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Abstract

Higher order gradient continuum theories have often been proposed as models for solids that exhibit

localization of deformation (in the form of shear bands) at sufficiently high levels of strain. These models

incorporate a length scale for the localized deformation zone and are either postulated or justified from

micromechanical considerations. Of interest here is the consistent derivation of such models from a given

microstructure and the subsequent comparison of the solution to a boundary value problem using both the

exact microscopic model and the corresponding approximate higher order gradient macroscopic model.

In the interest of simplicity the microscopic model is a discrete periodic nonlinear elastic structure.

The corresponding macroscopic model derived from it is a continuum model involving higher order gra-

dients in the displacements. Attention is focused on the simplest such model, namely the one whose

energy density involves only the second order gradient of the displacement. The discrete to continuum

comparisons are done for a boundary value problem involving two different types of macroscopic ma-

terial behavior. In addition the issues of stability and imperfection sensitivity of the solutions are also

investigated.
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1. INTRODUCTION

A common feature among ductile solids when sufficiently strained, is the transition from a smoothly

varying deformation field into a highly localized deformation pattern in the form of a “shear band”. This

local, i.e. appearing at any point whose stress state reaches a critical level, instability phenomenon is

modeled within the framework of continuum mechanics as a loss of ellipticity in the incremental equi-

librium equations. This approach has been proposed in the context of elasticity by Hadamard [17] and

subsequently for rate independent elastoplasticity by Thomas [31], Hill [18] and Mandel [24]. The char-

acteristic surfaces of the governing equations indicate the position of the localized deformation zones.

Considerable effort has been subsequently devoted to the study of the localization of deformation’s de-

pendence on the assumed constitutive model. For further information on this subject, the interested

reader is referred to Knowles and Sternberg [20] for elastic materials and Rice [29] for inelastic ones.

The loss of ellipticity approach is adequate for predicting the critical stress level and deformation zone

direction at the onset of localized deformation. However, it can neither predict the size of the localized

deformation zone nor can it provide any constitutive information about the evolution of deformation inside

the zone. Due to these limitations, numerical (usually finite element) calculations in related boundary

value problems show an undesirable dependence of results on selected mesh size and orientation (see

Tvergaard, Needleman and Lo [35]).

Motivated by the above physical and numerical shortcomings of the simple loss of ellipticity approach,

and in view of the increased importance of analyzing localized failure phenomena in mechanics, a number

of remedies have been proposed. In the classical continuum mechanics framework, these improvements

consist of either the consideration of imperfection sensitivity to pre-existing weak zones in the solid (see

Marciniak and Kuczynski [25]), or the incorporation in the constitutive model of viscous or thermal

coupling effects (see Molinari and Clifton [28], Clifton [12]). The non-classical continuum mechanics

alternative consists of relaxing the local action hypothesis, according to which the strain depends only

on the first gradient of the deformation. Continuum models that violate the local action hypothesis are

termed non-local. They are divided into two categories: The first category consists of integral models

with strains and stresses at a given point depending on a convolution type integral that accounts for

the history of displacements in a finite neighborhood about the point in question. The second category

consists of higher order gradient models for which the strains and stresses at a point depend on the

history of all the gradients of the displacement – up to a certain order – at that particular point.

Of interest here is the last approach to modeling the localization of deformation, namely the in-

corporation of higher order gradients in the constitutive law. Among the attractions of this approach

are its simplicity (no dependence on unknown “weak zones” in the solid or difficult to determine in-

fluence functions for the convolution integrals appearing in integral type non-local models, no time or

temperature effects required) and the inherent existence of a characteristic length scale in the model that

determines the size of the localized deformation zones which appear at adequately large levels of strain.
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More specifically, constitutive models that incorporate up to the second gradient of deformation are the

simplest such models that exhibit the wanted localized strain solutions with zone widths that depend on

the characteristic length scale. The incorporation of a second order gradient term in the material law

found many applications in the study of localization phenomena, not only for solids (see Aifantis [6],

Coleman [13], Coleman and Hodgdon [14]) but in fluids as well (see Van der Waals [36] classical 1893

paper and also Aifantis and Serrin [4,5]).

The above mentioned constitutive models, although often physically motivated, are essentially phe-

nomenological. The coefficients of the second order gradient terms are either postulated (as in Triantafyl-

lidis and Aifantis [34]) or heuristically derived from the assumption of continuum state equations coupling

macroscopic and microscopic state variables (see Mindlin [26], Eringen and Suhubi [15], Suhubi and Erin-

gen [30], Aifantis [7]). With the recent considerable growth of higher order gradient models proposed for

an ever increasing number of material behaviors, e.g. elastoplastic, viscoplastic, thermoviscoplastic, the

issues of consistent derivation of the macroscopic model from the microscale one and comparison of the

solutions to the same boundary value problem for the two corresponding models, become increasingly

relevant.

For simplicity, attention will be here restricted only to one-dimensional nonlinear elastic media with

arbitrary periodic microstructure. Of interest is the consistent derivation of the macroscopic higher

order gradient continuum model from the properties of the discrete microstrucure. Also of interest is the

comparison of solutions to boundary value problems using alternatively the exact discrete micro model and

the corresponding approximate continuum macro model. Although derivations of higher order gradient

continuum theories based on discrete periodic microstructures are not novel, especially in the Physics

literature (see for example Askar [9], Kunin [21], Mindlin [27], Toupin and Gazis [32]), attention has been

focused on linear theories, static or dynamic. The derivation of higher order gradient continuum theories

from the nonlinear periodic microstructures of interest here does not seem to have attracted attention so

far, to the best of the authors’ knowledge. The same comment applies to the comparison between the

continuum and discrete solutions to boundary value problems for the above discussed microstructures.

The outline of this paper is as follows: Section 2 details the general discrete periodic elastic model

and briefly outlines the numerical solution procedure. Section 3 outlines the derivation, using two differ-

ent approaches, of the continuum macro model from the properties of the discrete periodic micro model.

The analytical solution to the boundary value problem for the continuum model is also derived. Sec-

tion 4 presents two particular discrete models and the discrete vs. continuum comparisons. The force -

displacement diagrams and the equilibrium strain profiles for the localized solutions are compared, and

the stability of the solutions is studied. Section 5 concludes the presentation with a discussion of the

results.
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2. THE DISCRETE MODEL

2.1 DESCRIPTION.

Consider a one-dimensional structure composed of equally spaced nodes connected by nonlinear

elastic springs. The node spacing is denoted by ε, and the total length of the structure is L = Nε with

N + 1 the total number of nodes. A typical node, say i, is connected to all the adjacent nodes j with

i − q ≤ j ≤ i + q where q is an integer indicating the maximum number of neighboring nodes to which

each node is connected on each side (see FIG 2.1 where q = 2). The force (f) - strain (e) relation for a

spring of length pε (1 ≤ p ≤ q) is denoted by fp(ep), while the corresponding stored energy in the spring

is pεwp(ep) with w′
p = fp.

The strain ep in a spring of length pε attached to node i is given by

ei+

p =
ui+p − ui

pε
or ei−

p =
ui − ui−p

pε
(2.1)

where ei+

p and ei−
p are the strains in the springs at the right of node i and at the left of node i respectively.

Here uj denotes the total displacement of node j.

The kinematical definitions in (2.1) are valid for nodes sufficiently far from the end nodes of the

structure, i.e. for 0 ≤ i − q and i + q ≤ N . To ensure a trivial equilibrium solution 0
ui of equal relative

displacements (i.e. 0
ui+1 − 0

ui = const), the following kinematical relations for ei+

p and ei−
p are adopted:

ei+

p =
2uN − u2N−i−p − ui

pε
for i + p > N

ei−

p =
ui + up−i − 2u0

pε
for i − p < 0

(2.2)

The above relations are derived from the tacit assumption of the existence of fictitious outside nodes

i < 0 and i > N whose relative displacements with respect to the end nodes 0 and N are mirror images

of the relative displacements of the corresponding mirror interior nodes.

