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ABSTRACT 

Of interest here is the scale size effect on the stability of finitely strained, rate-independent solids with 
periodic microstructures. Using a multiple scales asymptotic technique, we express the critical load at the 
onset of the first instability and the corresponding eigenmode in terms of the scale size parameter E. The 
zeroth order E terms in these expansions depend on the standard (first order gradient) macroscopic moduli 
tensor, while all the higher order E terms require the determination of higher order gradient macroscopic 
moduli. These macroscopic moduli, which are calculated by solving appropriate boundary value problems 
on the unit cell, relate the macroscopic (unit cell average) stress rate increment to the macroscopic 
displacement rate gradients. 

The proposed general theory is subsequently applied to the investigation of the failure surfaces in periodic 
solids of infinite extent. For these solids one can define in macroscopic strain space a microscopic (local) 
failure surface, which corresponds to the onset of the first bulking-type instability in the solid, and a 
macroscopic (global) failure surface, which corresponds to the onset of the first long wavelength instability 
in the solid. The determination of the macrofailure surface is considerably easier than the determination 
of the microfailure surface, for it requires the calculation of the standard macroscopic moduli tensor. In 
addition, the regions where the two surfaces coincide is of significant practical interest, for a macroscopic 
localized mode of deformation (e.g. in the form of a shear band or a kink band) appears in the post- 
bifurcation regime. The prediction of these coincidence zones is based on a necessary criterion that depends 
on the higher order gradient macroscopic moduli. 

A detailed example is given for the case of layered composites, in view of the possibility of obtaining 
closed form expressions for all the required macroscopic moduli and in view of the existence of an analytical 
solution to the microscopic failure problem. Two applications are presented, one for a foam rubber 
composite and another for a graphite-epoxy composite whose properties have been determined exper- 
imentally. Following the verification of the above mentioned necessary criterion for the coincidence of the 
micro- and macrofailure surfaces in the two examples, the presentation is concluded by a discussion and 
suggestions for further work. Copyright 80 1996 Elsevier Science Ltd 

1. INTRODUCTION AND MOTIVATION 

The implication of the existence of two relevant scales-the microscopic (or rep- 
resentative cell) scale and the macroscopic (or overall structural dimension) scale- 
on the stability of mechanically-loaded media with internal structure, is an issue that 
appears repeatedly in engineering applications. For the case of quasistatic loading 
processes of interest here, the influence of the characteristic microstructural scale is 
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reflected in the dependence of failure loads and modes on the size of the specimen, 
and the corresponding effect is termed “scale effect”. Examples can be given over the 
entire spectrum of possible scales : atomic distance in crystals, dislocation spacing in 
metals, crystal size in polycrystalline aggregates, reinforcement size and spacing in 
composites and unit cell size in large space structures. As such we mention the 
stress-induced twinning and the shear localization in the deformation of crystals, the 
localization of deformation in compressed honeycombs and the kink band failure in 
fiber-reinforced composites under compression along the fiber direction. Over the 

last few decades, significant progress has been made in the derivation of averaged 
(macroscopic) theories from the underlying microstructures over a wide range of 
scales and material responses. These macroscopic theories ignore the microstructural 
scale size and their failure predictions cannot account for scale effects. 

To correct this deficiency, a number of remedies have been proposed that involve 
the relaxation of the “local action” hypothesis of classical continuum mechanics, 
which dictates that only the first gradient of the deformation enters the constitutive 
law. Continuum models that violate the local action hypothesis are termed “non- 
local” and are divided into two classes : the first class consists of integral-type models 

whose strains and stresses at a given point depend on a convolution-type integral that 
accounts for the history of displacements or internal variables in a finite neighborhood 

about the point in question. The second class consists of pointwise models in which 
the stress calculation at a point is based exclusively on information given at this point. 
The simplest models in this class are higher order gradient models for which the 
strains and stresses at a point depend on the history of displacement or internal 
variable gradients, up to a certain order, evaluated at the point in question. Such 
models have been proposed for the localization of deformation in solids [see, e.g. 
Aifantis (1984), Triantafyllidis and Aifantis (1986)], but their origin can be traced 

back to the fluid mechanics literature (Van der Waals, 1893). 
The above mentioned higher order gradient (usually second order) type models, 

although often physically motivated, are basically phenomenological. The coefficients 
of the second order displacement or internal variable gradient terms are either pos- 
tulated [as for example in Triantafyllidis and Aifantis (1986) or in Muhlhaus and 
Aifantis (1991), respectively] or heuristically obtained from the assumption of con- 
tinuum state equations coupling macroscopic and microscopic state variables [see, 
e.g. Mindlin (1964) and Aifantis (1987)]. With the recent considerable growth of 
higher order gradient models proposed for an ever increasing number of material 

behaviors, e.g. elastoplastic, viscoplastic, thermoviscoplastic, the issues of consistent 
derivation of the macroscopic model from the microscale one, and the role of the 
higher order gradient terms on the stability of the solid become increasingly relevant. 

As a first step in this direction, Triantafyllidis and Bardenhagen (1993) have studied 
a discrete one-dimensional nonlinear elastic periodic microscopic model and con- 
sistently derived the corresponding continuum higher order displacement gradient 
models. The resulting simplest possible such model that takes the microstructural 
scale size into account (i.e. the lattice size) is the second order gradient one. This 
continuum model, derived from a given microstructure, has been found to give results 
in excellent agreement with corresponding discrete microscopic model for localized 
deformation solutions until the localization zone begins to propagate through the 
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structure. This work was subsequently generalized to two- and three-dimensional 

lattice structures by Bardenhagen and Triantafyllidis (1994), who derived the macro- 

scopic higher order gradient terms in the continuum energy density of the lattice and 
examined their role on the stability of the infinite medium under finite strains. 

The present work is motivated by the need to extend the above consistent deri- 
vations of non-local continuum macromodels, which include information on the scale 
size, to finitely strained, rate-independent periodic solids with continuum unit cells. 
Unlike the previously studied discrete lattice-type micromodels, the derivation of a 
non-local-type macroscopic continuum model is no longer possible due to the presence 

of internal variables and the possibility of local modes of deformation. However, it 
turns out that one can derive a consistent non-local model for the incremental response 
of the solid, which relates the macroscopic stress rate to the macroscopic displacement 

rate gradients of order n. The macroscopic moduli tensor for n = 1 is the standard 
homogenized moduli tensor of a periodic solid and is calculated by solving appropriate 
boundary value problems on the unit cell. The n > 1 higher order gradient macro- 

scopic moduli tensors are also calculated by solving appropriate boundary value 
problems on the unit cell and are required for the determination of the scale depen- 
dence of the critical load and mode of mechanically-loaded periodic continua. 

The outline of this paper is as follows. Section 2 presents the general theory for the 

scale size (denoted here by E) dependence of the minimum eigenvalue and cor- 
responding mode at the onset of the first buckling instability (the detailed derivations 
are given in Appendix A). A multiple scale asymptotic technique, proposed initially 
by Sanchez-Palencia (1974) for homogenization problems in linear elasticity, is appro- 
priately modified for the linearized stability problem of interest. The zeroth order E 
terms in these expansions depend on the standard (first order gradient) macroscopic 
moduli tensor, while all the higher order E terms require the determination of higher 
order gradient macroscopic moduli. The symmetry properties for these macroscopic 
moduli tensors (up to the third order) are also discussed and the results are applied 

to the determination of the critical load in terms of E. 

In Section 3, the proposed general theory is applied to the investigation of the 
failure surfaces in periodic solids of infinite extent. For these solids one can define in 
macroscopic strain space a microscopic (local) failure surface, which corresponds to 
the onset of the first bifurcation instability in the solid, and a macroscopic (global) 

failure surface, which corresponds to the onset of the first long wavelength instability 
in the solid. The determination of the macrofailure surface, which requires the cal- 
culation of the loss of ellipticity for the standard macroscopic moduli tensor, is much 
easier than the determination of the microfailure surface, which requires Bloch wave- 

type calculations in the unit cell for all possible wave numbers [see Geymonant et al. 
(1993)]. In addition, the regions where the two surfaces coincide is of significant 
practical interest, for a macroscopic localization mode of deformation (e.g. in the 
form of a shear band or a kink band) appears in the post-bifurcation regime. The 
prediction of these coincidence zones is based on a necessary criterion which depends 
on the higher order gradient macroscopic moduli. 

A detailed example is given for the case of layered composites in Section 4. The 
example choice is due to the possibility of closed form expressions for all the required 
macroscopic moduli and the existence of an analytical solution for the microscopic 
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failure problem (a brief outline of which is presented in Appendix B). Two applications 
are presented, one for a foam rubber composite under a state of finite biaxial strain 
and the other for a graphiteepoxy composite, whose properties have been determined 
experimentally, which is subjected to uniaxial compression. It is verified that the 
above mentioned criterion based on the higher order gradient macroscopic moduli, 
is indeed necessary for the coincidence between the micro- and macrofailure surfaces. 
Moreover, for the case of the rubber composite, the coincidence criterion in question 
is also a sufficient one, thus permitting the detection of all the macroscopic strain 
states in the composite that correspond to the onset of a kink band failure. 

The presentation is concluded in Section 5 with a discussion of the above presented 
results and suggestions for further work. 

2. GENERAL THEORY FOR SOLIDS WITH 3-D PERIODIC 
MICROSTRUCTURES 

The goal of this work is to quantify the influence of scale size on the onset of 
failure in an arbitrarily-shaped, rate-independent solid with a perfectly periodic 3-D 
microstructure under quasistatic loading. For this class of solids, the onset of failure 
is identified with the appearance of the first buckling instability encountered during 
the loading process. Attention is focused on “global” modes of instability, i.e. modes 
that have a characteristic length several times larger than the size of the unit cell. This 
is an essential feature of the present investigation, for it enables us to use asymptotic 
development techniques to quantify the scale size dependence of the critical load 
and mode. To avoid the complication of mode interactions and multiple bifurcated 
equilibrium paths, it is further assumed that for the critical load of interest, the 
corresponding eigenmode is unique. 

The approach that has been adopted in earlier work on scale size effects on the 
stability of discrete elastic media with regular microstructures [see Triantafyllidis 
and Bardenhagen (1993) and Bardenhagen and Triantafyllidis (1994)] and which is 
depicted in Fig. 1 (a), is as follows. In Step 1 a macroscopic continuum energy density 
of the periodic medium is derived via an averaging technique in which the size E of 
the microscale appears explicitly (in the terms involving the higher order gradients of 
the macroscopic deformation). In Step 2, a linearized stability analysis about the 
loading path of interest gives the wanted dependence of the minimum eigenvalue and 
corresponding eigenmode on the size of the microscale. Unfortunately this approach 
is no longer possible for the class of solids presently of interest and hence a different 
one has to be devised. 

