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Abstract—Of interest here is the influence of imperfections on the stability of elastic systems, discrete
or continuous, with nearly simultaneous modes. The majority of such structures show an extreme
sensitivity of their first instability load to the shape of these small amplitude but unavoidable
imperfections. The determination of the worst such possible shape is thus a very important issue
from the design standpoint. Following a general analysis of the stability of arbitrary elastic systems
with nearly simultaneous bifurcation eigenmodes in the presence of imperfections, conditions are
given for the determination of the worst imperfection shape which minimizes the first local load
maximum. For the case of coincident eigenmodes the answer to the worst shape problem is
considerably simplified, for it is determined from the equilibrium branch of the perfect structure on
which the load drops more rapidly.

. INTRODUCTION

Of interest here is the influence of imperfections on the stability of elastic systems (discrete
or continuous) with nearly simultancous modcs.

The study of bifurcation and stability in structures with simultincous or nearly sim-
ultancous modes is a classical problem in solid mechanics. As such it has received a great
deal of attention in engincering literature, especially after Koiter's (1945) pioncering work
that put the problem on a sound mathematical basis. In addition to its theoretical interest,
and accompunying inherent difficultics, the problem is also of great practical importance.
There is a varicty of engincering applications that exhibit multiple bifurcation points at
their first buckling loads. Perhaps the best known such examples are the thin walled shell
type structures such as thin walled beams, cylinders, cylindrical pancls, spheres and spherical
caps. The thinner such structures are,the greater the number of buckling modes that appear
almost simultancously near the lowest critical load. Another set of applications contains
stiffened structures, such as rib stiffened plates and cylindrical panels as well as large frame
type space structures in which a fundamental unit cell can be identified. Due to their
particular geometry, both a global and a local buckling mode can occur at, or nearly at,
the same load level. The global modes, which have a characteristic wavelength on the order
of the dimensions of the structure interact with the local modes whose characteristic
wavelength is of the order of the unit cell size. Finally, an additional interesting application
pertains to structures that have been optimized with respect to their lowest buckling loads.
The optimization procedure leads to overlapping with the next higher buckling load. The
higher the number of available design parameters, the more simultaneous modes appear in
the optimized structure. For these structures, the first instability point (i.c. the first bifur-
cation point or local load maximum) can be extremely sensitive to the shape of imper-
fections. The determination of the worst such possible shape is thus a very important issue
from the design standpoint and is the focus of this paper.

Only a brief discussion of the literature pertaining to instability behavior and the first
maximum load of imperfect systems with simultaneous (or nearly simultaneous) eigenmodes
will be presented. Attention will be further restricted to general formulations of the problem
rather than the solution of particular applications. The approach of interest here is based
on the decomposition of the space containing all the admissible displacement fields into
two parts: one part contains all the m eigenvectors of the stability operator (where m is an
integer) and is called the null space of the operator, while the other part is the orthogonal
complement to the null space. This procedure considerably simplifies the required work
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since it reduces the study of an infinite dimensional problem to the study of a finite m-
dimensional one. In mathematics this decomposition is called the Lyapunov-Schmidt
decomposttion. It has been introduced to the engineering literature in Koiter's (1945) work
on elastic stability.

The Lyapunov-Schmidt-Koiter (L-8~K) decomposition is usually combined with an
asymptotic analysis of the equilibrium equations near the critical point. In this approach a
solution is first obtained for the part of the equilibrium equation that pertains to the
orthogonal complement of the null space. These results are then introduced into the
equilibrium equation along the null space. The form of the asymptotic expansion of
the equilibrium equations as well as the stability results for the perfect or imperfect struc-
tures are obtained in a simple and straightforward fashion from the analysis. A very
good description of this method can be found in Potier-Ferry (1979) as well as in the
book of Icoss and Joseph (1980). A finite degree of freedom version for the study of
equilibrium using this type of L-S-K decomposition is also given by Thompson and Hunt
(1973).

The main concern in the engineering literature is for the equilibrium solution of the
imperfect structures in question [see for example the review article by Budiansky (1974)].
For a perfect structure, the asymptotic analysis for the minimum eigenvalue of the stability
operator along the bifurcated equilibrium branch is given by Budiansky (1974) for the
simple cigenmode and by looss and Joseph (1980) for the multiple eigenmode asymmetric
casc. An asymptotic analysis for the stability of the equilibrium solutions in imperfect
structures with nearly simultancous modes by means of calculating the lowest eigenvalue
of the stability operator has not been presented up 1o date, to the best of our knowledge,
The above mentioned asymptotic stability analysis is subscquently employed in the for-
mulation of the worst imperfection shape problem, for which the necessary conditions are
derived.