The equilibrium equation for interior node i (0 < i < N), assuming that no external forces are

applied, is given by:
q∑

p=1

[
fp(ei+

p ) − fp(ei−

p )
]

= 0 (2.3)

The selection of the force - strain relation fp(ep) for each spring of length pε will be specified and explained

in Section 4.

2.2 SETTING OF THE BOUNDARY VALUE PROBLEM.

The one-dimensional structure described above with N + 1 nodes is held fixed at node 0 (u0 = 0)

and is subject to an end displacement ∆ at node N (uN = ∆). The N − 1 equilibrium equations (2.3)

(i = 1, . . . , N − 1) for the N − 1 unknown displacements (u1, . . . , uN−1) are solved numerically using a

straight forward incremental Newton-Raphson technique.
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A trivial solution to the problem, which is also termed the principal or the prebifurcated solution and

is denoted by 0
ui, corresponds to a uniform straining of the structure with 0

ui = iε
0
e. As is easily verified

from the kinematic relations (2.1), (2.2) the corresponding strain within each spring is 0
ei+

p = 0
ei−

p = 0
e =

∆/L and thus the equilibrium equation (2.3) is satisfied at all the interior nodes. To summarize

0
ui = iε

0
e,

0
e = ∆/L,

0
ei+

p = 0
ei−

p = 0
e (2.4)

The above solution is valid for any value of the end diplacement ∆. For adequately small values

of ∆ the principal solution (2.4) is unique and stable through an appropriate choice of the fp(ep). The

properties of the nonlinear springs in the model will be chosen so that when ∆ exceeds a critical value, the

(uniform strain) principal solution is no longer unique; other equilibrium branches, termed the bifurcated

equilibrium branches, emerge from the principal solution. The strains in these bifurcated branches are

no longer equal for each spring, but increase in a small neighborhood of the structure while remaining

approximately uniform but decreasing in the remaining part of the structure. Because of this property,

the bifurcated solutions will also be termed the localized strain solutions. The localized strain (bifurcated)

equilibrium solutions are studied in detail in Section 4.
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3. THE CONTINUUM APPROXIMATION

When the node spacing ε → 0 (or equivalently the number of nodes N → ∞) the discrete sys-

tem of algebraic equations (2.1) - (2.3) can be approximated by a differential equation for u(x) where

ui
∼= u(xi) and the coordinate xi = iε. Finding the appropriate differential equation whose solution

approaches the solution for the discrete system is a classical problem that occures in many branches of

mathematical physics. Of particular interest here is the consistent derivation of the simplest higher order

gradient continuum model whose energy density per unit length is postulated to be (see Triantafyllidis

and Aifantis [34])

Ŵ = W (u,x ) +
1
2
ε2h(u,x )[u,xx ]2 (3.1)

To find the relations between W (u,x ), h(u,x ) of the continuum model and the properties of the

discrete model (i.e. fp(ep)), two different approaches are used: The first approach uses as a departing

point the discrete equilibrium equation at node i (2.3) to arrive at a corresponding continuum equation

which in turn can be identified as the Euler-Lagrange equation of an energy functional of the form (3.1).

The second approach proceeds directly with the derivation of a continuum energy from the energies of

all springs attached to node i. Both approaches lead to the same Euler-Lagrange (equilibrium) equation.

It should be noted at this point that the ensuing derivations provide a continuum energy density up

to any order of ε required. Only the lowest order correction in the energy, i.e. the O(ε2) term is of interest

here, for it brings up the effect of the microstructure in the simplest way. In Section 4 the solution to

the boundary value problem for the discrete model described in Section 2 will be compared with the

solution to the same boundary value problem for the corresponding continuum with energy density in

the form (3.1).

3.1 CONTINUUM MODEL DERIVATION VIA EQUILIBRIUM.

Consider the equilibrium of an interior node i away from the boundary of the discrete model. An

adequately smooth continuous function u(x) is assumed that coincides with all the equilibrium displace-

ments uj at nodal points xj = jε. Using the Taylor series expansion about xi to evaluate the strains ei+

p ,

ei−
p in all the nonlinear springs that affect the equilibrium of node i, one has from (2.1)

ei+

p =
ui+p − ui

pε
= u,x +

1
2
pεu,xx +

1
6
(pε)2u,xxx +

1
24

(pε)3u,xxxx + · · ·

ei−

p =
ui − ui−p

pε
= u,x −

1
2
pεu,xx +

1
6
(pε)2u,xxx −

1
24

(pε)3u,xxxx + · · ·
(3.2)

where all derivatives of u(x) are evaluated at xi.

Substitution of (3.2) into the equilibrium equation (2.3) and subsequent expansion of the result in

terms of ascending powers of ε yields

q∑

p=1

p

{
f ′

p(u,x )u,xx +
(pε)2

6

[
f ′′′

p (u,x )
u,3xx

4
+ f ′′

p (u,x )u,xx u,xxx +f ′
p(u,x )

u,xxxx

2

]
+ O(pε)4

}
= 0 (3.3)
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where ( )′ denotes derivation of a function with respect to its argument.

By inspection, one finds (3.3) to be the Euler-Lagrange (equilibrium) equation of the functional
L∫
0

Ŵ (u,x , u,xx , . . .) dx where

Ŵ =
q∑

p=1

pwp(u,x ) +
ε2

2

{[
−

q∑

p=1

p3

12
w′′

p (u,x )
]
(u,xx )2

}
+ O(ε4) (3.4)

with wp(ep) the energy density of a spring of length pε (recall w′
p = fp).

Comparison of (3.1) and (3.4) gives W (u,x ) =
∑q

p=1 pwp(u,x ) and h(u,x ) =
∑q

p=1 −(p3/12)w′′
p (u,x )

which are the wanted relations linking the phenomenological macroscopic (continuum) energy density

(3.1) to the corresponding microscopic (discrete) model.

3.2 CONTINUUM MODEL DERIVATION VIA ENERGY.

The energy per unit length of the discrete structure, say W , equals half of the energy of all springs

connected to a sufficiently distant from the boundary interior node i, divided by the nodal spacing ε, i.e.

W =
1
2ε

q∑

p=1

[
pεwp(ei+

p ) + pεwp(ei−

p )
]

(3.5)

Substitution of the strains ei+

p and ei−
p in terms of u(x) and its derivatives at xi according to (3.2)

gives, after a straight forward expansion in terms of ascending powers of ε

W =
q∑

p=1

pwp(u,x ) +
ε2

2

{ q∑

p=1

p3

[
w′′

p (u,x )
(u,xx )2

4
+ w′

p(u,x )
u,xxx

3

]}
+ O(ε4) (3.6)

Notice that although the O(ε0) term in (3.6) coincides with its counterpart in (3.4), this is not

the case with the O(ε2) term (or any higher order term). This discrepancy does not affect equilibrium,

since the Euler-Lagrange equation for the functional
L∫
0

W dx coincides with (3.3) as a straight forward

calculation can verify. The boundary conditions are in general different. For the displacement controlled

boundary value problem considered here, one can easily show that the boundary conditions are satisfied

for either energy density. Moreover, the same calculation shows that the end force dependence on the

displacement field is also unaffected by the energy density choice.

