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Abstract

Traditional averaging and homogenization techniques, developed to predict the macroscopic properties

of heterogeneous media, typically ignore microstructure related scale effects — that is, the influence

of the size of the representative volume, relative to the size of the unit cell. This issue is presently

investigated by exploring the behavior of a nonlinearly elastic, planar, lattice model, which is subjected

to general macroscopic deformations. For these materials, scale effects may be due to nonuniformities in

the macroscopic strain field throughout the specimen, or alternatively, to the presence of microstructural

imperfections that may be either geometric or constitutive in nature. For the case of macroscopic strain

nonuniformities, it is shown that the microstructure related scale effects can be accounted for by the

presence of higher order gradient terms in the macroscopic strain energy density of the model. For the

case of microstructural imperfections, the difference between the respective macroscopic properties of

the perfect and imperfect models are shown to depend on the relative size of the specimen, and on the

imperfection amplitude and wavelength, while being nearly insensitive to the imposed macroscopic strain.

For all of the cases considered, several analytical approximations are proposed to predict the influence of

scale on the macroscopic properties, and the accuracy of each method is examined.
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1 INTRODUCTION

The standard approach to the design of any structure, requires a continuum description of the

engineering material that will be used for its fabrication. Modern material science can tailor, to an

unprecedented degree, the microstructure of engineering materials to give them the desired macroscopic

properties. In response to these technological advances, there has been a renewed and strong inter-

est in solid mechanics for predicting the macroscopic (continuum) properties of engineering materials

based on their microstructure. The corresponding methodologies are frequently termed “averaging” or

“homogenization” techniques.

There is voluminous literature in engineering and applied physics, spanning well over a hundred

years of research, which is devoted primarily to the averaging or homogenization problem involved in

predicting the macroscopic properties of linearly elastic materials under small strains. For these problems,

the microgeometries considered are general, and countless averaging techniques, both deterministic and

statistical, have been developed to date. In addition, beginning with the work of Voigt (1889), various

bounding techniques have also been developed to give accurate estimates of the overall properties of elastic

composites. All of these methods have subsequently been extended to include more general constitutive

laws, ranging from small strain elasto-plasticity (see Hill, 1965), to finite strain elasticity (see Talbot and

Willis, 1985). All of these classical averaging techniques ignore the “scale effect” (i.e., the influence of the

size of the representative volume, relative to the characteristic length of the underlying microstructure).

The quantification of this scale effect, however, is important to a variety of technological applications,

including dispersion in wave propagation problems, current problems involving nanoscale sized structures,

and the prediction of localized failure mechanisms in composites, to state only a few.

To correct this deficiency, a number of phenomenological remedies have been proposed, which involve

the relaxation of the “local action” hypothesis of classical continuum mechanics. This hypothesis dictates

that only the first gradient of the deformation enters the constitutive law. Continuum models that

violate the local action hypothesis are termed “non-local”, and can be classified into several different

categories: micropolar or “Cosserat” type models, integral type models, and higher order gradient type

models. Although the majority of the previously mentioned averaging techniques are phenomenological,

some effort has recently been dedicated to deriving macroscopic higher order gradient theories based

on micromechanical models. For the case of linear elasticity, the microgeometries considered in these

derivations are general (see Drugan and Willis, 1996). In addition, for the case of nonlinear materials

under finite deformations, analogous non-local models have recently been derived for periodic media (see

Bardenhagen and Triantafyllidis, 1994, for materials with discrete microstructures, and Triantafyllidis
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and Bardenhagen, 1997, for microstructured continua).

The present work is motivated by engineering applications involving periodic, and nearly periodic,

ductile composites, under finite macroscopic strains. Of interest here is the quantification of the scale effect

on the macroscopic properties and the failure mechanisms of these materials. For this class of applications

one can unambiguously identify a scale parameter, which characterizes the size of the specimen, relative

to the characteristic microstructural length. To quantify the above mentioned scale effects under general

finite macroscopic strains, a simple model is proposed, for which the microstructure is idealized as a

nonlinear, planar, lattice model, with a square, six-element unit cell. The first part of this work explores

the influence of scale on the overall properties of the lattice models. The second part investigates the

microstructure related scale effects on the onset of failure in these materials.

More specifically, in the first part of this work, the influence of scale on the macroscopic properties of

the material are investigated at finite levels of strain. For the perfectly periodic model, there is only one

relevant scale, characterized by the “geometric” scale parameter ε, which is defined to be the ratio of the

size of the unit cell h, to the size of the representative volume H on which the macroscopic properties are

defined. The macroscopic energy density W , for models with perfectly periodic microstructure, depends

solely on the imposed macroscopic deformation gradient F, and is independent of the geometric scale

parameter ε. In engineering applications there are two different sources for the scale dependence of the

macroscopic properties: the nonuniformity of the imposed macroscopic strain, and the imperfections

which are inevitably present in any nearly periodic composite, due to inaccuracies in the manufacturing

process. The scale parameters, resulting from the strain gradient and microstructural imperfections,

are related to the geometric scale parameter ε. Consequently, a strain gradient parameter κ, and an

imperfection amplitude parameter δ are defined, where κH and δε are the dimensionless “deformation”

and “imperfection” scale parameters, respectively. The scale dependence of the macroscopic quantities

(i.e., the strain energy density, the stresses, and the incremental moduli) is made explicit through their

dependence on the parameters ε, κ, and δ.

Detailed numerical investigations are conducted to determine the influence of both the deformation

and imperfection scale parameters on the macroscopic properties of the lattice models. To study the

effects of nonuniform strains, bending deformations, which are superimposed onto the uniform uniaxial

strains, are considered. Here, the influence of scale is explored by examining the strain energy density of

the material. To study the effects of microstructural imperfections, two different types are considered:

geometric and constitutive. In addition, for each type of imperfection, the amplitude is held constant,

and the effects of various regular, as well as random imperfection shapes are examined. In this case,

the scale effects are quantified through a scalar parameter which measures the stress deviation of the
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imperfect model from its perfectly periodic counterpart.

Moreover, in the interest of gaining additional insight into how the macroscopic properties are in-

fluenced by the strain gradient and imperfection amplitude parameters, analytical approximations are

proposed for small values of κ and δ. For each case investigated, the analytical results of the proposed

approximations are compared with the results of numerical calculations involving the exact equilibrium

equations of the entire micromechanical model. The proposed analytical approximations are accurate for

adequately large values of κ and δ, and for finite macroscopic strains. As expected, these approximations

break down once an instability strain is approached (for details, see Part II of this work).

