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ABSTRACT 

THE BIFURCATION problem of an incompressible plate under pure bending is studied. Two incrementally 
linear constitutive models are employed. A classification of regimes of the bifurcation equation is also 
performed. An asymptotic analysis is carried out to establish the critical condition for short wavelength 
surface modes. Finally, a numerical calculation shows that in all cases considered the short wavelength 
surface mode in the compressive zone is the first bifurcation mode encountered in the deformation history. 

1. INTRODUCTION 

A STANDARD bifurcation problem is formulated for an incompressible plate, deforming 
in plane strain, subjected to pure bending. The motivation for this work stems from 
problems encountered in cold forming processes of metal sheets. More specifically, we 
are interested in investigating whether the onset of a bifurcation instability sets limits 
to the maximum curvature that can be attained in a ductile metal sheet by pure 

bending. 
Two incrementally linear constitutive models are employed. One is the finite 

strain version of the simplest deformation theory of plasticity, introduced by STC)REN 

and RICE (1975), which is a hypoelastic constitutive law. The other is a path- 

independent non-linear elastic constitutive law. For both constitutive models the same 
uniaxial stress-strain behavior, described by a piecewise power law, is assumed. 

The motivation for using these two constitutive models, arises from the desire to 
incorporate, in an approximate way, the destabilizing effect of a vertex on the current 
yield surface. We note that the models employed here are not proper plasticity laws, 
since no unloading is permitted. For a proper plasticity law, as will be discussed 
subsequently, unloading would precede the onset of bifurcation. 

We begin by deriving the prebifurcation solution for pure bending of the plate, 
Both constitutive laws employed here give rise to the same prebifurcation solution. 
After briefly discussing the general formulation for the bifurcation problem of an 
incrementally linear solid, we formulate the eigenvalue problem governing 
bifurcation. Next, following the classification scheme introduced by HILL and 

HUTCHINSON (1975) the ranges of material properties for which the governing 
equation is in the elliptic, parabolic or hyperbolic regime are identified. Here we have 
the possibility of more than one regime coexisting, in different parts of the plate, at a 
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given stage of deformation since the prebifurcation stress state is a function of 
position in the body. For the same reason the characteristic lines are curves. 

An asymptotic analysis is carried out for modes whose wavelength tends to zero. 
It is found that these are surface modes with critical condition identical to the ones 
given by HILL and HUTCHINSON (1975) and YOUNG (1976) for the plane strain half- 
space problem in tension and compression, respectively. 

Finally, a finite element calculation shows that in all cases considered, the short 
wavelength surface bifurcation in the compressive zone occurs first and always before 
the maximum moment is attained. 

2. PREBIFURCATION STATE 

We consider an incompressible, isotropic, elastic plate whose cross-section in the 
unstressed state is a rectangle of length I, and height h,. The solution will be carried 
out within the framework of the plane strain theory. 

Although the pure bending (flexure) problem for such a rectangle has been solved. 
for a general hyperelastic material by RIVLIN (1950) (see also GREEN and ZERNA 
(1954)), for reasons of completeness we rederive the basic equations which will be 
needed in the subsequent analysis. 

In view of the pure bending and the isotropy, the prebifurcation configuration is a 
portion of a cylinder and therefore cylindrical coordinates will be employed. At any 
point, the principal directions of strain (and stress) are radial and tangential and their 
corresponding principal values will carry subscripts 1 and 2 respectively. 

Let K be the curvature of the unstretched fiber, parallel to the traction-free 
surfaces, whose current (and original) length is I,, as shown in Fig. 1. The stretch 
ratios of a material point at distance r from the axis of the cylinder are 

(2.1) 

FIG. 1. Cross-section of the plate when the curvature of the currently unstretched fiber is I?. 
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Thus the principal values of the logarithmic strain tensor are 

E, = In A,.? (2.2) 
For an incompressible isotropic material, whose complementary energy density 
function depends only on J,, the second invariant of the Cauchy stress tensor, the 
constitutive equation can be put in the form 

a; 
&‘=z’ (2.3) 

where ai is the ith principal value of the Cauchy stress deviator and E, is the secant 
modulus of the uniaxial true stress CT vs natural strain E curve at a stress level get 
with the equivalent stress ce given by 

G; = 35, = $(cJ;G;). (2.4) 

The plane strain constraint .sj = 0 and the constitutive relation (2.3) give the lateral 
stress cj as 

fJ1 +a2 
a3 =-77 (2.5) 

and therefore, from (2.4) and (2.5) the equivalent stress 6, can be written as 

(2.6) 

We assume that the uniaxial stress-strain behavior is the following piecewise power 
law: 

(2.7) 
ay a m t-(k) E aY 

for 0 >, (T,, 
I 

where E is Young’s modulus, m is the hardening exponent, and cy is the uniaxial yield 
stress. 

From (2.7), the secant modulus E, is found to be 

E for ae < a,, 

E, = (2.8) 

Ea, 

0 

l-m 

for ae 3 ay. 

a’y 

Since the stress state is a function of r only, the only non-trivial equilibrium 
equation is 

da1 r+T?LI-3=(). 
r 

(2.9) 

t Here and subsequently, Greek indices range from 1 to 2 ; Latin indices will range from 1 to 3 where 3 
designates the third (out of plane) principal direction. 
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Employing (2.2) (2.3) (2.6) and (2.8) in (2.9) we obtain 

(2.10) 

with 

where 

is the yield stress in simple shear. Upon integration, (2.10) yields 

(2.1 1) 

where c and c’ are integration constants to be determined from the boundary 
conditions. 