The fact that more than one continuum energy density can be found for the same discrete model

is a known complication in mathematical physics (see for example the discussion in Kunin [21]). The

various continuous energies differ by a null Lagrangian, i.e. a functional whose Euler-Lagrange differential

equation is identically zero. For the model at hand this means that the functional
L∫
0

(Ŵ − W ) dx is a

null Lagrangian, which implies that each term in ε is a null Lagrangian. One can easily verify that the

O(ε2) term of the above differences in energy (= (1/2)
L∫
0

∑q
p=1(p

3/3)
[
w′′

p (u,x )u,2xx +w′
p(u,x )u,xxx

]
) has

an Euler-Lagrange equation that vanishes identically. This property is also shared by all the higher order
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in ε terms in the above mentioned energy difference, as a tedious but straight forward calculation can

verify.

3.3 SETTING OF THE BOUNDARY VALUE PROBLEM.

The one-dimensional continuum model has energy density Ŵ given by (3.1) and is of length L. This

energy density is prefered over W in view of its simpler form and also on account of its frequent use

in previous investigations. In accordance with the boundary value problem for the discrete model (See

Section 2.2) the end displacements of the continuum model are prescribed, i.e. u(0) = 0, u(L) = ∆. The

model’s potential energy, in the absence of body forces, is

E(u, ∆) =

L∫

0

{
W (u,x ) +

ε2

2
h(u,x )[u,xx ]2

}
dx.

The equilibrium equation (3.7) and the natural boundary conditions (3.8)1 are found by extremizing

E over all admissible displacements u(x) (i.e. all continuously differentiable functions u(x) that satisfy

the above mentioned essential boundary conditions). A standard calculation from E ,u δu = 0 gives

W ′(u,x ) − ε2u,xxx h(u,x ) − ε2

2
[u,xx ]2h′(u,x ) = c (3.7)

u,xx (0) = u,xx (L) = 0 (3.8)1

u(0) = 0, u(L) = ∆ (3.8)2

The constant c in (3.7) is the force excerted at the ends of the structure and is constant throughout the

structure, in view of the absence of body forces. The system of differential equation (3.7) and boundary

conditions (3.8) is solved analytically and the solutions are presented and discussed in detail in Section 3.4.

As previously noted, had W been chosen as the energy density of the continuum model, the corresponding

equilibrium equation would be (3.7) and the boundary conditions would be satisfied by (3.8).

As expected from the discrete model (compare with (2.4)), the trivial principal solution 0
u(x) to the

system (3.7), (3.8) is the uniform strain solution, i.e.

0
u(x) = 0

ex,
0
u,x = 0

e = ∆/L, W ′(0
e) = c (3.9)

The above solution is valid for any value of ∆. When ∆ exceeds a certain critical value, bifurcated

equilibrium branches emerge from the principal solution, exactly as in the discrete model. The bifurcated

branches have, as expected, solutions in which the strain u,x is localized around a narrow zone. The

comparison of the localized strain solutions of the continuum model boundary value problem to the

localized strain solutions of the discrete model boundary value problem is the main task of Section 4.
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3.4 SOLUTION OF THE CONTINUUM BOUNDARY VALUE PROBLEM.

As discussed in Triantafyllidis and Aifantis [34], the essential features of the continuum energy density

Ŵ , which are responsible for the appearance of localized strain solutions, are:

i) A macroscopic behavior that presents a maximum in the corresponding stress - strain curve, i.e.

a twice differentiable, smooth macroscopic energy density W (u,x ) with the property

W (0) = W ′(0) = 0

W ′′(u,x ) > 0 for 0 ≤ u,x < em, W ′′(em) = 0
(3.10)

The physical interpretation of (3.10) is that the macroscopic stress - strain relation W ′(u,x ) − u,x attains

a maximum at u,x = em. This feature is responsible for the existence of discontinuous strain gradient

solutions in models where the effects of microstructure are ignored (i.e. when Ŵ = W (u,x )), and hence

responsible for the existence of localized strain solutions when the effects of microstructure are considered

(i.e. when Ŵ = W (u,x ) + (ε2/2)h(u,x )[u,xx ]2).

ii) An always positive contribution ((ε2/2)h(u,x )[u,xx ]2) to the energy density Ŵ due to the mi-

crostructural effects, i.e.

h(u,x ) > 0 (3.11)

The above property ensures the absence of discontinuous solutions to the equilibrium equation (3.7) and

is responsible for the emergence of bifurcated (localized strain) solutions to the boundary value problem

(3.7), (3.8) for average strains larger than em, as will be shortly discussed. It also ensures the stability

of the uniform strain principal solution for strains ranging from zero past the strain at the macroscopic

maximum load em up to the first bifurcation. The above condition (3.11) is overly restrictive, for it need

not be satisfied for all strains ux; it suffices to be valid for a neighborhood of em. However, this possibility

will not be presently explored any further.

3.4.1 STABILITY OF PRINCIPAL SOLUTION AND BIFURCATION POINTS.

i) Stability of the Principal Solution.

To determine the stability of the principal solution (3.9) one must examine the positive definiteness

of the functional (E ,uu (
0
u, ∆)δu)δu (the second Frechet derivative of the structure’s energy E) evaluated

on the principal branch 0
u(x,∆) = 0

ex = ∆x/L

(E ,uu (
0
u, ∆)δu)δu =

L∫

0

[
W ′′(

0
e)(δu,x )2 + ε2h(

0
e)(δu,xx )2

]
dx (3.12)

Since all kinematically admissible functions δu(x) must satisfy the essential boundary conditions

δu(0) = δu(L) = 0 one can without loss of generality take

δu(x) =
√

2/L

∞∑

n=1

[
δun sin

(nπx

L

)]
(3.13)
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which upon substitution into (3.12) yields

(E ,uu (
0
u, ∆)δu)δu =

∞∑

n=1

[
W ′′(

0
e) + ε2

(nπ

L

)2

h(
0
e)

](nπ

L
δun

)2

(3.14)

For as long as W ′′(0
e)+ε2(nπ/L)2h(0

e) > 0, it follows from (3.14) that the principal solution is stable.

As expected for strains 0
e = ∆/L < em the stability condition is always satisfied in view of (3.10), (3.11).

Let en be the closest to em root of

W ′′(en) + ε2
(nπ

L

)2

h(en) = 0 ; n = 1, 2, . . . (3.15)

Without loss of generality one can assume that W ′′(e)/h(e) is a monotonically decreasing function

of e, in which case em < e1 < e2 · · · < en < · · ·. Consequently, the first time that an instability is

encountered as the displacement ∆ increases is at ∆1 = e1L. Notice that the longer the structure, the

closer e1 is to em.

ii) Bifurcation Points.

At bifurcation, the critical end displacement ∆b, strain eb (∆b = ebL) and corresponding eigenmodes
b
u(x) are found from the variational statement

(E ,uu (
0
u(x,∆b),∆b)

b
u)δu = 0 (3.16)

Using (3.9) and taking into account the essential boundary conditions b
u(0) = δu(0) = b

u(L) = δu(L) = 0

results in the following eigenvalue problem, i.e. find a solution b
u(x) �= 0 of:

ε2h(eb)
b
u,xxxx −W ′′(eb)

b
u,xx = 0 (3.17)

b
u(0) = b

u,xx (0) = b
u(L) = b

u,xx (L) = 0 (3.18)

The solution to the above eigenvalue problem is easily found to be

eb = en , ∆b = enL ,
b
u(x) = α sin

(nπx

L

)
; n = 1, 2, . . . (3.19)

where the constants en are defined in (3.15), and α an arbitrary constant (which can be specified if a

mode normalization condition is added).

From the above analysis the following characteristics of the principal solution emerge. As the end

displacement ∆ increases from its zero initial value, the uniform strain solution is stable (i.e. minimizes

locally the potential energy) and is devoid of bifurcation points for as long as ∆ < ∆1 = e1L, with e1 the

closest to em and thus the smallest root of (3.15). An infinity of bifurcation points ∆n are encountered

after the structure reaches its maximum load (at ∆m = emL) starting with ∆1 > ∆m. These bifurcation

points tend all to cluster at ∆m as the length L of the structure increases.
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3.4.2 BIFURCATED (LOCALIZED STRAIN) SOLUTIONS.