The presentation is concluded with a detailed discussion of the results pertaining to scale effects

on the macroscopic properties. Issues concerning the onset of failure for the lattice models, and the

corresponding microstructure related scale effects, are the subject of the investigation in Part II.
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2 MODEL DESCRIPTION

Consider the discrete, planar, lattice model, shown in Figure 1a. This model, which is a representative

volume of a larger microstructured medium, is a perfectly periodic assembly of unit cells. In the reference

(undeformed) configuration these unit cells are squares, each cell having common dimensions h × h,

where h is the characteristic microstructural length of the material. The geometric scale parameter ε is

defined as the ratio of this characteristic microstructural length h, to the length H that defines the size

of the representative volume (V = H × H). For convenience, the representative volume dimension H

is set equal to unity for all models. Therefore, ε = h/H = 1/N , where N is the number of unit cells

in each row or column of the representative volume. If the cross-sectional areas of the model elements

are scaled appropriately, this is equivalent to fixing the unit cell dimensions, and varying the size of the

representative volume.

Each of the unit cells consists of four nodes (one at each vertex) connected by six one-dimensional,

nonlinearly elastic elements. Each node possesses two translational degrees of freedom and is capable of

transmitting forces, but cannot transmit moments. As a result, the elements are stressed axially, but do

not support shear forces or bending moments.

The reference position vector (in the undeformed configuration) for each node is denoted by X and the

current position vector (in the deformed configuration) is denoted by x. The relative position vector of

the nodes for each element is defined by ∆X = ε∆ in the reference configuration and by ∆x = ε∆+ ∆u

in the current configuration. Here, ∆ is the dimensionless relative position vector of the element nodes

in the reference configuration, and ∆u is the relative displacement vector of the element nodes in the

current configuration. Therefore, the element length in the reference configuration L is given by

L = (∆X.∆X)
1
2 = ε (∆.∆)

1
2 , (1)

and the element length in the current configuration l is given by

l = (∆x.∆x)
1
2 . (2)

Due to the finite deformations of the lattice models, nonlinear kinematic relations are required. In

one dimension, all nonlinear strain measures are equivalent. Here, for convenience, the Lagrangian strain

e is adopted:

e =
1

2

[

(

l

L

)2

− 1

]

. (3)
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The element strain energy E is taken to be

E = AEL

[

1

2
e2 + (sgn e)

1

3
ae3 +

1

4
be4

]

, (4)

where A = Aε is the cross-sectional area of the element, E is the initial tangent modulus of the material,

and the quantities a and b are material constants. The cross-sectional areas of the elements scale with

the size of the unit cell to provide a stress-strain response which is independent of the geometric scale

parameter ε, for all perfectly periodic models. The nondimensional force (f/EA) versus elongation

((l − L)/L) response (where f = dE/dl) for the base element of the unit cell with A = 1, E = 1,

a = −7/2 and b = 7/2, is shown in Figure 1b. These constants are adopted here, and for all subsequent

applications, because they give rise to a macroscopic stress-strain response with a broad nonlinear range,

and a maximum load at a finite level of strain for all the load paths considered.

The lattice models are subjected to general in-plane deformations, where the displacement vector u of

each constrained node corresponds to a linearly varying, continuous, macroscopic deformation gradient

F (X):

u = (F0 − I).X +
1

2
X.F1

.X, where I + u⊗∇ = F (X) = F0 + F1
.X. (5)

Here, F0 = (1/V )
∫

V F (X) dV is the average macroscopic deformation gradient tensor, and F1 = F⊗∇

is the (constant) second order deformation gradient tensor which characterizes the nonuniformity of the

macroscopic strain in the representative volume of the material. In addition to the geometric scale

parameter ε, which characterizes the relative size of the specimen under investigation, a deformation

scale parameter, which characterizes the spatial variations in the imposed strain field, can be defined by

the dimensionless parameter κH . Here, κ is the strain gradient parameter defined to be the norm of the

second order deformation gradient tensor (i.e., κ ≡ ‖F⊗∇‖ = [(F⊗∇)ijk(F⊗∇)ijk ]1/2).

The average deformation gradient tensor F0 can be decomposed into the product of the tensor of

principal stretch ratios U, and an orientation tensor R, such that

F0 = R
T .U.R, (6)

where

U =

[

λ1 0
0 λ2

]

and R =

[

cos θ sin θ
− sin θ cos θ

]

, (7)
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and where θ indicates the orientation of the principal strains with respect to the initial axes of material

orthotropy. The principal stretch ratios λ1 and λ2 are parameterized in terms of a single load parameter

λ and a load path angle φ:

λ1 = 1 + λ cosφ and λ2 = 1 + λ sin φ. (8)

Thus, setting θ = 0, and letting φ range from 0 to 2π, all possible orthotropic deformations, which

involve all combinations of biaxial tension and compression, are produced. Various amounts of shear

are superimposed by letting θ vary between 0 and π/2, thereby encompassing all possible macroscopic

deformations.

To investigate the influence of microstructural imperfections on the macroscopic properties of the

model, the initially periodic microstructural geometry and the initially uniform element material prop-

erties of the lattice are perturbed. For each type of imperfection, both regular and random shapes are

considered. An imperfection scale parameter, which characterizes the relative size of the imperfection

in the material microstructure, can be defined by the dimensionless parameter δε, where δ is the corre-

sponding imperfection amplitude parameter.

For example, “geometric” imperfections are produced by perturbing the initially periodic internal

nodal position vectors. A regular imperfection in the reference position vector X = (X1, X2) of an

interior node is given by the new perturbed reference position vector X, defined by

X = X + δεH sin

[

m1π

H

(

X1 +
H

2

)]

sin

[

m2π

H

(

X2 +
H

2

)]

(e1 + e2) , (9)

while a random imperfection is produced by

X = X + δεH (r1e1 + r2e2) . (10)

Here, m1 and m2 are the wave numbers of the regular imperfection shape, and r1 and r2 are random

numbers between −1 and 1.

