn (13), these symmetries imply 
that 

%,(A>w%,w~ = &(A,2+-o,A,,o,&) 

= R,j(A,w,Ai,2~-_~-42) = it;i(A,2~-0,A,,271-_WZAZ). (15) 

For the case of shear loading (0 # 0), the principal solution is only point symmetric 
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Fig. 2. (a) Critical displacement parameter surface, determined using Bloch wave theory, for an infinite 
honeycomb model with perfectly periodic microstructure, subjected to biaxial compression along the initial 
axes of material orthotropy (0 = 0) with tan 4 = 0.839. (b) Magnified portion of the critical displacement 
parameter surface near the origin of the dimensionless wave number domain (note the minimum exactly 

at the origin). 

about the center of any unit cell. Consequently, the only symmetry exhibited by it in 

this case is 

IZij(A,o,A,,OZA2) = r2,,(A,2n-[o,,4,,2n-#zA3). (16) 
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Fig. 3. (a) Critical displacement parameter surface, determined using Bloch wave theory, for an infinite 
honeycomb model with perfectly periodic microstructure, subjected to biaxial compression along the initial 
axes of material orthotropy (0 = 0) with tan 4 = 0.700. (b) Magnified portion of the critical displacement 
parameter surface near the origin of the dimensionless wave number domain (note the singularity at the 

origin). 

The symmetries of the reduced stiffness matrix for the infinite honeycomb model 
reduce the computational time required to find the critical displacement parameter 
surfaces (i.e., the surfaces defined by A,Jw,A,, w~AJ). Hence, for 0 = 0, only one 
quarter of the full dimensionless wave number domain [0,27c) x [0,27c) needs to be 
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surveyed (this explains why the critical displacement parameter surfaces in Fig. 2(a) 
and Fig. 3(a) are plotted in the domain [0, n] x [0, rc]), while for 8 # 0, half of the full 
dimensionless wave number domain needs to be examined. 

Having discussed the theoretical modeling issues for this problem, the numerical 
algorithms used for their solution, along with the main results of this investigation, 
can now be presented in the next section. 

3. RESULTS AND DISCUSSION 

Although the methodology proposed in Section 2 is applicable to honeycombs made 
of any rate-independent material (elastic or elasto-plastic), the numerical applications 
presented here are calculated for the aluminum (Aluminum 5052-H39) honeycomb 
specimens used in the experimental investigations of Papka and Kyriakides (1994). 
Unless otherwise stated, the nominal cell size is c = 9.53 mm, and the cell wall 
thickness is t = 0.145 mm. The experimentally determined parameters, required in 
eqn (6) for the description of the uniaxial stress-strain response of the honeycomb 
cell walls, are: Young’s modulus E = 69 GPa, yield strain E!. = 4.23 x IO-‘. and 
tangent modulus E, = E/100. 

Following a description of the numerical algorithm used in the present calculations, 
the principal solutions for the infinite honeycomb models, as well as the corresponding 
onset of plasticity and maximum load surfaces, are discussed under the conditions of 
general in-plane loading. Next, the initial bifurcation surfaces for the infinite honey- 
comb models are examined, followed by an investigation of the geometric scale effects 
on these failure surfaces. Finally, the influence of microstructural imperfections on 
the initial bifurcation surfaces of the honeycomb models are explored. 

3.1. Description of numerical algorithm 

A finite element discretization of the governing eqns (l)-(6) is the basis for the 
numerical calculations presently reported. Each cell wall is divided into ten elements 
of equal length I, = c/10$. Within each element, a Hermitian cubic interpolation 
scheme has been adopted for the displacements v(,y) and w(s). Consequently, the 
degrees of freedom, at a node with coordinate si along the length of the element, are 
u, = (tl(s,), w(s), u,~(sJ, u~,,~(s,)). A four point Gaussian quadrature is employed for the 
numerical integration along the beam element length, while a straightforward trap- 
ezoid rule using 81 points is employed for the numerical integration through the 
thickness of the beam. This, perhaps excessive, accuracy was adopted to capture the 
exact location of the elastic-plastic boundary, in view of the sharp discontinuity 
present in the uniaxial stress-strain response. 

The continuity conditions at the vertices of the hexagonal cells (i.e., the nodes 
where the cell walls connect) merit a short discussion, due to the adoption of a 
simplifying assumption. At each vertex, the continuity of the nodal displacement 
vector must be ensured. This implies that the first two components, that is, z! and I&*:, 
of the vertex degrees of freedom (expressed in the global coordinate system), are the 
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same for the end nodes of each of the three elements connected at the vertex under 
consideration. Moreover, the rigidity of the vertex connection dictates that each of 

the three elements must rotate by the same angle CY = arctan [~,~/(l +v,,)], where v,, 

and w,, are expressed in the local coordinate system of each element connected at that 
vertex. From the adopted kinematics, it can be shown that cos cx = (1 +v,J/~ and 
since = w,,,/,?. By assuming that at each vertex 2 z 1, it can be shown that v,, and w., 

