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1. Introduction 

A fundamental problem in the study of composite materials (such as fiber- 
reinforced materials, layered materials, honeycombs, foams, etc . . . .  ) is the 
determination of their macroscopic (or "average") behavior as a function of 
their microstructure. The calculation of these macroscopic properties is called 
the homogenization (or "averaging") problem for the composite and has at- 
tracted a great deal of attention both in the engineering as well as the 
mathematics literature. 

The first homogenization problems to be addressed in the engineering 
literature were concerned with linearly elastic composites. For the simplest 
possible microstructures, namely the periodic ones (obtained by the infinite 
repetition in space of a fundamental unit cell), the homogenized elastic moduli 
can be calculated exactly (see HILL. [H 63]). Since exact calculations are no 
longer possible for the more complicated case of aperiodic microstructures, 
there are two philosophically different approaches to the problem. On one 
hand, approximate methods have been developed to calculate the homogenized 
moduli of aperiodic composites. Perhaps the most popular of these methods 
are the several variations of the "self-consistent" scheme developed initially 
by HILL` [H 65] and KR6NER [K 67] and subsequently employed by many 
researchers in this field. On the other hand, a successful approach has also 
been developed to construct bounds for the macroscopic moduli of arbitrary 
linearly elastic composites. Although the simplest arithmetic and harmonic 
bounds have been known for about a century, interest in this approach has 
been revived with the work of HASItIN & SHTRIKMAN [HS 62] and continues 
strongly to date. For a brief review of the aforementioned approaches in the 
engineering literature see WILLIS [W 81] or HIL`YARD [HI 82] and references 
quoted therein. 

In parallel to the above developments, a rigorous mathematic approach to 
the homogenization problem in linear elastic solids has been developed in the 
early sixties and seventies. A justification of HILL's results for periodic media 
has been given via the asymptotic expansion method proposed by SANCHEZ- 
PALENCIA [SP 74]. The considerable progress that has been made in the mathe- 
matical study of various aspects of the homogenization in linearly elastic com- 
posites can be reviewed in BENSSOUSSAN, LIONS & PAPANICOLAOU [BLP 78], 
SANCHEZ-PALENCIA [SP 80] and KOHN & STRANG [KS 86]. In addition to these 
results in linear elasticity, one should also mention the more recent generaliza- 
tions in linear viscoelastic (see [SP 80]) and thermoelastic periodic composites 
(see FRANCFORT [F 83]). 

The study of nonlinear composite solids presents considerable additional 
diffculties. The main difference with the linear case is that the macroscopic 
behavior of the nonlinear composite can be of a nature completely different 
(and often unknown) from the microscopic behavior of its constituents. As a 
result, the majority of the numerous engineering papers on this subject involve 
a variety of approximations difficult to verify. Consequently, the engineering 
studies in this area have not fostered an analogous development in the 
mathematics literature as for the linear case. The only apparent deviation 
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from this trend seems to be the case of nonlinearly elastic composites, the 
topic of interest in the present work. 

The simplest, and yet practically meaningful and theoretically tractable type 
of nonlinear composites, are the periodic nonlinearly elastic composites. In the 
engineering literature, ABEYngATNE & TRIANTAFYLLIDIS [AT 84], motivated by 
the desire to understand why the experimentally produced energy density func- 
tions for a certain type of foam rubber show the possibility of a shear band 
(in mathematical terms the energy density loses its rank-one convexity), have 
studied numerically the behavior of an elastomeric composite with periodic 
holes. It was found that although the matrix material is polyconvex in the 
sense of BALL [B 77] and hence always rank-one convex, the homogenized in- 
cremental (or linearized) moduli of the composite lose their rank-one convexity 
at adequately high macroscopic strains. 

In an effort to further understand the reasons for such a behavior, TRIAN- 
TAFYLLIDIS & MAKER [TM 85] have studied the bifurcation problem of a finitely 
strained layered nonlinearly elastic composite. They found that there exists an 
intimate connection between bifurcation at the microscopic level and loss of 
rank-one convexity at the macroscopic level. More precisely, they showed that 
bifurcation of the composite at a wavelength much larger than the unit cell 
size corresponds to the loss of rank-one convexity in the homogenized in- 
cremental moduli. As it turns out, this very interesting connection between 
microscopic and macroscopic instability mechanisms in nonlinearly layered 
composites is a much more general property that holds for all nonlinearly 
elastic periodic composites and will be proved (under suitable hypotheses) in 
Section 5. 

One should also mention the work of TA~Bcrr & WILLIS [TW 87] on bound- 
ing theorems for aperiodic nonlinearly elastic composites, in a spirit that 
follows the corresponding work for the linear case. 

On the mathematical side, the study of problems in nonlinearly elastic 
composites has greatly advanced through the introduction of the notion of F- 
convergence by D~GIoR6I [D 75]. Using that notion BRAIDES [Br 85] and 
MOLLER [Mt~ 87] obtained results relevant in nonlinear elasticity. They study 
materials with a periodic microstructure which are characterized by a stored 
energy density W(x/e, F) depending on the local position x/e and the deforma- 
tion gradient F, e being the period of the structure. They find that in the limit 

~ 0 the material is described by a (homogeneous) stored energy density W(F) 
depending only on the deformation gradient (and not explicitly on the posi- 
tion) and they give an abstract formula for W (see Section 2 below). 

One fundamental difficulty encountered in nonlinear elasticity is that W is 
not a convex function of the deformation gradient. In fact, the homogeniza- 
tion result for convex integrands (see MARCELLINI [Ma 78]) differs substantially 
from that for nonconvex integrands (see Section 2), this difference being 
related to possible instabilities such as buckling on the microscale (see 
Sections 1 and 4 in [M~i 87]). 

The purpose of the present paper is twofold. First, we study the relation 
between microscopic instabilities (i.e., the existence of nontrivial solutions to 
the linearized homogeneous problem) and the corresponding macroscopic in- 
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stabilities (i.e., the failure of strong ellipticity for the homogenized incremental 
moduli). One of the main results is that long wavelength instabilities for the 
linearized problem lead to loss of rank-one convexity of the homogenized 
energy density (see Theorems 3.4(iii) and 5.1(ii)). 

Secondly, we investigate the commutability issue between the homogeniza- 
tion and the linearization operations in nonlinear periodic composites. For 
convex W a rigorous derivation of that formula is included, extending some 
previous results of ATTOUCH [A 84] (see also [FM 91]). This result may be 
stated as the fact that homogenization and linearization commute. 

Some of the results of this paper have been announced in [GMT 90]. 
The outline of the paper is as follows: In Section 2, we review the notion 

of F-convergence and the homogenization results in nonlinear elasticity. 
Sections 3 and 4 concern homogenization results in linearized elasticity; in 

fact, they apply to more general symmetric second-order strongly elliptic 
systems - d i v  II(x)Vu = f  in divergence form. The main difficulty is that in 
general the 4-tensor L(x) is not pointwise coercive (i.e., k(x) does not satisfy 
(ll (x) G, G) >_ CIGI 2, C> 0 for all N•  matrices G) so that solutions may 
not be a priori bounded in H 1 (see LEDRET [LD 87]). This difficulty is over- 
come by introducing the quantity 

infl q 
(see below for notations) which measures the overall coercivity. One result 
which is important in applications (cf. in particular Section 6.1) is that A can 
equivalently be characterized in terms of Bloch waves eiC~ p being 
periodic on the unit cube (see Lemma 4.2). Other measures of coercivity are 
also introduced and their properties are summarized in Section 3.3. 

We show (in Theorem 3.1) that the equations have the usual homogeniza- 
tion limit if A > 0, while F-convergence holds if A = 0 (Theorem 3.4(i)). 
Moreover, if A = 0, the whole space problem admits a non-trivial solution, 
and according to the character of that solution (Bloch wave or the long- 
wave-length limit) the linearly homogenized problem retains or loses strong 
ellipticity (Theorem 3.4(ii), (iii) and Theorem 3.5). 

In Section 5, we combine the results from the linear and the nonlinear 
theory and study in particular the question whether homogenization and 
linearization commute, i.e., whether the second derivatives of the nonlinearly 
homogenized energy density W can be obtained by studying the homogenized 
energy of an associated linear problem. 

We show that under certain technical hypotheses (see (HI) and (H2)) W 
has the expected second-order Taylor expansion and that loss of strong ellip- 
ticity for the homogenization of the linear problem implies loss of ellipticity 
for W (see Theorem 5.1). 

To complement these results we show (see Theorem 5.3) that for strictly 
convex W, with quadratic growth, homogenization and linearization do indeed 
commute and that no technical assumptions like (H1) or (H2) are required in 
that case. 
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Section 6 contains an application of the general theory developed in Sec- 
tion 4 to the case of  a layered nonlinearly elastic composite. The composite 
is under a state of plane strain with one of  its principal stretch axes constantly 
aligned with the direction of  lamination. For this problem one is able to 
calculate the quantities A, A}, A~, o ~  as functions of the applied stretch 
ratio 2 in the lamination direction. One can also calculate for the given layered 
composite the critical values 2 + and 2 c  corresponding to a first bifurcation 
in tension and compression of  the composite, respectively, as well as 2h + and 
)~h-, which are the stretch ratios corresponding to the first loss of  ellipticity 
in tension and compression, respectively. The application is completed by an 
example where all these quantities are calculated for a composite made of  a 
nonlinear elastic material with a given energy density. 

Notation. Vectors (with the exception of the current point of NN) and vector- 
valued functions are represented by a boldface minuscule. Tensor of order 4 
are represented by an outline majuscule. The matrix inner product of C and 
D is (C, D ) =  trace C. r/5, where /5 is the complex conjugate of D. By 
Hl,P(~; ~N) or HI'p(Q; C N) (1 < p < o o )  we denote the usual Sobolev 
spaces of  vector-valued functions on an open set g ,  and we drop p for p = 2. 
Moreover H~ 'p and [-Ilk'# p denote the spaces of  all H~dP([RN; R N) functions 
periodic on the unit cell Y= [0, 1] N and on kY= [0, k] N, respectively, and ~ l , p  
and #U~ p refer to the corresponding spaces of CN-valued functions. We use 
the symbol ~ to denote weak convergence. By N* we denote the strictly 
positive integers. 

2. Homogenization of Nonconvex Integral Functionals 

Here we briefly review the results of [Mii 87] (cf. also [Br 85]). We consider 
a (hyper-) elastic material with a periodic microstructure described by the 
stored-energy density W(x, F) depending on the position x and the local defor- 
mation gradient E We assume that W is Y-periodic in x, where Y = [0, 1] N, 
N >__ 2, and has polynomial growth in F, i.e., 

W(x + z, F) = W(x, F) Vz  E 7/U, (2.1) 

c IFI p <= W(x, F) <= C(1 + ]VlP), (2.2) 

OW 
OF (x, F) <= C(1 + IFIP-1), (2.3) 

where C, c > 0, p > 1. Let e > 0 be the scale of the microstructure; then 

Ie(u) = ~ W , Vu(x  dx (2.4) 
Q 

is the energy corresponding to a deformation u : g  ~ [~N of  a piece of ma- 
terial filling the region #2. As e ~ 0, i.e., as the microstructure becomes in- 
creasingly finer, we expect I * to converge (in a sense to be defined below) to 
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some homogenked functional 

I (u )  = ~ W ( V u ( x ) )  dx (2.5) 
0 

where the homogenized energy density W depends only on the deformation gra- 
dient and not explicitly on the position. A crucial point in passing from (2.4) 
to (2.5) is to define a suitable notion of  convergence for the functionals I i  
This problem was solved by DEGIORGI [D 75] by introducing the notion of  F- 
convergence. The importance of  this notion lies in the fact that, under ap- 
propriate technical hypotheses, it implies the convergence of minimizers which 
in our setting are solutions of the elastic equilibrium equations. F-convergence 
has been studied in a context much more general than ours; see DEGIORGI 
[D 791, DEGIORGI & DALMASO [DD 83], DALMASO &MoDICA [DM 81] and 
ATTOUCH [A 84] for an overview. For our purpose the following definition is 
sufficient. 

Definition 2.1. Let {I e} ~ > 0 be a family of  functionals on H l,p (s R N) (1 < p < c~). 
We say that {I~}e>0 is F-convergent to a functional I, with respect to weak 
convergence of sequences in H I'p as e ~ 0 if the following conditions hold: 
(i) If u ~ ~ u (weakly in H I'p) as e ~ 0, then 

lim inf I e (u  ~) >= I (u ) .  
8~0 

(ii) For every u ~ HI'P(O; R N) there is a sequence u c ~ u weakly in H I'p 
such that 

lim U ( u  ~) = I (u ) .  
~ 0  

One easily deduces the following result on the convergence of minimizers 
(for a proof  see ATTOVCH [A 84, pp. 39-41]) .  

I_emma 2.2. Assume that [Ie}~>0 is F-convergent to I as e ~ 0 and that g is a 
weakly continuous functional on HI 'p(Q;  [RN). Let u ~ be an approximate mini- 
mizer of I t + g, i.e., 

U ( u  ~) + g(u  e) < inf{Ie(u) + g(u)[  u ~ HI'P(O; ~N)} + e. 

Assume furthermore that [ue}e>0 is weakly compact in H I'p and let u ~n ~ u be 
a weakly convergent subsequence with limit u as en ~ O. Then 

I (u )  + g(u)  <= I (v )  + g(v )  V v  E HI'P(Q; RN), 

min[I (u)  + g ( u ) l u  ~ HI'P(Q; [~N)} = lim in f [U(u )  + g ( u ) l u  E HI'P(Q; ~N)}. 
~ 0  

The homogenization result for (2.4) becomes (cf. [Mfi 87, Thm. 1.3, 
Cor. 2.3]): 

Theorem 2.3. Assume that s is a bounded and Lipschitz domain and that 
(2.1)-(2.3) hold. Then the I c as given by (2.4) are F-convergent to I given by 
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(2.5), and 

where 

W(F) = inf Wk(F) ,  (2.6) 
kEN 

W~(F) = i n f [ ~ k y ~ W ( x , F + V q ) d x l q E H ~  1 " (2.7) 

MARCELLINI [Ma 78] has proved that if F ~ W(x, F) is convex the expres- 
sion for W simplifies to W =  W =  I,V I, while [Mfi 87, Thin. 4.3] gives an ex- 
ample where W < #. It seems that not much is known about specific proper- 
ties of W; see PONTE-CAsTENEDA [PC 89] for some non-trivial bounds on W. 

We remark that Theorem 2.3 does not require any convexity assumption on 
W. In fact, by an abstract result from the theory of F-convergence (see, e.g., 
[A 84, Chapter2.1]) the F-limit remains unchanged if we replace I ~ by its 
lower semicontinuous envelope with respect to weak convergence of sequences 
in H I'p, which amounts to replacing W(x, .) by its quasiconvex envelope 
QW(x, �9 ) (see ACERBI & FUSCO [AF 84]). Here the quasiconvex envelope Q f  of 
a given function f is the supremum over all quasiconvex functions less than 
or equal to f (cf. MORREY [M 52, M 66]). A function g : [R NxN ~ • is said 
to be quasiconvex if for all N x N  matrices F, all open sets Q and all 

~ Hl,Oo([2; ~N), 

I g ( F  + V(p) dx ____ ~ g(F) dx. 
g ~2 

An example of a quasiconvex but not convex function is given by F ~ det E 
If  g is quasiconvex, it is rank-1 convex, i.e., for all N x N  matrices F and 

rank-i matrices G = a @ b  with a, b E R N the function t ~-, g ( F +  tG) is con- 
vex. Whether or not rank-i convexity in turn implies quasiconvexity has been 
a major open problem in the vector-valued calculus of variations. Very recently 
SVERAK [Sv 92] has found a striking counterexample showing that for N __> 3 
rank-1 convexity does not imply quasiconvexity. Assuming adequate differen- 
tiability of g, rank-one convexity is equivalent to 

02g (G, G) > O, 
OF 2 = 

for all G = a | In the present work we always assume that W(x, �9 ) is quasi- 
convex and strongly elliptic, i.e., 

a Z w  
OF 2 ( x , F ) ( a |  a |  >=cola| 2, c 0 > 0 ,  

since we want to study possible instabilities (such as buckling), due to the way 
in which the different base materials of the composite are mixed, rather than 
instabilities which would already occur in a homogeneous block made of one 
of the base materials. 

Again by abstract results on F-convergence (cf., e.g., ATTOUCH [A 84], 
Chapter 2.1) the limit functional I is always weakly lower semicontinuous so 
that W is always quasiconvex, and hence rank-I convex. We are interested in 
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- -  m 

whether or not W is strictly rank-i convex (for a twice differentiable W, 
whether or not W is strongly elliptic). 

Failure of strict rank-1 convexity (or strong ellipticity) in the homogenized 
energy density W indicates the possibility of instabilities for the homogenized 
material. The connection between internal buckling in the composite and the 
loss of strict rank-1 convexity of W will be discussed in Section 5. 