“Constitutive” imperfections are produced by perturbing the initially uniform internal element cross-

sectional areas. A regular imperfection in the cross-sectional area A = Aε of an interior element centered

at (X1, X2) is given by the new perturbed cross-sectional area A, defined by

A = Aε

{

1 + δ sin

[

m1π

H

(

X1 +
H

2

)]

sin

[

m2π

H

(

X2 +
H

2

)]}

, (11)
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while a random imperfection is produced by

A = Aε (1 + δr) , (12)

where r is, again, a random number between −1 and 1. These imperfections affect the constitutive law

of each element, and are equivalent to similar imperfections involving the initial tangent modulus of the

material E, or the material constants a and b.

Notice that for both types of imperfection, the boundary nodes are kept in their initially perfect

positions, and the elements which lie on the model boundaries maintain their originally uniform cross-

sectional areas. As an example, the reference configurations for planar lattice models with ε = 0.1 and

regular (m1 = m2 = 2) and random geometric imperfections are shown in Figure 2a and Figure 2b,

respectively. Here, the imperfection amplitude parameter for both imperfection shapes is δ = 0.25.
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3 MACROSCOPIC PROPERTIES

The macroscopic properties of the planar lattice are defined on the representative volume of the

model. For problems involving nonuniform deformations, linearly varying strain fields are imposed by

prescribing displacements at every node in the lattice model. The resulting strain energy density is found

in terms of the average and second order deformation gradient tensors F0 and F1, respectively. For

problems involving microstructural imperfections, displacements corresponding to uniform deformations

are prescribed on the boundaries of the representative volume, and the equilibrium strain energy density

is determined in terms of the average deformation gradient tensor F0, and the imperfection amplitude

parameter δ.

The exact strain energy density W is defined to be the representative volume average of the total

strain energy E , which is the sum of the element strain energies Eel:

W =
1

V
E =

1

V

N2

∑

cell=1

[

6
∑

el=1

Eel
(

eel
)

]

cell

. (13)

This exact strain energy density is used to determine the exact macroscopic first Piola-Kirchhoff stress

tensor Π, which is defined by

Π
T =

∂W

∂F0

=
1

V

N2

∑

cell=1

[

6
∑

el=1

∂Eel

∂u

.
∂u

∂F0

]

cell

, (14)

and the exact macroscopic incremental moduli tensor L, which is given by

L =
∂2W

∂F0∂F0

=
1

V

N2

∑

cell=1

[

6
∑

el=1

∂u

∂F0

.
∂2Eel

∂u∂u

.
∂u

∂F0

]

cell

. (15)

The simplification of the second derivative of the total strain energy with respect to the average

deformation gradient tensor ∂2E/∂F0∂F0 in equation (15) is made as follows. Consider the equilibrium

equations,

δu.
∂E

∂u
= 0 in V and δu = 0 on ∂V, (16)

where ∂V denotes the boundary of the representative volume. Since the second derivative of the dis-

placement vector with respect to the average deformation gradient tensor ∂2
u/∂F0∂F0 is a kinematically

admissible field (i.e., u = (F0 − I) .X on ∂V ⇒ ∂2
u/∂F0∂F0 = 0 on ∂V ), it follows from equation (16)

that
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∂2E

∂F0∂F0

=
∂u

∂F0

.
∂2E

∂u∂u

.
∂u

∂F0

. (17)

The derivative of the displacement vector with respect to the average deformation gradient tensor

∂u/∂F0 in equations (14) and (15) is found by taking the derivative of the equilibrium equations with

respect to the average deformation gradient tensor,

δu.
∂2E

∂u∂u

.
∂u

∂F0

= 0 in V and
∂u

∂F0

= X on ∂V, (18)

and solving the resulting equations for ∂u/∂F0.

For the case of a lattice model with perfectly periodic microstructure (δ = 0), subjected to uniform

deformations (F⊗∇ = 0), the macroscopic properties W , Π, and L do not depend on ε, that is, on the

relative size of the representative volume. However, when spatial variations in the strain field are imposed

or microstructural imperfections are present, the macroscopic properties depend on the geometric scale

parameter ε, the strain gradient parameter κ, and the imperfection amplitude parameter δ.

The goals of the present work are threefold. First, to study the influence of scale, due to nonuniform

deformations, on the exact strain energy density of the perfectly periodic lattice models. Second, to

investigate the influence of scale, due to microstructural imperfections, on the macroscopic stress-strain

response of the nearly periodic lattice models. And third, to derive analytical approximations for the

macroscopic properties of lattice models which are subjected to nonuniform deformations or possess

geometric and constitutive microstructural imperfections, and to compare these approximations with

their exact counterparts.

3.1 APPROXIMATION FOR NONUNIFORM DEFORMATIONS

Consider a planar lattice model with perfectly periodic microstructure (δ = 0), subjected to overall,

nonuniform deformations (F ⊗∇ 6= 0). The scale effects, which are due to the spatial variations in the

strain field within the representative volume, are approximated by considering the asymptotic expansion

of the exact strain energy density. The expansion used here is based on an extension of the continuum

calculations of Born and Huang (1954) for the elastic properties of perfect crystals. These continuum

calculations, involving only first order gradient terms, result in an expression for the strain energy density

which neglects the characteristic microstructural length, and its role in determining the overall behavior

of the material. Bardenhagen and Triantafyllidis (1994) have extended this formulation to include higher

order gradient terms, which result in an energy density that depends on the geometric scale parameter ε.
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Following this higher order gradient method, the current relative position vector of the element nodes

can be expanded, using the Taylor series, as

∆x = εF.∆ +
ε2

2
(F⊗∇) : (∆⊗∆) + O

(

ε3
)

. (19)

Substitution of the expansion (19) and the kinematic relations (1) – (3) into the definition of the strain

energy density (13), and subsequent expansion of the result in terms of ascending powers of the geometric

scale parameter ε, yields

W =
1

V

∫

V

[

W +
ε2

2
(F⊗∇)

.
:B

.
: (F⊗∇) + O

(

ε4
)

]

dV, (20)

where W is defined by

W (F) =
1

V

6
∑

el=1

Eel
(

eel (F)
)

, (21)

and the average element strain eel is given by

eel (F) =
1

2

[

(

F.∆
el

)

.
(

F.∆
el

)

∆el.∆el
− 1

]

. (22)

In addition, the components of the tensor B are found, from the same expansion, to be

Bijklmn = −
1

12

1

V

6
∑

el=1

{

∂2Eel
(

eel (F)
)