For rate-independent elastoplastic solids with a continuous microstructure, the 
difficulties lie in the first step (limiting process for scale size E -+ 0) of the above 
mentioned approach and are due to the following two reasons : the associated gov- 
erning equations are nonlinear (due to constitutive and geometric effects) and the 
constitutive law is path dependent. Even in the absence of irreversible phenomena 
(elastic materials), the difficulties associated with the macroscopic response of a 
nonlinear periodic medium are due to the presence of local buckling modes, i.e. 
modes whose characteristic wavelength is of the order of the unit cell. Although a 
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(a) DISCRETE MICROSTRUCTURES 

(b) CONTINUUM MICROSTRUCTURES 

Fig. 1. The two approaches for taking into account scale size effects in the stability of media with periodic 
microstructures. The method used in (a) for discrete microstructures proceeds first with the homogenization 
of the solid and then with the linearization of the resulting non-local continuum. This approach is the one 
followed in all the stability analyses of microstructured media based on phenomenological non-local 
continuum models, The method proposed here for continuum microstructures in (b) reverses the order of 
homogenization and linearization and results with an asymptotic expansion for the minimum eigenvalue 
and eigenmode of the solid, the determination of which requires the calculation of the higher order gradient 

macroscopic moduli. 

macroscopic energy density does exist [see Mtiller (1987)], obtaining an analytical 
expression for it is impossible for all practical purposes. Moreover, for inelastic 

materials the presence of internal variables-which are necessary for the modeling of 
irreversible processes--complicates an already hard homogenization task even 
further, due to difficulties associated with finding a finite number of macroscopic 
internal variables that can adequately describe the state of the unit cell. 

The methodology most frequently used to find the macroscopic response of an 
inelastic microstructured solid, relies on an intuitive selection of the macroscopic 
internal variables based on certain assumptions about the response of the unit cell. 
This approximate technique, which has been successful in the derivation of simple 
macroscopic average theories which do not include scale size information [e.g. Gur- 
son’s (1977) model for porous elastoplastic solids], has recently been invoked in 
constructing phenomenological continuum plasticity theories that include scale size 
effects by Fleck and Hutchinson (1993). Consequently, the study of scale size effects on 
the stability of these solids has been based on such scale-dependent phenomenological 
models as in Leroy and Molinari (1993) for the case of elastic models, or as in Benallal 
and Tvergaard (1995) for the case of elastoplastic models. 

Given that in the present work we are interested in the consistent derivation of 
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scale size effects on the onset of failure, we have to find an unambiguous methodology 
to eliminate the difficulties associated with the homogenization process. The proposed 
new methodology consists of simply reversing the order of Steps 1 and 2, as depicted 
in Fig. l(b). Thus in Step 1 the exact linearized stability problem for the rate- 
independent elastoplastic continuum is established, which is obviously a function of 
the scale size E. Subsequently in Step 2, a multiple scale asymptotic limiting process is 
used to find the wanted dependence of the minimum eigenvalue and corresponding 
eigenmode on the scale size E. The advantage of interchanging the order of the steps 
used for discrete media is that there is a unique, consistent and unambiguous way to 
proceed for the continuous media considered here. 

Some general comments are in order at this point. The derivation of the macroscopic 
continuum model from the underlying periodic continuum is the same in two or three 
dimensions. The general theory derivations in this section are presented in three 
dimensions, but the results for the two-dimensional case are easily recovered from 
their three-dimensional counterparts when the italic roman indexes i, j, k, . . . range 
from 1 to 2 (instead of 1 to 3). The Einstein summation convention over repeated 
italic roman indices is adopted in the rest of this work. Boldface symbols indicate 
tensor quantities while their components are denoted by the same symbol followed 
by the appropriate roman subscripts. 

2.1. Setting of the general stability problem 

Consider a solid which in its reference (undeformed) configuration occupies a 
volume V with boundary i3V as seen in Fig. 2(a). The solid has a regular, perfectly 
periodic microstructure whose fundamental building block, termed the “unit cell”, is 
shown in Fig. 2(b). If 1 is the size of the unit cell and if L is a characteristic overall 
dimension of the solid under study, the scale size E is defined as E = I/L. Material 
points in the solid are identified by their position vector X, while the current position 
vector of the same point is denoted by x. The displacement of each material point X 
is denoted by u where u = x(X) -X. The deformation gradient at X, a quantity that 
measures the deformation in the neighborhood of each point, is denoted by 
F 5 dx/dX. The notation “d/dX” is used rather than “a/ax” to assist in distinguishing 
between derivation with respect to initial position X, and derivation with respect to 
the macroscale variable, also denoted by X, which is introduced in the multiple scales 
asymptotic analysis in Section 2.2. 

The constitutive law obeyed by all rate-independent solids can be put in the fol- 
lowing form 

(2.1) 

where Ii is the rate of the first Piola-Kirchhoff stress, P = dB/dX, is the rate of 
deformation gradient, its corresponding work conjugate quantity, and L is the 
incremental (or tangent) moduli tensor that characterizes the material’s instantaneous 
response. Here by rate of a field quantity we denote its derivative with respect to any 
parameter that increases monotonically with the evolution of the loading process. 
The incremental moduli, i.e. the components of L, depend obviously on position X 
as well as on the current state of the material point, which can be described by a set 
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Fig. 2. The schematic representation of a solid with a periodic microstructure and the definition of the 
scale size parameter E are shown in (a). The unit cell with its local coordinate system is shown enlarged in 

(b). 

of internal variables. Every given loading process, assuming that it produces a unique 
response termed the “‘principal equilibrium path”, can always be parameterized in 
terms of a scalar quantity A, termed the “loadparameter”. Consequently and since all 
stresses and internal variables at a loading state characterized by 1 can be expressed 
in terms of A, the incremental moduli are also functions of A as stated in (2.1). For 
the applications of interest here, the moduli tensor possesses the major symmetry, 
namely 

Lzj!f,(A, x) = Lkl;,(A, x). (2.2) 

Of interest here is the stability of the principal equilibrium path. For rate-independent 
elastoplastic solids, the issues of bifurcation and stability were first placed on a firm 
mathematical foundation by Hill (1958), who was able to give sufficient conditions 
for the exclusion of bifurcation in the incremental (rate one) problem of an ela- 
stoplastic solid and conjectured that these conditions should also guarantee unique- 
ness. He also investigated the condition for stability in elastoplastic problems by 
means of calculating the dissipation produced by small perturbations about the state 
in question and went on to show that his exclusion of rate one bifurcation criterion 
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was also sufficient for stability in the above described sense. Hill’s stability criterion 
[which also implies exclusion of bifurcation in any rate along the principal branch- 
see Nguyen and Triantafyllidis (1989)] relies on the positive definiteness of a functional 
which is quadratic in the perturbation of the displacement rate C%(X). 

Thus, the stability (or instability) of a loaded configuration, identified by 2, is 
characterized by the positive (or negative) sign of the minimum eigenvalue /?(A) of 
the above mentioned Hill’s stability functional which is defined by 

/3(A) = n-It” s d6vi d6vk 

V 
Lzjk,(i2 x)dx. ---dl’, 

J 
do 1]6v/12 = 6vi6vi = 1, (2.3) 

/ 

where the minimum is taken over all kinematically admissible functions &J(X), i.e. all 
functions that are continuous and vanish at those points on the boundary cYV where 
the displacement (essential) boundary conditions are prescribed. To avoid the scalar 
indeterminacy, it is further assumed that all admissible functions have unit norm. The 
assumed symmetry of the incremental moduli in (2.2) implies that /?(A) is always a 
real number. To be consistent with our assumption on the beginning of Section 2 
about the uniqueness of the critical mode, it will additionally be assumed that the 
wanted minimum p(J) is achieved for only one such admissible function which is 
denoted by v and, in view of (2.3), satisfies the following variational statement, 
equivalent to (2.3) 

s dvk d&, 
Lijk,(A, X) do E d v = 8(l) a&id v, 

V / / s t 

whose pointwise form (Euler-Lagrange) is 

& 
I [ 1 

L,,$ +pvi = 0. 
I 

(2.4), 

WI2 

In any physically meaningful loading history, the solid under study is stable when no 
loads are applied to it, i.e. if ,? = iii, corresponds to the unloaded state of the solid, 
then /?(A,,) > 0. As the loading is progressively applied, i.e. as the load parameter 
increases or decreases monotonically away from 12in, j?(n) decreases. The first instability 
of the solid that occurs during the prescribed loading path occurs at load 1, and is 
detected from 

fi(n,) = 0, P(n) > 0 for IS&&,] < (A,-&]. (2.5) 

According to our previous assumption about the uniqueness of v(& X) corresponding 
to the j?(n) [see comments pertaining to (2.4)], v(&,X) is the unique eigenmode 
corresponding to the first critical load 2,. It should be also noted at this point that at 
the critical load of interest /2,, the principal solution under investigation exhibits a 
buckling-type instability. Mathematically, this instability is either a bifurcation point 
or a limit load and the subsequent analysis does not require a distinction between the 
two cases. It is additionally assumed that B(n) is a smooth function of the load 
parameter, which from (2.5) implies 
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(2.6) 

The above presented formulation for the linearized stability analysis of the finitely 
deformed, rate-independent, elastoplastic solid constitutes Step 1 in the proposed 
approach, according to Fig. 1 (b). Obviously the minimum eigenvalue is a function of 
the scale size parameter E, i.e. j3 = B(&E) and hence from (2.5) the critical load is a 
function of E, i.e. & = L,(E). It is exactly this dependence of the critical load on the 
scale size parameter that is sought, in an asymptotic form, in Step 2 of the proposed 
approach according to Fig. l(b). Finding the scale size dependence of A,(E) requires 
the determination of the appropriate macroscopic (or average) moduli tensors. The 
order of these average moduli tensors depends on the number of terms required in 
the corresponding scale size expansion of the critical load, as will be seen in the 
following sections. 