Let R+ denote the radius, in the current configuration, of the outer fiber under 
tension and R- the radius of the outer fiber under compression as shown in Fig. 1. 
From continuity of c1 and (2.11) we deduce that or must be an even function of In Er 

and since IT, vanishes at both the free surfaces of the plate, we have 

1 CR+ = ___. 
iR- 

Incompressibility provides a second relation between Rf and R-, namely 

(R+)2-((R-)2 = 2+, 

which enables the radii of the outer fibers to be written as 

R+ =; {~ho+[(Ch,J2+ I]*)*, j 

R- = ;{[(i&)‘+ I]*-h.k,,)*. 
K 1 

(2.12) 

(2.13) 

(2.14) 

Continuity of u, as well as the traction-free boundary conditions completely specify 
the integration constants in (2.11) and therefore the prebifurcation stress field can be 
expressed in terms of the curvature of the currently unstretched fiber, J?, the material 
properties (E, CT,, m) and the initial plate thickness (II,,) as follows: 

fll 2E lm-13r ~~ $(ln Er.)2+ ~ ~~ >_ _ __‘72_ 
1 

25 35 2m+l 2E 
(ln CR+);+ 1, 

1 
g2 = 2-E- [ln cr + f (ln k-,.)2] + f z y_: ir!_ _ ,,,.T i 

(2.151, 

25 35 
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for 

[[In Krlii+ l - (1~ gT_R+ )f + ‘“J, 

A minimum requirement for the above solution to be a possible one for an elasth- 
plastic plate is that at each stage of the deformation history no strain-rate reversal 
occurs in the region of the plate that is currently under plastic loading, 

Assuming that the loading criterion that must be satisfied throughout the current 
plastic region is 

~:cii >, 0, 

and employing (2.2) and (2.15), (2.16) reduces to 

(2.16) 

sgn (In Er) z + E 3 0. 
[. 1 ti r (2.17) 

From incompressibility, the following relation between r and E, anaIogous to (2.13) is 
obtained 

(R” 12 - $ =: ‘$, (2.18) 

where so is the distance in the unstressed configuration between the two fibers with 
current radii Rf and r. Using the incremental form of (2.18), (2.17) can be put in the 
form 

1 

sgn (In A?) !Jj K c I- 
1 

---- 
(Rr)2$ --==%- + (R/r,) 1 3 0, (2.19) 

and thus we deduce that unloading is possible in part of the plate if 

rlh, > .,/m= Jexp (2,/%,/E)- 1. (2.20) 

For structural metals, sY/E is within the range from 04Of to O*OI. For o;,E = 0001, 
unioadi~g will start as soon as I;- exceeds ~059/~~~; and in the case of a,,@ = O-01, 
unloading begins at R = 0*188/~~~ which is still small compared to the expected critical 
curvatures at bifurcation. Consequently, we anticipate that the prebifurcation 
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solution for an elastic-plastic material with a uniaxial curve given by (2.7) will differ 

from (2.15) due to the presence of unloading. 

3. BIFURCATION ANALYSIS 

3.1 General formulation 

A Lagrangian formulation of the field equations is adopted. Material points in the 
body of volume I/ and surface S in the undeformed configuration are identified by a 
set of convected coordinates xi and the covariant components of the metric tensor in 
the undeformed body are denoted by gij. Also let ui be the covariant components of 

the displacement vector with respect to the undeformed basis. Moreover (1) denotes 
the derivative of (.) with respect to some monotonically increasing parameter, which 
is also referred to as an increment of the quantity in question and by a comma we 
denote the covariant differentiation with respect to the undeformed body’s metric. 

The prebifurcation state of the body can be completely specified as a function of 
the scalar quantity i? as discussed in the previous Section 2. All quantities associated 
with the fundamental solution whose uniqueness is in question are labeled by a 
superscript or subscript 0. The fundamental solution starts at k- = 0 and is associated 
with monotonically increasing K. 

At some stage of deformation, suppose that bifurcation is possible, so that for a 
given increment i there exist two different solutions ti; and t.$. Introduce the following 
notation for the difference between two possible solutions 3 and /I in any field 
quantity : 

A(.) = (+ (.)“. (3.1) 

If T’ are the contravariant components of the nominal traction vector at the surface of 
the body, with respect to the undeformed basis, then at bifurcation pi = 0 or hi = 0 in 
these parts of the surface where the traction or the displacement increments are 
respectively prescribed, and since both solutions r and fl satisfy the equilibrium 

equations, the principle of virtual work gives (HILL, 1957) 

0 = j Ai+Atii dS = 1 (AZ’~A~‘,+T~AL~,,~A~~~) dl’, (3.2) 
s V 

where E, denotes the covariant components of the Green strain tensor, r’j the 
covariant components of the Kirchhoff stress and +‘j are the covariant components of 
its convected derivative. Aiij can be expressed in terms of dOi as follows: 

Aiij = +(AL&, j+ Ati,, i) ++(n,kiAtik, j + tl(;A.zi,, i). (3.3) 

In this paper attention is focused on incrementally linear, incompressible solids 
obeying the general constitutive equation 

+ij = &ij = Cijkl& _ ficij, (3.4) 

where ;;” are the contravariant components of the Jaumann derivative of the Cauchy 
stress, j the hydrostatic pressure increment, G’j the current metric tensor’s 
components and Cijk’ the moduli, which are functions of the material properties and 
the current state. Equation (3.4) can be transformed equivalently to a relation 
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involving the convected derivative of Kirchhoff stress: 

where 
(3.5) 

zjkl = cijkl _ +(Gtkajl +  QkOil +  Gifajk + Qloik). (3.6) 

The moduli Cijkl are taken to satisfy the symmetry cijk’ = Ckrii in addition to the 
trivial OneS CW = Cjikf = CW. By inspection, the same symmetries are exhibited by 
pjkl 