The bifurcated equilibrium solutions are found by solving the equilibrium equation (3.7) subject to

the boundary conditions (3.8). First the bifurcated solution emerging from e1 = ∆1/L, the closest to

em root of (3.15), will be presented. A simple modification of this solution procedure generates all other

bifurcated equilibrium paths, which emerge at higher strains en = ∆n/L, as will be shown subsequently.

By introducing the notation u,x ≡ e for the strain, (3.7) becomes a first order nonlinear ordinary

differential equation in x(e), namely

W ′(e) − ε2

2
d

de

[
h(e)

(
dx

de

)−2]
= c , e ≡ u,x (3.20)

where c is the end force excerted on the structure. Upon integration of (3.20) from e to e0 ≡ e(0) = u,x (0)

and taking into account the natural boundary condition in (3.8)1 e,x (0) = u,xx (0) = 0 one obtains

x = ε

e0∫

e

{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.21)

A consequence of the remaining natural boundary condition e,x (L) = u,xx (L) = 0 in (3.8)1 and (3.7) is

the following expression for c

c = [W (e0) − W (eL)]/[e0 − eL] ; eL ≡ e(L) = u,x (L) , e0 ≡ e(0) = u,x (0) (3.22)

With the help of (3.21) the wanted displacement u(x) =
x∫
0

u,x dx =
x∫
0

e dx =
e∫

e0

e(dx/de) de takes the

form

u(x) = ε

e0∫

e

e
{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.23)

The unknown values of the strain e0, eL at the ends of the structure are found from (3.21) and (3.23)

by the requirements x(eL) = L, u(L) = u(x(eL)) = ∆

L = ε

e0∫

eL

{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.24)

∆ = ε

e0∫

eL

e
{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.25)

Hence the sought bifurcated solution u(x) is expressed in parametric form with respect to the strain e

according to (3.21) - (3.23) while the end values of the strain e0, eL are calculated by solving the system

(3.24), (3.25).

Several features of the above solution merit attention at this point. It is tacitly assumed here that e

varies monotonically between e0 and eL with e0 > e > eL. The assumption e0 > eL does not impair

generality for it simply implies that the highest strain occurs at x = 0. The choice eL > e0 produces the
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mirror strain distribution about x = L/2. The monotonicity of e in the interval [0, L], i.e. e,x < 0 for

0 < x < L, implies from (3.20), (3.22) that

W (e) − W (e0) ≥ c(e − e0)

or equivalently

W (e) − W (eL) ≥ c(e − eL)

(3.26)

where the equality holds only at e = e0 or e = eL. A direct consequence of (3.26) which follows by taking

the limits e → e0 and e → eL is

W ′(e0) ≤ c ≤ W ′(eL) (3.27)

The strain at bifurcation e1 is the limit of e0, eL as the principal solution is approached from the bifurcated

equilibrium solution. Recall e0 ≥ e1 ≥ eL.

The geometrical interpretation of the end force c (constant throughout the structure) and the in-

equalities (3.26), (3.27) is depicted in the graph of the macroscopic stress W ′(e) - strain e relation shown

in FIG 3.1. The force c is found by constructing a line parallel to the e axis that cuts equal areas above

and below the graph of W ′(e) between eL and e0. For the curve W ′(e) depicted in FIG 3.1 with a

monotonically decreasing branch for e > em the inequalities (3.26) and (3.27) may be satisfied for all

e0 > e1.

A typical graph for the strain distribution e = u,x according to (3.21) as a function of x is depicted in

FIG 3.2(a) for e0 > eL (and in FIG 3.2(b) for e(0) = eL, e(L) = e0). The localization of the deformation

pattern near x = 0 is obvious. The corresponding eigenmode at the bifurcation strain e1 is also shown

for comparison.

The generalization of the above results to include the bifurcated equilibrium solutions emerging from

any other root en = ∆n/L of (3.15) does not present any difficulties. As suggested by the corresponding

strain eigenmode cos(nπx/L), which for n > 1 is no longer monotonically varying with x but varies

periodically between a maximum and minimum value, the bifurcated equilibrium solution is periodic in

[0, L] with semi-period L/n. The strain e = u,x varies between a maximum of e0 and a minimum of eL.

Within each such half period (3.21) - (3.23) still hold while (3.24) and (3.25) are modified to read

L

n
= ε

e0∫

eL

{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.28)

∆
n

= ε

e0∫

eL

e
{
h(e)/2[W (e) − W (e0) − c(e − e0)]

}1/2
de (3.29)

The bifurcated equilibrium solutions which emerge from ∆n can be easily constructed by matching

the equilibrium solution (3.21) - (3.23) and (3.28), (3.29) over the half period L/n and its mirror image

(obtained when e0 < eL) at the points x = mL/n where m = 1, 2, . . . , n − 1. The so constructed
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equilibrium solution u(x) is C2 continuous in the interval [0, L], i.e. u, u,x, u,xx are continuous functions

of x on [0, L].

The strain distributions for the bifurcated solutions from ∆2, ∆3, ∆4 together with their correspond-

ing eigenmodes are depicted in FIGs 3.3 - 3.5. The construction of all other bifurcated solutions (i.e. for

n > 4) follows easily.

To each bifurcation point ∆n correspond two bifurcated equilibrium solutions as seen in FIGs 3.2 -

3.5. Solutions (a) correspond to the maximum strain e0 occuring at x = 0 while solutions (b) correspond

to the minimum strain eL occuring at x = 0. Notice that for odd values of n the (a) and (b) equilibrium

solutions are mirror images of each other with respect to x = L/2 while for even values of n the (a) and

(b) solutions are different.
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4. COMPARISON OF SOLUTIONS FOR DISCRETE AND CONTINUUM MODELS

4.1 GENERAL REMARKS.

Two different types of models will be investigated in this Section, according to their macroscopic

behavior, i.e. according to the properties of W (u,x ) in (3.1). The first model, which will also be

subsequently referred to as the type A model, has a stress - strain behavior W ′(e) − e (e = u,x) that

is increasing for 0 ≤ e < em and for e > e∗m > em with W ′(e) → ∞ as e → ∞, while it decreases for

em < e < e∗m as shown in FIG 4.1(a). Such models are typically employed in calculations involving phase

changes in solids as for example in James [19] and modeling dissipative response in elastoplasticity as

in Abeyaratne and Knowles [2,3]. The second model, which will also be subsequently referred to as the

type B model, has a stress - strain behavior W ′(e)−e that is monotonically increasing for 0 ≤ e < em and

monotonically decreasing for e > em with W ′(e) → 0 as e → ∞ as shown in FIG 4.1(b). Models of this

type have been employed in calculations involving progressive loss of load bearing capacity in solids past

a certain critical strain and are essentially used in the soils-geomaterials literature often in association

with damage as for example in Bažant [10] and Lasry and Belytschko [23].

A common feature of both the type A and type B models investigated here is that they each involve

springs of length ε and 2ε, i.e. q = 2 (see discussion in Section 2.1). The reason for this choice lies

in the requirement (3.11) which mandates h(u,x ) > 0. Had only springs of length ε been used in the

model, i.e. q = 1, according to (3.4) W (u,x ) = w1(u,x ) and h(u,x ) = −w′′
1 (u,x )/12, which are in obvious

contradiction to the requirements (3.10) and (3.11).