∂eel2

Fip∆
el
p Flq∆

el
q

(∆el .∆el)
2

+
∂Eel

(

eel (F)
)

∂eel

δil

∆el .∆el

}

∆el
j ∆el

k ∆el
m∆el

n . (23)

The second order (O(ε2)) and higher order terms in the continuum expression for the macroscopic

strain energy density depend on the relative size of the representative volume. The fact that more than

one continuum strain energy density can be found for the same discrete model is a known phenomenon

in mathematical physics (see, for example, the discussion in Kunin, 1982). The various continuum

strain energy densities, which differ by a null Lagrangian, produce identical Euler-Lagrange (equilibrium)

equations as discussed in Triantafyllidis and Bardenhagen (1993) for one-dimensional; and Bardenhagen

and Triantafyllidis (1994) for two- and three-dimensional, nonlinearly elastic lattice networks. It will be

shown that the exact strain energy density of the representative volume converges, within an accuracy

of O(ε4), to the continuum approximation given in equation (20), thus justifying the particular choice

for the O(ε2) term used in that expression. The proof of the corresponding convergence result for the

simpler, one-dimensional lattice model is given in Appendix A.
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3.2 APPROXIMATIONS FOR MICROSTRUCTURAL IMPERFECTIONS

Next, consider a planar lattice model, with either geometric or constitutive microstructural imper-

fections (δ 6= 0), subjected to boundary displacements which correspond to uniform macroscopic defor-

mations (F ⊗ ∇ = 0). These microstructural imperfections cause spatial variations in the strain field

which affect the macroscopic properties of the material. Three different approximations, which estimate

the effects of these imperfections on the macroscopic properties, will be considered, and the macroscopic

stress-strain response predicted by these approximations will be compared to the exact solution.

The first approximation, is the standard “Voigt” approximation (see Voigt, 1889), which uses the

average deformation gradient tensor F0 in place of the actual macroscopic deformation gradient tensor

F (X) in the definition (13) for the strain energy density. Therefore, the approximate strain energy

density becomes

W V = W (δ,F0) , (24)

and the approximate macroscopic stress and incremental moduli tensors are defined in the same man-

ner that was given in equations (14) and (15), respectively, where the use of the average macroscopic

deformation gradient tensor in place of the actual deformation gradient tensor is retained.

The second approximation is a standard linearization approximation, according to which the macro-

scopic properties are expanded about the perfect solution. Terms higher than first order in the imper-

fection amplitude parameter δ are neglected, resulting in approximate macroscopic properties that are

linear in the imperfection amplitude parameter. For the strain energy density, this approximation gives

W L = W0 + δW1; W0 = W |δ=0
and W1 =

dW

dδ

∣

∣

∣

∣

δ=0

, (25)

where W0 is the strain energy density of the perfectly periodic model. Similarly, the macroscopic stress

tensor of the imperfect model, as derived by the linearization approximation, is given by

ΠL = Π0 + δΠ1; Π
T
0 =

1

V

(

∂E

∂u

.
∂u

∂F0

)∣

∣

∣

∣

δ=0

and Π
T
1 =

1

V

(

∂2E

∂u∂δ
.

∂u

∂F0

)∣

∣

∣

∣

δ=0

, (26)

where Π0 is the macroscopic stress tensor of the perfectly periodic model. In addition, similar expressions

can be found for the approximate macroscopic incremental moduli tensor.

The third, and last approximation considered, is an improvement of the previously mentioned standard

linearization approximation, and is termed the displacement linearization approximation. According to
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this approximation, only the displacement field is expanded about the perfect solution, and terms higher

than first order in the imperfection amplitude parameter δ are neglected, resulting in an approximate

displacement field that is linear in the imperfection amplitude parameter. For the strain energy density,

this approximation gives

W DL = W (δ,uL (δ)) . (27)

Here, the displacement field is approximated as

uL (δ) = u0 + δu1; u0 = u|δ=0
and u1 =

du

dδ

∣

∣

∣

∣

δ=0

, (28)

where u0 is the uniform displacement field of the perfectly periodic model. Again, the macroscopic stress

and incremental moduli tensors are defined in the same manner that was given in equations (14) and

(15), respectively, where the use of the linearized displacement field in place of the exact displacement

field is retained.

It should be mentioned, once again, at this point, that certain simplifications must be made to obtain

equation (26). Equilibrium is, again, considered and arguments similar to those presented in equations

(16) – (18) are used to make these simplifications.

Two interesting and general results are obtained by considering the asymptotic expansion of the

macroscopic properties. For models with arbitrary geometric imperfections, the first order terms in the

expansions of the macroscopic properties are identically zero for all deformations satisfying the prescribed

displacement boundary conditions (see Appendix B). Since the first order terms are zero (i.e., the effects

of geometric imperfections are second order in the imperfection amplitude parameter δ), the linearization

approximation gives the macroscopic properties of the perfectly periodic model as an approximation for

the macroscopic properties of the imperfect model.

Furthermore, for models with either geometric or constitutive microstructural imperfections, the re-

spective macroscopic properties of the lattice models, as predicted by the Voigt and the linearization

approximations, differ only by terms that are second order in the imperfection amplitude parameter δ

(see Appendix C). Therefore, the standard linearization approximation does not provide any additional

information beyond that which is already known from the solution for the perfectly periodic model, or

can be obtained, to the first order, from the Voigt approximation.
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4 RESULTS

Analyses have been performed for lattice models with various geometric scale parameters and mi-

crostructural imperfections, subjected to different uniform and nonuniform deformations. Results are

presented which illustrate the more typical microstructure related scale effects on the macroscopic prop-

erties of the planar lattice models. The material parameters used for the base element of the perfect unit

cell in these analyses were given in Section 2 (see also Figure 1b).

Scale effects, which are due to nonuniform deformations, are studied first by examining the influence

of linearly varying strain fields (i.e., strain fields with constant second order deformation gradient tensor

F1), on the exact strain energy density of perfectly periodic lattice models with geometric scale param-

eters ranging from ε = 1.00 to ε = 0.04 (N = 1 to N = 25). The exact strain energy density is also

compared to the approximate strain energy density, derived in Section 3.1. Next, scale effects, which

are due to microstructural imperfections, are explored by studying the differences in the exact macro-

scopic stress-strain response of models with perfectly periodic microstructures and their counterparts

with geometrically irregular and constitutively nonuniform microstructures. For models with imperfect

microstructures, the macroscopic properties depend on the geometric scale parameter ε, the imperfection

amplitude parameter δ, the imperfection shape (defined by the wave numbers m1 and m2 for regular

imperfections), and the imposed macroscopic deformation (defined by the principal stretch ratios λ1 and

λ2, and the orientation angle θ). Studies concerning the influence of each one of these parameters on the

macroscopic stress-strain response of the imperfect lattice models are presented.