3. The Linearized System (I): Results 

3.1. Convergence of solutions for A > 0 

Let O be a bounded Lipschitz domain of ~U and let be v0 E Hi (O;  RN), 
f 6  H-I(O; Rn). In this section we study the linearized system 

- d i v ( l l ( ~ )  ~Tv ~) = f  in O, (3.1) 

v ~ = v 0 on 00 .  (3.2) 

We assume that the real 4-tensor LL is defined on all R N, is measurable 
and a.e. in [~N satisfies 

U_(x + z) = ~_(x) for all z ~ yN, 

(ll (x)A,B) = (A, II (x) B) for all real N• matrices A,B, 

IL(x)A] _< C[A I for all real N• matrices A, 

(k(x)a| a| >=cla| 2, 

(3.3) 

(3.4) 

(3.5) 

c > O  for all a , b ( N N .  

(3.6) 
The best ellipticity constant for the nonhomogeneous tensor L(x) is 

c ~ = e s s i n f  rain (~_(x)a| a |  (3.7) 
x~r [al=lbl=l 

a, bER N 

and from the previous assumptions it follows that o~ > 0. 
The previous assumptions imply that the bilinear symmetric form 

ae(u,v) = I ( L ( ~ )  Vu, Vv) dx 

is continuous on H i ( o ;  RN). A weak solution ve~ Hi (O;  R N) of (3.1), (3.2) 
is a solution of the following problem where <, > denotes the duality pairing 
between H - i ( o ;  R N) and H~(O; RN). 

(P~) Find v ~  H i ( o ;  R N) such that v ~ -  v o ~ H01(O; R N) and such that 

a~(v ~, ~p) = <f, q~> for all ~ ~ H01(O; RN). (3.8) 
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Since a e is a symmetric, (3.8) is the weak form of the Euler-Lagrange 
equation corresponding to a critical point of  the functional 

on the affine set 

IKv o 

I t ( u )  = �89 a t ( u ,  u)  - ( f ,  u - v o) (3.9) 

= {u ~ H I ( o ;  RN); u - v 0 ~ H~(f2; ~N)}. 

Thus a weak solution of  (3.1), (3.2) is also a solution of  

(Q~) Find v t ~ iKVo such that for all u ~ IKVo, 

I t ( v  t) <__ I t ( u ) .  (3.10) 

We are interested in the behavior of the solutions v t of  the problem (W) 
or (Qt) as e --, 0. If u is a scalar, (3.6) implies that the bilinear form a~(u, v) 
is uniformly coercive (with respect to e > 0) on H~(f2) and so the existence 
and the uniqueness of v ~ and the boundedness in H I ( o )  of  the sequence v t 
follow. 

The situation is completely different when u is a vector. Indeed, even when 
the coefficients of  the 4-tensor H_ are continuous, the strong ellipticity condi- 
tion (3.6) only implies Gfirding's inequality, i.e., that there exist ci > 0 and 
5(e)  > 0 such that for all u e H01(s [~N), 

a~(u, u)  >__Cl]]Ult2~o - 5(t)Ifull~=. 

This inequality does not imply uniform coercivity, as shown by LEDRET 
[LD 87]. In order to measure the coercivity of  U_ we introduce the quantity 

A = inf IQ(Vv;  RN)I v E 2 ( R  N, RN)}, (3.11) 

where 

Q(w;  3 )  = f~( l l  (x) w, w) dx (3.12) 
w) 

We can now state our first result in terms of  the constant A. 

Theorem 3.1. Assume that (3.3)-(3.6) hold and that A > O. 
(i) For every ~ > 0 the system (3.1), (3.2) has a unique solution v ~ and there 
exists C > 0 such that for  all e > O, 

]]v~lln 1 ~ C(]]f  Hn-1 + [IVo]tH1), (3.13) 

and v ~ ~ v weakly in Hi(g2; ~N) for  e ~ O. 
(ii) v & the unique solution of  

- d i v ( M  Vv) = f  in s (3.14) 

v = Vo on O0,  (3.15) 

where the constant real symmetric 4-tensor ~ can be characterized by 

MF = ~ tL(x) (F + Vr) dr ,  (3.16) 
Y 
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where r E H 1 satisfies 

j (k(x)(F+ gz) ,  ~Tz)dx = 0 
Y 

Equivalently, ~ is characterized by 

for all z E H 1 . 

(MF, F ) =  i n f [ !  ( l l (x)(F+ Vq), F+  Vq)dx lqEH~ 1.  

Moreover, for all a, b E [~N, 

(3.17) 

(~a@b,  a<~b) >~AlaQbl 2 :A la]e[b l  z 

(3.18) 

Proposition 3.2. Assume that A < O. Then, for 0 < t < e o with to sufficiently 
small, there exists wee H~((2; R N) such that IlVw~IIL2 = 1 and 

ae(w e, w ~) <= �89 < O. 

Consequently I ~ is not bounded from below on IKv0. 

Proof.  It follows from the definition of A that there is a v E ~ ( ~ N ;  ~N) 
such that II Vv IlL2 = 1 and 

j (U_(x) vv, vv) ~ ____ �89 
~N 

Let K denote the support of v. For all sufficiently small e > 0 there exists 
ze E ~N such that e ( - z e  + K) C [2. Let 

Then w~E H~(s RN), II Vw~ ItL= = 1 and, by the periodicity of  II, 

a~(we, w~) = I (ll ( ~ )  Vwe, ~Twe) dx = I (ll (x) Vv, Vv) dx <= �89 A. 

[2 RN 

To show that I e is not bounded from below on IK~o consider Ie(vo + tw ~) 
and let t ~  + ~ .  [] 

For A < 0 the problem (Q~) has no solution, since we have the following 
result. 

(iii) The same conclusions hold if the prescription of v ~ and f is replaced by the 
prescription of sequences v ~ and fe with v~ v ~ strongly in Hi(g2; NN) and 
f c  ~ f strongly in H-1([2;  RN). 

(3.19) 
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3.2. F-convergence for A >__ 0 

For A = 0 the following quantities which measure the coercivity of U_ are 
needed: 

A 4 = in f{Q(a|  + Vq; Y)IaE C N, bE [~N, qE ~ 1 } ,  (3.20) 

A5 = lim inf inf{Q( V (ei~ Y) I q E ~ } } ,  (3.21) 
~o~0 

A 6 = inf{Q(Vq; V)] q E ~ } .  (3.22) 

Here we have extended Q to complex-valued functions due to requirements 
of the subsequent discussion. Note that if X is a subsequence of H a ( 2 ;  ~N) 
and X Q i X  its complexification, we have 

inf{Q(Vv; 2 )  I v E X@iX} = inf[Q(Vv; ~92) IvE X}. 

Indeed simply write v = Re v + i R e ( - i v )  = w 1 + iw 2. Then, by symmetry 
of ~, 

(•(x) vv, vv) = I (L(x) Vw,, w , )  + w 2 ,  Vw2) dx 
3 2 

and hence 
Q(Vv; ~ )  > min{Q(Vwl; ~ ) ,  Q(Vw2; ~ ) ] .  

The interest of the previous quantities rests on the following result. Recall 
that GL is the best ellipticity constant of II(x) given by (3.7). 

Theorem 3.3. Assume (3.3)-(3.6) hold and so GL > 0 (see (3.7)). Then 
(i) A = </14 = A 5 = < A 6 = < c~. 
(ii) If  A > O, then for all k = 1, 2, 3 , . . .  and every N x N  matrix F the functionals 

1 
q ~  ~ ( q ; F )  = kN ~ ( l l (x ) (F+ Vq), F +  Vq) dx 

k Y  

are convex and weakly sequentially lower semicontinuous (wslsc) on ~ # .  
(iii) If  A = Zl 6 = 0, define 

N k : [ q E Z ~ #  / g ' L ' x ' V q ,  V q ' d x : O ,  ~ r q d x : O  ] .  

Then N~ is a closed subspace of X I # .  Its orthogonal complement is denoted by 
N?. 
(iv) If  A >= O, define for all k = 2, 3 . . . .  a symmetric 4-tensor Mk by 

(MkF, F) = inf[~qk(q; F) I q E Yc~#}. 

Then for all matrices F, 

(MkF, F) = (MF, F) ,  (3.23) 

where the 4-tensor ~ is defined by (3.18). 
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(v) For A 4 >~ 0 the 4-tensor M defned by (3.18) satisfies 

(~Aa@b, a Q b )  = i n f { 2 1 ( q ;  a@b)l q ~ Y~}>-_A41a@bl 2 for all a, b E R u. 

(3.24) 

(vi) l f  A 6 > O, then ~ attains its minimum on f-c~l for every N •  matrix E 
(vii) If ./16 >= O, then for every co E R N the functionals 

q ~ ~ l ( q ;  co) = j (11 (x) V(ei~'~q),  V (e~~ dx 
Y 

are convex and weakly sequentially lower semicontinuous on Z ~ .  

We can now state the result in the case A = 0. 

Theorem 3.4. Let (3.3)-(3.6) hold and assume that A >= 0, A 6 > 0. Then 
(i) The functionals ae( u, u) on IKv0 are F-convergent (with respect to the weak 
convergence of Hi(g2; RN)) to the functional 

a(u, u) = j  (MVu,  Vu)dx 
(2 

where M is the 4-tensor defined by (3.18), 
(ii) If  A = 0 and A4 > O, then M remains strictly strongly elliptic, i.e., 

(~AaQb, a Q b )  >__A4laQb[ 2 (3.25) 

for all a, b ~ R N, the infimum in (3.18) is attained and there exists 09 * 0 
(mod(2n77) N) and q ~ HI# with Vq ~ 0 such that 

-div(~_(x) V(ei~'Xq)) = 0 on R u. (3.26) 

(iii) If  A = A 4 -- 0, then there exists a, b E RN\{0} and q ~ H~ such that 

-d iv( l l  ( x ) ( a |  + Vq)) = 0 on •U. (3.27) 

Moreover, for that choice of a, b, 

( H a |  a |  = 0, (3.28) 

i.e., the homogenized 4-tensor ~ loses strict strong ellipticity. 

If the coercivity of the homogenized tensor ~ is measured by its best ellip- 
ticity constant 

cr M = min ( M a |  a |  (3.29) 
laJ=lbl =1 

a, bERN 

then an immediate consequence of Theorem 3.4 is 

Corollary 3.5. Let A >= O. Then aM ~ A4 and ~ = 0 if A4 = O. 

Remark, The functions eiC~ in (3.26) are sometimes referred to as Bloch 
waves, while those in (3.27) may be associated with shearing deformations 
(modulated by a periodic contribution). Failure of ellipticity for the homoge- 
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nized material is thus related to the existence of these shearing deformations 
or equivalently to long-wavelength (co ~ O) solutions (cf. the definition of A5 
and the fact that A5 = A4). 

The study of the case A = 1'16 -- 0 is less complete. Recall the definition 
of NI ~ from Theorem 3.3 (iii). 

Proposition 3.6. Let (3.3)-(3.6) hold and assume A = Zl 6 = O. Define 

71 4 = in f[Q(a@b + Vq, Y)I a ~ C N, b ~ [R N, q ~ N~-}, 

/[5 = lira inf in f {Q(V (ei~ Y)I q 6N~-}. 
09--*0 

Then 714 = ffl 5 >__ 0 and the 4-tensor ~ defined by (3.18) satisfies 

( M a |  a@b) >_ A41a|  2. (3.30) 

If  714 = O, there exist a, b ~ [RN\{0} such that 

( M a |  a |  = O. 

3.3. Summary of the coercivity constants 

To clarify the meaning of the various coercivity constants, let us briefly 
summarize their relevance and their mutual relationship. 

A measures the global coercivity of the nonhomogeneous tensor U_(x). 
It can be computed by using smooth functions (see (3.11)) or 
equivalently by using Bloch waves (see Lemma 4.2 below). 

A4 = As measures coercivity with respect to long-wavelength (co ---, 0) pertur- 
bations or, equivalently, with respect to shearing deformations (both 
modulo Y-periodic contributions). 

A6 measures coercivity with respect to Y-periodic, possibly highly local- 
ized deformations. 

o~ is the best ellipticity constant for L. 

One has (assuming as always A >__ 0): 

A -< A 4 -- A5 _-< A6-< OqL. 
Finally 

aM measures the coercivity of the homogenized tensor M and satisfies 
oL M ~ A 4 and o~ M = 0 if A 4 = 0. 

3.4. Layered materials 

In Section 6, we consider a layered (or stratified) material, i.e., a material 
whose elastic properies only change in one coordinate direction. Here we brief- 
ly indicate how the theory developed above simplifies in that special case. 
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Assuming that the elasticity tensor U_(x) is independent of xl, . . . ,  XN-1 
and periodic with period 1 in x N we define the following quantities in 
analogy with (3.18), (3.20)-(3.22), (3.29) and (4.4). We do not distinguish be- 
tween a function on R and its extension to ~N as a function of the last 
variable only. 

A]  = inf{Q(Vv; Y) lv  = ei~~ (.o E [~N-i X [0, 2~z[, p E x l ( [ 0 ;  1])}, 

(3.31) 

A~4 = i n f { O ( a |  + Vq; Y)I a fi C N, b e R N, q e 2U~([0; 1])}, (3.32) 

AS = lim inf inf{a(V(ei~ Y)l q e Yc~([0; 1])}, (3.33) 
o9~0 

AS = inf{O(Vq; Y)I q ~ Yc~([0; 1])}, (3.34) 

1 
(M~G, G) = inf j ( l l(x~v)(G+ Vq/), G +  Vg,)dXN, (3.35) 

~eH~([0,8) o 

c r  min ( M S a | 1 7 4  (3.36) 
lal =lbl=l 

a, bE R N 

A stratified material may be viewed as a material having a periodic cell 
Z = [ 0 ,  H I ] X . . .  [0, HN_I]X[0, 1], for any choice of H i > 0 .  The homo- 
genized tensor should thus be given by 

(nqHG, G ) =  inf 1 j ( l l ( x ) ( G + V ~ ) , G + V ~ / ) d x .  (3.37) 
~H~(Z) meas Z z 

The results for stratified materials can be summarized in 

Theorem 3.7. Let (3.3) to (3.6) hold and assume AS1 >_ O. Then 

(i) A = AS~. 
(ii) A ~ A ~ = A ~ _ _ < A S .  
(iii) If  A~ > 0, then the unique solutions v ~ of (3.1), (3.2) converge weakly in 
H 1 to the unique solution of 

- d i v  M s Vv = f  in I2, 

v = Vo on 00.  

(iv) The functionals a t (u ,  u) on IKvo are F-convergent to the functional 

a(u,  u) = j  (MSVu, Vu) dx. 
12 

In particular, 
[b/l S = ~x~ H 

for all choices of H = (HI . . . . .  HN_I) (with H i > O) and moreover 

(MSa@b,  a@b)  >=A~41a@bt 2, (3.38) 
so that 

o ~  > A~. (3.39) 
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(v) l f  ASa = 0 and AS4 > O, then there exists a Bloch-wave solution, i.e., there 
are co E [~N, wi th  ( c o l  . . . .  , (-DN-1) =1= 0 OF coN+- 0 (mod 2n),  and 
qEH}([0 ,  1]), V q ~ 0  such that 

- d i v  L(x) V (ei~~ = 0 on f~N. 

(vi) I f  AS1 = A~4 = 0 and if A~6 > O, there exists a long-wavelength solution, 
i.e., there are a, b E RN\{0} and q E Hi([0,  1]), Vq ~ 0 such that 

- d i v l l ( x )  ( a |  + Vq) = 0 on R N. 

Moreover, for this choice of a and b 

( M a |  a |  = O. 

(vii) Define the best stratified ellipticity constant for II as 

~ = ess inf min ( I I (XN)a|  a |  (3.40) 
x~ [0,1] lal=l 

a~R N 

Then 
e~ _.< A~ = c~_. (3.41) 

Remark. Two cases can occur: either A < A~ or A = A~. In the latter case, 
A = ozu_ = A~ = c~. 

4. The Linearized System (II): Proofs 

4.1. Preliminary results 

We begin with some preliminary results. 
For co E ~N let uS define 

fl  ~176 + 2nzl 2 N] 
C(co) = i n f ( l + 1 2 n z [ Z  ; Z E Z ~ , ,  (4.1) 

C* ( c o ) =  in f{  tco + 2nz'2 /l  
1 + 12~rzl 2 ; z ~ 7 / N \ { 0  �9 (4.2) 

Recall that Yg'~ denotes the space of CU-valued H 1 functions periodic on 
the unit cell Y=  [0, 1] N 

I_emma 4.1. (i) For every q E X 1 and every co E ~N, 

C(co) ~{Iql2 + l V q l Z l d x  < j l q |  Vql2 dx=JIV(e i~  dx. (4.3) 
Y y Y 

(ii) If, moreover, ~rq  dx = O, then (4.3) holds with C*(CO) instead of C(co). 

Proof. It suffices to prove (4.3) for finite sums 

q(x)  = E e2niz'x az 
zEZ N 
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since these q are dense in Z ~ .  Now 

~]q|  + Vql 2 dx = f l V (ei~~ 2 dx 
Y Y 

= ~ lazl z Io9 + 27rzl 2 >- c(og)  E [azl2(1 + 12nzl2) 
z z 

= C(og) ~ [Iql 2 +]VqlZIdx  
Y 

and (4.3) follows. If  ~ rq  dx = 0, then a0 = 0 which gives the result. [] 

The following characterization of A as defined in (3.11) will be crucial. 