Making use of the constitutive law (3.5) in (3.2) bifurcation is excluded when the 
functional F defined as (HILL, 1957) 

F[J?, A&] E j (~~kjk'A~ijAkk,+~~Atik,iAti~j)dV (3.7) 
V 

is positive definite. A bifurcation mode Ei satisfies (see, for instance, HILL (1957)) 

F[lc,,, ‘t(‘i] = 0, GF[lc,,, Ei] = 0 (3.8) 

subject to the boundary condition ti = 0 on the part of the surface where tlrle 
displacement increments are specified. In addition, for an incompressible material, ui 
satisfies the constraint 

GijGk,'d' ,+($'i = 0. 
,I kJ 91 

3.2 Problem formulation 

Here, for simplicity, the current configuration is taken to be the reference one and 

therefore, as in Section 2, cylindrical coordinates are employed with x1 = r, x2 = 0, 
x3 = z. 

In the case of plane strain and for an incompressible material, the bifurcation 
functional F in (3.7) assumes the form 

El, R+ 

F[K, Ati.] = l J {L,,,,A$,A~,,+a,,Aic,,.Ari,,p) r dr d&J, 
0 R- 

(3.9) 

where physical components of tensors are employed. The physical components of 
A&, j in cylindrical coordinates are 

aA& Ati 
Ati ~ 

1 aA& Air, 
1.1 = ar ) -- 1,2= r 80 r ’ 

Ali 
aAG2 Ati 1 aAa, * 

2.1 =------ 
- 

t3r ’ “‘-r a0 
+A!!& 

r 

Incompressibility implies 

$(rAtii)+$$=O, 

and thus there exists a potential function Q(r, 0) such that 

(3.10) 

(3.11) 

(3.12) 
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Two incrementally linear constitutive models are used in this analysis. The choice of 
these two constitutive laws is motivated from the desire to incorporate, in a rather 
simple way, the destabilizing effect of a vertex on the current yield surface of the solid. 

It has been observed that (see HUTCHINSON (1974)) bifurcation predictions based 
on flow theory with a smooth yield surface, consistently over-estimate the bifurcation 
stresses. Analytical studies of polycrystalline aggregates predict the formation of a 
corner in the yield surface (HILL, 1967; HUTCHINSON, 1970: LIN, 1971). Of particular 
relevance here is that, after tensile straining into the plastic range, the incremental 
shear moduli are greatly reduced from their elastic value. Experimental evidence, in 
spite of the abundance of experiments, is not conclusive (HECKER, 1976). 

A simple way to approximate the destabilizing effect of a corner at the yield 
surface is to use deformation theories of plasticity and among them the J, 
deformation theory is the most frequently used for bifurcation calculations at small 
strain levels. 

In the case of large strain there is no unique generalization of the J, deformation 
theory. Here two different such generalizations will be considered: the finite strain 
version proposed by STC)REN and RICE (1975). which is a hypoelastic model since no 
strain energy density function exists, and the hyperelastic model, both with the same 
uniaxial stress-strain curve (2.7). 

The prebifurcation solution for both constitutive laws is given by (2.15) since in 
our case the principal axes of the material strain ellipsoid are fixed with respect to the 
material, and thus, as discussed by ST~REN and RICE (1975), path-independence holds 
for their hypoelastic model. In the two constitutive theories employed, only the 
corresponding incremental shear moduli differ (more specifically: the hyperelastic 
incremental shear modulus is always greater, for a given stress level, than the 
hypoelastic one). This difference, negligible for small strains, can be substantial at 

large strains and, as we shall see, it may under certain circumstances affect 
significantly the type of bifurcation predicted. For a detailed discussion of the 
justification of the use of deformation theories in bifurcation analyses of elastic 

plastic solids see HUTCHINSON (1974). 
The contravariant components of the incremental moduli tensor Cijk’ for the 

incompressible hypoelastic material of STUREN and RICE (1975) are 

(3.13) 

where 6 = $I$, 11 = SE, and @are the contravariant components of the Cauchy stress 
deviator with E, and E,, respectively, the secant and tangent moduli at stress-level ran. 
For the piecewise power law (2.7) adopted in this analysis, E, is given by (2.8) and the 
tangent modulus E, by 

(3.14) 

Therefore, for the hypoelastic model, (3.13). with the help of (3.6), yields the following 
expressions for the non-vanishing physical components of the incremental moduli 
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ri 
L - L 

gt +a, 
1212 - 2112 - - L2121 = L1221 = - - __- 

2 2’ 

with cl, CJ~ given by (2.15). 
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(3.15) 

(3.16) 

For the hyperelastic constitutive law the normal incremental moduli are also 
calculated from (3.15). Since r and 6’ are the principal axes coordinates the 

incremental shear modulus is given by (BIOT, 1965; HILL, 1969) 

-__ 943.17) 

where for the second equation we used (2.1) and (2.15). Note that for small strain 
(that is, Icr + l), the quantity in brackets in (3.17) converges to unity and thus in this 
limit the moduli in (3.16) and (3.17) coincide, 

In view of (3.12) the bifurcation functional F in (3.9) can be expressed as a 
functional ofthe velocity potential @. With the help of (3.10) (3.15), (3.16) and (3.17) 
in (3.9) we find that 

with 
1 for the hypoelastic model, 

(3.19) 

~ for the hyperelastic model. 

The bifurcation problem is solved for two different sets of boundary conditions in 
order to take into account, in an approximate way, the stiffness of the loading device. 