2.2. A.yymptotic analysis.for minimum eigenvalue and eigenmode 

A multiple scale asymptotic technique, initially proposed by Sanchez-Palencia 
(1974), is the tool for obtaining the dependence of the critical load and mode on the 
scale size parameter. There are two different spatial coordinates that can be identified 
in this problem : the macroscopic scale parameter X, which describes the global 
variation of the eigenmode and which pertains to the overall dimensions of the solid 
and a microscale coordinate parameter Y which describes the local variation of the 
eigenmode and which is defined by 

Y = x/e. (2.7) 

A key property of the microstructure is introduced at this point. A function defined 
on I’ is termed “ Y-periodic” if it is periodic and assumes the same values on opposite 
faces of the parallelepiped unit cell. Since the microstructure of the solid is perfectly 
periodic, and considering principal loading paths that produce uniform macroscopic 
strain modes of deformation, we can additionally assume that the incremental moduli 
L(A, X) = L(A, Y) are Y-periodic. In these new microscopic coordinates the unit cell 
is denoted by D and its boundary by dD [see Fig. 2(b)]. 

Next the asymptotic expansions for the minimum eigenvalue /I(&&) and the cor- 
responding eigenmode ~(2, E, X) [see definition in (2.4)] are introduced. The asymp- 
totic expansion for j?(A) is taken to be 

/j(/l,E) = Bo(n)+EB,(jl)+E28?(~)+ .... (2.8) 

The eigenmode’s dependence on position X can be described on two scales, the 
macroscopic (global) dependence on X and the microscopic (local) dependence on 
X/E = Y. In other words, we can put v(&s,X) = v(&E, X,X/E) = v(i,s,X, Y), where 
v is Y-periodic and its asymptotic expansion with respect to E is assumed to be 

V(&E,X) =~(~,,X,Y)+E:(~,X,Y)+E2:(~,X,y)+”.. (2.9) 

The Y-periodicity of v implies the Y-periodicity of 4. In addition, a mode nor- 
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malization condition, which is a slight modification of the earlier mentioned II v )I = 1, 
is added [see comments on the general setting of the problem pertaining to (2.3)] 

jai&dX = lx [I v,(A, E, X, Y);,(A, X, Y)dY 1 dX = 1. (2.10) 

All the ingredients are now in place to find the terms in the asymptotic expansions 
for the minimum eigenvalue and corresponding eigenmode. The starting point of 
these calculations is the variational equation that defines /3 and v in (2.4),. Substitution 
of (2.8), (2.9) in (2.4),, and subsequent expansion in powers of s results in the following 
variational statements (See Appendix A for the complete derivations) which define pi 
and 6 in terms of the various order macroscopic moduli-L&(L) (first order), &(A) 
(second order), N(A) (third order) and so on. 

The variational statement for /?,,(A) and the corresponding eigenmode ;(,I, X) and 

the definition for the first order macroscopic moduli tensor &?(A) are given by 

(2.11), 

(2.1112 

Fontinuing with the next higher order terms, the variational statement for B,(A) and 
~(2, X) and the definition of the second order macroscopic moduli tensor .k!((n) are 

dijpqr(n>p ~ - a2’p a60i j, (&6a, + 2?,,(i)& g +,,(il)t& 
ax,ax, ax, I[ dX = 0, Y I 

The next terms of interest (and the last required for our app,lications as it will be seen 
subsequently) give the variational statement for /I,(n) and V(,I, X) and the definition 
for the third order macroscopic moduli tensor &‘(,I) 

1 

azb ~- -1, (&?o, + 

ax,ax,ax, I[ ipl,,(&‘~ -~&)~,~6, dX = 0, rl J I) 
(2.13)~ 
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P4 s Lijk,(lZ, Y)g dY. D I 1 (2.13)~ 

The Y-periodic functions $(Y),T(Y),‘g(Y) and y(Y) that appear in the 
expressions which define fli and ; as well as in the definitions of the various order 
macroscopic moduli are defined in Appendix A. The physical interpretation and some 
key symmetry properties of the above defined macroscopic moduli tensors of orders 
one to three is the object of the next section. 

2.3. Interpretation andproperties qf the macroscopic moduli 

In this section we give a physical interpretation of the macroscopic moduli tensors 
y(n), &(A), &‘(,I), introduced in (2.1 1)2, (2. 12)2, (2.13),, respectively. We also provide 
equivalent expressions for these tensors, which are useful in the study of their 
symmetries. 

From the microscopic constitutive equation for the solid I$i = Lijkgk, where 
-i;k,= d&/d& [see (2.1)] and the microscopic incremental equilibrium 
d(L,,k,(dtik/dX,))/d_Xi = 0 [which coincides with (2.4), for fi = 0] one can deduce the 
response of the solid to a deformation with a give? average strain. By assuming a 
known macroscopic incremental displacement field V(X), i.e. 

& 
s 

i(X, Y)dY = i(X) 
D 

(2.14) 

and by invoking the same multiple scale asymptotic expansion for I as in (2.9), one 
can easily repeat the analysis of the previous section for /3 = 0 to find that 

2 PY ai P4’ a4 
ir=V+E4(Y)$+E2 +CY)axqax, 2+ E3pg7y) 

aGp 
ax,ax,ax, + “” (2.15) 

Note that the absence of t(X) terms (i > 1) in (2.15) is due to the imposed constraint 
(2.14). 

By introducing the expansion for h (2.15) into the microscopic constitutive equation 
(2.1), namely fi,i = Lijk,(~,Y)[(a/aX,+&-‘a/aY,)a,(X,Y)] (where use is made of the 
chain rule of differentiation to replace d/dX, by a/aXi+E-‘a/aYj, see Appendix A) 
and subsequently averaging over the unit cell, one finds after some straightforward 
calculations 

(2.16) 
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where LE’, A, Nare given by (2.1 l),, (2.12)2 and (2.13),, respectively. The moduli 
tensor 2, which is the macroscopic first order gradient tensor, is the macroscopic 
tangent moduli tensor that gives within 0(&O) the relation between the macroscopic 
first Piola-Kirchhoff stress rate and the macroscopic first order deformation gradient 
rate 6JVj8X. The moduli tensor J& which is the macroscopic second order gradient 
moduli tensor, represents the scale size correction of O(E’) in the above macroscopic 
constitutive law and depends on the macroscopic second order deformation gradient 
rate a’~/aXLJX. Similarly Mis the macroscopic third order gradient moduli tensor 
and so on. It should also be noted at this point that the expressions in (2.11)2 for 
macroscopic first order gradient moduli, also termed homogenized moduli in the 
literature, have already been presented in the literature [see Sanchez-Palencia (1974) 
for the linear elastic case, Abeyaratne and Triantafyllidis (1984) for nonlinear hyp- 
erelastic materials] and used widely in applications. In contrast, the derivations for 
the higher order gradient moduli are presented here for the first time, since only 
phenomenological higher order gradient theories for microstructured continua have 
been presented in the literature so far. 

At this stage alternative expressions for LE’, A, Mare provided which are helpful 
in establishing their symmetries for arbitrary periodic microstructures. From the 

definition of 3 in (A. 1 1)2 one can easily show that for any Y-periodic function f(Y ) 

(2.17) 

Taking f = t#~ in (2.17) and combining with (2.1 1)2 we obtain the following expression 
for LZ(il) 

From the above expression for L? follows that the macroscopic first order gra- 
dient moduli share the same major symmetry as the microscopic moduli, i.e. 

_!Y aipq = Tpqw (2.19) 
SIU P4’ 

By taking f = vj in (2.17) and recalling also the definition for I++ in (A.l6), one can 
obtain from (2.12)2 the following expressions for the macroscopic second order 
gradient tensor M(L) 

From the major symmetry of L and (2.20) the following symmetries for Mare deduced 

“& 
srpqr = -,n”e,,,,r. (2.21) 
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PY’S PV 

By taking f = 8 in (2.17) and recalling also the definitions for 0 in (A.21), and for 
PV 
+ in (A.16),, we obtain from (2.1 3)2 the following expressions for the macroscopic 
third order gradient tensor &‘(A) 

From (2.22) and the major symmetry of L, the following symmetries for Mare found 

J~tuspqr = ~pqrrus (2.23) 

2.4. Unit cell symmetry and implications for macroscopic moduli 

The symmetries discussed in (2.19), (2.21), (2.23) are due to the major symmetry 
of the microscopic moduli [see (2.2)] and are valid for any periodic microstructure. 
In practice, the unit cell for most solids of interest enjoys some additional symmetries 
which are reflected in the above discussed macroscopic moduli. The simplest possible 
symmetry for the microstructure is the point symmetry of the unit cell with respect to 
its center, which if it exists initially at 2 = 0, is preserved for all subsequent states of 
deformation resulting from an imposed arbitrary macroscopic deformation F(i) 

L(1, Y) = L(A, -Y). (2.24) 

Notice that any Y-periodic function f can be decomposed in a sum of symmetric i 

and antisymmetric 4 functions, namely 

f(Y) = S(Y) +i(Y) ; S(Y) = ; [f(Y) +f( - Y)], i(Y) = $f(Y) -f( -Y)]. 

(2.25) 

From the above remark, and making use of (A.l), (A.2) and (2.24) one can show 
that 

Z(Y) = -7(-Y), pj;(Y) = T(q), pgy(y) = -yf(_Y). (2.26) 

Using (2.24), (2.26) in (2.20) one can easily conclude that for the point symmetric- 
type unit cell, the macroscopic second order gradient moduli vanish, i.e. if 
L(A,Y) = L(A, -Y) then 

Asor = 0. (2.27) 

2.5. Asymptotic analysis for the lowest critical load 

Following the asymptotic determination of the minimum eigenvalue b(L) of the 
solid’s stability functional in (2.4) given in Sections 2.2-2.4, the dependence of the 
first critical load 2, on the scale size parameter E may now be found. The assumptions 
adopted in Section 2.1 about /I(A) and 1, are that in the neighborJrood of 1, the unique 
critical mode v(& E, X) is global in nature and hence approaches ~(1, X) as E -+ 0 where 
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$ is the eigenmode of the homogenized stability problem in (2.11). In this case the 
asymptotic dependence on ;1, on E can be determined from the identity 

P(Le) = 0, (2.28) 

in which the critical load 1, has the following asymptotic expansion in terms of E 

A,.(&) = &+&Al +?I,+ .... 

Combining (2.8), (2.28) (2.29) one easily deduces 

(2.29) 

12 = - [P,W + k-V& Wld, +~.~~~‘~~/~~‘l,~:l/~~~~/~~l~, (2.30) 

where the 0 subscript denotes evaluation of the bracketed quantity at i = 1,. In view 
of (2.30), and the assumptions about the eigenmode corresponding to /?(A) as 
E + 0, 2, is from (2.11) the first critical load of the homogenized solid. 