1.emma 4.2. Let (3.3)-(3.6) hold and define 

A 1 - in f{Q(gv;  Y)I v = ei<~ o9 ~ [0, 27~[ N, p ~ Yc~}}, (4.4) 

A 2 = i n f [ Q ( V v ; k Y ) l v = e i ~ . x q ,  o g d e N ,  q691~1#, k~ N*}, (4.5) 

A3 = inf{Q(Vv; kY)[ v E Yc~l#, k E N*]. (4.6) 

Then A = A I = A 2 = A 3. 

Proof. (a) A >= A 1. We employ a transformation well known in the theory 
of  Bloch waves (cf. [RS 79], [BLP 78]). For v~  ~ ( R N ;  C N) and m ~ Y*~f  
[0, 2n[ u define 

"Oc~ : E e-iW'zv(x + Z). (4.7) 
z~Z N 

Note that for a fixed value of x the sum is finite since v has compact support. 
Since ~o(x  + z) = ei~~ for z ~ 77 N, we have 

~ (x) = ei~~ (x) (4.8) 

with p EYc ~1. We assert that 
I IVvlZa~= (2~z)-N f I IVlTw[2 do9 dx, (4.9) 

[~N y y* 

(11 (X)Vv, Vv)dx  = (2ff)-N ~ I (11 (x) ViTro , V~co ) do)dx. (4.10) 
~N y y* 

Clearly (4.9) is a special case of (4.10). To prove the latter identity, set 
w = Vv and observe that V~7~o = ff~. Now 

~ (lL(x) w~o, wo~) do9 dx 
Y Y* 

=l E w(x+z'))do9ax 
Y Z,Z'~.ZN 

= ( 2 ~ )  N I ~ (k(x + z) w(x + z), w(x + z)) ax 
Y z 

= (2n) N l (~w, w) dx = (2~)  N S (k(x)  w ,  v v )  ax, 
[~N ~N 

where we used ~r* ei~ = (2rc)N6zz '. 
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Let us assume that A1 > - ~ ;  otherwise (a) is obvious. Then by (4.8) and 
the definition of A1, 

Y Y 

Integrating over co and using (4.9), (4.10) we have 

( vv, vv) o ___eAlS IVvl2 
[~N ~N 

for all v 6 ~ ( R N ;  cN), and the assertion follows. 
(b) Aa _-> A. This is a standard cut-off argument. Set O > 0 and choose 
w = ei~ o) ~ Y*, p ~ Y ~  such that 

(11Vw, Vw) dx < ( A I +  c~ ) ~lVwl2 dx. 
Y Y 

Note that for z E Z N one has 

I (~_(x) Vw, Vw) dx = ~ (ll (x) Vw, Vw) dx. (4.11) 
z+Y Y 

Let k E N  and let q E ~ ( R  N) be such that q - 1 onAk = ( - k ;  k) N, rl --~ 0 
outside Ak+l = ( -  (k + 1), k + 1) N, IV/'/[ =< C1; let v = ~/w. For x EAk+I\A k 
we have Vv = ~/Vw + w| and therefore 

(~_Vv, V v )  dx ~_~ C2I[ IwI2"Jr ' l~7wIZ}dx ,  (4.12) 
z+Y Y 

for z ~ { -  (k + 1) . . . . .  k}Nk{-k ,  . . . ,  k - 1} N. 

If  o ) =  0, we may assume that ~rw dx = 0, so that 

Ilwl  <__c $1Vwl 2 ( 4 . 1 3 )  
Y Y 

by the Poincar6 inequality. If  o)~= 0, then (4.13) follows from Lemma 4.1 
(with c = C(o)) - I ) .  We obtain 

([LVv, V v l d x _ <  (2k)N ~ (ll_ Vw, V w )  dx + [ ( 2 ( k  + l ) )  N -  (2k)U] c ~ l Vwl2 dx 
~N y y 

<=[(2k)N(A1 q-O) + [ (2(k  + 1)) N -  (2k)N]c}~[Vwl2d.x,  
Y 

IVy] 2 dx __> I [Vv[  z dx.  (2k) N ~[Vw[ 2 dx 
IR N A k Y 

and hence 
A < (A  1 + ~)  q- ((1 q- k - l )  N - 1) c. 

Therefore, A < A 1 + g* for all g* > 0 and the assertion follows. 

(c) A2_>A1. This is analogous to part (a). For coEI= f0 2~ 2re (k~_ l )~U 
ioo'.x ~g~#, define t .  ' k . . . . .  and v = e q ,  q E 

\ ~ / . )  

~w(x) = ' ~  e -i(w+~ v(x  + Z). 
z6[O,.~k.., -1} N 
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A calculation shows that for z E 77N, 

~w(X + Z) = e i(c~176 ~co(x), 
so that 

~:co(X) : e i(~~ p(x) ,  

with p ~ Z ~ .  Analogously to (4.10) one establishes 

(LUv,  Vv) d x = k - N f  E (U-VVw' Vv~~ 
kY Y 

coEI 

and the proof  is finished in the same way as in part (a). 
(d) A1 -> A3. Together with the obvious inequality A3 _-> A2 and part (c) this 
will finish the proof  of  the lemma. Let w = e i'~ p, p E Yc~ and remark that 

k-Ul  (U_VW, Vw) d x = ~  (U_Vw, Vw) dx, 
kY Y 

kY Y kY Y 

For any a ~ R let [a] denote the largest integer less than or equal to a, set 

co' 2n ([2kn o91] ,  [2nka~n]) 
k 

and set v (k) = e iC~ p. Then v (k) ~ ~,,1# and 

~)(k) = ei(O)'-~o).x w ,  

Vv (k) = ei(C~176 Vw + i(co' - co)'@w). 

It follows that as k ~ co, 

k-N l I(ll_Vv(k), VV (k)) -- (L VW, VW)[ dx--+O, 
kY 

k-U~ II vv(k)12 --IVw 121 dx 0. 
kY 

Therefore 
Q(Vw; Y) >___ lira inf Q(Vv (k)', kY) => A3. 

The assertion follows by taking the infimum over w. [] 

4.2. Proof of Theorem 3.3 

(i) We have only to prove that A 4 = A5 and A 6 _< ottL. 
(a) We first show that A 4 >= As. Let a e C N, b E ~N and q ( Z }  be given 

with [ a |  + V ql ~ O. For s > 0 let 

vs(x) = eisb'x[~ a + q(x)}, 

By definition of  As, lim Q(Vv~; Y) > As. On the other hand, 
s~O = 

Vv~ = ei~~174 + isq|  + Vq} ~ a |  + Vq 
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in L 2 as s ~ 0. Therefore ,  

Q ( a @ b  + Vq; Y) = lim Q(Vvs;  Y) > A s ,  
s ---~0 

and hence A4->_ As.  
(b) To prove the opposite  inequali ty A4 <-- A5 let v (") = eiC~ (n) be a mini- 

mizing sequence for As.  We have co~ ~ 0 and may assume that  IVy (") IL~ = 1. 
Set M.  = ~yq(n) dx. Then  

Vv (n) = ei%'x{iMn@con + i(q (n) -Mn)@COn + Vqtn)}, 

SO that  

1 = 1[ Vv (n) I]L22 = ]Mn@COnl 2 + lli(q (n) - Mn)@CO n + Vq (n) 1[L22 

by L 2 or thogonal i ty  since 

(q(n) _ Mn ) dx = ~ Vq (n) dx = O. 
Y Y 

From Lemma 4.1(ii) it follows that  (for sufficiently small 
[[q(~) - Mn [[w =< C, and hence 

V v  (n) - eiW"X{iMn@con + Vq (~)} --* 0 in L 2. 

Now 
Q(eia&x[iMn@con + Vq(n)}; Y) = Q(iMn@co n + Vq(n); Y) ->A 4 

cop 

by defini t ion o f  A4, and therefore A5 -> A4. 
(c) To show that  A 6 =< ot~, we use highly oscillating test functions which 

concentrate  near y ~ Y. Recall that  y ~ Y is a Lebesgue point  of  II if 

lira 1 ~ I~(x)  - l_(y)[ dx = 0,  
~-~0 meas Br(y) B~(y) 

and that  almost  every point  of  Y is a Lebesgue point  since II ~ L = 
Fix a Lebesgue point  y ,  fix d > 0, choose r > 0 such that  

1 ~ I~_(x) - II (y)l dx < d (4.14) 
meas Br(y) Br(y) 

and choose ~ 2 ( B r ( y ) )  with IBr(y ) g/2 dx = 1 and q/2__< 4/meas  Br(y). 

Finally choose a*, b* fi [R N, [a*[ = I b*l = 1 such that  

( l l ( y ) a * @ b * , a * @ b * ) = c ~ L ( y )  def min ( l l (y)  a @ b , a @ b ) .  
I,I =101 =1 

Consider  v(J)(x) = ~ gt(x) e ij(x'b*) a*. Clearly v(J)--,0,  Vv (j) - i a * ! u ( x ) @ b *  

e ij(x'~ ~ 0 in L 2 and hence,  by also using (4.14), 

(U_Vv% vv~J~) dx --, ~ ~,2(x) (L(x) a*@te, a*@b*) dx 
Y Y 

=< (11 (y) a* |  a * @ b * )  + 46 =< s t ( y )  + 4& 

It follows that  A 6 =< a~(y)  whenever y is a Lebesgue point  o f  If and the asser- 
t ion is proved. 
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(ii) The functionals ~ ( q ; F )  are strongly continuous and quadratic. 
Then the assertions follow immediately since for all q ~ Yc~#, one has, 
thanks to the assumption that A > 0 and the Lemma 4.2, 

~ ( q , O )  = j (k(x) Vq, Vq) dx__> O. 
kY 

(iii) Obviously the set Nk is a (closed) subspace. For later use, let us also 
remark that for q E Nk, a E C N, b E [~Y and q • E N~ we have 

j Re(ll (x) aQb, Vq) dx = 0, (4.15) 
kY  

Re(ll (x) gq, Vq • ) dx = 0. (4.16) 
kY  

Indeed, since for all 2 ~ R and q E N~, 

0<= j ( l l (x ) (aQb+ 2 Vq), a Q b +  2 Vq) dx 
kY  

<= j (ll (x) aQb, aQb) dx + 22 ~ Re(ll (x) a@b, Vq), 
kY kY  

one must have (4.15). In the same way one deduces (4.16). By (3.6) Ghrding's 
inequality holds (on the torus q]-U= RN/(k7/)N), i.e., there exist constants B~, 
2 > 0, such that 

j (L(x) Vq, Vq) dx>=~211VqlZdx-/UkJlq[Zdx. (4.17) 
kY kY  kY  

The standard reasoning by contradiction then shows that Nk is finite-dimen- 
sional and that there exist Ck > 0 such that 

(ll(x) Vq, Vq) dx>=c~jlVql2dx for a l lq~Nk ~. (4.18) 
kY kY  

(iv) Fix k and E Let q(J) ~ Z~a be a minimizing sequence for (MkF, F), 
i.e., 

2k(q(J) ; F) ~ (Mk F, F). 

Observe that for z ~ 7/, 2k(q(J ) (. + Z) ; F) = 2k(q(J);  F). Let 

1 Z q(J)(x+z),  
~r (x) k N zE[O . . . . .  k--l} N 

then q(J)~ Yc~, and by convexity of ~ ,  

1 
~(~(J ) ;  F) = 2~(~(J); F) < --y E ~k(q(J); F). 

= k z~10 . . . . .  k -1}w 

Hence 
(MF, F ) _  (~kF,  F). 

As the opposite inequality is obvious, the result follows. 
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(v) Note that for q ~ AU~, ~r Vq dx = 0. The assertion then follows from 

(3.18) and the fact that by L2-orthogonality, 

I l a | 1 7 4 1 7 4  2, 
Y Y 

which implies ~ ( a |  q) > A 4 laQbl 2. 
(vi) If  A 6 >  0, the result follows from (ii) and the coercivity of 

jy  (11 (x) Vq, Vq)dx on Yd'~. 

(vii) This follows from (ii) by virtue of the compact imbedding of Y-d'~ 
into 2 ~ .  [] 

4.3. Proof of Theorem 3.1 

(i) Let ~0 E ~ ( D ;  ~U) be given. Extending q~ by zero to ~N we obtain 
from (3.11) after a change of variables that 

D 

and so by the Poincar5 inequality, a e is uniformly coercive (in e) on H~(s RN). 
It now follows from the Lax-Milgram theorem that for every e ~ 0, the prob- 
lem (W) has a unique solution v e satisfying (3.13). Passing to a subsequence 
we have v ~ v  weakly in Hi(f2;  R N) with V-Vo~H~(C2;  [~N) and 
U_(x/e) Vv e ~ a weakly in L 2 as e ~ 0. 

(ii) Note that Theorem 3.3(i) and again the Lax-Milgram theorem imply 
that (3.17) has a solution r ~ H} unique up to a constant. Hence M is well 
defined by (3.16). Moreover M is symmetric since II is. To see that (3.18) gives 
an equivalent characterization of M note that by Theorem 3.3 (ii) the infimum 
in (3.18) is attained. The minimizer has to satisfy (3.17) and is hence unique 
(up to a constant). Using (3.17) once more one sees that the right-hand side 
of (3.18) equals (M F, F) with M defined by (3.18), (3.17). Finally note that 
M is determined by the values of (M F, F) for all F since M is symmetric. 
Inequality (3.19) follows from Theorem 3.3(v). The proof that a = M Vv and 
that therefore (3.14) holds is identical to TARTAR'S proof (see [BLP 78] for the 
scalar case and [SP 80] for classical elasticity). 

(iii) This is a simple exercice. [] 

4.4. Proof of Theorem 3.4 (i) when A > 0 

In this case/'-convergence can be deduced in a standard way from the con- 
vergence results for the Euler-Lagrange equation obtained in Theorem 3.1. We 
provide the details for the convenience of the reader. 

According to Definition 2.1 we have to show 
(i) If  u c ( IKvo and u e ~ u in H1(s [~N), then 

lim inf a~(u ~, u ~) >= a(u, u). 
c~O 
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(ii) For every u ~ IKvo there is a sequence u ~ ~ IKvo, u e ~ u in HI(Q; RN), 
with 

lim ae(u e, u ~) = a(u, u). 
e--+O 

To show (ii) fix u ~ IKvo and let 

f = div(~ Vu) ~ H-I(y2; RN), 

where ~ is the homogenized tensor in (3.18). 
Let v~E IKv0 be the (unique) weak solution of 

ae(v e, ~o) + <f, (p> = 0 for all (p ~ Hi ( f2 ;  [RN). (4.19) 

It follows from Theorem 3.1 and its proof that 

v e ~ v  (weakly) in HI(~Q; RN), (4.20) 

a~d-----efll ( ~ )  VvE~ade- - fMVv (weakly) in  L 2. (4.21) 

Moreover v is the unique solution in IKvo of 

a(v, (o) + <f, r = 0 for all (0 E H~(f2; R N) (4.22) 

and hence, by the definition of f ,  v = u. Now by (4.20) and (4.21), 

a~(v e, v E) =a~(v  c, v c -Vo)  +ae(v  ~, Vo) 

= - < f ,  v ~ - Vo> + (o "e, Vv0) (4.23) 

~ - < f ,  u - Vo> + (a, VVo) 

= a ( u ,  u - Vo) + a ( u ,  Vo) = a ( u ,  u ) .  

This finishes the proof of (ii). 
To show (i), let u and f be as above, let ueE IKvo and let u ~ u  in 

Hl(t'2; RN). Now (4.19) implies that v e is the (unique) minimizer in IK~0 of 

Ie(u)  = �89 ae(u, u) - <f, u - v0>. 

Therefore (4.20) and (4.23) yield that 

lim inf I~(u ~) >= lim inf Ie(v  ~) = I (u) .  
~ 0  e--+0 

Now (i) follows since <f, u e - v0> ~ <f, v0>. [] 

4.5. Proof of Theorem 3.4(0 when A = 0 and A 6 > 0 

Following the Definition 2.1, we verify condition (i) and condition (ii). 
Condition (i). Let ueE IKvo and let u e ~  u~  IKvo weakly in Hi(12; RN). 

Then, in particular, 

lim sup II u~ ]IH1 < C. 
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For fi > 0, set II ~ = U_ + c~ Id; then A(L 6) = g > 0. Applying Theorem 3.4(i) 
to 

we have 
lim inf a4~(u ~, u e) >= a~(u, u) >= a(u, u). 

g--*O 

On the other hand, 

lira sup la~ ~, u ~) - a ~ ( u  e, u~)l < g lira sup nu~lj21 < O c  2. 

Thus 
lim in fa~(u  e, u ~) >__ a(u, u) - O C  2. 

e ~ 0  

Since O > 0 is arbitrary, the result follows. 
Condition (ii). This is more complicated since we have to explicitly construct 

the desired sequence. By using linearity we achieve this in two steps, consider- 
ing a smooth limit u first. While the details of that procedure are well known 
to experts in homogenization we include them here to keep the exposition self- 
contained. Since A 6 > 0, Theorem 3.3 (vi) implies that for every N x N  matrix 
F there exists a unique rFE • 1  with ~rrv(x)dx  =-0 such that for all (0 ~ Yd'~, 

j ( l l ( x ) ( F +  Vrv), V~o) dx = O. 
Y 

Moreover, 

II VrFIIL ~ <__ CIFI. (4.24) 

Define a 3-tensor p(x) and a 4-tensor R(x) by 

p(x) F = rF(x), [R(x) F -- VrF(x ) . 