First we consider the case when the moment at both the ends of the plate is 
actually controlled during the deformation process (loading machine with negligible 
stiffness). The corresponding boundary condition is 

A?r = Ai; = 0 for 8 = 0, Cl,,, (3.20) 

with ?r, p2 the physical components of the nominal traction increment. 
In the second case we assume that the relative rotation of the ends of the plate is 

prescribed and that the end sections remain always plane and cannot sustain any 
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shear traction (very stiff machine). The analytical expression of these requirements is 

A&, = 0 and Ai; = 0 for 8 = 0, PI,. (3.21) 

In addition to (3.20) or (3.21), since the top and bottom surfaces of the plate are 
traction free the following boundary conditions must be satisfied, in both cases: 

Ai;=A?“=O forr=R-,R’. (3.22) 

For the boundary conditions (3.20) and (3.22) any admissible potential function cf, 
can be represented as 

#h(r) COS (3.23) 

with 1~ = 1, 2, 3, . _ ., and 4Jr), #s,,(r) any continuously differentiable functions of r. 

For the boundary conditions (3.22) and (3.22) the potential @ assumes the form 

(3.24) 

where again #en(r), +Jr) are arbitrary continuously differentiable functions of r, and 
upon successive substitution of (3.23)and (3.24) in (3.18), in view of the orthogonality 
of the trigonometric functions the bifurcation functional F becomes 

FCC @I = FOCC LJ + ; g F,Er7-, &“I + F”CC ~,“I) (3.25) 
n 1 

when the moment at the ends is prescribed (boundary conditions (3.20) and (3.22)), 
and 

FCC, Q-J = F, K, f (b,, 
[ 1 

+ ; 2 i~nr_CA,l +F”Cc (b,,l) (3.26) 
n=l n-1 

in the case of prescribed relative end rotation (boundary conditions (3.21) and (3.22)). 
In (3.25) and (3.261, F, is given by 

The critical curvature at the first bifurcation is then given 

(n = 1, 2, 3,. . .). (3.27) 

by the minimum, over all 
integers n, of the lowest eigenvalue of each functional F,. The corresponding 
eigenmodes are of the form &r) cos (27&?/k&,) or qS(r) sin (2nn$/EI,) for (3.25) and 
6(r) sin (2~n~/~~~) for (3.26). 

Of course we must ensure that none of the eigenmodes corresponds to rigid body 
motion and that the plate is not bent to an angle exceeding 360”. Using (3.10) and 
(3.12) both these requirements are satisfied for n # 0 as long as kI0 < 27~. 
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Following HILL and HUTCHIN~ON (1975), the general character of the bifurcation 
equation is investigated, for materials obeying constitutive laws of the form (3.4). 
Specifically the range of curvature f and the material properties for which this 
equation is elliptic, parabolic or hyperbolic are determjned. The approach adopted 
here is a generalization of the results given in HILL and HUTCHIN~ON (1975) and 
YOUNG (1976) for the case of a non-uniform prebifurcation stress field. 

The bifurcation equation, obtained from the variational principle (3.8) with the 
help of (3.18), is a fourth-order linear partial differential equation in the potential 
function @(r, 0): 

+bh+o,)$$ +Q[O] = 0, (3.28) 

where y is given by (3.19) and Q is a linear operator of third order whose exact form 
need not be specified here. If n, and n, are the physical components of the unit vector 
n which is normal to a characteristic of (3.28), they must satisfy the relation (see, for 
instance, HILBERT and COURANT (1953)) 

(yk+ o1 - a,)(n,)4 + 2(2h- yt;)(nl n2)2 + (yh- (il + o,)(n,r = 0. (3.29) 

When (3.29) admits real roots, we can construct a potential @ that satisfies (3.28) and 
whose second derivatives are discontinuous across the characteristics. These solutions 
of the bifurcation equation will have jumps in the incremental stress and strain fields 
across the characteristic curves. 

Alternatively, (3.29) could have been obtained as in HILL and HUTCHINSON (1975, 
Appendix AII), using the appropriate jump conditions for the strain and traction 
increments across the characteristics. We note that (3.29) is identical to the 
characteristic equation obtained by HILL and HUTCHINSON (1975) for the bifurcation 
problem of an incompressible rectangle, in plane strain, subject to uniform stress 
parallel to its traction-free surface. Since the characteristic direction at a given point 
depends only on its local stress state and observing that in both problems the 
principal stress coordinate system is used, this coincidence is expected. However, here 
the characteristic lines are curves, for the prebifurcation stress field is now a function 
of the position in the body. 

In conformity with the standard nomenclature for systems of partial differential 
equations, a material point belongs to the elliptic, parabolic or hyperbolic regime, 
according to whether, at this point, (3.29) has no, two or four real roots, respectively. 
The classification of regimes is carried out for each of the constitutive models 
employed in this paper. 

3.3.1 Hypoelastic model. 

(i) Elliptic regime 

For a point to be in the elliptic regime, (3.29) must have no real roots. This is 
13 
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(3.30) 

yG I=- (CJ, -(TJ > 211 
1/1; 

J 
--1 
11 

and 2h-yl;>O. 

Using (2.8) (2.15) (3.14) and (3.19) we obtain from (3.30), 

(3.31) 

The outer fibers, whose radii are given in (2.14) and thus the entire plate will be in the 
elliptic regime provided that 

be 

(ii) Parabolic regime 

KhO < 

4+-zi 
exp ~~ .! ) -1 

m 

1 

2exp C ____-- 2fi- 1 m 

e2- 1 
k’ho < ~ 

2e 

for m 3 2, 

for m < 2. 

(3.32) 

For a point to be in the parabolic regime, the product of the roots of (3.29) must 
negative, which implies 

($)2- (01- 02)2 < 0. (3.33) 

Employing (2.8), (2.15) and (3.19) (3.33) can be rewritten as 

Iln rir) > ). 