At this point it is worthwhile recording the expressions for [d/?,Jdn],, fl,(&) and 
/I,(&) in terms of the homogenized higher order gradient moduli. A straightforward 

differentiation of (2.1 l), with respect to 2 combined with the choice 60~ = gi gives, in 

view of the 0(&O) term in the normalization condition (2.10) Jx [gir!ji]dX = 1 

WBoid~lo = [dLZijP,/dn], $2 dX. 
4 J 

(2.31) 

By taking 6fii = g, in (2.12) and 60~ = b, in (2.1 l),, one can easily deduce, in view also 

of the previously discussed normalization condition for 4, the following expression 

for Bl(no) 

Bl@O) = A,qr(nO) & $]dX. (2.32) 

Similarly by taking 6~~ = ei in (2.13),, 60 = hi in (2.12), and 60~ = ii in (2.11),, in 

conjunction with the previously discussed normalization condition for i, and recalling 
from (2.30), that /Io(Ao) = 0, /I,@,) takes the form 

a3& O I I 

P,(no) = - Nijspqr(AO) 3 - u,,(~,)~ 2 
ax, ax, ax, ax, 1 

dX. (2.33) 
Y J 

For the point-symmetric microstructures discussed in (2.24), one can easily see that 
since from (2.27) A= 0, this implies from (2.32) that /I, = 0 and from (2.12)1 and 

the orthogonality condition Jx[r!jigi] dX = 0 [O(E) term in (2.10)] that i = 0. Conse- 
quently (2.32), (2.33) for the symmetric unit cells, i.e. for L(A, Y) = L(A, -Y) simplify 
to 
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The determination of PO(&), ii, and subsequently that of pi(&) or /12(&), requires 
the specification of macroscopic boundary conditions for the macroscopic boundary 
value problems (2.1 l),, (2.12),, etc. In the absence of boundary layers, i.e. as long as 
the asymptotic expansions for the eigenmode in (2.9) are valid for all X in the 

boundary aV, the task of finding the appropriate macroscopic boundary conditions 
is straightforward. The required modifications for the general theory in the presence 
of boundary layers are rather involved and depend on the particular nature of each 
boundary problem considered and thus will not be addressed here. 

3. APPLICATIONS TO PERIODIC SOLIDS OF INFINITE EXTENT 

The above presented general theory, which uses higher order gradient macroscopic 
moduli to quantify the effect of scale size on the first critical load in periodic 
composites, has been developed for finite solids. For the special case where the 

boundary effects can be ignored (solids of infinite extent), the theory has a very 
interesting application in determining the regions where the macrofailure surface of 
the composite does not coincide with the microfailure surface (the definitions for these 

failure surfaces are given immediately below). The regions of coincidence between the 
micro- and macrofailure surfaces are of interest since they identify the macroscopic 
strain states at which an initially global mode of deformation develops into a macro- 
scopically localized mode of failure (of the shear band or kink band type). 

3.1. Micro- versus macrofailure surface for a periodic composite 

The definition of failure in composites is an extremely difficult task, due to the 
complexity and multiplicity of physical mechanisms that contribute to their failure. 

For the case of ductile solids with periodic microstructures, which are loaded primarily 
in compression, their ultimate failure can be related to the onset of a buckling mode. 

Consequently, one can define as onset of failure the occurrence of the first bifurcation 
away from the periodic solution in which all cells deform identically. The deter- 
mination of these theoretical failure surfaces for periodic media of infinite extent, 
when they are subjected to a macroscopic deformation gradient F can be done as 
follows. 

The macroscopically applied deformation gradient F is parameterized in terms of 
a scalar parameter 3. such that F(&,) = I and the principal stretches A,(,?) cor- 
responding to F(A) change monotonically from their initial values ;l,(&,) = 1, as ,l 
moves monotonically away from ;i,. The stability parameter /l(n) is the minimum 
eigenvalue of the quotient of the two quadratic forms defined in (2.4),. Following the 
work of Geymonant et al. (1993), it can be shown that the eigenmode v(& X) which 
corresponds to /?(A), is always of the form v(& X) = p(Y) exp[io . Y]t where p(Y) is a 

t These solutions to linear equations with periodic coefficients in two or three dimensions, go in the 
physics literature by the name of “Bloch waves” (in one dimension they are termed “Floquet waves”). 
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g2 

Fig. 3. Typical example of the micro- (onset of bifurcation) and macro- (loss of ellipticity of the homo- 
genized moduli) failure surfaces for a periodic composite which is subjected to a state of macroscopic finite 
biaxial strain E,, E*, where E, = In (A,). All strain states inside the microfailure surface correspond to stable 
periodic principal solutions. The points of coincidence of the two surfaces are characterized by infinitely 
long critical wavelengths w, + 0 and correspond to the onset of failure by a macroscopic localization mode. 

Y-periodic function and o the corresponding wavenumber vector. Following the 
discussion of Section 2.1 [see also (2.5)], the first bifurcation occurs at 2, for which 
/?(,J,) = 0 while the corresponding wavenumber vector is CD,. 

One can display the thus obtained stability results by plotting the onset of failure 
surface in the space spanned by the principal values of the applied macroscopic F. 
Thus for a two-dimensional periodic composite and under the assumption of fixed 
principal axes, i.e. for F = diag[&, A,], the onset of failure surface consisting of all 
pairs {A,(&), A,(&)} will look something like the solid curve in Fig. 3 [which has 
been calculated for an infinite planar, nonlinear, periodic truss by Schraad and 
Triantafyllidis (1996)]. All points inside (outside) the solid line have /?(A) > 0 
p(1) < 0), thus indicating that the corresponding macroscopic deformations F(A) are 
stable (unstable) against buckling. 

The above obtained onset of failure surface is termed the microscopic (or local) 
failure surface, for it corresponds to the onset of first instability occurring in the 
infinite periodic medium loaded by F. The components of o, are the dimensionless 
wavenumbers of the corresponding bifurcation eigenmode, i.e. they are the ratios of 
the cell size to the wavelengths of the eigenmode along the coordinate directions. If 
the characteristic wavelength of the eigenmode at the onset of the first instability is 
commensurate with the unit cell size a, i.e. o, # 0, then the onset of failure mode is 
local in nature. 
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It is conceivable that the onset of failure mode has characteristic wavelength much 
larger than the unit cell size E, i.e. CD, + 0, in which case the onset of failure mode is 

macroscopic (or global) in nature. If this is the case, it has been shown by Geymonant 
et al. (1993), that 1, can be found from macroscopic considerations, i.e. by determining 
the loss of ellipticity of the homogenized (macroscopic) incremental moduli of the 
solid S(A) defined in (2.18). Specifically, if o, -+ 0, then there exist unit vectors a’, nc 
such that 55’i,kl(A,.)crfn;~;n;’ = 0 while for all other unit vectors a, n and any 
IA-A,,] < )&,?,,,I, .Yjj~l(A)ain,ol,n, > 0. For the same two-dimensional periodic com- 

posite, under an applied F with fixed principal directions, the above defined macro- 
scopic failure surface will be something like the dotted curve in Fig. 3. From the 
above discussion it is evident that the microscopic failure surface lies always inside 
the macroscopic failure surface, with the two surfaces coinciding when the eigenmode 
corresponding to first bifurcation is global in nature, i.e. w, + 0. 

The locus of points in F space where the two failure surfaces coincide is of particular 
interest in this work for two reasons. First, it determines the region of validity of the 
homogenization theory since for the macroscopic strains in question no local insta- 
bility precedes the global one. Second, as it will be argued subsequently, if the first 
instability of the periodic medium is macroscopic in nature, the post-buckling failure 
mode is likely to develop into a macroscopically localized mode of failure (of the 
shear band or kink band type). The determination of the regions of F where the macro- 

and microfailure surfaces do not coincide is permitted by calculations involving the 
higher order gradient homogenized moduli, as it will be subsequently discussed. 

3.2. Micro- and macrofailure surface separation criterion 

Given the unit cell geometric and material properties of a rate-independent periodic 

solid, one can easily calculate for each macroscopic deformation state F(A) the macro- 
scopic homogenized moduli Z(A) according to (2.11). The determination of the 
macroscopic failure surface for the infinite periodic solid follows directly from the 
investigation of the loss of ellipticity of A?(A), as discussed in the previous subsection. 

The calculation of the corresponding microscopic failure surface based on the Bloch 
wave theory-also outlined in the previous subsection-is a much more com- 
putationally intensive task, for it requires the stability investigation of the medium 

for all possible wavenumber vectors w at each F(A). 
So far, the only way to determine where the two failure surfaces coincided was to 

calculate the more difficult-and computationally considerably more time con- 

suming-microscopic failure surface and determine the points on that surface for 
which the corresponding critical wavenumber was approaching zero. We propose, 
and subsequently verify, a new criterion which is based on the calculation of /I,(&,) 
[/?Z(&)], which finds the scale size effect on the macrofailure mode and thus indicates 
the existence of a prior microfailure mode. Note that for the infinite problem the scale 
size parameter is the (finite) ratio of the unit cell size to the characteristic length of 
the eigenmode v which, although much larger than the unit cell size, is considered 
finite. 

We propose (with justification, but without proof) the following necessary criterion 
for the separation of the micro- and macrofailure surfaces in a periodic composite. 
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based on the sign of p, (12,) [or P,(&)] f or asymmetric (or symmetric) microstructures. 
If j?,f&) < 0 {or p2(& < 01, the inclusion of the scale size effect reveals that the 
minimum eigenvalue is negative at the macrofailure load &. In this case there must 

be a local eigenmode (whose size is of the order of the size of the unit cell), which 
precedes the occurrence of the macroscopic eigenmode. The criterion, being a sufficient 

one, does not always work the other way around, i.e. if /I,(&) > 0 [or /&(&) > 01, it 
cannot be guaranteed that the first critical eigenmode is a global one. A verification 

of the proposed criterion which is based on the sign of p,(&) [or /&(&)] will be given 
in Section 4 for two different laminated composites. 

The determination of pi (& if 8, = 0) [or equivalently of ,I,(J., if ,I, = 0)] for the 
infinite periodic solid, follows from the general theory developed in Section 2.5. 

Consider a periodic composite under a macroscopic deformation F(A) whose homo- 
genized moduli 9 first lose ellipticity at a,, along direction n, i.e. 