Lastly, the predictions for the macroscopic stress-strain response of models with imperfect microstruc-

tures, obtained using the Voigt and the displacement linearization approximations, are investigated and

compared to the exact solutions. It should also be mentioned here that all the convergence statements

made below, refer to apparent convergence based upon the relevant numerical results.

4.1 SCALE EFFECTS DUE TO NONUNIFORM DEFORMATIONS

To investigate the scale effects on the macroscopic properties of the representative volume, which

result from imposing spatially varying strain fields, the exact strain energy density W is determined for a

perfectly periodic model subjected to various macroscopically nonuniform deformations. The exact strain

energy density is then compared to its approximate continuum counterpart obtained from the expansion

given in equation (20). Of interest here, is the convergence of the exact strain energy density to its

continuum average as the geometric scale parameter ε approaches zero.

To measure the accuracy of the first correction due to the imposed strain gradient, that is, the accuracy
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of the O(ε2) term in equation (20), a function f (ε) is defined as

f (ε) =
W − (1/V )

∫

V WdV

(ε2/2) (F⊗∇)
.
: (1/V )

∫

V
BdV

.
: (F⊗∇)

. (29)

According to equation (20), the numerator in equation (29) is O(ε2), and since the exact strain energy

density converges to its continuum average as the relative size of the representative volume increases,

the function f(ε) should converge to one as the geometric scale parameter ε approaches zero (recall the

discussion in Section 3.1 regarding the correct O(ε2) term, and the derivation in Appendix A of this term

for a one-dimensional model).

Several different values for the average and second order deformation gradient tensors F0 and F1

have been considered. Some typical results are depicted in Figure 3 and correspond to the macroscopic

deformation defined by

F0 =

[

1.05 0
0 1

]

, (F⊗∇)
122

= κ and all other (F⊗∇)ijk = 0, (30)

where the macroscopic strain gradient parameter is defined as the norm of the second order deformation

gradient tensor κ ≡ ‖F⊗∇‖. The second order deformation gradient considered in equation (30) adds

bending to the uniform uniaxial strain defined by F0, as shown by the deformed configuration in the

inset of Figure 3a for κH = 2.5 (a relatively high value of the deformation scale parameter used to

show the effects of F ⊗∇). Figure 3a shows the scale effects associated with the resulting nonuniform

deformation on the exact strain energy density of a perfectly periodic lattice model, and Figure 3b shows

the corresponding convergence of the function f (ε) for values of the dimensionless deformation scale

parameter ranging from κH = 0.025 (solid line) to κH = 0.100 (dotted line).

As expected, the results show that as the geometric scale parameter approaches zero, the exact strain

energy density of the lattice model converges to its continuum average, and therefore, the function f (ε)

converges to one. Notice that the convergence of the strain energy density is quite rapid, and that the

accuracy of the second order term in the continuum expansion of the strain energy density at predicting

the difference between the exact value and its continuum average improves as the relative size of the

representative volume increases.

4.2 SCALE EFFECTS DUE TO MICROSTRUCTURAL IMPERFECTIONS

To investigate the scale effects on the macroscopic properties of the lattice, which are associated with

the presence of imperfections in the microstructure, the exact macroscopic stress-strain response of a
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model with perfectly periodic microstructure is compared to the exact response of models with geometric

and constitutive microstructural imperfections. For example, Figure 4 shows the effects of a regular

(m1 = m2 = 1) and a random constitutive imperfection (dashed and dotted lines, respectively) of twenty-

five percent amplitude (δ = −0.25) on the macroscopic stress-strain response of an initially periodic lattice

model with ε = 0.04 (solid line), subjected to uniaxial extension with no lateral contraction (φ = θ = 0

in equations (7) and (8)). For models with microstructural imperfections, the range of deformation

is limited by the onset of failure, which is defined as the first maximum load encountered along the

principal equilibrium path. An investigation of the influence of scale on the onset of failure for this model

is presented in Part II of this work.

For lattice models with microstructural imperfections, the macroscopic properties depend on the

geometric scale parameter ε, as well as on the imperfection amplitude parameter δ, the imperfection

shape, and the imposed macroscopic deformation. To study the influence of these controlling parameters

on the macroscopic properties of the model, a dimensionless stress deviation parameter D, which measures

the deviation of the macroscopic stresses of the imperfect lattice models from their perfect counterparts,

is defined as

D =
||Πper −Πimp||

||Πper||
, (31)

where Πper and Πimp are the exact macroscopic first Piola-Kirchhoff stress tensors of the perfectly

periodic and the imperfect lattice models, respectively. The limit of the stress deviation parameter as

the geometric scale parameter approaches zero is denoted by D0 (i.e., D0 = limε→0 D). Scale effects

on the macroscopic stress-strain response of the models, which are due to microstructural imperfections,

are studied by examining the dependence of this stress deviation parameter D on the geometric scale

parameter ε. The dependence of the stress deviation limit D0 on the imperfection amplitude parameter

δ and the imposed macroscopic deformation (defined by F0) are also explored.

The effects of geometric imperfections on the stress deviation parameter are studied first. Figure

5a shows the scale effects, due to microstructural imperfections, on D for a lattice model with regular

(m1 = m2 = 1, 2, 3, 4, depicted by the solid, dashed, dotted, and dashed-dotted lines, respectively)

and random geometric imperfections of twenty-five percent amplitude (δ = 0.25), subjected to uniaxial

extension with no lateral contraction (φ = θ = 0 and λ = 0.05). For models with regular geometric

imperfections, the stress deviation parameter converges exponentially to zero as the geometric scale

parameter decreases (i.e., D0 = 0). This is expected, since the wavelengths of the imperfection shape are

fixed, while the relative size of the imperfection δε decreases to zero. The rate at which the stress deviation
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parameter approaches zero decreases as the wave numbers associated with the regular imperfection shape

increase. For models with random geometric imperfections, the stress deviation parameter converges

to some nonzero asymptotic limit as the geometric scale parameter decreases (i.e., D0 6= 0). Here, the

imperfection wavelengths are of the order of the unit cell dimensions, therefore, the microstructural

geometry remains highly irregular, even as the geometric scale parameter decreases. The stress deviation

limit D0 is plotted as a function of the imperfection amplitude parameter δ in Figure 5b for the lattice

model with random geometric imperfections. As expected, the results show that the stress deviation

limit curve is parabolic (D0 ∼ |δ|2). Recall that the effects of arbitrary geometric microstructural

imperfections on the macroscopic properties of the lattice models are second order in the imperfection

amplitude parameter δ, as shown in Appendix B.