Therefore, part of the plate will be in the parabolic regime when 

lnriR+ >) 

or equivalently from (2.14) if 

(3.34) 

(3.35) 

e2- 1 
k.11, > p. 

2e 
(3.36) 

(iii) Hyperbolic regime 

From (3.31) and (3.34), part of the plate is in the hyperbolic regime when 

-- 

exp 
4Jm - 1 

( 1 
-1 

Kh,, > 
m 

~ form>2. (3.37) 

2 exp 
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For m < 2, the characteristic equation (3.29) has at most two real roots and hence 

it is impossible to have part of the plate in the hyperbolic region at any stage of 
deformation. 

3.3.2 Hyperelastic model. 

(i) Elliptic regime 

For a point to be in the elliptic regime, (3.30) gives, making use of (2.8) (2.15), 

(3.14) and (3.19) 

(f?r)4 + 1 
Irn In r7.r12 - 21~1 In r2r( T I I (rcr) - 1 

+l <o W8h 

or 
1 

and (m In Cl2 - 2(m In irl iFr)4+ ’ 
m ! I 

___ + 1 2 0. (3.38), 
(tir)4 - 1 

The inequality (3.38), is satisfied for jm In kr( lying between the roots of the quadratic 
equation 

and thus can be rewritten as 

x2_2x yw+1 
,(ir)4q + ’ = 0, 

(Cr)’ - 1 I I (Cr)2 + 1 
< m Iln (rT.r)2\ < -. 

2 I I 
(Tr)’ + ’ 
(tir)2 - 1 

(3.39) 

Taking into account (3.39), one can show that the two inequalities in (3.38), are 
mutually exclusive. The left part of inequality (3.39) is an identity for m > 1. For the 
right part we observe that +m In x-(x + 1)/(x- 1) is an increasing function of x for 
m >, 1 and x 3 1. Thus for the entire plate to be in the elliptic regime we must have 

(IT-R+)2+ 1 
51” (iX+)2 < _ 

(KR+)2- 1 

which, combined with (2.14), transforms to 

K-h 

0 
< ev (4x0(m)) - 1 

2 exp (2x0(m)) ’ 

(3.40) 

(3.41) 

where x0(m) is the positive root of the equation 

1 
x tanh x = -. 

m 
(3.42) 

(ii) Parabolic regime 

A straightforward calculation involving (3.33), (2.8), (2.15) and (3.19) shows that 
the characteristic equation (3.29) cannot have only two real roots and therefore the 
hyperelastic plate never enters the parabolic regime. This property, which 
characterizes incompressible finitely-elastic materials in plane strain, was noted by 
BIOT (1965) (cf. HILL and HUTCHINSON, 1975). 



234 N. TRIANTAFYLLIDIS 

(iii) Hyperbolic regime 

Combining the results obtained from the two previous cases, we conclude that for 
part of the plate to be in the hyperbolic regime, 

r7h 
0 

, exp (4x&))- 1 

2 exp @x0(m)) ’ 

where again x,(m) is the positive root of equation (3.42). 

3.3.3 Characteristics. 

From (3.29) the equation of the characteristics in polar coordinates is 

nl rdtl -z---z+ yh- 2h &,/($i- 2h)* - (y@* + (~7~ - aI)* 

n2 YE- (02 -cl) 

which, for the 

and, for the hyperelastic one, 

’ 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

where in (3.45) and (3.46) s = + 1 or - 1 and x = In rlr. Some representative 
characteristics are depicted in Figs 2 and 3 for a hypoelastic and a hyperelastic 
material, respectively. In both cases the hardening exponent, m, is 4 and the 
curvature, rT_h,, is 2.80. Characteristics are labeled with an u or a /3 according to 
whether the parameter s in equations (3.45) and (3.46) takes the value + 1 or - 1. 

In both figures the u- and p-lines have common tangents at points belonging to 
the elliptic-hyperbolic boundaries. We also note that in Fig. 2 (hypoelastic body) the 

FIG. 2. Characteristic curves and regimes (E stands for elliptic, H for hyperbolic, P for parabolic) in a 
hypoelastic plate when 13, = 2.80, m = 4, E,, = 0032. 
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FIG. 3. Characteristic curves and regimes (E stands for elliptic, H for hyperbolic) in a hyperelastic plate 
when Rh, = 2.80, m = 4, sr = OGf)2. 

cr-lines are tangent to the hyperbolic-parabolic boundary in the tensile zone while the 
b-lines are perpendicular to the hyperbolic-parabolic boundary in the compressive 
zone. 

A general property of the characteristics is that they never appear before the first 
bifurcation. This statement can be formalized in the following proposition. Zfat some 
state, specijed by the curvature k*, part of the body is in the parabolic or in the 
hyperbolic regime, then there exists at least one bifurcation point with iz,, < IT*. A 
similar proposition, stated by RICE (1976) was proved for the case of a homogeneous 
prebifurcation stress field, using a procedure introduced by VAN HOVE (1947). 

To prove our assertion, it is enough to show that if for some E* part of the body is 
in the parabolic or hyperbolic regime, we can find a non-trivial potential function @, 
satisfying the essential boundary conditions, such that F[%*, @] < 0. 

For this, consider CD = sin [&(r, 0)] where w(r, 0) is an adequately smooth, 
bounded function that vanishes for points which either lie in the elliptic regime or are 
very close to the boundary. For large <, the bifurcation functional F given by (3.18) 
takes the form 

+a,-o,) ar c2(2h+) (a,> 
2 

“t(yl;-o,+o,) - (i $)‘I sir? (Ew)} r dr d8+O(t3). (3.47) 

If part of the structure is in the parabolic or the hyperbolic regime, we can construct 
the function u’ to satisfy the additional property 

1 dw &V 
- - 
r 88 

- = [(yh- 2h)/(yk-a, + cQ]* 
& 

for points in the hyperbolic regime or 

dw s=o (3.49) 
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for points in the parabolic regime. This construction ensures that the integrand in the 
dominant term of (3.47) is negative and thus, for large enough 5, the bifurcation 
functional F is also negative. 