The stability investigation of the equilibrium solutions is important, for it determines when a partic-

ular equilibrium branch is stable and thus observable in a quasistatic loading experiment. The stability

of the principal solution for the continuum model has already been presented in Section 3.4. The stability

calculations for all the equilibrium solutions (principal and bifurcated) of the discrete model are done

numerically by investigating the positive definiteness of the second derivative of the potential energy

E ,uu, subject to the displacement constraints u0 = 0, uN = ∆, evaluated at the equilibrium solution in

question. Note that E ,uu is the stiffness matrix required by the incremental Newton-Raphson procedure,

whose [L][D][U ] = [E ,uu ] decomposition ([L] is a lower triangular matrix with unit diagonal elements,

[D] is a diagonal matrix and [U ] = [L]T ) is automatically performed at every loading step as part of

the solution procedure. Stability is simply decided by the sign of d ≡ min(i=1,...,N−1)Dii where Dii are

the diagonal elements of [D] (d > 0 ⇒ E ,uu is positive definite and hence the equilibrium solution under

investigation is stable.).

The issue of imperfection sensitivity also merits attention. As discussed in Section 3.4, the perfect

continuum structure of length L has bifurcation points at strains en = ∆n/L, and these bifurcations

occur just past the strain level em corresponding to the maximum stress (em < e1 < e2 < · · ·). As the

structure’s length increases all bifurcation strains approach em. Exactly the same behavior is exhibited
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by the perfect discrete structure as has been verified numerically for all the examples considered in this

work. Given that the occurence of imperfections is inevitable in practice, the question that naturally

arises is which will be the (unique) equilibrium branch followed during a loading history, starting at rest,

of the imperfect structure.

The answer to this question is simple. For small imperfections (taken here in the form of slightly

different spring properties) the equilibrium solution remains close to the uniform strain solution of the

perfect structure as long as all springs have strains lower than em. As soon as the weakest spring’s strain

exceeds em a strongly localized deformation solution develops with a strain distribution in the form of

FIG 3.3(b) with the maximum strain occuring at the weakest spring. It has been verified numerically that

although the location of the maximum strain depends on the site of the weakest spring, the bell shape

of the strain distribution is very close to the bifurcated solution of the perfect structure that emerges

from ∆2 (and whose corresponding eigenmode is b
u(x) = cos(2πx/L)). In addition the force F - end

displacement ∆ curves of these equilibrium solutions, which are essentially different from each other by

a translation, are almost identical, as are their elastic energies (for a given strain at the weakest spring).

The above results show that the most interesting, from a practical view point, localized strain

equilibrium solution is the full bell shaped one with strains decaying on either side of the maximum

strain. In order to avoid the introduction of imperfections in the model, and in view of the fact that

the perfect structure’s bifurcated branch emerging from ∆2 is energetically almost neutral to parallel

translations (i.e. for δu(x) = const), the stability of this bifurcated equilibrium solution is studied under

the additional assumption of the prescribed displacement u(L/2) = ∆/2. This additional kinematic

requirement plays the role of an imperfection at L/2, thus pinning the maximum strain at this point

and stabilizing the solution against parallel translations. It should be mentioned at this point that

an analytical investigation of the stability of the equilibrium solutions in a perfect infinite solid with

continuum energy density given by (3.1) was presented by Alexiades and Aifantis [8] while Carr, Gurtin

and Slemrod [11] discussed the corresponding finite dimensional case. Their results are in agreement with

the present investigation’s findings that only the solutions with monotonically varying strain are stable

(assuming no intermediate constraints of course).

Three sets of graphs will be presented for each model type, comparing the results for the discrete and

continuum version of each model. The first set of graphs will display the end load F - end displacement ∆

curves for the principal and bifurcated equilibrium solutions. For the continuum model the end force

F = c where c = W ′(0
e) for the principal solution and c = (W (e0) − W (eL))/(e0 − eL) for the bifurcated

solutions (see (3.7), (3.22)). For the discrete model F =
∑q

p=1

∑p
r=1 fp(e

(N−r)+

p ).

The second set of graphs will display bifurcated (localized strain) solution strain distributions for

the discrete and continuum versions of each model. All comparisons presented are taken from stable (and

thus observable) parts of the bifurcated branches.



- 17 -

The third set of graphs will display the stability results for the bifurcated equilibrium solutions of

interest. In view of the close agreement between the continuum and discrete models, only the discrete

model’s stability calculations are presented.

4.2 TYPE A MODEL.

For this model, whose macroscopic stress W ′(e) - strain e behavior has two increasing branches for

0 ≤ e < em and e∗m < e < ∞ and a decreasing one for em < e < e∗m, the energies w1(e) and w2(e) are

the following sixth order polynomials

wi(e) =
1
2
Kie

2 − 1
4
Mie

4 +
1
6
Nie

6 , i = 1, 2 , e ≡ u,x (4.1)

According to (3.4) the corresponding continuum energy density has the following form for W (e) and

h(e) where e ≡ u,x

W (e) =
1
2
(K1 + 2K2)e2 − 1

4
(M1 + 2M2)e4 +

1
6
(N1 + 2N2)e6 (4.2)

h(e) = − 1
12

(K1 + 8K2) +
3
12

(M1 + 8M2)e2 − 5
12

(N1 + 8N2)e4 (4.3)

The monotonicity of W ′(e) for e near zero and also for large values of e dictate that (K1 +2K2) > 0

(I.1) and (N1 + 2N2) > 0 (I.2). The strains em and e∗m corresponding to the maximum and minimum

stresses respectively, are

em =
[
3(M1 + 2M2) − [9(M1 + 2M2)2 − 20(K1 + 2K2)(N1 + 2N2)]1/2

10(N1 + 2N2)

]1/2

e∗m =
[
3(M1 + 2M2) + [9(M1 + 2M2)2 − 20(K1 + 2K2)(N1 + 2N2)]1/2

10(N1 + 2N2)

]1/2
(4.4)

For the above values of em, e∗m to be real, it is tacitly assumed that 3(M1 + 2M2) > [20(K1 +

2K2)(N1 + 2N2)]1/2 (I.3). In addition the requirement (3.11) that h(e) > 0 dictates from (4.3) that

(K1 + 8K2) < 0 (I.4), (M1 + 8M2) > 0 (I.5), (N1 + 8N2) < 0 (I.6). The constants used in this model are

K1 = 10 , M1 = 10 , N1 = 20

K2 = −2.5 , M2 = 0 , N2 = −6.4

which satisfy the above mentioned inequalities (I.1) - (I.6). According to (4.4)1, the local maximum

stress of the principal solution (discrete and continuum) occurs at em = 0.47992. The corresponding

macroscopic stress W ′(e) - strain e diagram is depicted in FIG 4.1(a).

The lengths L = 96ε and ε = 1 are used in all subsequent calulations.

4.2.1 COMPARISON OF END FORCE - END DISPLACEMENT DIAGRAMS.

The end force F - (dimensionless) end displacement ∆/L diagrams which show the equilibrium paths

of the type A discrete and continuum models are depicted in FIG 4.2(a), (b).
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The first four bifurcation points en = ∆n/L (n = 1, 2, 3, 4) for the continuum and the discrete models

are listed below
CONTINUUM DISCRETE

e1 = 0.480099 e1 = 0.480099

e2 = 0.480626 e2 = 0.480625

e3 = 0.481509 e3 = 0.481505

e4 = 0.482761 e4 = 0.482724

Recall that the bifurcation points for the continuum model are the appropriate roots of (3.15) where

W (e) and h(e) are given by (4.2), (4.3). The corresponding bifurcation points for the discrete model are

found by investigating the positive definiteness of the stability matrix E ,uu (
0
u, ∆) subject to the constraints

δu(0) = δu(L) = 0 for the first bifurcation point e1 = ∆1/L, δu(0) = δu(L/2) = δu(L) = 0 for e2 = ∆2/L,

δu(0) = δu(L/3) = δu(2L/3) = δu(L) = 0 for e3 = ∆3/L and so on, since the corresponding eigenmode

must vanish at these intermediate nodes. As expected, the accuracy of the continuum model decreases

for higher eigenmodes, but it is quite remarkable that for the modes investigated the disagreement does

not exceed 0.008%. Similarly, remarkably good agreement is found for the bifurcated (localized strain)

equilibrium solutions.