The effects of constitutive imperfections on the stress deviation parameter are studied next. Figure

6a shows the scale effects on D, due to microstructural imperfections, for a lattice model with regular

(m1 = m2 = 1, 2, 3, 4, depicted by the solid, dashed, dotted, and dashed-dotted lines, respectively) and

random constitutive imperfections of twenty-five percent amplitude (δ = −0.25), subjected to uniaxial

extension with no lateral contraction (φ = θ = 0 and λ = 0.05). As in the case for models with geometric

imperfections, the stress deviation parameters for models with constitutive imperfections converge to

asymptotic limits as the geometric scale parameter approaches zero. In this case, however, the limits

are all nonzero, and depend on the shape of the imperfection. For models with regular constitutive

imperfections with m1 = m2 = 1, all of the element cross-sectional areas (except those that lie along

the boundary of the representative volume) are decreased (since δ < 0) and the overall effect on the

macroscopic stress-strain response is first order (hence, the much higher asymptotic limit for the stress

deviation parameter). As the wave numbers associated with the regular imperfection shapes increase,

the asymptotic limits of the stress deviation parameters approach some constant value. Note that for

regular imperfections, this constant value is approached from different directions depending on whether

the wave numbers of the corresponding imperfection shape are even or odd (i.e., depending on whether

the effects are first order or second order in the imperfection amplitude parameter δ). It is to this same

value that the stress deviation parameter converges for models with random constitutive imperfections.

The stress deviation limit D0 is plotted as a function of the imperfection amplitude parameter δ in Figure

6b for a lattice model with regular (m1 = m2 = 1, 2, depicted by the solid and dashed lines, respectively)

and random (dotted line) constitutive imperfections. For the model with m1 = m2 = 1, the linear curve

implies that the effects of these imperfections are first order in the imperfection amplitude parameter.

For the model with m1 = m2 = 2 the parabolic curve implies that the effects are second order. And, for

the model with random imperfections, the results indicate that the effects are first order, although the
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initial slope is negligible.

It is expected that a given microstructure will have a combination of both geometric and constitutive

microstructural imperfections. The stress deviation limit D0 is plotted as a function of the imperfection

amplitude parameter δ in Figure 7 for a lattice model with a combination of random geometric and

constitutive imperfections (solid line), subjected to uniaxial extension with no lateral contraction (φ =

θ = 0 and λ = 0.05). The combined effect of these imperfections is shown to compare closely with the

sum of the effects for each imperfection considered separately (dashed-dotted line).

All of the above results are for a given loading direction and a fixed magnitude of strain (φ = θ = 0 and

λ = 0.05). The influence of the particular load path and magnitude of strain on the stress deviation limit is

addressed next. The stress deviation limit D0 is plotted as a function of the principal stretch ratios λ1 and

λ2 in Figure 8a for pure biaxial deformations (θ = 0), and in Figure 8b for deformations including shear

(θ = π/8). For both deformations a lattice model with regular (m1 = m2 = 1) constitutive imperfections

of twenty-five percent amplitude (δ = −0.25) is considered. Both figures show that, for any load path, the

stress deviation limit D0 remains between nine and ten percent for levels of deformation approaching the

onset of failure. This implies that the effects of constitutive imperfections on the macroscopic properties

are almost insensitive to the state of strain in the lattice models. Similar results are found for constitutive

imperfections with random shapes, and for arbitrary geometric imperfections, as well.

The final topic of interest pertains to the accuracy of the proposed analytical approximations. The

exact stress-strain response for lattice models with imperfect microstructures is compared to the response

predicted by the Voigt and the displacement linearization approximations derived in Section 3.2. To

illustrate how well the proposed approximations predict the macroscopic stress-strain response, regular

(m1 = m2 = 1) constitutive imperfections of twenty-five percent amplitude (δ = −0.25) are considered

for models with ε = 0.04. To quantify the error of the analytical approximations, a stress error measure

D, which quantifies the difference between the exact and approximate macroscopic stress tensor norms,

is defined as

D =
||Πex −Πapp||

||Πex||
, (32)

where Πex and Πapp are the exact and approximate macroscopic stress tensors of the imperfect lattice

models, respectively.

The approximations are analyzed for a lattice model subjected to a series of boundary conditions

encompassing both pure biaxial deformations and deformations including shear. The stress error measure

D for the Voigt approximation is plotted as a function of the principal stretch ratios λ1 and λ2 in Figure

19



9a for pure biaxial deformations (θ = 0), and in Figure 9b for deformations including shear (θ = π/8).

The stress error measure for the displacement linearization approximation is shown in Figure 10a for

pure biaxial deformations, and in Figure 10b for deformations including shear. The results show that the

errors for both approximations are less than one percent, for models with relatively large imperfection

amplitude parameters, and for a broad range of macroscopic strains approaching the onset of failure. The

displacement linearization approximation is found to be more accurate than the Voigt approximation

by roughly an order of magnitude. The accuracy of both approximations improves even further as the

imperfection amplitude parameter decreases, or as the imperfection shape changes resulting in the smaller,

second order (O(δ2)) effects.

This section is concluded with a note on the computational efficiency and the corresponding usefulness

of the proposed approximation methods. Recall, that to obtain the stress state of an imperfect lattice

model at a finite level of strain, many numerical solutions (one for each increment along the particular load

path) involving the entire micromechanical model are required. The proposed approximation methods,

on the other hand, require only one solution involving the entire model, to determine the displacement

correction terms due to the imperfection. Moreover, the assembly of the corresponding stiffness matrix,

for the entire lattice model, only requires information about the state of the unit cell at the strain level

in question. These computational advantages become important in the case of microstructured continua,

where the size and the complexity of the models are orders of magnitude higher.
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5 CONCLUSIONS

The present work addresses the influence of scale on the macroscopic properties of nonlinearly elastic

materials under finite macroscopic strain. Of interest here are materials with periodic and nearly periodic

microstructures, for which a geometric scale parameter ε can be unambiguously defined as the ratio of the

unit cell size, to the overall size of the representative volume. In the interest of computational efficiency,

a kinematically and constitutively nonlinear lattice is proposed as the basic model for this investigation.