(expressed in the local coordinate system of each element) have to be the same for 
the end nodes of each of the elements connected at the vertex in question. This 

assumption, which is based on the observation that, under compressive macro- 
scopic stresses, the honeycomb specimens deform essentially through bending of the 
cell walls, was verified and found to be true for all of the numerical calculations 

reported here. 
For the principal solution, only one quarter of the unit cell (the portion of the unit 

cell bounded by nodes 1, 2, 0, and 3, as shown in Fig. I (a)) is considered. An 

incremental Newton-Raphson solution procedure is employed to determine the solu- 

tion to the problem. Periodicity conditions dictate that the moment at each boundary 

node vanishes, and hence, one need only impose displacements L’ and w, at each 
boundary node, which are compatible with the macroscopic deformation gradient F. 
A typical increment size for the nondimensional displacement parameter A/h, used in 

the solution of the equilibrium equations, is 5 x 10e4. 
To construct the initial bifurcation surfaces for the infinite honeycomb models, the 

entire unit cell (i.e., the unit cell with end nodes 1, 3, 5, 6, 4, and 2, as shown in Fig. 
1 (a)) is considered. The real, 24 x 24 stiffness matrix K for the unit cell, is obtained 

by static condensation of the non-boundary degrees of freedom. Further condensation 

using the relations (11) and definition (12), results in a reduced, 12 x 12, Hermitian 
stiffness matrix @A, m,A,, w,A,). The Choleski decomposition of K(A, cr~,A,, o,A,), 

used in the numerical solution of the incremental equilibrium equations, provides a 

real, diagonal matrix D. As the displacement parameter A increases from zero, the 
reduced stiffness matrix K(A,w,A,,c+4J loses, for the first time, its positive defi- 

niteness, for some value of the displacement parameter, denoted by A,,. Consequently, 
the minimum entry of the diagonal matrix D changes sign at this stage of loading. To 

find the critical displacement parameter surface (i.e., the surface defined by 
Anl(w,A,,ozAz)) corresponding to each load path in principal macroscopic stress 

space (i.e., for fixed values of Q and $), the dimensionless wave number domain is 
typically covered with a uniformly spaced grid, for which the wave number increments 

are 6(o,A,) = 6(ozA,) = rc/lSO. A much denser grid with 6(o,A,) = 6(w,A,) 
= n/18,000 is employed near the origin of the dimensionless wave number domain. 

in order to accurately capture any long wavelength bifurcation modes. 
For the case of finite sized honeycomb models, a straightforward incremental 

Newton-Raphson solution procedure is employed to find the equilibrium solution of 
the entire specimen. To reduce the size of the final stiffness matrix, static condensation 
is used to create a superelement for each half cell wall. The stability for each of the 
finite honeycomb models is investigated by examining the loss of positive definiteness 
of the resulting incremental stiffness matrix. This is accomplished, again, using the 
criterion of sign change in the minimum entry of the diagonal matrix D, found through 
Choleski decomposition of the final stiffness matrix in question. 
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A number of nontrivial model verifications have been employed to check the 
accuracy of this numerical algorithm. These verifications range from analytical solu- 
tions developed for certain deformations of the cell walls, to a comparison of the 
results, determined for the case of uniaxial compression, with the results given by 
Papka and Kyriakides (1994) for a similar microsection. 

Finally, some comments concerning the magnitude of the axial strains in the cell 
wall elements, and the possibility of reloading during the finite deformations, are in 
order. The maximum axial strain over all of the elements of the model is identified in 
each numerical calculation. Given the fact that the applied principal macroscopic 
stresses are compressive, the honeycomb deforms essentially through bending of the 
cell walls. Consequently, the absolute value of the maximum axial strain is never 
found to exceed 0.01 (recall that to ensure continuity of the displacement vector at 
each hexagon vertex, JL z 1, or e z 0). As far as unloading is concerned, it has been 
observed that, in general, immediately following a maximum load, the stresses in some 
eiements decrease. Since, in this investigation, deformations approaching complete 
collapse of the honeycomb models are never attained (i.e., no contact of the cell walls 
occurs in these calculations), reloading has never been observed. thus making moot the 
distinction between isotropic hardening and the kinematic hardening model adopted. 

3.2. Onset qf’plasticity and maximum loud 

As previously discussed, the principal solution for the finite honeycomb model is 
obtained by applying the macroscopic stress state, defined in eqn (7), to the unit cell. 
This is accomplished by prescribing the displacement parameter A, which is the work- 
conjugate displacement to the force parameter A, for a fixed ratio and orientation of 
the principal macroscopic stresses. Some typical force-displacement responses, for 
the perfectly periodic aluminum honeycombs under investigation, are shown in Fig. 
4(a). More specifically, the dimensionless force parameter, A/EA,A*, is plotted versus 
the dimensionless displacement parameter A//z, for a fixed principal stress ratio 
tan 4 = 2.747, and for three different values of the macroscopic load orientation angle 
0. For each force-displacement response, the onset of plasticity (i.e., the instance for 
which the outer fiber of a cell wall reaches the yield stress gY) is denoted by (O), the 
maximum load is denoted by (a), and the initial bifurcation in the principal equi- 
librium solution of the infinite honeycomb model is denoted by (0). 

By scanning over all values of the load path angle 4 between rr and 3rc/2 (while 
keeping the orientation angle 0 constant), the onset of plasticity surface and the 
maximum load surface can be plotted in principal macroscopic stress space. The onset 
of plasticity surface (depicted by the solid line) and the maximum load surface 
(depicted by the dotted line) are shown for the case of biaxial compression along the 
initial axes of material orthotropy (0 = 0) in Fig. 5(a), and for the case when the 
principal stress state is oriented at 0 = n/4 with respect to these axes in Fig. 5(b). The 
shape of both surfaces is similar, and as is expected by their respective definitions, the 
onset of plasticity surface is completely contained within the maximum load surface. 
In both figures the onset of plasticity and maximum load surfaces are plotted for a 
range of principal macroscopic stresses between 0 MPa and - 0.4 MPa. This particular 
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Fig. 4. (a) Typical dimensionless force-displacement response for an infinite honeycomb model with 
perfectly periodic microstructure, subjected to biaxial compression oriented at three different angles to the 
initial axes of material orthotropy with tan 4 = 2.747. (b) Corresponding dimensionless force-displacement 
response (principal and bifurcated solutions) for biaxial compression along the axes of orthotropy (0 = 0) 

with tan ~5 = m. 

region of macroscopic stress space is chosen in anticipation of the initial bifurcation 

surface, which is entirely contained within this range. 