It follows from (4.24) that 

~l[R(x)IZdx__<C 2, ~p(x) d x = 0 ,  j Ip(x)[2dx<=C 2. (4.25) 
Y Y Y 

Step L Let u 6 C2(~;  [R N) and set 

u ~ ( x ) = u ( x ) +  e p ( ~ )  Vu(x).  
T en 

By (4.25), uC--,u in L2(f2; R N) strongly and 

lim sup II Vu~ ]lr 2 --< CH ~Tu HL2. (4.27) 
e--*0 

As e ~ 0 the last term on the right of (4.26) converges to zero strongly in L 2, 
and hence 

~2 
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where 
f ( x , y )  = (ll(y)[Vu(x) + ~(y) Vu(x)], Vu(x) + R(y) Vu(x)) .  

Note that u e ~ u  in H~(12; RN), and by (3.18) and the definition of R, 

f ( x )  = ~ f (x ,  y) dy = ( ~  Vu(x) ,  Vu(x) ) .  
Y Moreover, 

If(xa, y) - f ( x 2 ,  Y)[ < c(u)lx, -xzl (1 +l R(Y)[)2; 

from this it is easily shown that 

lim t f ( x  ~ )  dx = I f ( x ) dx  = a ( u '  , (4.29) 

[2 g2 

The desired conclusion follows. 
For future reference we remark that a similar argument implies that 

l i m s u p I ~ / 2 ( x ) [ V u e - V u ] 2 d x < l i m s u p  8-,0 = e.-*O I ~2(X) [ [~(X) 2 [Vgl2dx 

f2 g2 

q,Z(x) I VulZ~x. 

(4.30) 

Step2. Let u ~ IK v be arbitrary. Choose u~E C2(~; R -N) such that u ~  u 
strongly in HI(f2;~ N) (this is possible since [2 is Lipschitzian and bounded 
and one thus has an extension operator E : H I ( t 2 ) ~  HI(R N) see [ST 70]). 
Choose q/~ E C ~ (O) such that 

Ig~(x) = f l  if dist(x, 0 f 2 ) < 0 ,  

t o  if dist(x, 0t2) > 26, 

sup lV~u~(x)l _< A ~-1 with A independent of ~. 
xE~ 

By the previous step, there are u~'~6 C2(~; R N) such that 

lim a~(u ~'~, u ~'~) = a(u ~, u~), 
~ 0  

and (4.26), (4.27) imply that 

lim sup II u ~'~ Ib~ =< cII u ~ I1,~,, 
~ 0  

u e'~ ~ u ~ in Le(o;  R N) strongly, 

u e'~ ~ u ~ in Hi(D;  R N) weakly. 

Define z e'a = (1 -q/~) u ~'~ + q/~u and observe that z ~'~ ~ IKv0. Now 

Vz~, ~ = Vu~, ~ + ~u~(Vu ~ -  Vu~,~) + V/~(Vu - Vu ~) + (u ~,~-u) |  ~ 

and (u ~ -  ue '~) |  0 in L z as e-~ 0. Thus by (4.27), (4.28), (4.29), 
(4.30) applied to ~ ,  u e'~, u ~ one has 

lim sup aE ( z~'~, z ~'~) < a ( u ~, u ~) + C ( a ( u ~, u~) ) ~/z T~/z + CT~ , 
~-~0 

T,~ = II ~'~ Vu'~l lb + II ~ '~(Vu - v , d ) l l b  + It (u  '~ - ,,) |  
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We may assume that  I l u -  u llH1 _-< c and thus obtain 

l imsup lim sup ae(z~"~,z ~'~) < a(u,  u). 
~ 0  

Consider now the quantity 

E( t ,  ~) = (ae(z ~'~, z e'6) - a ( u ,  u)) + + IIz - u + ([lz IlH  - ell u []H1) + 

where a + = a if a > 0, and a + = 0 otherwise. By the triangle inequality, 

l imsup limsup~_~0 E(e,  6) =< 0. 

We use now a diagonalization lemma of ATa'OUCI-I [A 84, Cor. 1.16] to obtain 
a function c~(e) such that 

lim sup E(e ,  6(e))  < O. 
6--->0 

Set v e = z e'6(e). Then v ~ E IKv0 

lim sup a~(v ~, &)  <= a(u,  u) ,  
e ~ 0  

v ~ ~ u strongly in L2(O;  RN), 

lim sup IIv+ I1,,, < CIlu lira < + ~ ,  
e--*0 

and thus v ~ ~ u weakly in Ha(O; RN). Now using condition (i) we deduce 
that also lim inf a~(v ~, v ~) >=a(u, u) and thus obtain the desired result. [] 

e---r 0 

4.6. Proof of  Theorem 3.400 

By Lemma 4.2, A 1 = A  = 0 and thus there exists a sequence v (m = ei~~ (n) 
such that q(~)(  ~ and 

II Vv (n) IlL2 = 1, lim Q ( Vv (~) ; Y) = 0, co~ ~ co ~ [0, 2zr[N. 
n--~oo 

I f  o ) =  0, then by definition of  A 5 and Theorem 3.3(i), a 4 = A 5 = 0, con- 
tradicting the assumption. Thus a~ ~ 0. Now by L2-orthogonality, 

Since o):I: 0, ~rq (n) dx is bounded. Moreover, by Lemma 4.1, q(n )_  ~rq(n) dx 
and thus q(~) is bounded in ~ .  In particular, (for a subsequence) q ( ~ ) ~ q  
in L 2 and Vv (n) - V (e  i'~ qtn)) ~ 0 in L 2. Thus lim O ( V ( e  io x r )  = 0  

n ---~ oo 

and by lower semicontinuity (Theorem 3.3(ii)) and the fact that A 1 = 0 one 
has 

S : l (q ;  O) = Q(V(ei~~ Y) = O. 
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We show next that q ~ 0 .  Assume otherwise. Then q(n)(~Veia, x__+ 0, and 
hence 

0 = lira Q(V (e i~ q{~)); Y) = lim Q(ei~"Xgq{n); Y) = lira Q(Vq{n); Y) 
n--+~ n--+~ n--+~ 

>-- Z6l] Vq {n) II z. 

Thus q (n) ..+ 0 strongly in ~g~}, contradicting the assumption that II Vv (n)IlL= -- a. 
since A1 = 0, q is in fact a minimizer of 21  and thus satisfies the Euler- 

Lagrange equation 

(ll(x) V(eia"Xq), g ( e i a ' x 0 ) ) d r  = 0  for all OEX~. 
Y 

This in fact implies that 

f ( k (x )  V(ei~ d r = O  for all ~/E 2 ( ~ N ; C N ) .  (4.31) 
[RN 

The desired inequality (3.26) follows. To verify (4.31) let ~ (x) = ~zea~N r/(x + z). 
Then ~ is Y-periodic and we have 

I (11 (x) Ve ia''x q), V (ei~ dr = ~ (ll(x) V (e ic~ q), V (eia"~#l)) dr = O. 
RIr Y 

Observe finally that the estimate (3.25) is only a restatement of Theo- 
rem 3.3 (v) since A6 > A4 > 0. [] 

4.Z Proof of Theorem 3.4(iii) 

Since A 4 = 0, there exist sequences F (n) = a I~) @b ~n) and q(n) E ~,~1 such 
that 

I q(n) dr = O, 
Y 

~ l f ( n ) + V q < ~ ) 1 2 d r = l f { ' ) 1 2 + l l V q < ~ ) 1 2 d r = l ,  (4.32) 
Y Y 

lim Q(F ('~ + VqCn); Y) = ~ (II(F {n) + Vq~ ~ + Vq C~)) dr = 0. 
n --+o~ y 

Selecting a subsequence we have 

F {n) ~ F = a|  qn __, q weakly in ~gr 

and we obtain from Theorem 3.3(ii), (v) that 

(ll (x) ( a Q b  + Vq), a Q b  + V q ) d r  = 0. (4.33) 
r 

We assert that a |  :t= O. Otherwise F {n) ~ 0 and hence 

I ( l l ( x )  V q  (n),  ~Tq (n)) dr  --+ O. 
Y 

Since A 6 > 0 this implies that fy]Vq <n) l edx-+  0, which contradicts (4.32). 
From Theorem 3.3 (iv) and (4.33) we deduce (3.28). Finally, (3.27) follows from 
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the fact that q minimizes ~ ,  the argument being analogous to the one used 
to derive (3.26) in Section 4.6. 

4.8. Proof of Proposition 3.6 

The identity A4 =-/i5 is proved in the same way as A4 = As; see Theo- 
rem 3.3(i) and Section 4.2. To show (3.30) let q = q~ + q2 ~N1 |162  For 
F= a| by the definition of N1 and by (4.15), (4.16) we have 

(ll_(x)(F + ~Tq),F + Vq)dx = I  (L(x)(F + Vqz),F +qz)dx. 
Y Y 

Now (3.30) follows since 

~IF + Vqzl 2 dx = IFI z + 11~7q212 dx >= IFI z. 
Y Y 

I f  A 4  = 0, we can argue as in the proof of Theorem 3.4(iii), see Section 4.7, 
using (4.18) instead of A 6 > 0. 

4.9. Proof of Theorem 3.7 (for stratified materials) 

(i) By Lemma 4.2, A = A 2 and thus obviously A <= A]. To show the op- 
posite inequality it suffices, in view of (4.4), to establish that 

Y Y 

whenever v = e i~~ p, where p E Z ~  has a finite Fourier series. For any such 
p one has the (finite) expansion 

p(x', XN) = ~ ei'~"X'a,~,(XN) (4.34) 
a'E (2~2~) N~I 

with as, 6 Yc'r 1]). Thus, setting & = (c~', 0) we have 

I (L(XN) Vv, Vv)dx 

v S ( L ( a  0 = ~a e~('~'-a'l'x (XN) o,,| co) + - -  
r ~"#' axlv 

Now 

a,~,| , 

a~,|162 + co) + Ox~ ap, Ne ~.  

[0'I]N-I a',/~' 
(4.35) 

and hence 

: (~_ (XN)  V(ei(S+~ 
Y 

>-_ ~ At I lV(e'(a+~ dx ---At I lvvl  2 dx, 
Y 

and (i) is proved. 
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(ii), (iii), (iv). These are proved as Theorem 3.3(i), Theorem 3.1 (i), (ii) and 
Theorem 3.4(i), respectively, except for the assertion that M~= ~n .  We 
sketch the proof of this and assume for convenience that H = (1 , . . . ,  1), so 
Z = Y. Recall that the infimum in (3.37) may be taken over the complexified 
space Yg'~. Expanding q/as in (4.34) and using the fact that A] = A = A1 >_- 0 
one finds by virtue of the orthogonality relations (4.35) that 

j (U-(XN)(G + V~,), G + V~) dx 
Y 

1 

= f ( ~ - ( X N ) ( G  -}- Va0)  , G + Va0) dx u + I ( I I ( X N ) ( V  (1[/ -- ao ) ) ,  V ( q / -  ao)) dr  
0 Y 

_> ( ~ G ,  G). 

Thus (M/-zG, G) _> (M~G, G) and the reverse inequality is obvious. 
(v), (vi). These are shown as Theorem 3.4(ii), (iii), respectively. 
(vii) The inequality A~ < o~_ is proved analogously to A 6 _< ~tL; see Sec- 

tion 4.2. The inequality % < o~ is obvious. On the other hand, for q(xN) 6 
aq 

H~([0, 1]) (extended to EN) one hasVq = &NN | so that 

I dq h (ll(xN) Vq, Vq) dx = (XN) ~NN QeN' - -  @ dx 
drN 

Y g 

1 1 

S S >- ~ ~-N dr~v = o~ ~UU drN = e~{ I Vql 
o o Y 

Hence A~ > ~_, so that A~ = o~_. [] 

2dr.  

5. Nonlinear Homogenization and Loss of Strong Ellipticity 

5.1. General remarks 

Here we take up the problem of analyzing the behavior of the nonlinear 
homogenized energy density W. A formal calculation suggests that the second 

02ff 
derivatives ~ Z -  (F0) are given by the homogenization of linearized prob- 

lems of the type discussed in the two previous sections. 
Of particular interest is the question whether W is strongly elliptic, i.e., 

whether 

O2W 
OF 2 (Fo)(a|174 2, c > 0 ,  Va, bEIR N. 

Failure of the strong ellipticity condition would allow for the possibility of 
shear band instabilities in the homogenized material. 
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It should be noted that by general results on F-convergence (cf. Section 2), W 

always satisfies 02if" (F0)(a|  a |  > 0 or, more precisely, t ~ W(Fo + ta |  
OF 2 = 

always is convex. The question is whether one has strict inequality or strict 
convexity. 

To avoid technical difficulties we do not pursue here the question whether 
W is indeed twice differentiable for general integrands W(x, F) and mainly 
confine ourselves to second-order asymptotic expansions of W(F0 + t a |  as 
t ~ 0 .  

In Section 5.4 we show, however, how more complete results can be ob- 
tained for integrands W(x, F) which are convex in F (which is unfortunately 
an unrealistic assumption in elasticity). 

5.2. Main results 

We consider integrands W(x, F) satisfying (2.1)-(2.3) (as well as additional 
assumptions stated below) and recall the definitions 1~ k and W in (2.6) and 
(2.7). Our first result depends on the following hypothesis. 

(H1) There exists t 0 > 0  such that for all O < t < to and all H = a @ b  with 
Inl =1, 

W(Fo + tH) = f f ' l (F o + t n )  (5.1) 

and there exist minimizers (Oeo+ti4 E W~ '~, i.e., 

W(F  o + tH) = ~ W(x,  F o + tH + V(Oyo+tn(x)) dx, (5.2) 
Y 

satisfying Ir(Oyo+t n = 0 and 

l[ (OFo+tH -- (OFoIIWl,~ <- r ( t ) ,  

where r(t)  ~ 0 as t ~ O. 

(5.3) 

Equation (5.1) states that near F0 the homogenized energy is given by the 
solution of an auxiliary problem on only one periodic cell, while (5.3) requires 
that no discontinuous bifurcation of minimizers occurs. The exclusion of 
discontinuous bifurcation seems plausible from a physical point of view and 
such an assumption is implicit in many numerical schemes to compute 
minimizers (e.g., by path-following techniques). There are, however, no 
rigorous mathematical results which would allow one to deduce (5.3) from 
reasonable assumptions on W. Indeed the current theory of nonlinear elliptic 
systems even leaves open the question as to whether ~Oeo+tS is bounded in 
W~'~, 

The linearized elasticity tensor at F 0 is defined by 

02W 
liFo(X) -- OF 2 (x, F o + V~OFo(X)). (5.4) 



260 G. GEYMONAT, S. Mt)LLER & N. TRIANTAFYLLIDIS 

Corresponding to U_Fo(X) we can define as in Section 3 

A(F0) = i n f [  ~RN(IIF~ Vu, Vu)dx  1 j ~ . ] V u l 2  ~ u~ ~ ( R  N, RN) , (5.5) 

cf. (3.11), and similarly define A4(Fo), Z6(Fo), c~(Fo); cf. (3.20), (3.22), 
(3.7). 

If A4(Fo) _-> 0, then in view of Theorem 3.3(v) we can define the 4-tensor 
Meo by the analogue of (3.18): 

(MFoG, G ) = i n f [ !  (HFo(X)(G+ V q ) , G +  Vq)dx q ~ H ~ l ,  (5.6) 

and Mro satisfies 

(MFoa| a |  > Aa(Fo) ]a| 2 for all a, b ~ [R N. (5.7) 

Finally the average stress tensor is characterized by 

I OW (x, V 0 Jr V~OFo(X)) dX. (5.8) ~ ( r 0 )  = 

Y 

We can now state the main result of  this section. 

Theorem 5.1. Assume that W(x, F) satisfies (2.1), (2.2), (2.3), (H 1) and more- 
over 

W(x, �9 ) is in C 3, (5.9) 

03W 
(x, F) <= h(F) (5.10) 

where h is locally bounded. 
(i) If  A4(Fo) > O, then for all H = a|  with [H I = 1, 

f f (Fo+tH)  = f f ( F o )  + 6 ( F o ) H t + � 8 9  (~eoH, H) t 2 + o ( t  2) as t ~ O .  

(5.11) 

(ii) If  A4(Fo) = O, A6(F0) > 0, then there exists H = a |  with IH] = 1 such 
that 

W(F o + tH) = W(Fo) + ~(Fo) Ht + o(t  2) as t ~ O. (5.12) 

Remark. Note that the result in (ii) implies that W loses uniform rank-1 con- 
vexity in the direction aQb.  Moreover (ii) remains valid if (H1) is replaced 
by the weaker hypothesis W(F0) = WI(F0). 