Certain important features of the bifurcated equilibrium solutions depicted in FIG 4.2 are worth

discussing. The first such feature is that bifurcation initially occurs at decreasing end displacement.

Indeed at localization one or a few springs experience an increase in strain to a value above the critical

strain, while the majority of springs experience reduction in strain to a value below the critical strain in

order to satisfy the equilibrium equation for the structure. This reduction in strain in the majority of

springs is responsible for the overall decrease of the end displacement ∆ from its critical value.

As a bifurcation amplitude parameter that increases monotonically in the bifurcated equilibrium

branch, we consider the maximum strain e0 (see Section 3.4.2). As the maximum strain e0 increases, one

can see from the graphic construction in FIG 3.1 that the minimum strain eL decreases. For a type A

material, the minimum value of eL that can be achieved without violating (3.26), (3.27) is the lower strain

êL, while the peak strain at the localized zone approaches ê0, where êL, ê0 are the strains for which the

force ĉ = (w(ê0)−w(êL))/(ê0 − êL) (see equation (3.22)) is the Maxwell line of the stress W ′(e) - strain

e curve (ĉ = W ′(êL) = W ′(ê0)). See FIG 4.3.

Since in the bifurcated solution the force c should exceed ĉ (according to (3.26), (3.27)), it follows

that all the bifurcated equilibrium solutions lie above the Maxwell line, exactly as seen in FIG 4.2.

The evolution of each bifurcated equilibrium solution proceeds as follows. As the peak strain e0

increases away from the bifurcation strain, the strain within the localized deformation zone increases while

its size decreases rapidly from L/n to a fraction of L/n, attaining its minimum value. There after the

localized deformation zone size begins to slowly increase. As e0 approaches ê0, the localized deformation

zone increases rapidly in size, and spreads across the entire length of the structure. Subsequently, a
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uniform strain solution develops with e > ê0 throughout the structure. The above behavior of the

onset and propagation of the localized deformation zone is similar to the one reported in Kyriakides and

Chang [22] who study the propagation of a bulge in an inflatable elastic cylindrical member subjected to

internal pressure, although their model is an axisymmetric (two-dimensional) nonlinear elastic membrane

model as opposed to the one-dimensional higher order gradient model employed here.

The most interesting feature in the continuum bifurcated equilibrium solutions shown in FIG 4.2 is

that they stop as ∆/L → ê0. This is a limitation of the analytical model considered in (3.1), (3.7). For as

long as the maximum strain e0 < ê0, a constant c can be found from (3.22) that satisfies the inequalities

(3.26), (3.27). Any solution with e0 > ê0 violates (3.27) as one can see graphically from FIG 4.3. The

discrete solution does not suffer any such limitation. Notice the excellent agreement between the discrete

and continuum bifurcated solutions at the initial part of the formation of the localized strain zone for

n = 1, 2, 3, 4, as seen in FIG 4.2(b).

4.2.2 COMPARISON OF STRAIN PROFILES.

In addition to the comparison of the force F - (dimensionless) end displacement ∆/L diagrams, the

strain profiles of the localized equilibrium solutions are compared in FIG 4.4(a), (b), (c). The above

strain distributions correspond to the first bifurcated solution of a structure of length L = 96ε subject to

u(L/2) = ∆/2 or equivalently, as discussed in Section 4.1, to the second bifurcation of the same structure

without the above constraint (The solution also coincides with the first bifurcated solution of a structure

with L = 48ε). This equilibrium solution has a bell shaped strain profile symmetric about x = L/2 as

discussed in Section 3.4.2 (see FIG 3.3(b)) and thus only the right half is partially shown in FIG 4.4. For

the discrete model the strains in the springs of length ε, ei−
1 = (ui − ui−1)/ε, are plotted against node

numbers i (for i > N/2 = 48). For the continuum model the corresponding quantities are the average

strains between nodes i and i − 1, ēi = (1/ε)
iε∫

(i−1)ε

e dx = u(i) − u(i − 1) (recall ε = 1), and are plotted

for the same range of node numbers.

The above strain distributions have been calculated for force levels ca = 1.377, (a) cb = 1.369,

(b) and cc = 1.365, (c) all of which are stable, and therefore observable, points along the bifurcated

equilibrium path. Notice the excellent agreement between the discrete and continuum model strain

distributions at load points away from the Maxwell line load (ĉ = 1.364), FIG 4.4(a), (b). As the

Maxwell line is approached and the localized strain zone begins to propagate through the model, the

discrepancies between the discrete and continuum strain profiles become noticeable, FIG 4.4(c), in view

of the limitations of the continuum model in describing the propagation phase of the localized deformation.
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4.2.3 DISCUSSION OF STABILITY.

Finally our attention is turned to the discussion of stability for the bifurcated equilibrium solutions.

For the reasons explained in Section 4.1, we investigate the stability of the symmetric bifurcated equi-

librium solution with the localized strain zone centered at x = L/2 (the bifurcated equilibrium path

emerging from ∆2), subject to u(L/2) = ∆/2. For comparison the stability of the asymmetric bifurcated

equilibrium solution with the localized strain zone centered at x = 0 (or x = L), i.e. the bifurcated

equilibrium path emerging from ∆1, is also presented. The results are depicted in FIG 4.5. Solid lines

represent stable equilibrium configurations while dashed lines represent unstable ones.

Notice that the localized deformation solutions change stability at the point where the end dis-

placement ∆ stops decreasing, i.e. at dF/d∆ = ∞. The mechanism which stops the decrease in end

displacement and causes the end displacement to increase is both the growth of the maximum strain e0,

and the growth of the localized strain zone size. The importance of these stability results lies in the fact

that they show stability of the localized strain solutions after a minimum value of the applied displacement

has been reached (at dF/d∆ = ∞) during the localization process. Stability of the localized deformation

branch means observability in a quasistatic loading experiment. The stability results presented here are

based on the discrete model.

4.3 TYPE B MODEL.

For this model, whose macroscopic stress W ′(e) - strain e behavior increases monotonically to a

maximum stress at em and then monotonically decreases to zero stress as e → ∞, the energies w1(e) and

w2(e) respectively, are

w1(e) = −7 + e + 6 ln(1 + e) +
7

1 + e

e ≡ u,x

w2(e) = −1
2

(
−1 + e +

1
1 + e

) (4.5)

According to (3.4) the corresponding continuum energy density has the following form for W (e) and

h(e)

W (e) = 6
[
ln(1 + e) − e

1 + e

]
(4.6)

h(e) =
1
2

e

(1 + e)3
(4.7)

Attention is restricted here to tensile deformation e > 0.

The requirement (3.11) that h(e) > 0 is automatically satisfied. Moreover (3.10) also holds and the

maximum stress in the principal solution occurs for

em = 1 (4.8)
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The corresponding macroscopic stress W ′(e) - strain e diagram is depicted in FIG 4.1(b).

As for the type A models, the lengths L = 96ε and ε = 1 are used in all subsequent calculations.

4.3.1 COMPARISON OF END FORCE - END DISPLACEMENT DIAGRAMS.

The end force F - (dimensionless) end displacement ∆/L diagrams which show the equilibrium paths

of the type B discrete and continuum models are depicted in FIG 4.6(a), (b).