For the case of balanced biaxial compression (i.e., for the case when H, = H,), all 

cell walls are under the same axial force, and therefore, deform only in the axial 
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Fig. 5. Onset of plasticity and maximum load surfaces in principal macroscopic stress space for an infinite 
honeycomb model with perfectly periodic microstructure, subjected to (a) biaxial compression along the 
initial axes of material orthotropy (0 = 0) and (b) biaxial compression oriented at 6’ = n/4 to the axes of 

orthotropy. 

direction. Due to the absence of bending, the principal macroscopic stresses at the 
onset of plasticity, and at maximum load, attain their highest possible values for this 
particular load path (the principal stresses are approximately -4.2 MPa and 
-4.5 MPa at the onset of plasticity and at the maximum load, respectively). As a 

result, the complete onset of plasticity and maximum load surfaces are extremely 
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narrow, and can be approximated by simply extrapolating the failure surfaces shown 
in Fig. 5(a) and Fig. 5(b). The failure surfaces in question are shown in their entirety 

in the inset of Fig, 5(a), for the case of biaxial compression along the initial axes of 

material orthotropy (Q = 0). 
For the principal macroscopic stress range of interest (i.e., the range between 0 

MPa and -0.4 MPa) it can be seen that the domain of stress space corresponding to 

completely elastic deformation, and the domain of stress space corresponding to 
deformations occurring prior to maximum load, are much larger when the principal 

stresses are oriented at 8 = 7r/4 to the initial axes of material orthotropy, as shown in 
Fig. 5(b), than the corresponding domains resulting for biaxial compression along 

these axes (0 = 0), as shown in Fig. 5(a). The reason for this difference is illustrated 
in Fig. 4(a), which shows significant increases in the load levels corresponding to the 

onset of plasticity and the maximum load, between two typical force-displacement 

curves : the first, for the case when 0 = 0, and the second, for the case when 8 = 7114. 

Notice, however, that the increases in the maximum load levels are not monotonic 
functions of the macroscopic load orientation angle 0, as one can also see in Fig. 4(a) 

(note the decrease in the load levels for the case when 0 = n/8). 
An important observation to be made from the results presented in Fig. 5, is that 

a maximum load is reached for all load paths with a macroscopic load orientation 

angle of 0 = 7c/4, while for 8 = 0, a maximum load does not exist for a range of 

deformations near the load path corresponding to uniaxial compression in the vertical 
direction (i.e., the load path for which fI, = 0 and II, < 0). The maximum load 
surface terminates at the point denoted by (o), near the II2 axis. For this particular 

case of uniaxial compression (6’ = 0 and d, = co), the force-displacement response 
shown in Fig. 4(b) exhibits no maximum load, but shows a very slight load increase 

for A/h > 0.065. The results for this particular load path, which correspond to the 

experimental results of Papka and Kyriakides (1994), constitute a singular exception 

among all of the load paths considered in this investigation. 
Finally, of additional interest, is the shape of the onset of plasticity and maximum load 

surfaces in macroscopic strain space. Both of these surfaces, which were depicted in 
principal macroscopic stress space in Fig. 5(a) for 8 = 0, are plotted in principal macro- 

scopic strain space in Fig. 6 (since 6’ = 0, II,, = II,, = 0 and F,2 = F2, = 0, and therefore, 

the only non-zero components of the deformation gradient tensor are F, , and Fz2, which 
are work conjugate quantities to the non-zero components of the macroscopic, first Piola- 

Kirchhoff stress tensor ff, , and IIZ2, respectively). The hatched area in Fig. 6 corresponds 
to load paths for which at least one principal macroscopic stress component is in the 

tensile range. The thin slivers between this hatched area, which are bounded by the onset 
of plasticity surface (depicted by the solid line) and the maximum load surface (depicted 
by the dotted line), are the domains of strain space corresponding to completely elastic 
deformation, and deformations occurring prior to maximum load, respectively. As one 
can see by the points marked a through h in Fig. 6(a), and the magnified portion of the 
failure surfaces shown in Fig. 6(b), there can be a dramatic change in the macroscopic 
stress state at the onset of plasticity, and at the maximum load, for an extremely small 
change in the corresponding macroscopic strain rate (compare these points, and their 
relative proximity, to the corresponding points in principal macroscopic stress space, as 
shown in Fig. 5). This extreme sensitivity of the onset of plasticity and the maximum 
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Fig. 6. (a) Onset of plasticity and maximum load surfaces in principal macroscopic strain space for an 
infinite honeycomb mode1 with perfectly periodic microstructure, subjected to biaxial compression along 
the initial axes of material orthotropy (0 = 0). (b) Magnified portion of the failure surfaces. Note the 
extreme sensitivity of the macroscopic stress state at failure to small changes in the load path angle (compare 

to the previous figure). 

load surfaces to small variations in the load path, is the primary reason for presenting 
the results of this investigation in principal macroscopic stress space. 