This property of the characteristics actually holds more generally for an 
incrementally linear material that satisfies normality, given that the bifurcation 
functional is adequately smooth with respect to the monotonically increasing loading 
parameter. The proof in the general case is similar to the one outlined above. 

3.4 Thr short wavelength limit 

As we have seen in Section 3.2 the eigenmodes have the form 4(r) cos [2nnO/C-I,] 
or c$(r) sin [2dl/d,]. For the short wavelength limit n -+ co the critical curvature as 
well as the asymptotic form of the eigenmode can be calculated analytically. 

The variational form of the bifurcation equation corresponding to wavenumber n 
is 6F, = 0, where F, is given by (3.27). Using the substitution x = In Cr, the resulting 
Euler equation is 

together with the traction-free boundary conditions 

0(n2M+[n2(-4h+yh+o, +a,)+O(l)] $$ +0(l) $f 

d34 

at x = xf = In k-R+ and x = x- = in ICR-. 

For large wavenumbers n, 4(x) admits the asymptotic representation 

&I(X) = A exp [njfj(x)+ . . . +nfi(x)+.f”(x)+II-ll_l(x)+ .]. (3.52) 

From (3.50) and the boundary conditions, grouping terms of the same power in n, we 
deduce that for j > 1, h(x) = 0 and for j = 1, f;(x) satisfies 

(y6-a,+a,)+2($-2h) (3.53) 

We shall show that the solution of (3.50) which satisfies the boundary conditions 
(3.51) for large values of n is 

4(x) = A exp Cnf&)l +B exp Ccf,,(x)l, (3.54) 

wheref,,,(x) andfIr, are two solutions of (3.53). Without loss of generality we can 
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set 

j-1.(x-) =fib(X-) =foJx_) =fob(X-) = . . . = 0. 

For simplicity, the following notation is introduced : 

df&- 1 _ 
dx Pa, 

df~,,b-) ~ = pb. 
dx 

(3.55) 

For 4(x) to be uniformly bounded for all n we must have Re (fi(x)) < 0, for which a 
sufficient condition is 

(3.56) 

When the entire plate is in the elliptic regime we can always find two non-trivial 

solutions of (3.53), fi, and fib, with the property (3.56). 
From the boundary condition (3.51) at x = x- and employing (3.54) and (3.55) 

we obtain 

(1 +p:)A+(r+p:p = 0, 

C(Y~-4h+a,)p,+(y~-a,)p,31A+[(yT;-4h+o,)p, 

1 

(3.57) 

+ (y5- Q)p;]B = 0. 

The system (3.57) admits a non-trivial solution in A and B when its determinant 
vanishes, yielding 

(Y~-4h+a*)(l-P,P,)+(y~-a*)(P,Z+P,2+P,P,+P,ZP,2) = 0. 

In view of (3.56) from (3.53) and (3.55) we get 

P&b = 

2(2h - y!q 
P:+Pbz = yl;-0, ’ 

and combining (3.58) with (3.59) we conclude 

yIi- 62 

J 
_= 
yh+o, 

1-g atr=K. 
c2 

(3.58) 

(3.59) 

(3.60) 

The boundary conditions (3.51) at the end x = x+ are asymptotically satisfied since 

Re (fi(x)) < 0 so that for large n, 4 and its derivatives tend to zero outside a 
vanishingly narrow zone near x = x-. 

The same analysis can be repeated starting with 

fi&+) ‘f&x+) =foa(x+) =f&(x+) = . . . = 0. 

In this case the bifurcation mode is a surface one at x = x+ and the critical condition 
is again (3.60) in which y& h, and CT~ are evaluated at r = R+. 

The critical condition (3.60) is identical with the critical condition given by YOUNG 
(1976) for the half-space problem. This result was expected since for a short 
wavelength surface mode, the curvature of the free surface does not affect the onset of 
a bifurcation instability and the plate behaves locally at the surface like a half-space. 
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@ SURFACE INSTABILITY 
IN TENSILE REGION 

@ SURFACE INSTABILITY 
IN COMPRESSIVE REGION 

I I I / I 1 I I 1 

I .o 2.0 3.0 4.0 5.0 6.0 7.0 0.0 9.0 10.0 

HARDENING EXPONENT m 

FIG. 4. Curves of the critical curvatures 13, corresponding to the onset of short wavelength surface 
instability vs hardening exponent m for the hypoelastic model. Also shown are regimes existing at a given 

curvature, for different values of the hardening exponent m. 

In order to find the critical curvatures corresponding to the onset of surface 
instabilities in the case of the hypoelastic solid, (3.60) using also (2.8), (2.15) (3.14) 
and (3.19), gives 

mx = l+mx 
1-2x 

,i 1+2x’ 
(3.61) 

where x = In ER+ for x > 0 and x = In KR- for x < 0. Solving (3.61) we obtain one 
or two real roots according to whether the hardening exponent m is respectively 
smaller or bigger than 2. Figure 4 shows the critical curvature, corresponding to the 
short wavelength limit, as a function of the hardening exponent m. A surface 
instability in the compressive zone exists for all values of m, while a surface instability 
in the tensile zone occurs only for m > 2. Note that the bifurcation at the compressive 
region appears always before the one in the tensile region. 