[4Pij/d(n13)nkn,l~R = 0 (Ml = 11~11 = 1). (3.1) 

The matrix 9&&)nkn, is positive semi-definite with unit eigenvector g. For any unit 

vector m # n, A?iikr(&)mkm, is positive definite. Also ,4niik/(;l)m,ml is positive definite 
for all II.--J+,l < I&-&I and all unit vectors m. The (macroscopic) eigenmode cor- 

responding to this failure mode is 

z; = &f(z) ; z = n/(X,. (34 

From (3.1) and since PO(&) = 0 [see (2.30),] one can easily verify that the eigenmode 
(3.2) satisfies $e Euler-Lagrange equations for the eigenmode (2.11)1, namely 

d/aXjE~ij~l(~O)d~~,laX,l = 0. 
The next order term in the expansion of the critical load requires, according to 

(2.30)2, the calculation of PI(&) which is given by (2.32). Using (3.2), as well as the 
symmetry properties of Jle((n) [see (2.21)], it can be shown that 2, = fi,(&) = 0. 

Indeed? 

(3.3) 

since 

Since A, = 0, the calculation of the scale size effect on the critical load requires A2 for 
which, according to (2.30)j, flz(&) must be determined. Notice from the expression 

(2.33) for PI(&), that $(X) is also required. This term is found from (2.12)1, whose 
Euler-Lagrange equation-in view of the simplification PO(&) = PI(&) = O-takes 

the form 

TFor the infinite solid X denotes the entire three-dimensional space. Moreover the normalization 

condition ix[&Ei]dX = 1 is replaced by the amplitude normalization &a, = 1 [see (2.8)]. It is tacitly assumed 

that lxf2dX, jx(df/dz)2dX over the entire space are finite. 
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(3.4) 

The solution to (3.4) is 

The linear equaiion (3.5)2 always admits a solution h sincg its right hand side 

g, = -~H~~,,~~(&)@~rz~rz~n~ satisfies the compatibility condition gi&, = 0 [see (3.3),], and 

eigenvector & is unique. By using (3.2) and (3.5) in the expression (2.33) for /$(&) we 
obtain 

(3.6) 

The sign of /I?,(&) is determined by the bracketed term since G > 0. Indeed 
assuming without loss of generality that f(z) vanishes as IX] + co, then 
-Jx(d3fldz3)(dfidz)]dX = JX(d2fldz2)2dX > 0. Notice also that in all problems the 

A-parameterization of the macroscopic deformation gradient F is assumed to produce 
higher strains for values of L moving away from pi”, in which case an equation similar 

to (2.6) holds for /&, at 2,. Consequently from (2.30),, if /?,(&) > 0, il, has the same 

sign as &-&, which indicates that, when scale effects are accounted for the critical 

load, 2, occurs at strains higher than those corresponding to A,,. 
For the case of point-symmetric unit cells discussed in Section 2.4, we have from 

the vanishing of &(,I) [see (2.27)] that gi = 0 in (3.5), which implies that d? also 
vanishes [see discussion preceding (2.34)], thus simplifying the expression (3.6), for 

b2(iL0), i.e. when 64(;1, Y) = 9(/2, -Y), then 

/~z(JLo) = [xj,qp,,(&) l$pn,nsnqnrlG, 

where G > 0 is still given by (3.6),. 

(3.7) 

A brief justification of the claim made at the end of the previous subsection-on 

the development of a localized macrofailure mode for those macroscopic strains for 
which the micro- and macrofailure surfaces coincide-is in order at this point. For 
the case where a macroscopic loss of ellipticity at ,I0 is the first bifurcation which 

occurs on the loading path F(A), the macroscopic forcedisplacement curve decreases 
along the bifurcated path as the bifurcation amplitude, say l, increases. Without 
going through a complete post-bifurcation analysis, we remark that the deformation 

gradient in the neighborhood of & can be approximated by F,,(&) + i&n, and the 

average force acting along the characteristic direction is t E &z,~JI,i. By recalling 
from (2.16) the relation between the macroscopic stress and strain rates, one sees that 

dt/d[ = %injY;jk,i,n, which vanishes at bifurcation & and by continuity has to be 
negative for loading parameters past the bifurcation. For bifurcation problems for 
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which the total load drops along the bifurcated path, a localization of the buckling 
pattern develops [see Tvergaard and Needleman (1980)]. 

In the following section we give examples of macroscopic and microscopic failure 
surfaces for layered composites under plane strain conditions. In these examples the 
two failure surfaces can be calculated analytically and the macroscopic moduli Z(n), 
&(A), Jl’(il) are found explicitly. 

4. EXAMPLES IN LAYERED COMPOSITES UNDER PLANE STRAIN 

The failure surfaces for the periodic composites of infinite extent presented in 
Section 3 will now be illustrated for the special case of layered materials (laminated 
composites) under plane strain conditions. The advantage of this illustrative example 
is that closed form analytical expressions may be obtained for the macroscopic 
homogenized moduli of all orders. In addition, an exact solution for the microscopic 
failure surface of laminated periodic composites is possible and the corresponding 
analyses are briefly outlined in Appendix B. 

Two different examples will be discussed here. One involving a layered composite 
made of two alternating layers of a compressible foam rubber and the other involving 
a graphite-epoxy composite whose stability under compression has been recently 
studied experimentally and theoretically by Kyriakides et al. (1995). It should be 
emphasized that the onset of failure load that is of interest here, is a theoretical 
upper bound for the failure stress of an axially compressed, perfect fiber-reinforced 
composite. The experimentally measured failure stresses are strongly dependent on 
the inevitable in practice imperfections, thus requiring a post-bifurcation analysis for 
the kink band development. The interested reader is referred to Budiansky and Fleck 
(1993) for an approximate post-bifurcation analysis of this problem or to Kyriakides 
et al. (1995) for a full finite element modeling of their actual (imperfect) composite 
from the stress-free to a highly localized configuration. 

A schematic representation of the laminated composite is shown in Fig. 4. The 
initial thickness of each fiber and matrix layers are denoted by Hf and H,,,, respectively 
while the initial unit cell thickness is H = H,+ H,. The layered medium deforms in 
the X, -X2 plane, with X2 the direction perpendicular to lamination. Due to perfect 
bonding between fiber and matrix layers, kinematics dictate that the axial (X,-direc- 
tion) strain is continuous along the interface, while stress equilibrium dictates con- 
tinuity of the Cauchy stress normal to the interface. It will be further assumed for 
simplicity that the material properties of each layer are constant throughout the layer 
and that each layer is orthotropic with respect to the Xi, X2, X, axes. 

The loading for the composite consists of a given axial stretch ratio 1, and a given 
normal Cauchy stress g2. For this type of loading, and due to the orthotropy and 
uniform properties of each layer, the resulting stretch ratios and stresses are constant 
in each layer. Consequently the macroscopic (averaged) stresses and deformation 
gradients applied to the layered composite are 

F = diag[A,, A,], A, = 27 = A:, 2, = (27 H,,, +A: Hf)/H, 

6 = diag[o, , a,], o, =(ayilt H,,,+a;il; H,)/H, o2 = &’ = a;, (4.1) 
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Fig. 4. Schematic representation of a layered composite. 

where Af, ny and 1:) A: are the matrix and fiber stretch ratios, respectively, while 

af, 07 and a:, c$ are the corresponding Cauchy stresses. The scalar loading par- 

ameter A which characterizes the macroscopic loading is the stretch ratio along the 

fiber direction ;I,, while the dimensionless lateral normal Cauchy stress oJC-C is a 
conveniently chosen reference stress-is taken proportional to the strain (I_, - 1) with 

a coefficient of proportionally s, i.e. 

/I, = A, 0,/c = s(A- 1); /I,, = 1. (4.2) 

For this parameterization &n, the value of the load parameter that corresponds to the 
unloaded configuration, is obviously unity. 

Some general remarks are in order at this point about the structure of the incremen- 
tal moduli L(A, X) [see definition in (2.1)]. Due to the constant stress and strain fields 
existing in each layer, the incremental moduli are piecewise constant, i.e. 
L(& X) = Lf(,I) or L”(A) according to whether the material point X lies in the fiber or 
in the matrix. The piecewise constant nature of L simplifies considerably the cal- 
culations of the relevant homogenized moduli .9(A), JV(~) [J&(A) = 0 for point sym- 
metric unit cells, see Section 2.41. 

Additional simplifications result because the incremental moduli L are piecewise 
constant. The X,-independence of the incremental moduli implies the Y,-independence 

of the auxiliary Y-periodic functions $(A, Y) [defined in (A.1 1)J and ‘t(1, Y) [defined 
in (A.16),], which are required for the calculation of Z(n) [see (2.18)] and J+‘(A) [see 
(2.22)]. The solutions of (A. 1 l)2 and (A. 1 6)2 are straightforward solutions of ordinary 
differential equations in Y, with piecewise constant coefficients. The orthotropy of 
the incremental moduli simplifies these calculations even further and as a result the 
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homogenized moduli Z(n), .,&‘(A) have explicit analytical expressions in terms of 
Lf(;l), L”(A), Hf/H and H,/H. In the interest of conciseness, the above mentioned 
derivations as well as the final cumbersome expressions for S(L) and J+‘(L) are not 
recorded in this presentation. 

The calculations of the microfailure surfaces for the above described laminated 
composites, which again require the knowledge of L’(A), L”(l), Hf/H and H,/H, are 
given in detail in Geymonant et al. (1993). It can be shown that the critical load 
parameter J,,, which corresponds to the onset of first bifurcation /I@,) = 0, is found 
by scanning all the possible dimensionless wavenumbers of the structure only in the 
X,-direction. For reasons of completeness of the presentation, a brief outline of all 
the necessary calculations is presented in Appendix B. In all the calculations reported 
here, to find the critical load corresponding to the first bifurcation it is sufficient to 
scan the space 0 d oH d 20. 