3.3. Initial bifurcation 

Having constructed the onset of plasticity and the maximum load surfaces for the 
perfectly periodic honeycomb model, attention is focused next on the calculation of 
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Fig. 7. (a) Onset of plasticity, initial bifurcation, and maximum load surfaces in principal macroscopic 
stress space for an infinite honeycomb model with perfectly periodic microstructure, subjected to biaxial 
compression along the initial axes of material orthotropy (0 = 0). (b) Regions of the initial bifurcation 

surface corresponding to the two different bifurcation mode shapes. 

the initial bifurcation surface. By definition, in principal macroscopic stress space, the 
initial bifurcation surface must be contained within the maximum load surface, as 
seen in Fig. 7(a) for an infinite honeycomb model subjected to biaxial compression 
along the initial axes of material orthotropy (0 = 0), and in Fig. 8(a) for the same 
model subjected to biaxial compression oriented at 6 = 7c/4 to these axes. 
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Fig. 8. (a) Onset of plasticity, initial bifurcation, and maximum load surfaces in principal macroscopic 
stress space for an infinite honeycomb model with perfectly periodic microstructure, subjected to biaxial 
compression oriented at 0 = rr/4 to the initial axes of material orthotropy. (b) Regions of the initial 

bifurcation surface corresponding to the two different bifurcation mode shapes. 

More specifically, Fig. 7(a) depicts, in principal macroscopic stress space, the initial 
bifurcation surface for an infinite honeycomb model, and shows the relative position 
of this surface with respect to the onset of plasticity and maximum load surfaces. 
Note that the initial bifurcation surface differs significantly from the onset of plasticity 
and the maximum load surfaces for stress states near the balanced biaxial compression 
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range (i.e., for stress states in which TI , z II,). In these situations, the initial bifur- 
cation surface is mainly within the elastic domain of the honeycomb material response. 
For load paths with an adequate deviation from the balanced biaxial compression 
range, however, the initial bifurcation surface becomes almost indistinguishable from 
the maximum load surface, as shown in Fig. 7(a). 

Another important issue concerns the type of eigenmode that results from the initial 
bifurcation in the principal equilibrium solution. For all of the load paths considered, the 
minimum value of the critical displacement parameter (i.e., AC = minA,(o,A,, w*AJ) 
always occurs at the origin of the dimensionless wave number domain. The portion of 
the initial bifurcation surface for which the corresponding modes are periodic, with 
wavelengths in each coordinate direction which are equal to the unit cell dimensions (i.e., 
the portion for which the surfaces defined by A,(e.+4,, CI&) are regular at the origin, 
with the minimum critical displacement parameter occurring at w,A, = e& = 0, as 
shown, for example, in Fig. 2), is plotted in Fig. 7(b) with a dotted line. Alternatively, 
the portion of the surface for which the corresponding modes are long wavelength modes 
(i.e., the portion for which the surfaces defined by Am(o,A,,e+4J are singular at the 
origin, with the minimum critical displacement parameter occurring at w,A, + 0 and 
m2A2 + 0, as shown, for example, in Fig. 3), is plotted in Fig. 7(b) with a solid line. 

Notice in Fig. 7(a) that in the case for which the principal axes of stress are aligned 
with the initial axes of orthotropy of the honeycomb material (0 = 0), the principal 
solution for the infinite honeycomb model reaches a bifurcation point for all load 
paths through principal macroscopic stress space (i.e., for all values of the load path 
angle 4). Moreover, the initial bifurcation always occurs prior to the maximum load 
(assuming that the maximum load exists), as seen in the two examples plotted with 
solid lines in Fig. 4. 

The results depicted in Fig. 8(a) and Fig. 8(b) are analogous to their counterparts 
presented in Fig. 7(a) and Fig. 7(b), respectively, but correspond to a principal stress 
state oriented at ~9 = 7r/4 with respect to the initial axes of orthotropy of the honey- 
comb material. The main difference between these two cases is that, for 0 = 7r/4, a 
maximum load is reached for all load path angles 4 (compare Fig. S(a) to Fig. 7(a)), 
while no bifurcation in the principal solution is found for a large range of the load 
path angle (compare Fig. 8(b) to Fig. 7(b)). Moreover, the initial bifurcation for 
these load paths can occur after the maximum load, as seen by the examples plotted 
with dashed and dotted lines in Fig. 4(a). 

The fact that the initial bifurcation surface, when depicted in principal macroscopic 
stress space, is, by definition, contained within the maximum load surface, can be 
misleading, since it does not necessarily imply that a bifurcated solution precedes the 
maximum load. To better illustrate this idea, the dependence of the displacement 
parameter A, on the load path angle c$, at the onset of plasticity, at the initial 
bifurcation in the principal solution, and at the maximum load, is plotted in Fig. 9(a), 
for an infinite honeycomb model, subjected to biaxial compression along the initial 
axes of material orthotropy (0 = 0), and in Fig. 9(b) for an infinite model subjected 
to biaxial compression oriented at 0 = 7c/4 to these axes. These figures show that the 
initial bifurcation in the principal solution always occurs prior to the maximum load 
for 8 = 0 (see Fig. 9(a)), while for 0 # 0 the first bifurcation can occur well after the 
force parameter A has reached a maximum value, as seen in Fig. 9(b) for values of C#I 
greater than approximately 47~13. 
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compression oriented at 0 = z/4 to the axes of orthotropy. 