The results from the present simple nonlinear truss model are indicative of the behavior of more realistic

(both in the geometric and constitutive sense) solids.

The macroscopic properties of a perfectly periodic lattice model, subjected to a uniform macroscopic

strain field, are independent of the geometric scale parameter ε. The scale effect on the macroscopic

properties of the model are due either to nonuniformities in the imposed macroscopic strain field, or

to the presence of geometric or constitutive microstructural imperfections. The influence of scale on

the exact macroscopic properties under these two conditions is investigated, and analytical methods are

proposed in each case to approximate these effects.

Regarding the influence of macroscopic strain nonuniformities on the macroscopic properties, previ-

ous work has shown that the O(ε2) correction to the average macroscopic strain energy density is not

unique, and that the various corrections differ by a null Lagrangian (see Bardenhagen and Triantafyllidis,

1994). The present work, which is based on exact calculations involving the strain energy density of the

representative volume, clarifies this ambiguity by showing which of these correction terms is appropriate.

Consequently, the proper expression for the macroscopic strain energy density, which is correct to O(ε2),

involves only the gradient of the macroscopic strain (F⊗∇), which is the form selected for most empirical

calculations in nonlinear solids, where scale effects have to be included (see the discussion in Bardenhagen

and Triantafyllidis, 1994).

Concerning both geometric and constitutive microstructural imperfections, the influence of scale,

imperfection amplitude, and imperfection shape have all been investigated by examining the dependence

of the dimensionless stress deviation parameter D on the corresponding geometric scale and imperfection

parameters (i.e., on ε, δ, m1, and m2). It is shown that geometric imperfections produce a second order

(O(δ2)) effect on the macroscopic properties, while constitutive imperfections produce either a first order

or second order effect, according to whether or not the imperfection changes the average initial stiffness of

the lattice model (i.e., according to whether the wave numbers of the corresponding imperfection shape

are odd or even, respectively).

The investigation is concluded by proposing two different approximation methods for calculating
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the macroscopic properties of the imperfect lattice models (a straightforward averaging and a direct

linearization method). The accuracies of these approximation methods are verified for all macroscopic

strains (up to the onset of failure in the model), and both methods are shown to be highly precise, even

for large imperfection amplitudes, and are shown to be insensitive to the magnitude and orientation of

the macroscopic strain.

All of the results of this investigation are valid for finite strains smaller than those corresponding to

the onset of failure in the representative volume of the model. The issues of defining a failure surface in

macroscopic strain space for these models, and the dependence of this failure surface on the relative size

of the specimen under investigation, is the topic of Part II of this work.
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Wied. Ann., Vol. 38, 573-587.

[9] Talbot, D. R. S. and Willis, J. R. (1985) Variational principles for nonlinear inhomogeneous media.

IMA J. Appl. Math. 35, 39-54.

24



APPENDIX A: STRAIN ENERGY DENSITY CONVERGENCE RESULT IN 1–D

Of interest here, is the derivation of the second order (O(ε2)) correction to the strain energy density

of the lattice model. The expansion of the exact strain energy density W , in terms of ascending powers

of the geometric scale parameter ε, can be written as

W = W0 +
ε2

2
W2 + O

(

ε4
)

, (33)

where the O
(

ε0
)

term, W0 = (1/L)
∫ L

0
WdX is the average strain energy density. Here, the absence of

any odd order terms in the geometric scale parameter ε (i.e., W1, W3, ...) is due to the symmetry of the

microstructure. Of interest is the limit of the second order term W2 (which is the lowest order term in

the macroscopic strain energy density which contains scale information) as the geometric scale parameter

ε approaches zero.

From equation (33), the second order term W2 is defined as

W2 = lim
ε→0

[

W − (1/L)
∫ L

0
WdX

ε2/2

]

=
1

L

∫ L

0

[

εWi −
∫ Xi+1

Xi

WdX

ε3/2

]

dX, (34)

where Wi = W (ei (X)) is the strain energy density of element i, ei (X) is the strain of element i, and Xi

and Xi+1 are the reference positions for the element nodes.

Let the displacement of each node correspond to a continuous, macroscopic deformation gradient

F (X) such that

u = (F0 − 1)X +
1

2
F1X

2 +
1

6
F2X

3. (35)

Here, F0 = (1/L)
∫ L

0
F (X) dX is the average macroscopic deformation gradient, and F1 and F2 are

second and third order deformation gradients, respectively.

Using equation (35) for the displacements, the element strains can be written as

ei (X) =
u (Xi+1)− u (Xi)

ε
=

∂u
(

Xi+1/2

)

∂X
+

ε2

24
F2. (36)

Substitution of the element strain relation (36) into W (ei (X)) and subsequent expansion yields

W (ei (X)) = W (e (Xi)) +
ε

2

dW (e (Xi))

dX
+

ε2

8

d2W (e (Xi))

dX2
+

ε2

24

dW (e (Xi))

de
F2. (37)
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Expansion of
∫ Xi+1

Xi

W (e (X)) dX yields

∫ Xi+1

Xi

W (e (X)) dX = εW (e (Xi)) +
ε2

2

dW (e (Xi))

dX
+

ε3

6

d2W (e (Xi))

dX2
. (38)

And finally, substitution of the expansions (37) and (38) into the relation for the second order strain

energy density term (34), and subsequent simplification gives

W2 =
1

L

∫ L

0

[

−
1

12

d2W

de2

(

∂2u

∂X2

)2
]

dX, (39)

which can be written as

W2 =
1

L

∫ L

0

[

∂2u

∂X2
B

∂2u

∂X2

]

dX, where B = −
1

12

∂2W

∂e2
. (40)

The additional term included in equation (23) involving ∂Eel/∂eel results from using the nonlinear

Lagrangian strain measure defined by equation (22). The remaining differences between equations (23)

and (40) are due to the fact that only a one-dimensional model was considered here.
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APPENDIX B: EFFECTS OF GEOMETRIC IMPERFECTIONS ON THE MACROSCOPIC

PROPERTIES

Of interest here, are the effects of geometric microstructural imperfections on the macroscopic prop-

erties, and in particular the dependence of these properties on the imperfection amplitude parameter δ.