In the case of a hyperelastic material, (3.60) combined with (2.8), (2.15) (3.14) and 
(3.19) implies 

lnx 1-s =‘, 
( J m 

(3.62) 

where x = rlR_ for x < 1 and x = CR+ for x > 1. 
The results from (3.62) appear in Fig. 5. We emphasize that the instability in the 

compressive zone occurs before the one in the tensile zone. We also observe that for 
m = 1 (a neo-Hookean material) there is no surface instability in the tensile region. It 
can be verified that for both constitutive models employed, surface bifurcation 
instabilities always occur in the elliptic regime, as depicted in Figs 4 and 5. 
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,” 
@ SURFACE INSTABILITY 

IN COMPRESSIVE REGION 
lk 

IJJ 2.0 
\ E-H 

LL \ 
2 \ 

I I I I I I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

HARDENING EXPONENT m 

FIG. 5. Curves of the critical curvatures h-h0 corresponding to the onset of short wavelength surface 
instability vs hardening exponent m for the hyperelastic model. Also shown are regimes existing at a given 

curvature, for diNerent values of the hardening exponent m. 

4. NUMERICAL METHOD AND RESULIS 

4.1 Finite element method 

The lowest critical curvature of the plate is given by the minimum, over all 
integers n, of the lowest eigenvalues of each functional F,[E, C#J] in (3.27), where for 
n # 0, 4(r) is any arbitrary C’ smooth function. 

Because of the continuity requirements for 4, a convenient choice for element 
shape functions are the Hermitian cubits. Thus every element has two nodes, its 
endpoints, with two degrees of freedom per node, the values of 4 and d4/dr at this 
node. For the calculation of the element incremental stiffness matrix, four-point 
Gauss-Legendre quadrature is used. A modified Cholesky decomposition for the 
symmetric incremental stiffness matrix [S] is performed, namely: 

PI = LJITCm~I~ (4.1) 

where [L] is an upper triangular matrix with diagonal elements Lii = 1 (no sum) and 
[D] is purely diagonal. Bifurcation is possible when one element of [D] vanishes. 

For small wave numbers n(h,/&) the mesh is taken to be uniform, i.e. the interval 
[R-, R+] is divided into equal subintervals. For large wave numbers, a surface 
boundary layer is observed, as anticipated from the asymptotic analysis given in the 
previous Section 3. Therefore, the mesh had to be refined at the ends. 

More specifically, for n(h,/l,) > 50 a mesh refinement at the ends is necessary and 
the following transformation of coordinates was used : 

(4.2) 

with r, the new (refined) coordinates and r. the ones corresponding to the uniform 
mesh. 

14 
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m=l 

m=2 

m =4 

m =I0 

.-',,' 
I I _ k 

-1 

FIG. 6. Curves of the critical curvature Eh, vs wavenumber parameter n(h&) for various values of the 
hardening exponent m, in the case of a hypoelastic material. 

It is found that for 6 = 2 and 100 elements there is excellent agreement between 
the theoretically predicted critical curvature for the short wavelength limit and the 
numerical calculations for n(h,/[,) > 100. 

All the numerical results presented here were obtained using 100 elements and a 

uniform mesh for n(h,/l,) < 50 or an r2-type refinement at the ends of the interval 
[R-, R+] for n(h,/l,) > 50. Some of the calculations were repeated for 200 elements 
and gave critical curvatures which agreed at least to four digits with the results 
obtained when 100 elements were used. 

m=2 

In=4 

m=IO 

Fig. 7. Curves of the critical curvature Kh, vs wavenumber parameter n(l&,) for various values of the 
hardening exponent m in the case of a hyperelastic material. 



4.2 Numerical results 
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Figures 6 and 7 illustrate the dependence of the critical curvature, E-h,, on the 
wavenumber parameter, n(h,/l,), for the hypoelastic and the hyperelastic constitutive 
models respectively. Results are displayed for four values of the strain-hardening 
exponent m = 1,2,4, 10. In each case, the initial yield strain &y is taken to be 0.002. 
An upper limit to the curvature achievable by pure bending is set by the obvious 
requirement that the plate cannot be bent through an angle exceeding 360”. In a 
curvature vs wavenumber parameter diagram, the line separating the admissible 

from the non-admissible region obeys the equation 

(4.3) 

Curves satisfying (4.3) are drawn in a broken line for values of the wavenumber 

n=1,2,5,10inFigs6and7. 
As it can be seen in Figs 6 and 7, for all cases considered, the smallest critical 

curvature corresponds to a surface instability in the compressed zone of the plate. 
Two remarks concerning the lowest critical curvature follow from the above 
observation. First, since the yield strain E, does not enter the equations for the short 

wavelength mode (3.61) and (3.62), the lowest critical curvature is independent of E,. 
Second, since the onset of a surface bifurcation instability is not sensitive to the 
boundary conditions of the two end-sections of the plate, we may conjecture that the 
lower critical curvature is independent of the exact form of the boundary conditions 
at the two straight ends of the plate, presuming that the equations of the boundary 
value problem corresponding to the new set of boundary conditions are still self- 
adjoint. 

The fact that the first bifurcation occurs when the entire plate is in the elliptic 
regime was expected in view of the proposition in Section 3.2. A similar phenomenon 
has been observed by BASSANI, DURBAN and HUTCHINSON (1979). In their recent 
analysis of a pressurized spherical cavity, in an infinite elastic-plastic medium, they 
found that a short wavelength surface mode is the first bifurcation mode encountered 
in the deformation history. 