Proof. (i) Let H = a Q b  with [H I = 1 be fixed. Set 

V(t, H) = W(Fo + tH) - W(Fo) - 6(Fo) tH - �89 (MFoH , H) t 2. 
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From (5.1), the Euler-Lagrange equation for ~0F0 and the Taylor expansion of 
W(x, F) at Fo + VOv o we obtain for every ~u ~ W~ '~ that 

W(F o + tH) 

t' W(x, Fo + tH + V~Ovo + VqJ) dx _< 
O 
Y 

= W(Fo) + #(Fo) Ht (5.13) 
I 

+ (1- )Lk (x, Fo-bV~OFo+rl(tH+Vq/))(tH+Vgl),tH+V drldx 
Y 0 

with equality for q /=  ~OFo+m -- q~Fo" 

Stepl  ( l i m i n f t - 2 V ( t )  > 0 )  Set q /= ~0Fo+tH-- ~OFo. From (5.13) we deduce 
that \ t-.o = ] " 

W(F o + tH) - W(Fo) - 6(Fo) Ht 

=�89 ~ ([l_Fo(X)(tH + Vq/), tH + Vq/)dx  (5.14) 
Y 

1 
+ ~ ~ (1 - -  /1)([[T - Lro ] ( x ) ( t H +  V ~ ) ,  t H +  Vg/)dtl  dx,  

r o  

where we have set 
O2W 

U_(X) = ~ F  2 (x ,  F 0 -~- V(IgFo -~ rl(tH + Vg/)). (5.15) 

From (5.9) and (5.10) it follows that 

] (lIT - HFo ] (x)  ( tH + V~t), tH + V~t) [ < cl( t  + II ~' II wl,-) ItH + v ,t 2. (5.16)  

Using A4(Fo) > 0 and (5.3) we have for t small enough that 

W(F o + tH) - W(Fo) - 6(Fo) Ht 

_--> ~- A 4 ~ o  ) (t + r( t ))  (U_vo(X)(tH + V~t), tH + Vg/)dx.  

(t + r ( t ) ) ]  (MFoH, H) t 2. 

Y 
Thus from (5.6), (5.7), we obtain 

- -  - -  1 [ c 1 
W(F o + tH) - W(Fo) - ~(Fo) Ht > -- 1 

= 2 [ A4(Fo) 

In conclusion, for t small enough we find that 

W ( F  0 -~- t O )  - -  W ( F o )  - ~ ( F o )  H t  - 1 ([]X/]Fom, H )  t 2 

Cl 
-> 2A4(Fo) (MFoH, H) (t  + r(t))  t 2, 

(5.17) 
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and finally 
lim t -2V( t )  >_ O. (5.18) 
t~0  

Step 2. (lira t -2  V(t) < 0) Fix fi > 0 and choose v E W~ '~176 such that 
~kt~ 0 = �9 

(NVo(X)(H+ Vv, H +  ~Tv))dx<__ (~roH,  H) + &  (5.19) 
Y 

From (5.13) with ~/= tv we obtain 

t-2{W(Fo + tH) - W(Fo) - a(Fo) Ht} 
(5.20) S] 6-_6 (1 - r/) l~, 0F2 (x, F o + V ( O F o + t l t ( H + V v ) ) ( H + V v ) , H + V  dxdtl. 

0 Y 

As t ~ 0, the right-hand side converges to 

I (IIFo(X)(H+ Vv),  H +  Vv)dx<= (~FoH, H) +f i ,  
Y 

and thus 
lim sup V(t, H) < d. (5.21) 

t~0  = 

Since fi > 0 is arbitrary, statement (i) of Theorem 5.1 follows from (5.18) and 
(5.21). 

(ii) By Theorem3.4(iii)  we may choose H = a |  such that 
Muo(H, H) = 0. Arguing as in Step 2 with W replaced by #1,  we find 

lims0u p ( t - 2 # 1 ( F o  + tH) - #1(Fo)  - ~FoHt ) 6 0 .  

The result now follows from the assumption that #1  (Fo) = W(Fo), the fact 
that t ~ W(Fo + tH) is convex and the following proposition. Note in par- 
ticular that (H1) is not required to prove (ii). [] 

Proposition 5.2. Assume that g: ~, ~ R satisfies 

limsoUP t - 2 ( g ( t )  - g(O) - at) <_ 0 (5.22) 

for some a E W~ and that f : [R ~ [R is a convex function satisfying f(O) = g(O) 
and f <_ g. Then 

lim t - 2 ( f ( t )  - f (O) - at) = O. 
t+O 

Proof. Sincef i s  convex there is a b ~ E such t h a t / ( t )  - f ( O )  - bt ~ O. In par- 
ticular, 

lim inf t - 2 ( f ( t )  - f ( O )  - bt) ~ O. (5.23) 
t-~O 

Subtracting (5.23) from (5.22) and using f 6 g one finds 

l imsup --1 ( b - a )  < l i m s u p  1 t~o t = t-~o ~ (g( t )  - f ( t )  + ( b -  a ) t )  <_ O. 

Hence a = b. Now the assertion follows from (5.22) and (5.23) since f 6 g. 
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5.3. A weakened hypothesis 

Assumption (H 1) can be weakened a little when A (Fo) > 0. More pre- 
cisely, we assume 

(H2) W(Fo) = ffZl(Fo), and there exists a corresponding minimizer (oFo E Vr '~ 

satisfying ~r (OFo (x) dx = 0. Moreover, there exists to > 0 such that for all 0 <_ t <_ to, 

all H = a @b with I HI = 1 and all k ~ N * there exist minimizers qgFo+t ~ Wk #1,~176 
satisfying 

= 0 ,  
kY 

ligk(F o + tH) = min 1 (o,w~ p ~ kr j W(x, ro + tH + V(o) dx 

= L j W(x, ro + tH + •  
k N kr 

where r ( t ) ~  0 as 
wk 

(OFo+t H - -  q9 ~ <= r ( t )  (5.24) 

t ~ 0 and ~OkFo E W{~ ~ denotes the periodic exension of 

Proposition 5.3. Assume that W(x, F) satisfies (2.1), (2.2), (2.3), (5.9), (5.10). 
Moreover, assume that (H2) holds and that A (Fo) > O. Then there exists ~o > 0 
such that for all 0 < t < rio, all H = a@b with rill = 1 and all k ~ N* the 
minimizers k (OFo+tI4 appearing in (H2) satisfy 

k 1 
~gFo+tH = ~Oeo+t H .  (5.25) 

In particular, W(F o + tH) = I7r (F o + tH) and (H 1) is satisfied. Moreover, 
k (OFo+t H is locally the unique minimizer (in W~ ~176 of 

i 
~. ~ ~ W(x, F o + t H +  Vr 

kY 

i.e., there exists a ~1 > 0 such that whenever ~O~o+tH + ~ wtth" [l qJ l[w~,l~ <, ~l is 
a minimizer (or merely a weak solution of the Euler-Lagrange equation), then 
V ~ ' -  O. 

Remark. Under the continuity hypothesis stated in (H2), Proposition 5.3 allows 
us to apply the conclusions of Theorem 5.1 along a rank-1 path of  matrices 
Fs (corresponding, e.g., to increasing uniaxial compression). More specifically, 
if ~01e0 =q~0' then ~0~s =(o~s and the expansion (5.11) holds around Fs as long 
as A(IIF~) > 0. If  A (LFs.) = 0, then two cases may occur: Either A4(IIF~.) = 0, 
in which case the homogenized energy loses uniform rank-1 convexity 
(Theorem 5.1 (ii)) and the linearized equation admits a shear-band type solu- 
tion (Theorem 3.4(iii)), or A4(lles ) > 0, in which case the linearized equa- 
tion ad__mits a Bloch-wave solution iTheorem 3.4 (ii)). In this case it is plausible 
that W retains uniform rank-1 convexity at F0 but we are only able to 
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prove this under the more restrictive hypothesis (H1) (with Fo replaced by 
Fs.). This confirms the statement in [TM 85] that long-wavelength in- 
stabilities (As = A4 = 0) correspond to loss of (strong) ellipticity for the 
homogenized material. 

Proof .  It suffices to prove the uniqueness statement since the periodic exten- 
sion of 1 (OFo+t~r is a weak solution of  the Euler-Lagrange equation, i.e., 

1 IOW 
~ (x'FoTtH+Vcplo +'H) vrldx=O VrlEW1]/p. 

kY 

Indeed, 

1S~ 
kU ~ (x, Fo+tH+~7~~ ~ (x, Fo+tH+V~P}o+tI-I) VFIdx, 

kY Y 

where Fl(x) = ~ rl(x + z) E W~ 'p and the second integral is zero since 
zEI0, k 11N 

~o~o+t H is a minimizer in W~ 'p. 
k So assume that ~o = ~Fo+tH + ~U E W~k p is a weak solution of the Euler- 

Lagrange equation, i.e., 

1 IOW 
~r -~  (x, Fo+tH+ V(o) Vodx=O YrlEW~ p (5.26) 

kY 

and IlV~,llw~k o~ < 6s, with 6s to be chosen later. By the minimizing property 
of k ~OFo+t~l and by the Taylor expansion around Fo + tH + V~o(x) we find 

1 
0 => I (Lv0(X) Vq/, Vq/) dr + 2 f I (1 - r/)([U_ - U_ro ] Vq/, ~7g/) dr/dr ,  (5.27) 

kY kY 0 

where 02 W 
U_ - (x, Fo + t H + Vr - r / V q / ) .  

OF 2 
Since 

IFo+tH+V~o--rlVq/- (r0+v~o~0)[ = l t H +  V k (~Oyo+t n --q~kF o) + (i -- t/) VV/I 

_ < t + [ V  k -- ((,0Fo+tH- qgko)I + l V v / I ,  

it follows from (5.24) that we can choose 60 > 0 such that 

IFo+tH+Vq~-rlVgt-(Fo+Vq~ko) 1__<26~ for all 0_<t_<6o.  

Therefore by (5.9), (5.10) we have 

II u- - --< c o , .  

In view of Lemma 4.2 we then deduce from (5.27) that 

0 >_ (A(Yo) - Cal )  I IVq/12 dx. 
A (Fo) kY 

Choose 61 = - -  ; then ~Tg/- 0 and the proof is finished. [] 
2C 
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5.4. Convex integrands 

We complete this section by showing how the relation between homogeniza- 
tion and linearization can be made rigorous for convex integrands without the 
use of implicit hypotheses like (H 1) or (H2) above. To avoid technical dif- 
ficulties we consider only strictly convex integrands with quadratic growth. 
Specifically we assume that 

W(x + z, F) = W(x, F) for z ~ Z N, (5.28) 

W(x , . )  is convex and in C 2, (5.29) 

GIFt 2 <__ W(x, F) <__ C(1 + ]f12), (5.30) 

o w  
(x, F) __< c 0  + I f l ) ,  (5.31) 

82W 
c IGI2<  (x ,F)(G,  G) < CIGI 2, (5.32) 

= O F  2 = 

where c > 0. MARCELLINI [Ma 78] showed that the homogenized energy density 
is given by 

17r = l~ 1 ( f )  = min ~ W(x, f + Vy) dx. 
yEHI# Y 

The minimizer corresponding to F is unique since W is strictly convex and 
is denoted by YF. As before, 

O2W 
~-F(X) -- OF 2 (x, F +  VyF(x) ) 

is the linearized elastic tensor and MF its homogenization. Let 

aF = ~ (x, F + VyF) dX. 

Y 

The main result of this section states that homogenization and linearization 
commute. 

Theorem 5.4. Let (5.28)-(5.32) hold. Then the homogenized energy density W is 
in C 2 and 

02r 
(G, G) = (NdFG , G). 

OF 2 

Remark. Similar results have been obtained by FRANCFORT & MURAT ([FM 91]) 
and for scalar functions by ATTOUCH [A 84]. 

We shall use the following result. 

Proposition 5.5. Let L j be a sequence of measurable, symmetric 4-tensors satisfy- 
ing 

c la l2  <= (llJ(x) G, a )  <=GIG] 2, c > O  
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for a.e. x ~ Y and for all 
the minimizers in H} of 

Y 

subject to j r q/J dx = O. 
mizer of 

Y 

In particular, 

I v b), 
Y 

N x N  matrices G. Assume that U ~ U_ a.e. Let q/~ be 

( L J ( x ) ( G +  VN), G +  VgJ) dx 

Then !ff~ ~ !gg strongly in H 1 where !ff~ is the mini- 

([l_(x) (G + Vg/), G + VN) dx. (5.33) 

Y 
(5.34) 

The proof of the proposition is standard and is deferred to the end of this 
section. 

Proof of Theorem 5.4. Fix N x N  matrices F, G, [G[ = 1. Set h(t, G) de2 
-2(IYC(F + t G )  W(F) 6FtG).  A Taylor expansion in connection with t - -  - -  

the Euler-Lagrange equation for YF gives 
1 

h ( t , G ) = m i n  ( l - s )  ( F + V y F + S t ( G + V q J ) ) ( G + V ~ , G + V g J ) d s d x .  

(5.35) Y 0 

Step 1 (lower bound). Choose a sequence tj-+ 0 such that lim inf h(t, G) = 
t-+O 

lim h(tj,  G). Let q/i be the minimizer corresponding to h(tj,  G) (see (5.35)) 
j~oo 

with ~r gtj dx = 0. In view of (5.32) one has IIv/jlIH1 _-< c. Set 

0 2 w  
(x, F + Vyv(x) + st j(G + Vq/j(x))) ks , J ( x )_  OF 2 

let r/s'j be the minimizer (in H 1) of  

Y 

(with l r  j/s,j dx = 0) and let M sd be the corresponding minimum value. Note 
that 

1 

h(tj, >=�89 j ms,J ds. 
0 

Again by (5.32), observe that [M"J[ __< C Moreover, t j V q / j ~ 0  in L 2 and 
02W 

hence a.e. (for a subsequence). Thus II j's ~ IIF = ~ ( F +  VyF) a.e. for all 

s as j ~ oo. By Proposition 5.5, r/~'j ~ v/ in H~ and v/ is the minimizer of 

(IIF(X) (G + Vq/), G + Vq/) dx. (5.36) 
Y 
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It follows that M ~'j ~ ([MFG , G) and therefore (by Fatou's lemma) 

lim inf h(t, G) = lim inf h(tj ,  G) > �89 (MFG, G). 
t~0 j~oo 

Step 2 (upper bound). Let q/a be the minimizer of  (5.33). Setting ~, = ~G in 
(5.35) one finds 

lim sup h(t, G) <= �89 ~ ( I IF(X)(G+ V~ua), G + Vq/~) dx = �89 (MFG, G),  
t~0 y 

02W 
since the term ~ f  ( F +  V y F + S t ( G +  V~uc)) converges boundedly a.e. to 

H- F as t ~ 0 .  
Step 3 (continuity of  F ~ 6F, F ~ ~F)" Let ~t be the minimizer in (5.35). 
Then CY+t~ = CF + tlfft. Since ][ ~'t [[HI -< C (see above) with C independent of  
G (since [G[ = 1) one has 

s u p  l] ~OF+tG --  ~OFH ~ C(F) t. 
I~1 =1 

It follows that F ~ 6F is continuous. Moreover, one finds that II F ~ EL F 
�9 . J 

boundedly a.e. whenever Fj ~ E The contmmty of  F ~ MF now follows from 
Proposition 5.4. 
Step 4 (differentiability). From Steps 1 -  3 and Proposition 5.6 below it follows 

02ff~ 
that I~ is in C e and ~ -  = MF. [] 

Proposition 5.6. Let ?S be an open subset of ff~P, let F : ~ ' ~  P. be continuous 
and let g and h be continuous as linear and bilinear forms on ~P, respectively. 
Assume that for all x E ~ ,  y E ~P, 

lim t - e ( f ( x  + ty) - f ( x )  - tg(x)  y - �89 t 2 (h(x)  y, y)) = 0. (5.37) 
t~O 

Then f E c e ( ~ ' ) ,  Of(x) _ g(x)  and 02f(x) - h(x) .  
Ox Ox 2 

Remark. We do not assume that (5.37) holds uniformly in x. 