The first four bifurcation points en = ∆n/L (n = 1, 2, 3, 4) for the continuum and the discrete model

are listed below
CONTINUUM DISCRETE

e1 = 1.000089 e1 = 1.000089

e2 = 1.000357 e2 = 1.000357

e3 = 1.000804 e3 = 1.000802

e4 = 1.001430 e4 = 1.001412

The procedures used to obtain the above results for the continuum and discrete models are identical

to the ones followed for the type A models. The accuracy of the continuum model is even more remarkable

since the maximum discrepancy, which is observed for the fourth eigenvalue, is 0.0016%.

For the same reasons given for the type A model, each bifurcated equilibrium solution occurs initially

at decreasing end diplacement ∆.

Again the monotonically increasing parameter along the bifurcated equilibrium branch is the max-

imum strain e0. Unlike the previous model, there is always the possibility of an analytical solution of

the continuum model for any level of maximum strain e0. According to the graphic construction of the

force c in FIG 3.1, one can always find eL such that the inequalities (3.26), (3.27) are satisfied.

The evolution of the bifurcated equilibrium solution proceeds as follows. As the peak strain e0

increases away from the bifurcation strain, the strain within the localized deformation zone increases

while its size decreases rapidly from L/n to a fraction of L/n, attaining its minimum value. There after

the localized zone size increases very slowly while the peak strain e0 grows without bound. No propagation

is observed. A similar behavior for an infinite medium was found in Triantafyllidis and Aifantis [34].

Notice that the force - displacement diagram of the continuum model is in very good agreement with

the results of the discrete model for n = 2, 3, 4. For n = 1 no analytical solution was calculated due to

numerical accuracy limits of the hardware.

4.3.2 COMPARISON OF STRAIN PROFILES.

In addition to the comparison of the force F - (dimensionless) end displacement ∆/L diagrams, the

strain profiles of the localized equilibrium solutions are compared in FIG 4.7(a), (b), (c). The above

strain distributions correspond to the first bifurcated solution of a structure of length L = 96ε subject to

u(L/2) = ∆/2 (same conditions as the ones mentioned in Section 4.2.2). Again this equilibrium solution
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has a bell shaped strain profile symmetric about x = L/2 (see Section 3.4.2; see FIG 3.3(b)) and thus

only the right half is partially shown in FIG 4.7. The discrete model length ε spring strains are compared

to the continuum model average strains between nodes for node numbers i > 48 (See Section 4.2.2 for

details concerning the construction of the diagrams.).

The above strain distributions have been calculated for force levels ca = 0.667, (a) cb = 0.590, (b)

and cc = 0.506, (c) all of which are stable equilibrium configurations. The agreement between the discrete

and continuum model strain distributions is good.

4.3.3 DISCUSSION OF STABILITY.

Finally our attention is turned to the discussion of stability for the bifurcated equilibrium solutions.

For the reasons explained in Section 4.1, we investigate the stability of the symmetric bifurcated equi-

librium solution with the localized strain zone centered at x = L/2 (the bifurcated equilibrium path

emerging from ∆2), subject to u(L/2) = ∆/2. For comparison the stability of the asymmetric bifurcated

equilibrium solution with the localized strain zone centered at x = 0 (or x = L), i.e. the bifurcated

equilibrium path emerging from ∆1, is also presented. The results are depicted in FIG 4.8. Solid lines

represent stable equilibrium configurations while dashed lines represent unstable ones.

As for the type A models, the localized deformation solutions change stability at the point where

the end displacement ∆ stops decreasing, i.e. at dF/d∆ = ∞. The mechanism which stops the decrease

in end displacement and causes the end displacement to increase is the growth without bound of the

maximum strain e0, and the slow growth of the localized strain zone size. As for the type A models the

localized strain solutions are stable after a minimum value of the applied displacement is reached during

the localization process, and thus are observable in a quasistatic loading experiment.
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5. DISCUSSION AND CONCLUDING REMARKS

The present study provides a consistent methodology for deriving higher order gradient continuum

macroscopic models from the properties of discrete, periodic microstructures. The work is done in the

context of one-dimensional nonlinear elastic media, but the methodology can be generalized to planar and

space models, as will be shown in a forthcoming paper. Moreover, the accuracy of the continuum models is

evaluated via examples where the boundary value problem of stretching a finite length bar is solved twice,

once using the discrete model, considered the exact model, and once using the corresponding continuum

model, considered the approximate one. It is found that the continuum models that incorporate only up to

the second order displacement gradient give very accurate predictions of the end force - end displacement

behavior as well as the shape of the localized deformation zone from the onset of localization up to the full

development of the zone. For materials that exhibit a local maximum and a subsequent local minimum

in their macroscopic stress - strain behavior (referred to in the text as type A materials), the continuum

model fails to describe the propagation of the localized deformation zone. Whether the even higher order

gradient continuum models – which are easily produced by the proposed method but do not have an

analytical solution – can correct this shortcoming remains to be investigated. This deficiency is absent in

materials whose macroscopic stress - strain curves decay to zero stress after reaching a maximum stress

(referred to in the text as type B materials), since the maximum strain in the localization zone grows

without bound and there is virtually no propagation stage.

The issues of stability and imperfection sensitivity of the localized strain solutions – which are

bifurcated solutions away from the uniform strain solution of the bar, occuring slightly after the maximum

force is reached – have also been investigated. Of interest are the localized strain equilibrium solutions

with a “bell shaped” strain profile. The reason for our attention to these particular bifurcated solutions

lies in the problem’s sensitivity to imperfections. It is found that a “bell shaped” localized strain solution

always appears at the weakest point of the structure, irrespective of the exact shape of the imperfection.

In addition, the imperfect structure’s end force - end displacement and the corresponding strain profiles

are essentially the same to the ones of the “bell shaped” bifurcated solution of the perfect structure.

Moreover these solutions are stable once the corresponding end displacement starts increasing (after

an initial snap back). Stability implies observability of the “bell shaped” localized strain equilibrium

solutions in a quasistatic loading experiment and thus physical relevance.

The present study is part of a number of recent studies on the relations between the microscopic

failure mechanisms and their corresponding macroscopic manifestations in solids with microstructure.

In the interest of simplicity as well as mathematical consistency – disordered microstructures present

substancial mathematical difficulties once nonlinear phenomena are modeled and require a number of

intuitive assumptions which are often difficult to prove – efforts are focused on periodic microstructures

and mechanical failure modes during a quasistatic loading process in absence of rate, inertial or thermal
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effects. Although these studies are more fundamental in nature, they are hoped to lead to better under-

standing through more accurate modeling of a simple, yet quite useful, class of composites, namely those

with periodic (or almost) microstructures, such as certain foam type materials, honeycombs etc. One

part of these studies aims at relating macro and micro instability mechanisms at the onset of failure (see

Abeyaratne and Triantafyllidis [1], Triantafyllidis and Maker [33], Geymonant, Müller and Triantafyl-

lidis [16]) where the failure mechanism at the micro level is bifurcation buckling and the corresponding

failure at the macro level is shear band localization. The present work is the first similar effort in the

post failure range, where an effort is made to find continuum theories that are capable of describing the

composite’s behavior after the onset of the initial instability. Results from the one-dimensional model

are very encouraging but more work is needed in studying the problem in two and three dimensions, an

investigation that is currently under way.

ACKNOWLEDGEMENTS

This work was partially funded by ALCOA. The authors are grateful to Dr. Owen Richmond for

stimulating discussions and his constant encouragement.



- 25 -

REFERENCES

1. R. Abeyaratne and N. Triantafyllidis, An Investigation of Localization in a Porous Elastic Material Using Homoge-

nization Theory. J. Appl. Mech. 51 (1984) 481–486.