4.1. Material properties of layered composites 

As mentioned previously, two different types of layered media will be considered 
in the examples. The first layered medium consists of two alternating layers of com- 
pressible foam type rubber described by a Blatz-Ko-type energy density, which for 
plane strain deformations, i.e. A3 = 1, takes the form [see Blatz and Ko (1962) 

w = p[Z,/Z3 + 2zi’* -5]/2 = /@;2+&2+2&122-4]/2; 

I2 = k(FijFk,FijFk, - FkiF,,F,,F,,), I3 = det(F,,Fkj) i, j, k = 1,2. (4.3) 

The unique coefficient p-which is the initial shear modulus of the material-takes 
different values in the fiber and matrix layers. In all subsequent calculations 
.~r/p~ = 100, unless explicitly stated otherwise. For any hyperelastic solid the 
incremental moduli are given by L,, = a2 W/aFjj;iaFk,, with the derivatives evaluated 
at the deformation of interest, which in the present case is F = diag[l,, j/*]. A straight- 
forward calculation gives from (4.3) 

Lllll = 3PAF4> L1122 = L2211 = P, 352222 = 3/C> 

L 1212 = L2121 = ml&-*~ 35221 = L*,,* = p(Iz;‘&3+12;312;’ - 1). (4.4) 

Of interest is also the relation between a2 and A2 in each layer. From (4.3), and given 
that for an isotropic hyperelastic material the principal stress a2 is given in terms of 
the stretches lli by a2 = A;‘8 W/a&, the relation is found to be 

1, = [A,(1 -a2/~)]-“3. (4.5) 

The second example analyzed is the graphite-peek epoxy composite used in the 
compressive failure experiments of Kyriakides et al. (1995). The required incremental 
moduli relating ir, to pk;,, [see (2. l)] take the form 

L,, = iilk, + $ajiS, - aikSil - aildjk - a,6,] i, j, k, I = 1,3, (4.6) 

where iijk, are the incremental moduh relating a frame invariant stress-rate measure 

(z) to its work conjugate strain-rate measure (D). Two different isotropic plasticity 
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theories-namely the Jz deformation and the J2 flow theories, both standard in 
plasticity calculations-will be employed with both sharing the same experimentally 
measured uniaxial stress-strain curve. The corresponding expressions for &, are 

1 
i,j,k,I = 1,3, 

OI, = Or, - (gkk/3)Sij9 o2 = (3a:jo:,/2), Et = da/de ; (4.7) 

deformation theory : g = Es, D = v,, Es = a/&, (1 - 2v,)/E, = (1 - 2v)/E, 
flow theory: B = E, Q = v, 

where E and v are the material’s Young’s modulus and Poisson’s ratio while the 
relation between the equivalent stress 0 and the equivalent strain E is identical to the 
material’s measured uniaxial stress-strain response G(E). It should also be mentioned 
at this point that the incremental moduli in (4.6), (4.7) are given in the updated 
Lagrangian formulation. Moreover volume change in the material is considered 
negligible, a fact that permits the identification between Kirchhoff and Cauchy stresses 
in the current configuration. 

The relations between the principal stresses gi and the principal strains E, for a 
deformation with fixed principal axes are given in each layer by 

E, = In@,) = $(l +v,)gi-v,(O, +a, +a,>]. (4.8) 
s 

For plane strain experiments s3 = 0 and for a lateral stress CJ~ = 0 one obtains from 
(4.8) and the continuity requirements for E, = ln(n,) and c2 in (4.1) 

(1 -v,‘b 
E, = 

E,(l+v,2-v,)“” 02 = 0, 

(4.9) 

Since vs and Es are known functions of the equivalent stress r~, the equivalent stresses 
in the matrix and the fiber, cm and of, respectively, are found by solving the nonlinear 
equation E? = F{ . The principal stresses in each layer are then completely determined 
and from (4.7), (4.8) the required incremental moduli are completely specified. Unlike 
the rubber composite case, for the graphite-epoxy composite the strains at the onset 
of bifurcation are small (they never exceed 5%) and hence the difference between 
reference and current configuration can safely be neglected. For this reason, in the 
presentation of the graphiteepoxy composite results we use the engineering strains 
ej = %i- 1, instead of the natural (logarithmic) strains E; = In(&) which are used in the 
presentation of the results for the rubber composite. 

Finally an important general remark is in order at this point. To be meaningful, all 
the macroscopic and microscopic onset of failure calculations require a stable unit 
cell according to (A.l). For the layered composites with piecewise constant incremen- 
tal moduli under consideration, (A.l) implies that the material is locally stable against 
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localization of deformation in the sense that the strong ellipticity condition holds at 
all times for both fiber and matrix, i.e. that 

Li,kl(3L)aznjaknl > O, 114 = llnll = 1, (4.10) 

where L = Lf or L = L”. The above local stability condition for each constituent of 
the composite is checked for each state of deformation. Unless otherwise stated, all 
the micro- and macrofailure surfaces reported below occur at stress states il for which 
(4.10) is satisfied. 

4.2. Results and discussion 

The macro- and microfailure surfaces for the stratified composites made of com- 
pressible rubber are given in Fig. 5. The results are presented in principal macroscopic 
strain space (a, -EJ, with the solid line marking the onset of the first bifurcation 
(microfailure) and the dashed line marking the onset of the loss of ellipticity for the 
homogenized composite (macrofailure). All calculations correspond to an initial fiber- 
to-matrix stiffness ratio pr/p,,, = 100. The stretch ratios investigated are in the interval 
0.5 < Jr, 1, < 2.5. The reference stress used in the definition of the lateral stress-rate 
parameter s in (4.2) is taken for all the calculations for rubber composites to be 
c = /LL,. 

The results in Fig. 5(a) correspond to a high fiber volume fraction H,iH = 0.25 
(thick fiber). For the case of axial compression along the fibers (E, < 0), the first 
bifurcation mode of the composite has an infinite wavelength, and hence the micro- 
and macrofailure curves coincide. Moreover, for all the points on the macrofailure 
surface jj2 > 0. For the case of axial tension along the fiber direction (E, > 0), the first 
bifurcation mode of the infinite medium has a finite wavelength, and hence mic- 
rofailure occurs prior to the macrofailure. Moreover, all points on the macrofailure 
surface have f12 < 0. The results of the higher order gradient calculations are thus in 
agreement with the conclusions in Section 3, according to which /I2 < 0 indicates a 
microfailure prior to the macroscopic one, while p2 > 0 indicates that a first bifur- 
cation instability coincident with macrofailure is a possibility. The triangle (A) which 
appears at the endpoint (sZ z -0.5) of the axial tension macrofailure curve (E, > 0) 
indicates that bifurcation on the unit cell is possible [(4. 1O)1 no longer holds], and 
hence the curve is discontinued at this point. 

The results in Fig. 5(b) correspond to a low fiber volume fraction H,/H = 0.05 (thin 
fiber). For either axial compression or tension along the fibers, the first bifurcation 
instability of the infinite medium always has a finite wavelength, and hence micro- 
failure occurs prior to the macrofailure. All points on the macrofailure surface have 
p2 < 0, thus confirming in this case the presence of a microfailure prior to reaching 
the strain state at macrofailure. The same comment as in the preceding paragraph 
applies regarding the appearance of the triangle (a). 

The results in Fig. 5(c) correspond to an intermediate fiber volume fraction 
H,/H = 0.1. Notice that in the case of axial compression along the fibers (E, < 0), 
the micro- and macrofailure surfaces coincide only for high lateral compression 
(Ed < -0.7), while the microfailure occurs prior to the macro one for (E* > -0.7). 
The distance between the two failure surfaces in compression is so small that it does 
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Fig. 5. Micro- and macrofailure surfaces for a layered rubber composite, which is subjected to a state of 
macroscopic finite biaxial strain E,, s2, are calculated for three different fiber volume fractions. Results for 
a thick fiber are depicted in (a), for a thin fiber in (b) and for a medium thickness fiber in (c). Notice that 
the criterion based on the higher order average moduli (B2 < 0), is necessary and sufficient for the separation 

of the two failure surfaces. 
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Fig. 6. Micro- and macrofailure natural strain a, for a layered rubber composite as a function of fiber 
volume fraction H,IH. For fiber thicknesses exceeding a threshold value, the two failure strains coincide 
and the criterion based on the higher order average moduli (/$ -C 0), is necessary and sufficient for the 
separation of the two failure surfaces. The dimensionless axial critical wavenumber (OH), as a function of 
the fiber volume fraction H,IH is given in insert (a). Notice the stabilization effect of the lateral compressive 

stresses (s # 0), which lead to higher critical strains. 

not show well in the scale of the present graph. The results in tension are similar to 
the previous two cases, with the macrofailure always occurring after the microfailure. 
Consistent with the two previous cases, p2 < 0 for the points where the microfailure 
occurs prior to the macro one and pz > 0 when the two failure surfaces coincide. The 
significance of the triangle (a) is as described above. 

As seen from the above calculations, composites with low fiber volume fraction 
have a first instability mode with a finite wavelength, while as the fiber volume fraction 
increases, the first instability mode has an infinite wavelength. The dependence of the 
dimensionless critical wavenumber in the axial direction (wH), on the fiber volume 
fraction H,iH is depicted in the insert of Fig. 6. Data points denoted by 0 correspond 
to the absence of lateral stress s = 0 while data points denoted by + correspond to a 
lateral stress rate parameters = 100 [recall the definition for s in (4.2) 0*/C = ~(2 - l)]. 
Note the rapid increase of (OH), as fiber thicknesses decrease below the approximate 
threshold value H,iH = 0.1, indicating the wavelength of the first bifurcation eig- 
enmode decreases rapidly for thinner fibers. For fiber thicknesses 1 > H,iH > 0.1 
the macro- and microinstabilities coincide and (OH), = 0. The critical strains a,, 
corresponding to the micro- and macrofailures of these composites are plotted against 
the fiber volume fraction H,iH in Fig. 6. In the absence of lateral stress s = 0, the 
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Fig. 7. Micro- and macrofailure engineering strain e, for an axially compressed, layered graphite-epoxy 
composite as a function of fiber volume fraction H,/H, based on deformation theory of plasticity. For fiber 
thicknesses exceeding a threshold value, the two failure strains coincide and the criterion based on the 
higher order average moduli (j2 < 0), is sufficient but not necessary for the separation of the two failure 
surfaces. The dimensionless axial critical wavenumber (OH), as a function of the fiber volume fraction 

H,iH is given in insert (a). 

microfailure points for a given fiber thickness are denoted by 0 and their cor- 

responding macrofailure points are denoted by + For the case of a lateral stress rate 
parameter s = 100, the microfailure points are denoted by 0 and their corresponding 
macrofailure points are denoted by x . Notice the stabilizing effect of lateral com- 
pression (S # 0), leading to higher critical strains. As expected from Fig. 6(a), the 
micro- and macrofailure surfaces coincide for fiber thicknesses 1 > H,iH > 0.1 and 

are distinct for 0 < Hf < 0.1 (the distance between micro- and macrofailure strains is 

so small that it does not show well in the scale of the graph). Consistent with all the 
previous calculations, pZ < 0 for the points where the microfailure occurs prior to the 
macro one and b2 > 0 when the two failure surfaces coincide. Thus for the stratified 

media made of Blatz-Ko type rubber, the higher order gradient criterion, which gives 
the sign of /IZ, is a reliable indicator for both the coincidence and distinctness of the 
micro- and macrofailure surfaces of the infinite composite. 