3.4. Effects of varying wall thickness 

Honeycomb materials are typically manufactured by bonding strips of material 

together, and then expanding the ensemble into the proper configuration. Strips 
of varying thickness can be used to produce honeycombs with specific mechanical 
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Fig. 10. Effects of varying honeycomb cell wall thickness on the initial bifurcation surface for an infinite 
honeycomb model with perfectly periodic microstructure, subjected to biaxial compression along the initial 

axes of material orthotropy (0 = 0). 

properties. Given that the stresses, at the initial bifurcation in the principal equilibrium 
solution for these materials, depend on the bending stiffness of the cell walls, it seems 
reasonable to expect that the corresponding failure surfaces should be scaled with the 
cube of the cell wall thickness. 

The results in Fig. 10, which correspond to the case of biaxial compression along 
the axes of orthotropy of the honeycomb material (6 = 0), show the initial bifurcation 
surfaces for honeycomb models with three different values of the cell wall thickness. 
These models correspond to the honeycomb specimens investigated experimentally by 
Papka and Kyriakides (1994). Since the macroscopic elastic moduli of the honeycomb 
materials are proportional to the parameter E(~/c)~ (see Gibson and Ashby, 1988) the 
principal macroscopic stresses, plotted in Fig. 10, are nondimensionalized accordingly. 
Notice that the portions of the initial bifurcation surfaces, which are contained in the 
completely elastic domain of deformation, coincide for the three different honeycomb 
models. This result comes as no surprise, since the principal solutions for balanced 
biaxial compressive loading do not involve any significant bending of the honeycomb 
cell walls. Consequently, the corresponding bifurcation is due to the elastic buckling 
of the (nearly) straight, prestressed cell walls, in which case the critical stresses are 
proportiona to the elastic bending stiffness of these walls. 

For the portions of the initial bifurcation surfaces which are contained in the plastic 
domain, however, the initial bifurcations for the honeycombs with the thinner cell 
walls appear at higher levels of this nondimensionalized stress. This is due to the 
adopted stress parameterizations, and explains the apparent stiffening of the honey- 
combs with the thinner cell walls, which bifurcate in the plastic range of deformation. 
These results are in agreement with the experimental findings of Papka and Kyriak- 
ides, for the case of uniaxial compression in the vertical direction (see Fig. 12 in Papka 
and Kyriakides, 1994). 
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3.5. Geometric scale qffkcts 

The results presented thus far have been obtained for the infinite honeycomb model 
with a perfectly periodic, lattice geometry. Since engineering applications involve the 
use of finite specimens, which invariably possess imperfections in the geometries of 

the underlying microstructures, the remainder of this presentation is devoted to 
an investigation of the geometric scale effects, and the influence of microstructural 

imperfections, on the onset of failure in aluminum honeycombs. 

A typical, finite honeycomb specimen, with perfectly periodic microstructure, tog- 
ether with the corresponding applied loading conditions, is shown in Fig. 11 (a). The 

model comprised of m x n hexagonal cells. and configured as shown in Fig. I I. has 

overall dimensions L, = mA, and L2 =(n+ l/3)(A2/2). The forces applied on the 
boundary of the specimen are given by F, = fI,Lzh and F2 = I12L,h, where the prin- 

cipal macroscopic stresses IT, and fIz are given by eqn (7). The prescribed quantities 

for these analyses are the load path angle C#J (which dictates the ratio of the principal 

macroscopic stresses), and the displacement parameter A, obtained from eqn (8) by 

setting the macroscopic load orientation angle (1 equal to zero. The particular form 

of the boundary geometry, for the finite specimen, coincides with that which was used 

in the experimental investigations of Papka and Kyriakides (1994). 
Three different finite honeycomb models are studied, each model being comprised 

of n x n hexagonal cells, where n = 3,9, and 1.5, respectively. For these specimens. the 

geometric scale parameter is defined as E = l/n. As discussed in Section 3.1, the initial 

bifurcation instabilities for the finite honeycomb models occur at the first loss of 

positive definiteness in the corresponding incremental stiffness matrices. The results 

of the numerical calculations, used to determine the location of these bifurcation 

instabilities, are shown in Fig. 12, in which, for purposes of comparison, the initial 

bifurcation surface for the corresponding infinite honeycomb model (i.e., the model 

for which E + 0) has also been plotted (the failure surface of the infinite model is 

depicted by the solid line). As expected, the initial bifurcation surfaces for the finite 

specimens converge to the corresponding failure surface of the infinite honeycomb 

model, as the geometric scale parameter approaches zero. What is possibly more 

interesting, is that this convergence is not monotonic, due to boundary effects, as one 

can see by examining the results for the smaller specimen (i.e.. the results for 

I: = 0.333), shown in Fig. 12. 

Notice that the onset of failure surfaces differ substantially in the elastic domain 

of response, yet are almost coincident for deformations in the plastic domain. To 

understand this behavior, recall from Fig. 7(a) the close proximity between the 
initial bifurcation surface and the maximum load surface, as presented in principal 

macroscopic stress space, for the infinite honeycomb model. Since the principal 

solutions for the finite honeycombs are almost identical to the corresponding principal 

solutions for the infinite models, this proximity of the initial bifurcation surfaces for 

the finite honeycombs, in the plastic region of deformation, comes as no surprise. 
Additional information about the nature of the eigenmode at the onset of failure 

(i.e., whether the instability mode is local or global in nature), for the finite honeycomb 
models with perfectly periodic microstructures, can be obtained from information 
about the dimensionless wave numbers at criticality, for the corresponding honey- 
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(a) 

Fig. 11. (a) Typical finite honeycomb model with perfectly periodic microstructure, and the corresponding 
applied loading conditions. (b) Finite honeycomb model with random geometric imperfections in the 

material microstructure. 