2. R. Abeyaratne and J. K. Knowles, Non-Elliptic Elastic Materials and the Modeling of Elastic-Plastic Behavior for

Finite Deformation. J. Mech. Phys. Solids 35 (1987) 343–365.

3. R. Abeyaratne and J. K. Knowles, On the Dissipative Response Due to Discontinuous Strains in Bars of Unstable

Elastic Material. Int. J. Solids Structures 24 (1988) 1021–1044.

4. E. C. Aifantis and J. B. Serrin, The Mechanical Theory of Fluid Interfaces and Maxwell’s Rule. J. Coll. and Interf.

Sci. 96 (1983) 517–529.

5. E. C. Aifantis and J. B. Serrin, Equilibrium Solutions in the Mechanical Theory of Fluid Microstructures. J. Coll.

and Interf. Sci. 96 (1983) 530–547.

6. E. C. Aifantis, On the Microstructural Origin of Certain Inelastic Models. Transactions of ASME, J. Engng. Mat.

Tech. 106 (1984) 326–330.

7. E. C. Aifantis, The Physics of Plastic Deformation. Int. J. Plasticity 3 (1987) 211–247.

8. V. Alexiades and E. C. Aifantis, On the Thermodynamic Theory of Fluid Interfaces: Infinite Intervals, Equilibrium

Solutions, and Minimizers. J. Coll. Interf. Sci. 111 (1986) 119–132.

9. A. Askar, Lattice Dynamical Foundations of Continuum Theories. (1985) World Scientific, Singapore.
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24. J. Mandel, Conditions de Stabilité et Postulat de Drucker, in: Rheology and Soil Mechanics, Eds. J. Kravtchenko and

P. M. Sirieys. pp. 58–68 (1966) Springer, Berlin.

25. Z. Marciniak and K. Kuczynski, Limit Strains in the Process of Stretch Forming Sheet Metal. Int. J. Mech. Sciences

9 (1967) 609–625.

26. R. D. Mindlin, Micro-structure in Linear Elasticity. Arch. Rat. Mech. Anal. 16 (1964) 51–78.

27. R. D. Mindlin, Second Gradient of Strain and Surface-Tension in Linear Elasticity. Int. J. Solids Structures 1 (1965)

417–438.

28. A. Molinari and R. J. Clifton, Analytical Characterization of Shear Localization in Thermoviscoplastic Solids. J. Appl.

Mech. 54 (1987) 806–812.

29. J. R. Rice, The Localization of Plastic Deformation, in: Theoretical and Applied Mechanics (Proceedings of the 14th

I.U.T.A.M. Conference, Delft, August 30-September 4 (1976)), Ed. W. T. Koiter, pp. 207–220 (1976) North-Holland,

Amsterdam.

30. E. S. Suhubi and A. C. Eringen, Nonlinear Theory of Micro-Elastic Solids—II. Int. J. Engng. Sci. 2 (1964) 389–404.

31. T. Y. Thomas, Plastic Flow and Fracture in Solids. (1961) Academic Press, New York.

32. R. A. Toupin and D. C. Gazis, Surface Effects and Initial Stress in Continuum and Lattice Models of Elastic Crystals,

in: Proceedings of the International Conference on Lattice Dynamics, Copenhagen, August, 1963, Ed. R. F. Wallis,

pp. 597–605 (1965) Pergamon Press, Oxford.

33. N. Triantafyllidis and B. N. Maker, On the Comparison Between Microscopic and Macroscopic Instability Mechanisms

in a Class of Fiber-Reinforced Composites. J. Appl. Mech. 52 (1985) 794–800.

34. N. Triantafyllidis and E. C. Aifantis, A Gradient Approach to Localization of Deformation. I. Hyperelastic Materials.

J. Elasticity 16 (1986) 225–237.

35. V. Tvergaard, A. Needleman and K. K. Lo, Flow Localization in the Plain Strain Tensile Test. J. Mech. Phys. Solids

29 (1981) 115–142.

36. J. D. Van Der Waals, The Thermodynamic Theory of Capillarity Under the Hypothesis of a Continuous Variation of

Density (in Dutch). Verhandel. Konink. Akad. Weten. Amsterdam (sec. 1) 1 (1893)



- 27 -

FIGURE CAPTIONS

FIG 2.1 Schematic diagram of the discrete nonlinear elastic periodic model for q = 2.

FIG 3.1 Geometric construction of the end force c acting on a bar with macroscopic stress - strain relation

given by W ′(e) and the maximum and minimum strains respectively e0 and eL.

FIG 3.2 Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium solutions

emerging at ∆1 = e1L

(a) when the maximum strain occurs at x = 0 and

(b) when the maximum strain occurs at x = L.

FIG 3.3 Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium solutions

emerging at ∆2 = e2L

(a) when the maximum strain occurs at x = 0 and

(b) when the maximum strain occurs at x = L/2.

FIG 3.4 Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium solutions

emerging at ∆3 = e3L

(a) when the maximum strain occurs at x = 0 and

(b) when the maximum strain occurs at x = L/3.

FIG 3.5 Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium solutions

emerging at ∆4 = e4L

(a) when the maximum strain occurs at x = 0 and

(b) when the maximum strain occurs at x = L/4.

FIG 4.1 Macroscopic stress - strain behavior (a) for the type A model and (b) for the type B model based

on the actual discrete micromodels employed in all the numerical/analytical calculations (see Sec-

tions 4.2 and 4.3 for the employed constants respectively).

FIG 4.2 Comparison of the end force F - (dimensionless) end displacement ∆/L for a type A model of length

L = 96ε based on the continuum (solid line) and discrete (point marks) solutions for the first four

(n = 1, 2, 3, 4) bifurcated solutions. FIG 4.2(b) is an an enlarged version of FIG 4.2(a).

FIG 4.3 Graphic interpretation of the admissibility of solutions with maximum strain e0 < ê0 and inadmissi-

bility of solutions with e0 > ê0 for continuum models of type A, where ê0 and êL are the maximum

and minimum strains corresponding to the Maxwell line.
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FIG 4.4 Comparison of strain profiles of discrete (solid bars) and continuum (shaded bars) solutions at three

different load levels for the type A model with length L = 96ε. All comparisons are within the stable

range of the bifurcated equilibrium branch emerging from ∆2 = e2L. Only the right halves of the

“bell shaped” localized strain solutions are partially depicted here.

Fig 4.5 Stable (solid line) and unstable (dashed line) regions of the principal and the first two (n = 1, 2)

bifurcated equilibrium paths for the type A model of length L = 96ε.

FIG 4.6 Comparison of the end force F - (dimensionless) end displacement ∆/L for the type B model of

length L = 96ε based on the continuum (solid line) and discrete (point marks) solutions for the first

four (n = 1, 2, 3, 4) bifurcated solutions. FIG 4.6(b) is an an enlarged version of FIG 4.6(a).

FIG 4.7 Comparison of strain profiles of discrete (solid bars) and continuum (shaded bars) solutions at three

different load levels for the type B model with length L = 96ε. All comparisons are within the stable

range of the bifurcated equilibrium branch emerging from ∆2 = e2L. Only the right halves of the

“bell shaped” localized strain solutions are partially depicted here.

Fig 4.8 Stable (solid line) and unstable (dashed line) regions of the principal and the first two (n = 1, 2)

bifurcated equilibrium paths for the type B model of length L = 96ε.
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Fig. 3.2
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Fig. 3.3
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Fig. 3.4



(a)

(b)

L

e
L

e
0

e
4

e
m

x

e

L/2L/4 3L/4

u(x)
b

xLL/8 7L/85L/83L/8

u(x)
b

xLL/8 7L/85L/83L/8

eL

e
0

e
4

e
m

L x

e

L/2L/4 3L/4

- 34 -

Fig. 3.5
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