To determine this dependence, the expansion of the exact strain energy density of the lattice model is

considered. The first order term in the expansion of the strain energy density is

W1 =
dW

dδ

∣

∣

∣

∣

δ=0

=

(

∂W

∂δ
+

∂W

∂u

.
∂u

∂δ

)∣

∣

∣

∣

δ=0

. (41)

Consider a planar lattice model with arbitrary geometric microstructural imperfections. For this

model, it can be shown, after some lengthy but straightforward algebra (which takes into account the

fact that the boundary nodes are unperturbed), that

∂W

∂δ

∣

∣

∣

∣

δ=0

= 0. (42)

Also, from the equilibrium equations,

δu.
∂E

∂u
= 0 in V and δu = 0 on ∂V, (43)

it follows that

∂W

∂u

.
∂u

∂δ
= 0, (44)

since ∂u/∂δ is a kinematically admissible field (i.e., u = (F0 − I) .X on ∂V ⇒ ∂u/∂δ = 0 on ∂V ).

From equations (43) and (45), it follows that for lattice models with arbitrary geometric microstruc-

tural imperfections, the first order term in the expansion of the exact strain energy density W1 is identi-

cally zero. And, since Π
T = ∂W/∂F0 and L = ∂2W/∂F0∂F0, it follows that

Π1 = 0 and L1 = 0, (45)

for deformations satisfying the prescribed displacement boundary conditions. Therefore, the effects of

arbitrary geometric imperfections are second order in the imperfection amplitude parameter δ.
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APPENDIX C: O(δ) COINCIDENCE OF THE VOIGT AND LINEARIZATION AP-

PROXIMATIONS

Of interest here, is the comparison of the predictions for the macroscopic properties obtained using

the Voigt and the standard linearization approximations. Consider a planar lattice model with arbi-

trary geometric or constitutive microstructural imperfections. Recall that the macroscopic strain energy

density, as given by the Voigt approximation, is

W V = W (δ,u0) = W |δ=0
+ δ

∂W

∂δ

∣

∣

∣

∣

δ=0

+ O(δ2), (46)

and the strain energy density, as given by the linearization approximation, is

W L = W |δ=0
+ δ

dW

dδ

∣

∣

∣

∣

δ=0

= W |δ=0
+ δ

(

∂W

∂δ
+

∂W

∂u

.
∂u

∂δ

)
∣

∣

∣

∣

δ=0

. (47)

From the equilibrium equations, it follows that

∂W

∂u

.
∂u

∂δ
= 0. (48)

Therefore, the strain energy density, as given by the linearization approximation, becomes

W L = W |δ=0
+ δ

∂W

∂δ

∣

∣

∣

∣

δ=0

, (49)

which differs from the strain energy density as given by the Voigt method W V by O(δ2). Similar results

hold for the average stresses and incremental moduli tensors.
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FIGURE CAPTIONS
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Figure 1: The discrete, planar, lattice model. (a) Perfectly periodic microstructure with geometric scale

parameter ε = h/H = 0.1. (b) Nondimensional force-elongation response for the base element of the unit

cell with A = 1, E = 1, a = −7/2 and b = 7/2.

Figure 2: Reference configurations for a planar lattice model with ε = 0.1 and (a) regular (m1 = m2 = 2)

and (b) random geometric imperfections of twenty-five percent amplitude (δ = 0.25).

Figure 3: (a) Scale effects, due to nonuniform deformations, on the exact strain energy density of a

perfectly periodic lattice model. (b) Corresponding convergence of the function f(ε) to one as the

geometric scale parameter ε approaches zero.

Figure 4: Effects of regular (m1 = m2 = 1) and random constitutive imperfections of twenty-five percent

amplitude (δ = −0.25) on the macroscopic stress-strain response of an initially perfectly periodic lattice

model with ε = 0.04, subjected to uniaxial extension with no lateral contraction (φ = θ = 0).

Figure 5: (a) Scale effects, due to microstructural imperfections, on the stress deviation parameter D

for a lattice model with regular and random geometric imperfections of twenty-five percent amplitude

(δ = 0.25), subjected to uniaxial extension with no lateral contraction (φ = θ = 0 and λ = 0.05). (b)

Corresponding stress deviation limit D0 as a function of the imperfection amplitude parameter δ.

Figure 6: (a) Scale effects, due to microstructural imperfections, on the stress deviation parameter D

for a lattice model with regular and random constitutive imperfections of twenty-five percent amplitude

(δ = −0.25), subjected to uniaxial extension with no lateral contraction (φ = θ = 0 and λ = 0.05). (b)

Corresponding stress deviation limit D0 as a function of the imperfection amplitude parameter δ.

Figure 7: The stress deviation limit D0 as a function of the imperfection amplitude parameter δ for a

lattice model with random geometric imperfections, random constitutive imperfections, and a combina-

tion of random geometric and constitutive imperfections of twenty-five percent amplitude (δ = −0.25),

subjected to uniaxial extension with no lateral contraction (φ = θ = 0 and λ = 0.05).

Figure 8: The stress deviation limit D0 as a function of the principal stretch ratios λ1 and λ2 for a

lattice model with regular (m1 = m2 = 1) constitutive imperfections of twenty-five percent amplitude

(δ = −0.25), subjected to (a) pure biaxial deformations (θ = 0) and (b) deformations including shear

(θ = π/8).

Figure 9: Voigt approximation stress error measure D as a function of the principal stretch ratios λ1 and

λ2 for a lattice model with ε = 0.04 and regular (m1 = m2 = 1) constitutive imperfections of twenty-five
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percent amplitude (δ = −0.25), subjected to (a) pure biaxial deformations (θ = 0) and (b) deformations

including shear (θ = π/8).

Figure 10: Displacement linearization approximation stress error measure D as a function of the principal

stretch ratios λ1 and λ2 for a lattice model with ε = 0.04 and regular (m1 = m2 = 1) constitutive

imperfections of twenty-five percent amplitude (δ = −0.25), subjected to (a) pure biaxial deformations

(θ = 0) and (b) deformations including shear (θ = π/8).
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Figure 9: See FIGURE CAPTIONS
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Figure 10: See FIGURE CAPTIONS

42