comb model of infinite extent. The eigenmodes shown in Figs 13(a,b) have been 
determined for a finite honeycomb model with E = 0.111, and correspond to the 
failure points labeled (a) and (b) on the corresponding failure surface shown in Fig. 
12 (i.e., for load paths with tan C#J = 0.839 and tan C/I = 0.700, respectively). As 
expected from the corresponding critical displacement parameter surfaces, shown 
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Fig. 12. Scale effects on the initial bifurcation surface for perfectly periodic honeycomb models, subjected 
to biaxial compression along the initial axes of material orthotropy (0 = 0). 

in Figs 2 and 3, respectively, the shape of the eigenmode for the local instability 
corresponding to point (a) is periodic (with a wavelength in each coordinate direction 
which is commensurate with the unit cell dimensions) near the center of the model 
(i.e., away from the boundaries), as shown in Fig. 13(a), while the shape of the 
eigenmode for the global instability, corresponding to point (b), varies smoothly over 
the entire specimen, as shown in Fig. 13(b). 

3.6. Sensitivity to imperfections 

Up to this point, it has been assumed that the undeformed honeycomb models 
ideally possess perfectly periodic microstructures, for which all unit cells are identical, 
all cell walls are straight, and the material properties are uniform. Aluminum honey- 
comb specimens used in engineering applications obviously contain imperfections due 
to variations in the initial material properties of the aluminum strips used in their 
fabrication, and also due to variations in the final microgeometry resulting from 
inaccuracies in the manufacturing process. Given that geometric and material prop- 
erty imperfections have similar effects on the failure surfaces of the honeycomb 
specimens, only imperfections in the microstructural geometry of the honeycomb 
models are presently considered. 

Two categories of geometric imperfections are distinguished. The first category 
includes systematic imperfections, which are either due to variations in the bond 
lengths of the aluminum strips, or result from over- or under-expansion of the 
honeycomb specimen during the manufacturing process. These imperfections are 
equivalent, and result in nonregular hexagonal honeycombs, which, however, main- 
tain their periodic microstructures (see Papka and Kyriakides, 1994). The second 
category of imperfections includes all random geometric imperfections, which can 
arise due to a variety of additional inaccuracies occurring during material fabrication. 
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(a) 

(b) 

Fig. 13. Bifurcation mode shapes for finite honeycomb models with perfectly periodic microstructures 
exhibiting : (a) periodic wavelengths which are equal to the unit cell dimensions ; and (b) wavelengths 

which are much larger than the unit cell dimensions. 

Unlike the systematic imperfections, the random imperfections result in honeycombs 
with non-periodic microstructures. 

Consider first the systematic imperfections, which are due to variations in the bond 
lengths along the honeycomb cell walls. Here, the imperfect honeycomb bond length 
is given by i = (I+ S)l, where 6 is the bond length imperfection amplitude parameter, 
and 1 is the initially perfect material bond length (see the insert in Fig. 14(a)). 
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Fig. 14. Effects of systematic imperfections in the honeycomb material bond length on : (a) the dimensionless 
force-displacement response for an infinite honeycomb model, subjected to biaxial compression along the 
initial axes of material orthotropy (0 = 0) with tan C$ = 2.747 ; and (b) the corresponding initial bifurcation 

surfaces. 

The effects of these imperfections on the behavior and the failure of the aluminum 
honeycombs are considered for models which are subjected to biaxial loadings along 
the initial axes of material orthotropy (0 = 0). The influence of an imperfection in the 
material bond length, in the typical force-displacement response for the unit cell, is 



1118 N. TRIANTAFYLLIDIS and M. W. SCHRAAD 

shown in Fig. 14(a), for three different material bond lengths corresponding to values 
of the imperfection amplitude parameter ranging from 6 = -0.1 to 6 = 0.1. The 
results correspond to a load path with tan 4 = 2.747, and indicate an increase in the 
load level for a decrease in the bond length, and conversely, a decrease in the load 
level for an increase in the bond length, for deformations occurring prior to A/h z 0.2. 

The influence of bond length imperfections on the initial bifurcation surface for an 
infinite honeycomb model is shown in Fig. 14(b). Notice that only a 10% change in 
bond length produces a significant effect on the initial bifurcation surface. This 
influence is due to significant changes in the unit cell behavior in the domain of plastic 
deformation. Note also, that in the elastic domain of deformation, where the failure 
surfaces coincide, the effects on the initial bifurcation surface are relatively insig- 
nificant. 

The study of the effects of imperfections on the onset of failure is concluded with 
an investigation involving honeycomb models with random geometric imperfections. 
Unlike bond length imperfections, random geometric imperfections destroy the 
periodicity in the honeycomb microstructure. To model the geometry of the imperfect 
honeycombs, random perturbations in the initial (i.e., the undeformed) positions of 
the hexagon vertices are produced in a manner similar to that described for the 
idealized lattice models, presented in Schraad and Triantafyllidis (1997). The coor- 
dinates of a hexagon vertex in the perfectly periodic configuration are perturbed 
by AX, = her, (i = 1,2), where 6 is the random geometric imperfection amplitude 
parameter, and r, are random numbers satisfying the condition - 1 d ri d 1. In the 
ensuing calculations, two different values of the random geometric imperfection 
amplitude parameter are considered. The first, 6 = 0.03, corresponds to the Aluminum 
5052-H39 honeycomb specimens used by Papka and Kyriakides (1994), and the 
second, 6 = 0.10, is an arbitrarily chosen upper bound. 