The calculations of the micro- and macrofailure for the graphitexpoxy composite 
are limited to uniaxial compression along the fiber direction and are done in the 
absence of lateral stress, in conformity with the experiments of Kyriakides et ul. 

(1995). The present calculations extend over the entire range of possible fiber volume 
fractions, while the experimental results reported in the above paper were obtained 
for H,/H = 0.6. The deformation theory results are presented in Fig. 7. More specifi- 
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Fig. 8. Micro- and macrofailure engineering strain e, for an axially compressed, layered graphite-epoxy 
composite as a function of fiber volume fraction Hr/H, based on flow theory of plasticity. For fiber 
thicknesses exceeding a threshold value, the two failure strains coincide and the criterion based on the 
higher order average moduli (j$ < 0), is sufficient but not necessary for the separation of the two failure 
surfaces. The dimensionless axial critical wavenumber (OH), as a function of the fiber volume fraction 
Hf/H is given in insert (a). Notice that the critical strain predictions of the flow theory are higher than 

those of the deformation theory in Fig. 7. 

tally, the dependence of the dimensionless critical wavenumber in the axial direction 
(WEI), on the fiber volume fraction H,/H is depicted in the insert of Fig. 7. Notice that 
the approximate threshold dimensionless fiber thickness above which the macro- and 
microinstabilities coincide is H,iH = 0.29. Also notice the rapid increase of (wm, for 
dimensionless fiber thicknesses below HJH = 0.05 indicating the wavelength of the 
first bifurcation eigenmode decreases rapidly for thinner fibers. The corresponding 
critical axial engineering strains e, for the micro- (denoted by 0) and the macrofailure 
(denoted by +) are depicted in Fig. 7. As discussed in Section 3, p2 < 0 is simply a 
sufficient criterion for the presence of a microfailure prior to a macrofailure (in 
contrast to the rubber composite results in Fig. 6, where the sign of & is a reliable 
indicator for both the coincidence and distinctness of the micro- and macrofailure 
surfaces of the infinite composite). Here the higher order gradient criterion for detec- 
tion of a local failure prior to global failure, i.e. /& < 0, gives only a portion of the 
entire fiber thickness range for which microfailure precedes macrofailure. 

The calculations in Fig. 8 are a repetition of the ones in Fig. 7 but correspond to 
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the flow theory version of the graphite-epoxy composite. As expected, one difference 

in the results is the flow theory’s consistent increase of critical strains for the onset of 

micro- and macroinstabilities of the composite. Notice also that the threshold value 
of the fiber thickness, above which the micro- and macrofailure surfaces coincide, is 
here much smaller, approximately H,IH = 0.17. The erratic behavior of (wH), for 

dimensionless fiber thickness H,iH < 0.05 is due to the competition between nearly 
simultaneous eigenmodes of different (finite) wavelengths. The same comments as in 
the previous paragraph apply regarding the higher order gradient criterion’s ability 
to determine only a portion of the entire region for which microfailure precedes 
macrofailure. 

The experiments by Kyriakides et al. (1995) are for H,/H = 0.6 where the failure 

mode observed was a kink-band type instability. This is in agreement with Figs 7 and 
8, as macrofailure is predicted for this fiber thickness ratio (see Section 3.1). It is 
worth noticing that due to the presence of imperfections, the post-buckling behavior 

of the graphiteepoxy composite produced compressive critical strains of the order 
of l%, considerably lower than the onset of instability strains of just below 4% 

predicted by the deformation theory. 

5. CONCLUDING REMARKS 

The issue of incorporating scale size information in studying the stability and failure 
of microstructured solids has attracted considerable interest in recent years. One 
popular approach to model scale size effects is through the inclusion of higher order 

gradients in the kinematical description or in the evolution laws for the internal 
variables. Although many micromechanical justifications for these types of models 

have been proposed, the consistent derivation of these higher order gradient models 
from the properties of the underlying microstructure is still an open problem. 

The present work is a continuation of some recent efforts by the authors to obtain 
scale size information in the continuum description of solids with periodic micro- 
structures. Unlike the previous results which concentrated on finding the macroscopic 
behavior of discrete elastic media under finite average strains, this work investigates 
the stability of rate-independent elastoplastic continua with periodic microstructures. 
Although an overall continuum description of the microstructured medium for arbi- 
trary macroscopic states of deformation is not feasible, the study of the onset of 
instability in terms of the scale size parameter E is possible by means of a multiple 
scales asymptotic expansion for the lowest critical load and corresponding mode. It 
is found that the zeroth order E terms in these expansions depend on the standard 

(first order gradient) macroscopic moduli tensor, while all the higher order E terms 
require the determination of higher order gradient macroscopic moduli. These macro- 
scopic moduli, which are calculated by solving appropriate boundary value problems 
on the unit cell, relate the macroscopic (unit cell average) stress rate increment to the 
macroscopic displacement rate gradients. 

Motivated by failure problems in ductile composites under essentially compressive 
macroscopic stresses, we present a novel application of the proposed general theory, 
which involves the investigation of failure surfaces in periodic solids of infinite extent. 
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For these solids one can define in macroscopic strain space a microscopic and a 
macroscopic failure surface. The determination of the macrofailure surface, which 
requires the calculation of the standard macroscopic moduli tensor, is considerably 
easier than the determination of the microfailure surface. In addition, the regions 
where the two surfaces coincide is of significant practical interest, for a macroscopic 
localization mode of deformation appears in the post-bifurcation regime. The pre- 
diction of these coincidence zones is based on a necessary criterion which depends on 
the higher order gradient macroscopic moduli. The above mentioned necessary cri- 
terion for the coincidence of the micro- and macrofailure surfaces is verified from 
detailed calculations in layered composites. 

Some additional comments are in order at this point about the proposed failure 
surfaces concept for ductile periodic (or nearly periodic) solids which are subjected 
mainly to compressive stresses. The proposed surfaces are calculated for perfect 
microstructures and thus provide upper bounds for the failure loads of the composite 
[imperfections in the geometry and properties of the microstructure result in failure 
surfaces nested inside their counterparts for the perfect case, see Schraad and Tri- 
antafyllidis (1996)]. We should also keep in mind that the proposed failure surface 
approach gives us the possibility of investigating all possible stress tensor orientations, 
a task which presents considerable experimental difficulties. Most experimental failure 
studies in periodic media (fiber reinforced, honeycombs, etc.) are done for a fixed load 
path (usually uniaxial) and a fixed loading direction with respect to the microstructure. 
Calculations under way for certain periodic composites (current work for honeycomb 
composites by Triantafyllidis and Schraad-unpublished work) show extreme sen- 
sitivity of the failure surfaces to the stress tensor direction. Moreover, given that the 
microfailure surface calculations are considerably more computational intensive than 
their macrofailure surface counterparts, the proposed higher order gradient moduli 
criterion is, in our opinion, a valuable modeling tool. It helps in finding stress states 
that lead to possible localization of deformation, it can aid in the detection of 
the most “dangerous” stress states and hence it can help us to design appropriate 
microstructures. 

There are a number of further applications for the higher order gradient macro- 
scopic moduli derived by the present approach. One such case is the study of the post- 
bifurcation localization in periodic composites and layered media, for the case where 
the localized zone size is several times larger than the thickness of the unit cell. For 
this case, a continuum approach for the solution of the overall boundary value 
problem is the most efficient to predict the spatial development of the localized 
deformation zones. This direction of work seems to be the next logical step in applying 
the results of the present investigation to engineering problems involving the failure 
of microstructured solids. 
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APPENDIX A : ASYMPTOTIC ANALYSIS FOR MINIMUM 
EIGENVALUE AND EIGENMODE 

In this appendix the details of the derivation of the variational statements presented in 
Section 2.2 are presented. Recall that a function defined on V is termed Y-periodic if it is 
periodic and assumes the same values on opposite faces of the parallelepiped unit cell. In the 
microscopic coordinates Y = X/E the unit cell is denoted by D and its boundary by t?D. 

Some intermediate results, which will be used repeatedly in the course of the ensuing asymp- 
totic calculations, are first recorded. Recall the assumption, made in the beginning of Section 
2, that the first critical mode is global in nature, i.e. that its characteristic wavelength is much 
larger than the unit cell size. This assumption implies that for any load 2 of interest the solid 
is locally stable, i.e. no bifurcation instability of the unit cell is possible 

ml” 

4 
s 

L,,,(1, Y) $ g dY > 0 ; 4(Y) is Y-periodic, 11~112 = 6i4i = 1, 
s 

4dY = 0. 
D I 1 D 

(A.11 

As long as /?(A) > 0, the unit cell stability condition (A.l) follows from (2.3), as a special case 
of the global stability of the entire solid. The additional information in (A.l) is that it holds 
for any load level 1, even the ones in the neighborhood of 1,. As a result of (A. 1) the following 
linear boundary value problem has a unique Y-periodic solution f(Y), whose average vanishes 
over the unit cell 

s L&n, Y) g ZdY = g,&dY, for all Y-periodic 4(Y), 
LJ I I I D 

where g(Y) is given Y-periodic function whose average also vanishes over the unit cell. 
An additional simple result that will prove very useful in the sequel is that the average over 

the unit cell of the gradient of any Y-periodic function 4(Y) vanishes, i.e. 

since the outward normal components ni have opposite values at opposite faces of the unit cell 
while di takes the same values on opposite faces. 

All the ingredients are now in place to find /$ and i. The starting point of the corresponding 
calculations is the variational equation that defines /I and v in (2.4),. Using the chain rule of 
differentiation to replace d/dX, by a/ax, + E-‘a/a Y, in conjunction with (2.1 l), (2.12) variational 
equation (2.4), reads 

-(B,,(I)+efl,(Q+ .)(&+E:,+ . ..)6v. dY 
11 

dX = 0. (A.4) 

Collecting the lowest order E terms in (A.4) gives 



Influence of size scale on stability 1923 

0 

L+.,(3., Y)s $ dY dX = 0. 1 I I 1 (A.5) 

Rewriting the integrand of (A.5) gives 

(A.6) 

Integration over D of the first term in (A.6) and the Y-periodicity of L, i and 6v imply, in view 
of (A.3), a vanishing contribution of this term. From the second term in (A.6) and the 
arbitrariness of 6v we deduce 

(A.7) 

The above equation is the Euler-Lagrange equation that corresponds to (A.2) in which the 

right hand side term is g = 0. Consequently, the only possible Y-periodic solution z, of (A.7) 
is a constant with respect to Y, i.e. 