Proof.  The result is well-known. We include a proof  for the convenience of 
the reader�9 It suffices to consider a ball compactly contained in ~ / a n d  one 
may assume uniform continuity on that ball. 
Step 1 (p = 1). In this case we may assume that h = O. Otherwise, choose 
f E  C 2 with f " =  h and consider f - j ~  Moreover, it follows from (5.37) that 
f is differentiable with derivative g; thus f E C 1, f '  = g. We assert that f '  is 
both increasing and decreasing and thus constant. Assume f '  is not increasing. 
Then there exist a < b, and fi > 0 such that i f ( b )  < i f ( a )  + r ( b  - a ) .  Let c 
be the value where i f ( x )  + & attains its maximum in [a, b]. Then c < b and 
there is an e > O  such that f ' ( c + t )  + & < _ i f ( c ) ,  O<_t<_e. Set R ( c , t )  = 

OR 
f ( c  + t) - f ( c )  - f ' ( c )  t + �89 rit z. Then R(c, 0) = ~-t (c, 0) = 0 (since f E  C 1) 
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and --0R (c,t)___0 if O<_t<_e, so that R(c,t)<=O for O<t<_e .  On the 
Ot 

other hand, by (5.37), 
lim t -2R(c ,  t) = �89 d > O. 
t ~ 0  

This is a contradiction, so f '  must be increasing. The same argument applies 
to - f '  and the assertion follows. 
Step 2 (p > 1). Let ly] = 1. By Step i the function t ~ f ( x  + ty) is in C 2 and 
by the Taylor expansion, 

t-2lf(x + ty) - f ( x )  - tg(x) y - �89 t2(h(x) y, y)] 
1 

< ~ (1 - s ) ]  ( h ( x + s t g )  y , y )  - (h(x)  y ,y)[  ds 
0 

< �89 sup lh(x + z) - h(x)[ < co(t), 
tz] __<t 

with co (t) -~ 0 as t ~ 0 by the uniform continuity of h. Let p be a standard 
mollifier, i.e., let p ~ C ~ ( R P ) ,  ~ R p p ( x ) d x = l ,  p ~ ( x ) = e - P p ( x / e ) .  For 
f~  = p~ , f ,  we find 

t - 21 f e ( x  + ty) - f e ( x )  - tge(x) y - � 8 9  t2(he(x) y, y)l  <-_ co(t) 

as t ~ O ,  where ge=pe*g ,  he=p~*h.  Thus D f e = g  ~, D 2 f e = h  e. It follows 
that f e  is a Cauchy sequence in C 2 with limit f.  Thus f fi C 2 with the obvious 
derivatives. [] 

Proof of Proposition 5.5. Recall that if f j  ~ f boundedly a.e. and gj ~ g in 
L 2, then f j  & - ~ f g  in L 2. It follows from the Euler-Lagrange equation that 

S (LJ(x)( 6 +  v~,J), V~)cU = 0  V~ ~H}. (5.38) 
Y 

In particular, IIv~/J[] <__ C, so that g t / ~  q/ in H 1 for a subsequence. Since 
U ~ II boundedly a.e., 

S (L(x) (G + V~),  V~) a~ = 0 V~ ~ H~, 
Y 

and thus ~u minimizes the limit functional (the minimizer being unique by the 
lower bound on IIJ). Moreover, 

( l l : ( x ) (G+ Vq/), Vr/) dx 
Y 

= I  ((LJ(x) - ~(x)) (G + v ~ ) ,  V~)dx + ~ (~ (x ) (G  + V~,), V~) d~. 
Y Y 

Observe that the last term on the right is zero, subtract (5.38) and choose 
= ~u j - ~ to obtain 

I1~' - ~,jll~ ~ c I  (u_J(x) (v  (~, - ~,J)), v ( ~  - ~,J)) ,u  
Y 

= J  ((~J(x) - L(x))(G+ V~,), V ( ~ , -  ~J)) dx. 
Y 
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Now (U - k) (G + V~u) -~ 0 in L 2, Vq/j - V~ /~  0 in L 2, so that qzj ~ ~u in 

H~. This holds along any weakly convergent subsequence. Thus ~uJ ~ q/ in 
H~ for the whole sequence. [] 

6. Application to a Layered Composite 

The present section complements the theoretical results given in Sec- 
tions 3 -5 .  The example presented deals with a layered composite stretched by 
2 in the direction of its layers, under plane strain conditions. In this case, one 
is able to perform all the required calculations for o~ (see (3.40)), A~ (see 
(3.33)), A~ (see (3.34)) and the homogenized moduli tensor M s (see (3.35)) 
analytically and without any simplifying assumption. 

Section 6 is divided into six subsections. In subsection 6.1 after a general 
description of the model we show some consequences of the ellipticity assump- 
tion of the incremental moduli tensor L(~) = 02W/OF 2 and we compute the 
best stratified ellipticity constant ~(~) (see (6.5)). The incremental moduli of 
each layer are needed for the evaluation of the homogenized moduli of the 
composite and the corresponding formula for Mijkl(2) are given in (6.6). 
Recall that the load parameter 2 in this problem is the stretch ratio in the 
lamination direction of the composite. 

Corresponding to [1_(2) we can define A ( ~ . ) = A ~ ( 2 )  (see (3.31) and 
Theorem 3.7 (i)). Its calculation is presented in Subsection 6.2 and is given in 

three steps. In Step l, the minimum root A (a~a, a~2) of (6.15) is calculated, 
where a~l, o92 are the dimensionless wave numbers along Xa, x2 of the eigen- 

mode corresponding to the eigenvalue A. In Step 2, we seek A(a~) ,  which is 
found by the minimization of A with respect to a~ 2 E [0, 2n). The correspond- 
ing results are given by (6.26), (6.27). Finally in Step 3, the desired A is found 
from A by a numerical search in a large enough interval of E. Also in the 
same subsection A~(2) (see (3.34)) is calculated, followed by an independent 
proof of the equality a~(~)--A~(2) (see Theorem 3.7(vii)). 

Subsections 6.3 and 6.4 deal with the calculation of A~(2) (see (3.33)) 

and ~ ( 2 )  (see (3.36)). As it turns out from (6.25), !imnA(~, eC~l, e~2) = 

A5(2, ~1, a~2) and A~(2) can be found by minimizing 4 5 on I~] = l, 
~1 :~ 0, as shown in (6.34). The best stratified ellipticity parameter a ~ ( ~ )  of 
the homogenized composite defined by (6.41) is calculated with the help of 
(6.42). 

In subsection 6.5 we calculate the critical stretch ratios 2 +, )~-, which cor- 
respond to the onset of the first bifurcation of the composite in tension and 
compression (see definition (6.43) and results in (6.44)). We also calculate the 
critical stretch ratios )~-, 2~, which correspond to the first long-wavelength 
bifurcation of the composite in tension and compression (see definition (6.45) 
and results in (6.46)). In the same subsection we also define the critical stretch 
ratios 2~, 2~ corresponding to the first loss of rank-/ convexity of the 
homogenized composite (see definition in (6.48) and results in (6.49)) and 
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show that they concide with ~+, AE, respectively (see (6.51)), thus providing 
for this application an independent proof of Theorem 3.7 (vi). 

The last Subsection 6.6 uses a particular energy density function W to 
calculate A(~.), A~(~), A~(A) and o~L(2) for stratified composites under ten- 
sion and compression. For the particular choice of W adopted here only the 
compression case gives interesting results, while for tension A = A ~ ( 2 ) =  
A~(A) = constant independent of A. 

6.L Model - General considerations, calculation of M 

Consider a composite medium made of a self-repeating sequence of elastic lay- 
4 4 4 

ers ~ ,  ~ . . . . .  ~ with initial thicknesses H, H . . . . .  H and current thicknesses 
4 4 4 4 4 

h , h  . . . . .  h. The initial thickness of the base cell is I = H + H + . . .  + H  
4 4 4 

and its current thickness is h = h + h + . . .  + h. For simplicity only three 
layers a, b, c per base cell are depicted in Fig. 6.1. 

The composite deforms under plane strain conditions. Each layer is made 
of an isotropic, nonlinearly elastic material that remains strongly elliptic at any 
level of strain. There is perfect bonding between the layers, i.e., the vector trac- 
tion and displacement are continuous across each interface for all possible 
deformations. 

At the state of deformation that corresponds to the principal solution, 
which is depicted in Fig. 6.1, the pth layer is under principal stretches 

h 

c b a 

o'22 = o~22 = o'22 = 0 

. 

c b a 

h 

Fig. 6.1. Schematic drawing of the periodic layered composite. 
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1, 22 along the xa, x2 directions respectively. The assumed perfect bonding 
condition between layers implies that 

~1 4 4 
21 ~ 21 . . . . .  2 1 -- 2 .  (6.1) 

The corresponding principal Cauchy stresses in each layer are denoted by 
4 4 

0"11 , 0"22. Traction continuity across the interfaces requires that 

0.22 = 022 . . . . .  @2 -= 0.. (6.2) 

A compression of  the composite corresponds to 2 < 1, a tension corresponds 
to 2 > 1 while at 2 = 1 the composite is stress-free (when a = 0). 

The principal stress and deformation state of the composite is completely 

determined by the initial geometry (i.e., the layer thicknesses H, H, . . . ,  H),  

the material properties of  each layer (i.e., the energy densities W, W, . . . .  W) 
and the toad parameter (i.e., the Xl-stretch ratio 2). An isotropic nonlinearly 
hyperelastic material under plane strain conditions, has an energy density that 
is a function W(sl, tn) of the invariants of the Cauchy deformation tensor 
F~F. 

Noting that within each layer the deformation gradient tensor is 
F = F ( 2 )  = diag [21,22], and so l / =  22 + 22 , /n = 2~222, one finds (omitting 
the superscripts for notational simplicity) the nonzero components of  the 
Cauchy stress tensor to be or11 and a22 and the nonzero components of the 
linearized elastic tensor at F (also called the incremental moduli tensor) 
L = [kF(~) = ~_(2) = 02W/OF 2 to be 

Ll111, Ll122 = L2211, L2222, L1212 = L2121, L1221 = L2112. 

Let us explicitly remember the following assumption: 

(E) At every level of  strain F = F (2 )  the linearized elastic tensor LF(~)(x) = 
02W/OF 2 is strongly elliptic in each layer. 

From this assumption, one deduces (see (3.7)) that the 2 •  matrices 

Lgjkzbjbl are positive-definite for all b ~: 0. This implies that their principal 
minors are positive. In view of the arbitrariness of b, one has 

4 4 4 fp 
Ll111(2), L1212(2) m- L2121(2), L2222(2 ) __> o~(~) > 0, (6.3) 

4 4 ~ 4 
[Lllll(2)L1212(2)] (bl)4 + [L1212(2)L2222(2)] (b2) 4 

/P 4 fP ~P 4 
"q- [Ll111(2)L2222(2) q- (L1212(2)) 2 - (Ll122(2) -F L1221(2)) 2] (bib2) 2 > 0.  (6.4) 

Moreover, the implicit function theorem implies that near 2 = 1, 0. = 0 the 
stretch 2 2 is a function of 2. Therefore, of the two independent control 
parameters 2 and 0. for this problem, the stretch ratio 2 is chosen to be the 
load parameter. Also for reasons of  simplicity, it is assumed that the lateral 
stress 0. = 0. 
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From Theorem 3.7 (vii) it follows that the best stratified ellipticity constant 
for 11(2) (see (3.40)) is 

4 4 
O~tL(,~)s = min {L1212(,~), L2222 ()L) [ p = 1, 2, .. . , n} > c~(;0 > 0 =  . (6.5) 

Knowing the incremental moduli for each layer of the composite, one can 
find the corresponding homogenized incremental moduli M F =  M()~)=  ~ .  
From (3.35) the nonzero components Mijkt of M for the layered composite at 
hand, are found to be 

Mlla~ = (Lull  - (Ll122) 2 (L2222) -1) + (L 1122 (L2222) -1)2 ((L2222)-1) -1,  

ml122 = (LII22(L2222)-1) ((L2222)-1)-1 = M2211, 

M2222 = ((L2222) -1} -1,  (6.6) 

M2121 = (L2121 _ (L1221)2 (L1212)-1> + <L1221(LI212 )-1>2<(L1212 ) - 1 ) - 1 ,  

M1221 = (L1221 (L1212) -1) ((L1212)-1)-1 = M2112, 

M1212 = ((L1212)-1) -1 . 

In this set of equations, ( f )  denotes the average of a function f ( x )  defined 
in the interval [0, 1]. For a function f which is constant in each layer of the 

/ 1 ~  6 ~  4 4  
composite ( f )  = H f + H f + . . .  + H f . 

The derivation of (6.6) from (3.35) is straightforward and no details need 
to be given here. 

6.2. Calculation o f  A 4 , A s 6 

Attention is next focused on the calculation of A]()~) corresponding to 
I1(~) (see (3.31)) for the layered composite under investigation. We always 
assume that A~I(~) >= O. From Theorem 3.7(i) it then follows A(2)  = A ] ( 2 ) ,  
and so 

A(~)  = inf{A(~, (O1)1(.O 1 E ~}, (6.7) 

A(~., O91) = inf{A (~, CO1, (.02) I O)2~ [0, 2re[l, (6.8) 

A (~L, (.D1, 092) = inf{Q(Vv; Y)  l v  = ei(%'xl+%'xOp(x2), p ~ ~'~}}. (6.9) 

Two cases can occur: Either A = A ~  where A~ is defined by (3.34) or 
A < A~. In the former case A = o~ is given by Theorem 3.7(vii) (cf. (6.5)). 
In the latter case a formula for A((01) will be derived and A is obtained by 
minimization over (01. In the specific examples discussed in Section 65 it was 
found that A = A~ in extension while A < A~ in compression. 
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Assuming now that A < A ~ ( 2 )  and restricting attention to values of  

(ah ,  o92) for which 0 __<A(2, o)1, 0~2) < A ~ ( Z )  one easily checks that the in- 
fimum in (6.9) is attained (cf. the proofs of  Theorem 3.4(ii), (iii), Sections 4.5 

and 4.6) and that A depends continuously on co2, so that the infimum in the 
definition of A is attained, i.e., 

Jl(~.,  O91) = A ( ~ ,  (.01, (-02,m) , 

where a~2, m depends on co s and 2. 
The Euler-Lagrange equations for the minimizer ~3(x2)= eiW2"x2~(x2) in 

(6.9) are 

-o92(L~m - A ) ~ 1  + i('01(Ll122 -b L1221 ) 02, 2 d- (L1212 -A) /~1 ,22  = o ,  

-co2(L2121 - -'~) 02 + i~o1(L2112 + L2211) 01,2 + (L2222 - A) v2,22 = 0, 

4 4 Zl 4 
for x2 e ]0, H[ u ]H, H + H[ 
ing interface conditions are 

~ (L1212 - A )  01, 2 d- i0)1L1221~ ~ --- 0, 

~i091L22110 d- (L2222 - A )  v2,2 ~ = 0, 

S1 ~11 4 ~11 4 4--1 

(6.10) 

~ 4- ,  
u ' "  w ] H + H + ' "  + H ,  1[. The correspond- 

[~1 ] = o ,  

~o2~ = o ,  
(6.11) 

for x 2 = H, H + H, . . . ,  H + H + �9 �9 �9 + H .  The boundary conditions at the 
ends x2 = 0 and x2 = 1 of the unit cell, as a direct consequence of  the par- 
ticular form of ~3(x2), are 

[(L1212 - A ) 0 1 ,  2 -b i(.01L1221 02] (1) = exp (ic02)[ (L1212-A) 01, 2 -b ifOlLI221 02] (0 ) ,  

[i(.01L2211 01 + (L2222 - d )  v2,2] (1) = exp (i(.02) [ir 02 + (L2222 - A )  02,2] (0 ) ,  

~3(1) = exp (ico2) ~3(0). (6.12) 

In each layer f p , p  = I . . . . .  n, we consider the biquadratic equation 
associated with (6.10): 

(L1212 - A )  ( L z 2 2 2 - A ) z  4 

-b [ (L l l l l  - d )  ( L 2 2 2 2 - A )  -[- (L1212 - d )  (L2121 - A )  - (LI122-I-L1221)2]z 2 

+ (LIlII ~ A )  (L2121 -- A )  = 0 (6.13) 
whose roots Zl, z2, z3 = - Z l ,  z4 = - z 2  are generally complex, at least for 

relatively small values of  A, as follows from (E) (see (6.4)). We shall also 
need the functions defined for zl * z2 * 0 by 

z~ cos (~oz2) - z ~  cos (cozl) 
a 1 (Co; Zl, Z2) = Z2 _ Z22 , 

(6.14) 
cos (cozl) - cos (o~z2) 

a2(w; zl ,  z2) = z2 _ z2 , 
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Z2 sin (coza) - Zl sin (o9z2) 
b~(og;  Zl ,  z2)  = z21 - z~ ' 

(6.14) 

zl sin ( ~ Z l )  - z 2  sin ( ~ z 2 )  
b 2 ( o ) ;  z l ,  z2) = z2 _ z2 

and w h o s e  def init ion has to be extended by cont inuity  for Zl = 0 and zl  = z2. 
4 4 

Finally we define in each layer the 4 •  matrix  K = K ()~; o91, Y) w h o s e  
entries are 

Kll =/(33 = al(og~; z~,  z2) 

(Ll122 + L1221) - (L2222 - y) ( L l l l l  - y )  "-[- a2((-o1; Z l ,  Z2) L1111 
(L2222 - y) (L1212 - y) 

K12 = - K 4 3  = ib1(o91;  z l ,  z2) 
Ll122 L1221 

ibz ( ogl ; z l  , z2) 
(L2222 - y )  (L1212 - y) 

bl (o91 ; zl, z2) 1 1 
K13 = i + ib2(o91; zl,  z2) , 

ZlZ2 (L2222 - Y) (L1212 - Y) 

(LlI22 + L1221) 
K14 = - K 2 3  ~- - a 2 ( o 9 1 ;  Z l ,  z2) 

(L1212 - y )  (L2222 - y )  ' 

L1221 
K21 = -K34 = ibl(ogl; Zl, z2) ZlZ2 ib2(o91; z l ,  Z2) 

(L1212 - y) 

K22 = K44 = a l  ((.01; Z l ,  z2) 

- a2(o91 ; Zl, Z2) 

K24 = - ibl (o91 ; z l ,  z2) 

Ll122 

(L2222 - y) ' 

Ll122(LlI22 + L1221) - (L2222 - y) (Lull - y) 

(L1212 - y) 

(L2222 - y) (L1212 - y )  

1 
ib2(o91 ; Z l ,  Z2) 

(L2222 - y )  ' 

K31 = ib1(601;  Z l ,  z2) L2221 - (L1212 - y ) 2  

(LIz12 - Y) 

L2122 - (L1111 - y) (L2222 - y )  
+ ib2(o91 ; z l ,  z2) 

(L2222 - y) 

K32 = - K 4 1  = - a 2 ( o 9 1 ;  Z l ,  z2) 

(L1212 - Y) 2Ll122 + (L1111 - Y) (L2222 - Y) L1221 - L1221L1122 (L1221 +Ll122) X 
(L1212 - y )  (L2222 - y) 

L2122 - (Ll111 - y )  (L2222 - y )  
K42 = - ib l (o9~;  Zl, z2) 

(L2222 --  y )  

2 
L1221 _ (L1212 - y ) 2  

--  ib2(o91;  Z l ,  z2) 
(L1212 - -  y )  
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Note that as in previous formulae superscripts are in general omitted for the 
sake of  notational simplicity. 