For a given uniaxial stress-strain curve and a given wavenumber parameter, the 
curvature at bifurcation is always higher for the hyperelastic model, because of its 
higher incremental shear modulus. The difference between the critical curvatures 
predicted by the two theories, for the same wavenumber parameter and uniaxial 
stress-strain behavior, decreases with increasing hardening exponent, since 
bifurcation occurs at smaller strains. It can be seen in Figs 6 and 7 that for m = 10 the 
corresponding curves of Kh, vs n(h,/l,) are almost identical. 

The critical curvature is, in most cases, an increasing function of the hardening 
exponent when the wavenumber parameter and the yield strain of the material are 
held fixed. One exception seems to be in the case of a hyperelastic material (Fig. 7) 
where near n(h,/l,) = 1 the critical curvatures for m = 2 are higher than the ones for 
m= 1. 

The solid line in Fig. 8 depicts the curvature corresponding to the maximum 
moment (KhO)_ as a function of the hardening exponent m for an initial yield strain 
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@ HYPOELASTIC THEORY 

@ HYPERELASTIC THEORY 

@ CURVATURE AT MAXIMUM 

MOMENT 

I I I I I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

HARDENING EXPONENT m 

FIG. 8. Curves of the curvature Rh, corresponding to maximum moment (solid line) and to short 
wavelength notes (broken lines) as a function of the hardening exponent m. 

sy = 0X)02. The two broken lines in Fig. 8 show the critical curvature at the onset of a 
surface bifurcation instability in the compressed zone for the hypoelastic and the 
hyperelastic body and are copied from Figs 4 and 5 respectively, for comparison 
purposes. 

As we can see from Fig. 8 the short wavelength mode in the compressed zone 
always occurs before the plate attains its maximum moment. The distance between 
the curvature corresponding to the maximum moment and the critical curvature for 
the surface mode in the compressed region decreases monotonically with increasing 
hardening exponent. 

The dependence of the critical curvature r?h, on the wavenumber parameter 
n(h,/l,) is not necessarily monotonic. For m > 2 in the hypoelastic model and m > 1 

I I I / I I I I I I I 

0.9 1.0 I.1 1.2 1.3 I.4 I.5 1.6 1.7 I8 

RADIAL DISTANCE r/h, 

FIG. 9. Long wavelength [n(h&) = 0.21 eigenmode &r)/hi vs radial distance r/h, for a hypoelastic 
material with m = 4 (the corresponding critical curvature is iho = 0.8199). 
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FIG. 10. Short wavelength [n&,/l,) = lo] eigenmode +(r)/hi vs radial distance r/h, for a hypoelastic 
material with m = 4 (the corresponding critical curvature is r7-h, = 0.6379). 

in the hyperelastic one, we observe that relatively long wavelength modes are 
available at curvatures only slightly above the ones corresponding to the maximum 
moment. All the non-monotonic (&)-curves present a peak at the vicinity of the 
“square pattern” mode, i.e. when n(h,/l,,) = 1. 

Figure 9 depicts the eigenmode 4(r)/hz as a function of the radial distance r/h, for 
a hypoelastic material with hardening exponent m = 4 and yield strain cy = 0.002 at a 
wavenumber parameter n(h,/l,) = 0.2. The eigenmode in this case varies very 
smoothly with the distance. Figure 10 depicts the eigenmode +(r)/hi as a function of 
the radial distance r/h, for the same material at a wavenumber n(h,,/l,) = 10. In this 
case we observe a boundary layer effect in the eigenmode which practically vanishes 
at a distance of order l/10 of the inner radius away from the surface. 

Some of the numerical calculations were repeated for a yield strain E,, = O-01 but 
no significant difference in the results was observed. 

5. CONCLUDING REMARKS 

As explained in the Introduction, the physical problem that we have tried to 
model in this work is the following : Given a plate with initial length 1, and thickness h,, 
what is the maximum curvature achievable in a pure bending process? 

One limit is a purely geometrical one. The plate cannot be bent through an angle 
exceeding 360”. The corresponding limiting curvature is 

h, (KhO)lim = 2~ - 
10 . 

(5.1) 

The other, denoted by (Kh&, depends only on material properties and corresponds 
to failure due to the onset of a surface bifurcation instability in the compressed zone, 
is given by (3.61) and (3.62). It follows from (5.1) that a bifurcation instability occurs 
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prior to the plate being bent through an angle of 360” when 

(5.2) 

If (5.2) is not satisfied, the plate is bent through a complete circle before any 
bifurcation occurs. For example, for a hyperelastic material with hardening exponent 
m = 1 bifurcation instability will occur prior to the ends of the plate touching in plates 
with ko/lo 2 0.203 while for m = 10 a bifurcation instability occurs prior to touching 
in a hypoelastic or hyperelastic plate when ~l~/~* > 0.064. 

If bifurcation occurs before the plate is bent through a complete circle, the 
corresponding critical angle formed by the plate at the onset of the instability is 

(5.3) 

Thus, for example, instability occurs in a hypoelastic plate with initial dimensions 
h,/l, = 0.1 at an angle 0, = 5.96 rad (341.5’) for m = 4 and at an angle of 
OC, = 4.06 rad (232.6”) for m = 10. One can also ask what are the initial dimensions 
required for a plate to be bent through a given angle without encountering a 
bifurcation. For example, to achieve a final angle of 180” in a hypoelastic or 
hyperelastic plate with m = 10, the initial dimensions of the plate must satisfy 
h,,‘l, > @129. 

The analysis carried out in this work shows that bifurcation instability can be 
observed in a plate under pure bending once the curvature exceeds a certain limit 
which is an increasing function of the hardening exponent of the material, provided, 
of course, that the initial dimensions of the plate satisfy (5.2). 

These critical curvatures are high even for relatively low hardening materials. The 
influence of imperfections as well as the consideration of more appropriate plastic 
constitutive models on the critical curvature merits further investigation. 
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