:,(A, x, Y) = $1, X). 

The next order of E term in the expansion of (A.4), making use of (A.8), is 

(A.8) 

0(&C’) : jx[ j"{L;&Y(~ + g#dYjdx = 0 (A.9) 

Following the same steps as for (A.5) of rewriting the integrand in (A.9) and subsequently 
exploiting (A.3) as well as the arbitrariness of 6v, the following differential equation is obtained 

for: 

(A.10) 

In view of (A.3), the right hand side of (A.lO) is a Y-periodic function whose average vanishes 

over the unit cell. Consequently, and according to (A.2), v can be written as 

0 

tli(l, x, Y) = ?,(A, Y)$ (A, X) + ,‘,(A, X). 
Y 

(A.1 11, 

where 

$[ ,,k, *, $1 “,[ ] L (n Y)- = - Z L,,,,,(& Y) ; T is Y-periodic, jjb'= 0. (A.ll), 

Notice that the above defined functions z are the unique Y-periodic solutions of (A.1 1)2 with 
zero average over the unit cell, according to (A.2). A simple superposition argument shows 

that the first term for : is the corresponding Y-periodic solution of (A.lO) with zero average 

over the unit cell. The constant in Y term 4 appearing in (A. 1 l), is needed since, according to 

the remarks made about ; in (2.12), the average of; over the unit cell is in general a function 
of the macroscopic variable X. 

The next higher order O(c”) term in the expansion of (A.9) is 
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-j?o(I)&&+ dY dX = 0. 
11 

(A.12) 

By selecting a 6v independent of Y, namely 6v = %(X), and recalling (A.8), (A.12) yields with 
the help of (A.1 1) the following variational statement for jo(l) and the corresponding 

eigenmode $(A, X) 

0 

~~,~,(n) 2 s -/?o(~)~;cSo, dX = 0, 
Y / 1 (A.l3), 

(A.l3), 

In analogy to the analysis of (A.9), which provided the Y-dependence of 4, from (A.12) one 

can deduce the Y-dependence of 4. By appropriately rewriting the integrand in (A.12) and 
subsequently exploiting (A.3) one obtains 

In view of the arbitrariness of 6vi, and with the help of the Euler-Lagrange equation cor- 

responding to (A.13), plus the expressions for i,: in (A.8), (A.1 l), one obtains from (A.14) 

the following differential equation for G 

where the Euler-Lagrange equations corresponding to variational statement (A. 13) were also 
used. 

From (A.13)2 and recalling (A.3) it can be seen that the right hand side of (A. 15) is Y- 
periodic with zero average over the unit cell. Consequently from (A.2), and in analogy with 

the procedure followed in (A. lo), : can be written in the following form 

where 
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PW 

& 
I L wu)g i I[ = ~,,p,(4 -L,,dA Y) 6 s + * s,,- z L,,&,Y)$,(I,Y) s,r; ( Pk q’ a?)] “,[ ] 

7 is Y-periodic, 
c 

PV 
$ dY = 0. (A.l6)* 

D 

It follows from (A.2) that y are uniquely defined. It should be noted at this point that in 
deducing (A. 16) from (A. 15) we also made use of (A. 11). 

The O(E’) term in the asymptotic expansion of (A.4) is 

0(&l) : JIL{ ‘lk’ “’ (ax, au,)ax, 
L (I y) !!L+!% ~+L,,k,(~,y)(!k+$)~ 

-(~,,:~,+~,~,)SV, dY dX = 0. 
11 

(A.17) 

Adopting the same steps as in the analysis of the 0(&O) term (A.l2), first 6v, = @(X) is 

selected in (A.17). Substituting in (A.17) the expressions for i,:, and : in (A.8), (A.ll), 

and (A. 16),, and recalling the definition of P’(i) in (A. 13)2, the following variational statement 

for j?,(n) and t(n, X) is obtained 

(A.l& 

In analogy to the analyses of (A.9) and (A.l2), which provided the Y-dependence of 

i and :, from (A.17) one can deduce the Y-dependence of :. By appropriately rewriting the 
integrand of (A. 17) and subsequently exploiting (A.3), one obtains 

jX[&(jD{L.,,(l.Y)(& + $jsv.i,Y),X 

+(pol,+p,i, I 1 &,dY dX = 0. (A.19) 

In view of the arbitrariness of 6vj, and with the help of the Euler-Lagrange equations cor- 

responding to (A.l3), and (A.l8),, plus the expressions for iI:,;, in (A.@, (A.1 1), (A.l6), one 

obtains from (A. 19) the following differential equations for v 
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From (A.3), (A. 13)2 and (A. 18)* it follows that the right hand side of (A.20) is Y-periodic with 
zero average over the unit cell. Hence from (A.2), and in analogy with the procedures followed 

in (A. lo), (A. 15) $ can be written in the following form 

where 

2 

+~i(~,Y)~(I,X)+BI(I,X), (A.21), 
Y 

P4 

& L,,(I, Y) $ 1 = $,(I, Y) ; “r,y are Y-periodic, 
I I s P4” 0 dY = 0, TdY = 0. 

D 

(A.2112 

It follows from (A.2) that “P and T are uniquely defined. Note that in deducing (A.21) from 
(A.20) (A.ll) and (A.16) were used. 

The next (and last required for this presentation) order term O(E~) in the asymptotic expan- 
sion of (A.4) is 

-(Bo(n):,+B,(n):,+B2(n)~,)svi dY dX = 0. 
I 1 (A.22) 
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By selecting once again 6vi = &J(X), substituting in (A.22) the expressions for 4, :, :, and : in 
(A.8), (A.ll),, (A.16), and (A. 21),, and recalling the depitions for s(n), 41) in (A.13)2, 
(A.18)2r the following variational statement for P,(n) and ~(1, X) is obtained 

dX = 0, (A.23), 

(A.23)* 

s 
L- (I Y)G dY. r/k/ 3 

D ay, 1 (~.23)~ 

APPENDIX B : EXACT BIFURCATION CALCULATIONS FOR THE 
LAMINATED COMPOSITE 

The analytical solution for the onset of bifurcation in a laminated composite under plane 
strain conditions has already been presented by Triantafyllidis and Maker (1985) for an 
incompressible solid with two different layers per unit cell and by Geymonant et al. (1993) for 
compressible solids with an arbitrary number of different material layers per unit cell. However, 
for reasons of completeness of the presentation, we give here a brief outline of the solution 
precedure which was used to find the microfailure surfaces and the corresponding critical 
modes in Figs 68. 

The starting point for the analysis is the eigenvalue problem defining the critical load 1, for 
the laminated medium. According to the general setting of the problem in Section 2.1, i.e. from 
(2.4), and (2..5), the corresponding governing equations are 

to which the following jump conditions have to be added at the layer interfaces, namely 

[Li2k,cnJg] = 0, [VLl = 0, 

(B.11, 

(B.l), 

where [fj denotes the difference in the values offwhen evaluated at both sides of an interface 
x2 = c. 

Since the incremental moduli L+,(l) of the composite are (piecewise constant) functions of 
X2, we can show [see Geymonant et al. (1993)] that the eigenmode vk takes the form 

uktxlTx2) = exp(iwlXl)tik(X2)~ iik(X2) = exp(io2X2)~(X2)~ (B.2) 

where i = J-1 and p(X,) is a (piecewise constant) periodic function of X2 with period the 
unit cell thickness H. Substituting (B.2), into (B.l), yields a system of ordinary differential 
equations in X, with piecewise constant coefficients. The solution of these ordinary differential 
equations gives the following results for Dk 

Ijk(X2) = i C$exp(io,z,X,), 
,= I 

(B.3), 
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where C$ are constants in each layer and z, are the four complex roots of the following 
biquadratic polynomial (the zi are also constant in each layer) 

(LIzlZL2222)z,4+[[LIIIILZ222+L~2,2L~121 -((L,,,,+L,,,,)21z:+(LI111L2121) =O, (j= 1,4). 

(B.3)2 

The complexity of the roots z, is assured by the strong ellipticity property holding for each 
layer [see discussion of (4.10)]. 

By introducing the above found expressions for 6, into the interface conditions (B.l), and 
exploiting (B.2),, one concludes (after some considerable algebraic manipulations) that a non- 
trivial solution (Cf # 0) can be found if the load parameter 1 satisfies 

Det[F(i, o, H) - exp(iw,H)I] = 0. (B.4), 

where I is the 4 x 4 identity matrix and where the 4 x 4 matrix F(l,w,H) is given by 

F = K,K,, K, = V,exp [io, H,Z,]V; ‘, Z, = diag [z,],, (I = m or f), (B.4), 

and where the components of the 4 x 4 matrix V, are defined in each layer by 

v,, = 1, 

v, = &I11 +zj~,2,*)I[z,(~,,22+~,22,)1, 

v3, = ZiL212 -L12*I[(LIIII +z~L~*~2~lI~zj~L~~22+L~2*~~1~ 

v.4, = ~I,22-~2222[(LIII +z:~,2,2)1/(~,,22+~,22,). (B.4), 

The critical load parameter 1, corresponding to the first bifurcation of the laminated solid is 
the minimum/maximum (for 1 > l/L < 1) root of the characteristic equation (B.4),, where the 
corresponding extremum is taken over all possible values of the wavenumbers, i.e. 
O<w,H< +m, O<w,H<2rr. 

After some considerable algebraic manipulations of (B.4), it can be shown that the following 
three possibilities exist, according to the value of (w2Hjc at the critical load 1, 

21~(3.,w,I-T)-Z~(L,w,H)-2 = 0, (w,H),. = 0, 

2z;F(?“,o,H)+z:(l,w,H)+2 = 0, (w,H),. = 71, 

(I/~)[Z:(~,W,H)]~-Z~~(~,W,H)+~ = 0, (w,H), = &- cos-‘@p/4), (B.3, 

where ZT and Zf; are the first two invariants of the matrix F defined in (B.4),, namely 

Zy = trF, Z: =(l/2)[(trF)2-trF2]. (B.5), 

The wanted critical load parameter 1, is then found as the extremum (minimum/maximum) 
root among the corresponding extremal roots of the three equations in (B.5),, when the 
extremum is taken over all the positive real numbers for w, H. 