Proposition 6.1. (i) Under the previously stated notations and assumptions, A is 
the smallest nonnegative root of 

det [F(2, 001, A ) - - e x p  (i002) I] = 0, (6.15) 

where I denotes the unit 4 x 4  matrix and F = F(2,  001 , A)  is defined by 

4 4-1 ~ 
F(2,  001, A ) -  K (2, 091, 2 )  K (2, 001, A ) . . .  K (2, 001, A ) .  (6.16) 

(ii) 
4" fP)-i g fP 

det K =1, (K (2; 00a,A) ~- K ( 2 ,  -(.01, ff~ ) . (6.17) 

(iii) All the invariants of F are always real and satisfy 

I F = I3 v = tr F, I f  = 1, (6.18) 

I F ( 2 ;  col, A)  = IF (2 ;  -o91, ~ ) ,  I2F(2; col, A)  = I2V(2; -001, A) .  (6.19) 

Proof. We assume for simplicity that in all the layers all the roots of  the bi- 
quadratic equation (6.13) are simple. In the case of  multiple roots one just 
has to verify that the final formulae obtained by taking the limits Zl~Z2 and 
zl-*0 make sense. 
(i) Under the previous assumptions the general solution of  the system (6.10) 
of  ordinary differential equations with coefficients constant in each layer ~p is 

4 fp fp 4 ~p fp 
01(x2) = ~ ]  Cjexp(io91zjx2), 02(x2) = E Djexp(i001zjx2) in layer ~p. 

j=l j=l (6.20) 

4 .  
In (6.20) the zj (j  = 1 . . . . .  4) are the four roots of  (6.13); the constants 
4 4 
Cj and Dj ( j  = 1 . . . . .  4) are related by 

4 1 (L21421 3 ) +  (Z~) 2 fp ~ /~j -- (L2222 -- j~ ) 
q =  4 4 ' 

Zj Ll122 -I- L1221 

1 (z )2 
- -  - -  C j .  

Dj 4 4 4 
Zj Ll122 + L122I 

(6.21) 

Substituting (6.20), (6.21) into the interface conditions (6.11) one 
obtains, in matrix form, the following equations for the interfaces x2 = 
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/1 /1 ~ 4-1 
H . . . . .  H + H + . . .  + H ,  respectively: 

/1 /1/1 /1 4 z14 4 
V exp [io)lH Z] 12 = Y exp [iahH Z] t2 , 

(6.22) 

4--1 /1 4--1 4--1 4--1 4 /1 4--1 fn fn 
Y exp [ir I (H + . . .  + H ) Z ] C = V exp [ico s (H + . . .  + H ) Z] C . 

The superscripts fp in the 4 • 4 matrices V and Z appearing in (6.22) indicate 
the layer at which the components of these matrices have to be evaluated. 
These matrices have components 

Vlj= 1, 

v2j = ( L . . -  A) + 4(L12  - A),  
Zj (Ll122 + L1221 ) 

V3j = zj(LI212 - A )  - L1221 (Llll l  - A )  + Zj2 (L1212 - A )  
zj (Ll122 + L1221 ) 

(Lml - A) + zj.2(LI212 - A) 
V4j = Ll122 - (L2222 - A)  

Ll122 + L2222 

I~i for i = j ,  

~/J= for i * j .  
4 4 

The 4-dimensional vectors C in (6.22) have as components the constants Cj 
introduced in (6.21). 

The end cell boundary condition (6.12) in conjunction with (6.20) furnishes 
the additional relation 

4 4 4 ~/1 
Yexp [iwl Z] C = exp (iw2) V C . (6.23) 

Laborious, although straightforward, algebra gives 

4 4 44 4 
K = V e x p [ i w l H Z ] ( V )  -I,  p =  1,2 . . . . .  n; (5.24) 

hence from (5.22) and (6.23) it follows that a nontrivial solution ~(xz) exists 
for (6.10), (5.11), (6.12) if and only if (6.15) is satisfied. 
(ii) From (6.24) it follows immediately that (6.17) holds. 
(iii) The only nontrivial property in (5.18) and (6.19) is I [  = t rE  Since a 

/ , 4 - 1  /1 
simple inspection of the definition of g = K K . . .  K implies that tr g-1 = 

/, 4 - , 4  
t r ( K . . .  K K), it is enough to prove 

/ 1 4  4 4 4 ~  
tr (K K. . .  K ) = t r  ( K . . .  KK).  
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This follows from mathematical 
end introduce the matrix 

A33 

-A34 
A* = 

A3~ 

-A32 

associated with any 4 • 4 matrix 

of  K it follows that K = K * .  
4 4 4  

induction on the number of layers. To this 

-A43 A13 -A23 "1 

1 A44 -A 14 A24 

-A41 All -A21 

A42 -A12 A22 

A with components Agj. From the definition 
/ ~ 4  4 

Assume that for p layers, K K . . .  K = 

4 4 4 /p+~ 
( K . . .  K K ) * .  Then one can easily show that ( K K . . .  K)  K = 
4+2 4 4 4 

[ K ( K . . .  K K)]*. The desired property follows from the (obvious) remark 
that t r ( A )  = t r ( A * ) .  [] 

The use of  (6.18) in (6.15) yields the following equation, implicit in A :  

exp (4i002) --  I1F(2, co 1 , A)  exp (3i002) + I2F (J., O)1, A) exp (2/002) 

- I~(2,  001 , ~ )  exp (i002) + 1 = 0 .  (6.25) 

This equation provides A (defined in (6.9)) as a function of  the load 
parameter 2 and the dimensionless wave numbers 001,002 of  the correspond- 

ing mode ~(x2). Once A(2 ,  001,002) has been found, A(2 ,  COl), its infimum 
over all co2 ~ [0, 2n),  can be calculated. This calculation works as follows. In 
view of the discussion after (6.10) the infimum in the definition (6.8) of  A (2, ool ) 

is achieved for some value 002m, in which case A(2 ,  00a) = A ( ~ ,  00a, 002m)" 

In this case Ym = -  exp [i002m] is an eigenvalue of  F in (6.15), and hence it is 
a root of  its characteristic polynomial f ( y )  =- y4 _ i~y3  + iF2y2 _ flaY + 1, 
i . e . ,  f ( Y m ) =  0. TWO cases can occur: 

a)  Ym E ~ ,  which in view of the fact that l Ym t = 1 implies that Ym = + 1 
or - 1  and hence 

2I~(2,  001, A)  - I2F()~, 001, A )  - 2 = 0, 002m = 0 ,  

(6.26) 
2I~(2,  co I , A)  + I~()o, OOl, A )  + 2 = O, 002m = n .  

b)  Ym E C \ JR, which in view of the fact that ]Ym ] = 1 and the reality of  
11 F, I~ implies that the four roots of the biquadratic polynomial f ( y )  are Ym, 
Ym, (Ym) -1, (Ym) -a with Ym = (Ym) -1. Using these relations in the expressions 
of  the invariants as functions of the roots o f f ( y )  we obtain the following im- 
plicit equation for A:  

41 [I1F(~" 001' A)]2-I2t=(~, 001, A ) q - 2 = 0 ,  002m = 4-COS -1 ( ~ )  (6.27) 

Of  course, for a root A of (6.27) to be acceptable, one should also verify that 
[IIF( )~, 00a, A)I  --< 4. Consequently, the quantity A(it ,  001) which is defined by 
(6.8) is the minimum nonnegative root of  (6.26), (6.27). 
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For the case where A satisfies (6.26), a physical interpretation can be given 
to the corresponding mode V(Xl,X2). If (6.26)1 is satisfied at A, then 
032m = 0 and from (6.9) it follows that v ( x  1 , O) = v ( x l ,  1), which indicates a 
symmetric mode. If (6.26)2 is satisfied at A, then 032m = n and from (6.9) it 
follows that V(Xl, O) = - v ( x l ,  1), which indicates an antisymmetric mode. 
In all the numerical calculations performed for this example, A is always 
found to correspond to a symmetric or an antisymmetric mode v, as will be 
seen subsequently. 

The calculation of A(2 ) ,  which is defined in (6.7) as the infimum over 
all 031 of .,] (;L, 031), is done by a simple numerical search over an adequately 
large interval for 031. From (6.19) it follows that only positive values of 031 
need to be considered in the abovementioned numerical search. 

Remark. For 031 = 0, A can still be found from the original governing equa- 
tions (6.10)-(6.12). In this case the governing equations for ~1(x2) and 
~2(x2) decouple and 9a, 92 are piecewise linear within each layer, as is easily 
seen from (6.10). The interface and boundary conditions (6.11), (6.12) finally 
imply that 

4 
/~(2, 0, 032) = rain {L1212(2), L2222(;~)IP = l, 2 . . . . .  n} = e~[(z). (6.28) 

Since A (2, 0, 032) = A (;~, 0, 0) (in view of (6.28)), one can observe that 

A (2, 0, 0) -- A~ where A~ is defined in (3.34), and so we have an independ- 
ent proof of Theorem 3.7(vii). It should also be noted that 031 = 0 is a 
singular point in A (;~, 031) since for the applications considered subsequently 
the lira A(,~, COl) exists and is different from (6.28). A physical interpreta- 

O91- .0  

tion of the existence of this singular point is not difficult if one observes that 
at the neighborhood of 031 = 0 two physically different types of modes can 
be found from (6.9): the modes which are independent of Xl as well as the 
long-wavelength type modes, i.e., modes whose wavelength in the Xl direction 
is much larger that the unit cell size. 

Hence in the numerical calculation of A(2)  from /](;~, 031), one has to 
keep in mind that A (2, 0) is still given by the right-hand side of (6.28) while 
for 031 > 0, 4 ( 2 ,  031) is the minimum nonnegative root of (6.26), (6.27). 

6.3. Calculation of  A ~5 (2) 

For a fixed 2, we now study the determination of A~ (see (3.32)), given 
in our case by 

A}(2) = l iminf A(2 ,  031, 032). (6.29) 
(0) 1 , O92 ) ---~ 0 

The calculation is obviously nontrivial only when A ~ ( 2 ) <  A ~ ( ~ ) =  c~(;~) 
and therefore in the following we fix r />  0 and we always assume that 

0 =< A(iL, O31, (.02) 6 A~(2) - JT; 

from the remark after (6.28) it then follows that 091 . 0. 
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We first define 

z{5(2, coi, o)2) - l im in f  z] ()~, e0)i ,  eco2). (6.30) 
e-+0 + 

We shall see in a momen t  that  A} = inf{e{5(0) 1, o92) 110)1 = 1, 0)1 * 01 (see 
(6.34)). Note  that  this is not  completely obvious, because in (6.30) we only 
consider limits along lines passing through the origin, while in (6.29) any se- 
quence co--+ 0 is taken into account .  

We introduce the 4 x 4  matr ix  G = G(X, y) whose nonzero components  are 
given by 

G12 _- (L1221 (L1212 _ y ) - 1 ) ,  

G13 _ ( (L1212 _ y ) - l ) ,  

624 = _ ((L2222 _ y ) - l ) ,  

634 = _ (Ll122 (L2222 _ y ) - l ) ,  

G21 _ (Ll122(L2222 _ y ) - l ) ,  

G3, = - ((L1111 - Y) - (Ll122) 2 (L2222 - y ) - l ) ,  

G42 = _ ((L2121 _ y) _ (L1221)2 (L1212 _ y ) - l ) ,  

G43 = _ (L1221 (L1212 _ y ) - l ) .  (6.31) 

Note  that  G is uni formly  bounded  for  0 =< y < A~(2 )  - r / .  

Proposition 6.2. (i) Under the previously stated notations and assumptions .ill 5 =-- 
A 5  (/~, o91, 0)2) satisfies the implicit equation 

det [G(A,  As) - 0)21] 
e)2 .J 

(ii) The invariants of  G are 

I1G = O, 

I3 G = 0, 

(iii) 

= 0.  (6.32) 

i2 G = _ 1 t r G  2 = _ (G12G21 -I- GI3G31 + G24G42 q- G34G43) , 
(6.33) 

I ~  = ~ [ ( t r G 2 )  2 - 2 t r G  4] = (G12G43 - G13G42) (G21G34 - G31 G24) �9 

A } ( 2 )  = inf  35(2,  o91, 0)2). (6.34) 
Io)l =1 
o)1=I=0 

Proof. (i) F rom the defini t ion of  F()~, o91, A)  (see (6.16)) it follows that  
(Y, o91) ~ F ( 2 , 0 ) 1 , y )  is a smooth  funct ion on ~ " x E  where ~ / =  
(0, A~(2 )  - I/) and 

] F ( 2 , 0 ) 1 , y ) -  ( l + i 0 ) 1 G ( 2 ,  y) ) [  _-<C[0)1[ 2 for  a l l y E ~ / .  

Moreover,  

I ( F ( 2 ,  COl, y) - e i%l )  - i ( 0 ) i G ( ) ~ , y )  - o921)1 __< Cl0)l 2. (6.35) 

Since o)1 t 0, formula  (6.32) follows immediately. 
(ii) The  results are only a mat ter  o f  some lengthy, but  straightforward, algebra. 
(iii) The  statement follows f rom 

lira sup 14(2, 80)1,  e0)2) - -  J15 (2 ,  0)1,  ~ ~-" 0 .  (6.36) 
e-.0 Io)l=l 

col:e0 
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In order to prove (6.36) we first remark that by (6.35) for [09 [ = 1 the equation 

det [F(2, ecol, y) - e i~~ l] = 0 (6.37) 

only admits a solution y < A ~ ( 2 ) - r /  for e < e 0  if 10911 > 6(e0). We may 
thus assume that [091[ __> 6 > 0. This implies that for e small enough, 

(092--~4+12G(~.,y) (092--~2+I4G()~,y)l <=Ce. 
col/  \ 0 9 : /  

Taking into account the explicit form I~, 14 G (see (6.31), (6.33)), one sees 
that, uniformly for all t09[ = 1 such that [0911 _-> fi > 0, y must be close to a 
solution of 

+ I2G(2, y) + I~()~, y) = 0. (6.38) 

This concludes the proof of (6.36). [] 

Since A5(2, O91 , O0 2) is continuous with respect to (091, 092) (see (6.32)), 
the infimum in (6.34) is attained at some ((Dim, 092m) and A ~ ( 2 ) =  
A5(,l, colin, CO2m). Two possibilities exist (recall that we assume that the 
stretch ratio )~ is fixed): 

a) 092m/091,~ = 0 in which case, (6.38) implies 

I4G()~, A}) = 0, C~ = 0. (6.39) 
091m 

b) 092m/091m =~ O. The continuity of  I~  and 14 G with respect to A5 dictates 
that in this case  092m/091m is a double root of (6.38) (and so is -(092m/CO1m) ) 

since from ( 6 . 3 4 ) n o  real roots coz/09, of the polynomial----((Dm~'~4l- 

I~(;.,y)(09~ll)2+IG4()~,y) exist for y < A } ( ) ~ ) .  Hence 
k,u) 1./ 

[I~(2, A~)]Z-eI4G()L,A~5) = 0 ,  (~2m~ = (_�89 ASs))l/2. (6.40) 
\(,O 1 m,] 

For a solution A~ of (6.40) to be acceptable one has to verify that 
I2G(;., A~) < 0. The desired A~(2) ,  which is defined in (6.29), is thus given 
by the minimum nonnegative root of  (6.39), (6.40). 

6.4. Calculation of o~ ( )t ) 

Besides A()t)  and A~().) another quantity of interest in this example is 
o~()~),  which is defined by 

c ~ ( 2 )  = min (Ms()~) a| a| (6.41) lal =lbl=l 
a, bE~ N 
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where M (2) is the homogenized incremental moduli tensor of  the composites 
principal solution whose components are given by (6.6). 

From (6.41) one can easily deduce that a ~  (2) equals the minimum eigen- 
value of the 2 x 2  matrix Mijkt(2)bjbt over all possible unit vectors b~ rE2. 
Assuming that b = (cos ~, sin 6), we can thus obtain oz~(2) by the follow- 
ing expression 

c ~ ( 2 )  = min �89  (M1212+M2222) sin24] 
~E[0,n/2] 

--  [ [ ( M I l l 1  - M2121 ) cos  2 ~ -4- (M1212 - M2222 ) s in  2 (/)]2 

+ 4 (Ml122 + M1221)2 sin 2 q~ cos 2 q~] 1/2}. (6.42) 

The desired minimum can be found analytically by evaluating the right- 
hand side of  (6.42) at q~ = 0, 4~ = ~ and comparing it with the extrema of  
the same function that occur in the interior points of (0, n/2). These extrema 
can be expressed in terms of  Mijkt, but their corresponding expressions are 
too cumbersome to be recorded here. 

6.5. Calculation of the critical stretch ratios 2 +, 2[ and 2~, 2[( 

Another set of physically important quantities for the composite in this ex- 
ample are the zeros of  A ( 2 ) ,  A~5(2) and o ~ ( 2 )  closest to 2 = 1. These 
zeros correspond to the stretch ratios associated with the first bifurcation and 
the first loss of  ellipticity in the composite as the loading increases away from 
the stress-free state. 