Unlike the bond length imperfections, the random geometric imperfections result 
in behavior for which the initial bifurcation in the principal solution of the perfectly 
periodic specimen (depicted by the solid line) is replaced by a limit load in the force- 
displacement response of the finite specimen (depicted by the dashed and dotted 
lines), as shown in Fig. 15(a). Here, the response is calculated for a 9 x 9 hexagon cell 
specimen, subjected to biaxial compression along the initial axes of material ortho- 
tropy (0 = 0) with tan 4 = 2.747. For successive increases in the imperfection ampli- 
tude parameter, the maximum load in the imperfect honeycomb response experiences 
successive decreases. The maximum load surfaces for the imperfect, 9 x 9 hexagon 
cell specimens, with 6 = 0.03 and 6 = 0.10, are shown in Fig. 15(b), together with the 
initial bifurcation surface of the corresponding infinite, perfectly periodic model. As 
expected from the discussion of the results presented in Fig. 15(a), the failure surface 
determined for the infinite, perfectly periodic model provides an upper bound for the 
failure surfaces of the imperfect models. Note also, that for the honeycomb perturbed 
by the smaller random geometric imperfection amplitude parameter 6 = 0.03, the 
maximum load surface for the 9 x 9 hexagon cell specimen is relatively close to this 
upper bound. 

It is of interest, at this point, to compare the theoretical results, obtained for the 
infinite, perfectly periodic honeycomb model, and the numerical results, obtained for 
the finite counterpart with microstructural imperfections, with similar results reported 
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Fig. 15. Effects of random geometric imperfections in the honeycomb material microstructure on: (a) 
the dimensionless forcedisplacement response for an infinite honeycomb model, subjected to biaxial 
compression along the initial axes of material orthotropy (0 = 0) with tan 4 = 2.747 ; and (b) the cor- 
responding failure surfaces for two different values of the imperfection amplitude parameter 6. The surface 
depicted by the dashed-dotted line represents the corresponding empirical failure surface estimate provided 

by Klintworth and Stronge (I 988). 

by other researchers. Preference for the work of Klintworth and Stronge (1988) on 
biaxially crushed honeycombs, for use in this comparison, is justified by the fact that 
their model is the most realistic (i.e., their model accounts for the doubled thickness 
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of the cell walls along the vertical direction of the honeycomb material). Their 
modeling effort consists of an elastic buckling analysis and a limit load calculation, 

both based soley on the unit cell of the model (differences in behavior between the 

infinite, perfectly periodic specimen and the finite specimens with microstructural 
imperfections are not considered in their work). An empirical approach, which com- 

bines the elastic buckling and limit load calculations, is used to determine two 

expressions (see eqns (6.2) and (6.3) on page 282 of Klintworth and Stronge, 1988), 
which provide reasonable upper bounds for the maximum loads encountered by their 

biaxially crushed honeycomb specimens (see also Fig. 11 on page 284). These same 

equations have been applied using the geometry and material properties of the honey- 
comb specimens considered in the present work, and the results (depicted by the 

dashed-dotted line) are plotted in Fig. 15(b). Note that the failure surface predictions 
of Klintworth and Stronge fall well inside the maximum load surfaces obtained for 

the honeycomb specimen with the realistic imperfection amplitude parameter 

6 = 0.03, but intersect the corresponding failure surface obtained for the specimen 
with the larger amplitude of imperfection (5 = 0.10. Klintworth and Stronge give no 

quantitative measure of the geometric microstructural imperfections which may be 
present in the honeycomb specimens used in their experimental investigations. If the 

specimens used in their work are considerably larger in size than the 9 x 9 specimens 
considered in the present numerical investigation, then one can plausibly explain the 

fact that the maximum load surface obtained for the honeycomb specimen with 

(5 = 0.03 lies outside the estimate for the maximum load surface provided by Klin- 

tworth and Stronge. 
The presence of a maximum load in the response of the imperfect specimen inevi- 

tably leads to localized deformation failure modes, as shown in Fig. 16. This deformed 

I_ Ll 4 
Fig. 16. Ultimate failure mechanism (i.e., localization of deformation) for a finite honeycomb model with 
random geometric imperfections in the material microstructure, subjected to biaxial compression along the 

initial axes of material orthotropy (0 = 0) with tan 4 = 0.364. 
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configuration was calculated for a finite honeycomb model, with 6 = 0.03, subjected 
to biaxial compression along the initial axes of material orthotropy (e = 0), with a 

principal stress ratio tan 4 = 0.364. Note that the localized failure zone is oriented at 
an angle to the principal macroscopic stress axes. The determination of this angle 
involves an investigation of the postbuckling response of the infinite honeycomb 

model, which is a completely different (and more difficult) problem from the onset of 

instability problems addressed here. It should be emphasized at this point, that the 
postbuckling response, which reaches a rather extended load plateau as one row of 

cells collapses after another (see Papka and Kyriakides, 1994), determines the practical 

load carrying capacity of the honeycomb specimen. The reader interested in the 
postbuckling behavior of structures which exhibit a load maximum in their principal 
solution, is referred to the excellent review article of Kyriakides (1993). 

4. CONCLUSIONS 

Of interest in this work is the theoretical prediction of the onset of failure in 

aluminum honeycombs under arbitrary macroscopic loading conditions. Following a 

general theory for rate-independent, periodic solids, proposed by Triantafyllidis and 
Schnaidt (1993), a failure surface for the infinite, perfectly periodic medium is defined 

by the principal macroscopic stresses at the onset of the initial bifurcation instability 

encountered along proportional load paths. Therefore, the corresponding calculations 
are based on the equilibrium solutions for the unit cell along such load paths. Since 

cellular materials are often used in shock mitigation and energy absorption appli- 
cations, the investigation is carried out for aluminum honeycombs subjected to in- 

plane, compressive stress states, and the resulting failure surfaces are presented in 

macroscopic stress space. In addition to the initial bifurcation surface for the perfectly 
periodic honeycomb of infinite extent, the failure surface corresponding to the onset 
of plastic deformation in each cell, and the failure surface corresponding to the 

maximum load, have also been determined and plotted in macroscopic stress space. 

All of the results reported here correspond to a commercially available aluminum 
honeycomb, for which the material properties have been determined experimentally 

by Papka and Kyriakides (1994). 
Due to the high flexibility of the honeycomb unit cell under compressive stresses. the 

eigenmode corresponding to the first instability encountered during the proportional 

loading is either strictly periodic. with the same spatial periodicity as the hexagonal 
lattice model (in which case, the wave numbers of the bifurcation eigenmode along 
the X, and X2 coordinate directions are (0, = (u2 = O), or is a long wavelength mode, 

with a period that is much larger than the unit cell dimensions (in which case, the 

corresponding wave numbers are o, -+ 0 and (I): + 0). For the latter case, the onset 
of failure in the honeycomb specimen coincides with the loss of ellipticity of the 

homogenized moduli of the material (see Geymonat ct cd., 1993), while in the former 
case, the homogenized incremental moduli cannot be defined. Hence, for the case of 
an aluminum honeycomb, the microscopic failure surface (for which the calculations 
are computationally time consuming) coincides with the macroscopic failure surface 
(which is much more easily obtained), introduced in Triantafyllidis and Schnaidt 
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(1993), thus explaining the omission of the macroscopic failure calculations in this 

work. 
The results show that there is an extreme sensitivity of the onset of plasticity and 

maximum load surfaces, to the ratio of principal macroscopic stresses tan 4 and the 
macroscopic load orientation angle 8. It has been determined, for the case of biaxial 

loading along the initial axes of material orthotropy (0 = 0), that a bifurcated solution 
always exists prior to reaching a maximum load, while a maximum load cannot be 

reached for macroscopic stress states approaching uniaxial compression. In addition, 
for load paths which include shear (e.g., for 6, = 7c/4), the situation is reversed; that 
is, a maximum load is always attained, but a bifurcated solution exists only for certain 

ratios of principal stresses. Moreover, depending on the principal stress ratio, a 
bifurcated solution can appear after the maximum load has been reached. In any 
event, the previously mentioned coincidence of the micro- and macro-failure surfaces, 

implies that localization of the postbuckling deformation will occur under all macro- 

scopic loading conditions (see the discussion in Triantafyllidis and Bardenhagen, 

1996). 

The influence of the geometric scale parameter E (i.e., the size of the unit cell, 
relative to the overall size of the honeycomb specimen) has also been studied, and the 

results show that the failure surfaces of the finite honeycomb specimens converge to 
the failure surface of their corresponding infinite counterpart as E -+ 0. The influence 

of imperfections in the honeycomb microstructure has been studied as well, for two 
different classes of imperfections : systematic imperfections, which simply change the 

geometry of the unit cell, while preserving the periodicity of the microstructure ; and 
random geometric imperfections, which are inevitable in practice, and which destroy 

the periodicity of the microstructure. The practicality of determining the failure 
surface for the infinite, perfectly periodic honeycomb, lies in the fact that it is an 

upper bound for the failure surfaces of the specimens with random imperfections, as 
discussed in Schraad and Triantafyllidis (1997). Time consuming calculations for 

finite specimens with realistic, random geometric imperfections have been carried out, 
and the results have been compared with the failure predictions for the corresponding 

perfectly periodic specimens. 
Unlike previous theoretical and experimental investigations, concerning the failure 

of periodic composites under plane strain conditions, the present study considers all 
possible macroscopic stress states (i.e., stress states for which the principal axes of 
stress are oriented at arbitrary angles to the initial axes of material orthotropy). The 

failure surface for the infinite, perfectly periodic specimen provides an upper bound 
for the stresses at the onset of failure in these materials (an upper bound which is 

relatively easy to calculate). Given that there exists a strong dependence of these 
failure surfaces on the macroscopic stress states, the proposed methodology offers a 
useful predictive tool for the design of aluminum honeycombs. Of course, the ultimate 
failure of these materials by localization of deformation occurs at lower loads. 
However, the theoretical prediction of these loads requires a much more sophisticated 
postbuckling analysis-a task which lies beyond the scope of this work. 

Finally, it should be emphasized here that the methodology used in this work, to 
establish the failure surfaces for the aluminum honeycombs, is applicable to any rate- 
independent, periodic medium which undergoes finite deformations. This meth- 
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odology uses the construction of the micro-failure surface for the infinite, perfectly 

periodic specimen, which requires calculations based only on the unit cell, to provide 

an upper bound for the failure surfaces of the more realistic (i.e., the imperfect) 
microstructured media. This is advantageous, since the failure calculations involved 
in an actual application would be prohibitively time consuming. The ideas developed 

here have recently been applied to materials with continuum microstructures (see 
Triantafyllidis and Bardenhagen, 1996, for the case of fiber-reinforced composites), 
and these same ideas are currently being employed by the present authors in the study 

of some three-dimensional cellular solids. 
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