The roots of  A ( 2 )  closest to 2 = 1 are denoted by 2 + ( >  1) and 
2~-( < 1). They respectively correspond to the onset of the first bifurcation 
instability in tension and compression as the stresses increase in absolute value. 

From the defintion of A (2) in (6.7) one has the following method for the 
calculation of 2 + and 2~-: 

2 + - inf {A(2) = 0} = inf {'~-+(o)1)}, 
2>1 r 

22 = sup {A(2) =0}=  sup [~-(o)1)1, 
2<1 coloR+ 

~.c+ (('01) ------ inf {A(2, ('01) = 0}, 
2>1 

(6.43) 

~ -  (o)a) -= sup [3 (2 ,  ('01) = 01. 
2~<1 

It is tacitly assumed that 2+(o)~) and 2c(o)1) do exist for all o)1~ rE+ 
and in view of (6.26)-(6.28) they are given by 

'~+ (o)1) = inf ' )  
^ ,~>1~ 

~ c  (('01) sup / 
) , < l J  

r ('01, 0) - I2~(2, co 1 , 0) - 2 = 0 

2 I [ ( 2 ,  ('01,0) + I2F(2, ('01,0) + 2 = 0 

�88 [ I [ (2 ,  co I , 0)] z - I2~(2, ('01,0) + 2 = 0 

4 
min L1212(2), L2222(2)tP -= 1, 2 . . . . .  n} = 0 

i f  (.01 =~= 0 ,  

(6.44) 

if ('01 = 0. 
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The inf and sup in (6.44) are expected to be min and max respectively 
because the 4 zeros of the expressions on the right-hand side of (6.44) are ex- 
pected to be isolated zeros. The calculation of the lowest buckling loads 2c + 
in tension and 2~- in compression is based on (6.43)2,3 and involves a simple 
numerical search of the respective extrema of ~c+(eOl) and 2c (ool) over an 
adequately large interval for 091 E [~+. 

The zeros of  A~(4)  closest to 4 = 1 are denoted by 4~-(> 1) and 
2~- ( < 1). They respectively correspond, according to Theorem 3.7 (vi), to the 
first loss of  ellipticity in tension and compression of  the homogenized in- 
cremental moduli of  the composite's principal solution. 

From the definition of 4~- and 2h one has 

4~- -- inf{A~(4)  = 0 ] ,  4~ -= sup {A~(2) =01 .  (6.45) 
.a.>l ;~<1 

With the help of (6.39), (6.40), 4~- and )4- are found to be 

2~ = i n f ' ~  f ,~>1[ ~146(4' 0) = 0, (6.46) 

4~- s u p ]  ~ [I2G(4, 0)] 2 - 414G(4, O) = O. 
2 < l J  

As for (6.44), the inf and sup in (6.46) are expected to be attained at finite 
values of 4. 

There is an interesting relation between 2~- and ~.+ (col) and between 2i,- 
and ~.~-(col). By assuming the interchangeability of lira and inf in 

~-~0 + r ) 
A (4, ec91 , ea~ 2) from the definitions (6.8) and (6.9) as well as from (6.29), 
(6.30), (6.34), (6.43) and (6.45) one obtains 

4~- = ,~c + (0 +) = lim ~+ (eo91), 4~ = ~7 (0+) = lira ~7 (eo91). (6.47) 
e--+0 + ~ 0  + 

This property is verified in all the numerical calculations done for the layered 
composite. The zeros of o ~ ( 4 )  closest to 4 = 1 are denoted by 4 + ( >  1) 
and 4~ ( < 1). By definition, 

4~4 -= inf [o~ (41.) = 01, 4~ - sup {o~ (4) = 0}. (6.48) 
;t>l 2<1 

As expected from Theorem 3.7, 2~ = ~,-, 4~ = 4~, a result to be verified 
constructively in the sequel. 

By making use of  (6.42) into (6.48) one finds 

4{/ = inf I4~(2) = 0, 2~ ~ sup [I~/(4)] 2 - 4I~q(2) = 0 (6.49) 
)t<l 2>1 

where the quantities I2 n, 14 H are given in terms of MUll(4) by 

I2U(2) - [Mlm (2) Mzz22(4) + M,2~z(4) M2121 (4) 

-- (Ml122(~.) +M2222(4) )21  [M1212(2 )M2222(2)  ] - 1 ,  

14/-/(2) ~ [M1111 ( 2 )  M2121 ( 2 ) ]  [M1212(2 ) M2222 ( 2 ) ]  - 1 .  
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The homogenized moduli components Mijk1(2) are given by (6.6). Note that 
4 in view of the assumption (E) (strong ellipticity of each layer) L1212(~ ) > 0 

4 
and L2222(2) > 0 for p = 1 . . . . .  n, which ensures from (6.6) that M1212()~ ) > 0 
and M2222(/~) > 0 and hence IH(2) ,  I4H(2) are always defined. 

A straightforward calculation of the invariants I2G(2, 0) and I~()L, 0) in 
(6.33) by using (6.31) and (6.6) gives 

I2H(2) = I~ (2 ,  0), I4~'(2) = I4G(2, 0) .  (6.50) 

Comparing (6.46) to (6.49) in the light of  (6.50) one deduces that 

2~- = 2 +, 2~- = 2~ .  (6.51) 

This result is an independent proof for the layered composite at hand of the 
general result in Theorem 3.7 concerning the zeros of  A~(2) .  

As expected from the definitions (6.43), (6.45) and in view of the properties 
(6.47), (6.51), the following relations hold for the zeros of A ( ) 0 ,  A~(2)  and 

1 < 2 + __< ~.+ (0  + ) = )~- = 2 ~ ,  1 > )~c --> 2~- ( 0 + )  = 2~- = )~H. 

All the results given thus far for the two-dimensional layered composite 
under axial stretching are valid for any choice of  nonlinearly elastic material 
satisfying (E) for each layer. In practice, the requirement (E) of strong point- 
wise ellipticity is not essential, for all the important instability phenomena oc- 
cur well below the stress levels corresponding to the loss of ellipticity of the 
weakest layer (see [TM 85]). 

6.6. Example for a particular energy density W 

For the numerical application that accompanies the example of  the layered 
composite, a particular isotropic polyconvex (see [B 77]) material employed by 
OGDEN [O 84] is used. If vi denotes the singular values of  the deformation 
gradient F, its strain-energy density W is given by 

/ /  2 V 2 2 2 In (vlv2)] + 2 JULY2 112 W(v~, v2) = 2 [vl + . . . .  . (6.52) 

The constants/~ and x are the initial shear and bulk moduli of the material 
which are related to its initial Young's modulus, E, and Poisson's ratio, v, by 

E vE 
/~ - 2(1 + v) ' K = (1 + v) (1 - 2v)" (6.53) 

It is not difficult to see that as v-+�89 in the incompressible limit, 
W-~�89 v 2 - 2 ) ,  VlV2 = 1, which is the two-dimensional form of the 
well-known Mooney-Rivlin material, a popular first approximation for model- 
ing rubber. Therefore the energy density in (6.52) satisfies all the requirements 
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for a physically reasonable model of a rubber-type material. Moreover W > 0 
for all (vl,  v2) * (1, 1) and W-+oo when either IIFII-,oo or d e t F ~  0. The 
last condition, although physically important, is not compatible with the 
growth assumptions for W adopted in (2.2), (2.3). In the ensuing calculations, 
however, det F is bounded away from zero (i.e., det F => g > 0) and hence for 
the deformations of interest the growth conditions are satisfied. 

The principal Cauchy stresses a11, a22 for this material, calculated by us- 
ing (6.52), are 

GII = - -  /~ (v22 - 1) + K(VlV 2 1). /~ (v 2 - 1) + R ' ( V l V  2 - -  1), 0"22 = - -  
Vl v2 Vl v2 

(6.54) 

They vanish at (vl,  V2) = (1 ,  1 ) .  
Since within each layer the deformation gradient tensor is F =  F ( 2 ) =  

diag[;`l,  ;-2], it follows that vi = ;`i. In view of  the assumption that the 
lateral stress in each layer is a = 0 (i.e., a22 = 0 in each layer), one finds 
from (6.54)2 that ;`2 in each layer is given in terms of 21 = ;` and the material 
constants /~ and ~c by 

;`2 = ;` + [;`2 ..1_ 4(/a/x) ( ;`2 _.1_ ll/K)]I/2 (6.55) 

2(;` 2 + I.t/tc) 

The nonzero components of  the incremental moduli tensor Lijkl for the 
material considered in (6.52) are 

L m l = / ~  1 + +tcv 2, L112z=K(2VlV2- 1) =L2211, 

L2222 = / 2  1 + + /r 2 , L1212 = / A  = L2121 , (6.56) 

/.t 
L1221 = -  

Vl v2 
+ x(1 - VlV2) = L2112. 

The incremental moduli at (vl, v2) = (1, 1) are equal to those of  isotropic 
linear elasticity, as can be easily checked from (6.56). 

The results of the numerical calculations using the material model in (6.52) 
are depicted in Figs. 6 .2-6 .6 .  In all these calculations the value E = 1 was 
adopted. The dependence of  the various dimensionless coercivity constants 
A/E, A~5/E, A~6/E and o ~ / E  on the stretch ratio ;` for a composite symmetric 

about xl under compression is plotted in Fig. 6.2. In this case E = E = 0.1E, 
b a c b a h b 

E = 1.5E, v = v = 0.33, v = 0.48, H =  = 0.45, H = 0.1. Only values of ;` 
for which A (2) > 0 have been considered. As expected from the theory in Sec- 
t ion3  the conditions A ( 2 ) < A ~ ( 2 )  ____a~(2) are obviously satisfied. In 
order to calculate A (;`) from A ()~, a~l) (see definition in (6.7)) the interval 
(0,7) is considered instead of  •+. In all the calculations reported here, the 
value of  col which minimizes r o~1) always falls in this interval. For 
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Fig. 6.2. Dependence of  the dimensionless coercivity constants A/E (solid line), A~/E 
(dotted line), o~/E (dashed line) and A~6/E (dash-dot line) on the stretch ratio 2 for 
a composite (with a unit cell symmetric about  Xl) under compression. The calcu- 

lations are based upon the following material constants: layer moduli  E = E = 0.1E, 

b a c = - 0.45, E = 1.5E; layer Poisson ratios v = v = 0.33, ~ = 0.48; layer th icknesses /4  /4 - 
b 

H =  0.1. 
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Fig. 6.3. Dependence of  the dimensionless coercivity constants AlE (solid line), A~/E 
(dotted line), (x~/E (dashed line) and A~6/E (dash-dot line) on the stretch ratio 2 for 
a composite (with a unit cell symmetric about  xl) under tension. Note that  in this 
case the curves for A/E, A~/E and AS6/E coincide. The calculations are based upon 

the following material constants: layer moduli  E - / ~  b -- = 0.1E, E = 1.5E; layer Poisson 
a c /~ /~ b 

ratios v = v = 0.33, v b = 0.48; layer thicknesses = = 0.45, H = 0.1. 
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3~ < 0.94 approximately, A ( 2 ) < A ~ ( 2 ) ,  which indicates the existence of a 
finite wave number ehm > 0 corresponding to A (2) (i.e., A (;t) = A (2, COlin)). 
It  is also worth mentioning that for all the investigated values of  ;t and o91 
the eigenmode corresponding to A (2, o91) (see (6.26), (6.27)) is either a sym- 
metric or an antisymmetric one, i.e., o92,~ = 0 or CO2m = re with the symmetric 
case occurring most  frequently. 

The graphs of AlE, A}/E, AS6/E and a~/E for the same composite as in 
Fig. 6.2 now subjected to tension, are depicted in Fig. 6.3. In this case 
z](2,  o91) has its minimum at o91 = 0 for all values of  2, and is equal to the 
initial shear modulus (see (6.53)2 of the weakest layer, i.e., A ( 2 )  = A}(~.) = 

A~(2)  = A ( 2 ,  0, 0) =/~ = / J  = 0.037594E. The value of o ~ ( ) . )  is also con- 
stant independent of  ~, and is equal to the homogenized shear modulus of  
the composite M2121 = 0.0414E. 

The graphs in Fig. 6.3 are typical for all the composites under tension and 
hence the results from only one composite under tension are presented here. 
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Fig. 6.4. Dependence of the dimensionless coercivity constants AlE (solid line), A~5/E 
(dotted line), o~/E (dashed line) and A~6/E (dash-dot line) on the stretch ratio 2 for 
a composite (with an asymmetric unit cell) under compression. The calculations 

a b 
are based upon the following material constants: layer moduli E =/~ = 0.1E, E = 1.5E; 

a c a c b 
layer Poisson ratios v = 0.22, ~ = 0.48, v = 0.33; layer thicknesses H = H = 0.45, H = 0.1. 

The graphs A/E, A~5/E, AS6/E and o~/E for two other composites, this 
time with nonsymmetric material properties with respect to the x2 axes, are 
depicted in Fig. 6.4 and Fig. 6.5. More specifically, Fig. 6.4 corresponds to a 

composite with nonsymmetric  properties under compression with E = E =0.1E, 

E = 1.5E, v = 0.22, v = 0.48, v = 0.33; = = 0.45, = 0.1. Notice that 
in this case the results are very similar to those for the symmetric composite 
in Fig. 6.2. 
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Fig. 6.5. Dependence of the dimensionless coercivity constants A/E (solid line), A~/E 
(dotted line), c~/E (dashed line) and A~6/E (dash-dot line) on the stretch ratio 2 for 
a composite (with a asymmetric unit cell) under compression. Note that for a large 
range of the stretch ratio the curves for AlE and ASs/E coincide (at least numerically). 
The calculations are based upon the following materials constants: layer moduli 
a b c a c b 

E = E = 0.1E, E = 0.0E~ layer Poisson ratios v = v = 0.33, v = 0.48; layer thicknesses 

= - 0.45, H = 0.1. 

The  results in Fig. 6.5 cor respond  to a composi te  with nonsymmet r i c  prop-  
b /~ a c 

erties under  compress ion  with = 0.1E, E = 1.5E, = 0.05E; v = v = 0.33, 

b h v = 0.48; = = 0.45, H =  0.1. The  ma in  difference in this case as com- 
pared  to Fig. 6.2 and Fig. 6.4 is tha t  A ( 2 ) = A ~ ( 2 )  for the investigated 
range of  the stretch ratio ~. 

I t  is wor th  noticing tha t  in all the calculat ions for  compress ion,  A~ < AS 
for  the range o f  2 investigated. Tha t  AS is independent  o f  2 is a par t icular  
feature of  the example taken for  W in (6.52) (see also (6.56) where 

L1212(,~.) = / . / <  L2222(,~)). 
Finally o f  interest are the critical stretch ratios corresponding to the first 

b i furca t ion  2~- (see (6.43)) and  to the first loss of  ellipticity of  the pr incipal  
solut ion 's  homogen ized  modul i  )~, = 2~- (see (6.48)) for  the mater ia l  model  
investigated here. Wi thou t  loss of  generality, only  composi tes  with two dif- 
ferent materials  per  unit  cell are considered.  More  specifically, the two 

mater ia ls  are those  employed in the calculat ions for  Fig. 6.2, i.e., E = 0.1E, 
b a b b 

E = 1.5E; v = 0.33, v = 0.48. The  rat io H denotes the volume fract ion o f  the 
stiffer mater ia l  in the compos i te .  In Fig. 6.6 is depicted the dependence  of  the 

b 
critical stretch ratios 2~- and  2~, on the rat io H. 

b 
Note  tha t  for  H >  0.15 (approximately)  one has 2 ~ - = ) ~  = 2 / ( 0 + ) ,  

which implies tha t  the first instabili ty encountered in the composi te  as the 
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Fig. 6.6. Dependence of the the critical stretch ratios ~ -  (solid line), ~ (dotted line), 

on fiber thickness ratio /~ for a composite (with a unit cell symmetric about x 1) 
under compression. The calculations are based upon the following material constants: 

/~ b a c v b 
layer moduli = = 0.1E, E = 1.5E; layer Poisson ratios v = v = 0.33, = 0.48; 

c 

layer thicknesses = H. 

compressive stresses increase is a long wavelength instability with co I ~ 0 +. 
b 

Only for relatively thin stiff fibers in the composite ( H <  0.15) the first 
instability in the composite corresponds to a fiber buckling with o~1c > 0 
where 2 7 -~c(COl~). It  is found that the thinner the fiber, the larger the 
critical value e~l~ (corresponding to the maximum of ~ (~o1~)  over •+) 
becomes. In the numerical calculations reported in Fig. 6.6 the interval (0,24) 

b 
always contains the maximum co 1 of  2c(COl). The facts that for H <  0.15, 

b b 

2~->  2H and that 2 ~ - ( H ) ~  1 as H ~  0 are expected physically, since the 
thinner the stiff fiber becomes, the lower the required stress to buckle it. 

It is interesting to notice that although the two constituent materials of  the 
composite are strongly elliptic at any level of  deformation,  in view of the 
polyconvexity of  the assumed energy density in (6.52), the resulting homoge- 
nized composite can lose ellipticity at fairly low strains, e.g., )L--0.927 for 

b 

a ratio H = 0.5 of  the two constituents. Similar results were found in [TM 85] 
for the incompressible case. 
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