The outline of the presentation is as follows: Section 2 presents the asymptotic equi-
librium and stability analysis for the perfect structure with simultancous eigenmodes using
the anbove described L-S-K approach. Although the results of this section are known {e.g.
looss and Joseph (1980)], their presentation is indispensable for the development of the
subject. The symmetric muitiple bifurcation stability analysis, which is also of practical
interest (its applications include plates, frames cte.) has only been presented so far under
the somewhat more restrictive conditions of linear prebuckling [see Byskov and Hutchinson
(1977) who arc mainly interested in the cquilibrium of these structures]. Hence the general
presentation of the symmetric case is adding to the interest of this section.

In Scction 3, the asymptotic L-S-K analysis is generalized to include the imperfections.
One difference in the results obtained here from what is usually presented in the existing
literature, is the distinction of two different control parameters: one, denoted by ¢, is related
to the geometrical (in a more general sense) shape of the structure and the other, denoted by
¢, characterizes the critical load spacing of the interacting eigenmodes. This last parameter,
termed here the mode scparation parameter, is also called the splitting parameter by
Thompson and Hunt (1973) and is an average measure of the difference in the critical loads
of the nearly simultancous—and thus interacting—eigenmodes. The first instability load is
found for both asymmetric and symmetric bifurcations where &,{ # 0.

Scction 4 investigates the issue of the worst imperfection shape. Necessary conditions
arce found which maximize the difference between the critical load of the perfect structure
and the first instability load of the imperfect one over all the possible shapes of the geometric
imperfection, For the particular case when the mode separation parameter is negligible
compared to the gcometric imperfection amplitude (¢ # 0,{ = 0) and when a particular
choice of inner product is used for the admissible displacement space, the above mentioned
conditions simplify considerably. It is shown that the worst shape always corresponds to a
maximum load and that it can be found by determining the bifurcated branch with the
steepest load drop in the perfect structure with the simultaneous modes. This particular
result was proven using a different approach by Koiter (1976) [see also Ho (1974)]. For
the general casc &, { # 0 the worst imperfection shape problem requires the solution of a
more complicated problem which also depends on the adopted parameterization of the
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equilibrium equations. An asymptotic lower bound for the maximum load drop is also
provided in this case.

The novel results in this paper are essentially derived in Section 4. The material
presented in the previous sections (and which is indispensable for the analysis in Section 4)
although known. is scattered in various places in the engineering and mathematics literature
and treated under different notations and often using unnecessary restrictions. We believe
that the presentation of this material using a unified and concise approach under the least
restrictive conditions possible brought together in one reference also serves a useful purpose.

The presentation is concluded by a discussion of the general results obtained in this
work.

2. BIFURCATION AND STABILITY ANALYSIS OF THE PERFECT STRUCTURE

The essential features of the problem are embodied in the perfect structure with the
simultaneous eigenmodes at bifurcation. The analysis of the imperfect structure with the
nearly simultaneous eigenmodes requires finding the multiple equilibrium paths of the
perfect structure and the determination of their stability. Consequently, this presentation
will start with the study of the bifurcated equilibrium paths of the perfect structure.

In the present work, only nonlinear elastic structures arc to be studied. To this end,
consider a structure whose potential energy is given by &(u. ). Here 1 denotes the dis-
placements of the structure from the stress free reference configuration and belongs to a
vector space of admissible functions denoted by U. In the applications of intercst, an inner
product can be defined on U, and the inncr product of w), «, € U is denoted by (u,, ;). The
corresponding norm is [jull = (u, u)"%. Morcover the scalar A denotes the load parameter
of the system and increases monotonically away from zero during the loading proccss. For
4 =0, the equilibrium solution is the stress free configuration with displacement « = 0. For
valucs of the load parameter 0 < 4 < A, the equilibrium solution of the perfect structure,
denoted by 3().) and called principal solution, is unique and stable. More specifically, for
any Ae(0,4,) there cxists a real number a(d) > 0 for which the following relations are
satisfied ;T

& . (1(2), ))du = 0; (& i (u(A), )ou)du > a|dull®, VoueU. ()

In the above equation, the first relation indicates that 3(1) is an equilibrium solution
for the perfect structure with potential energy &. The second relation ensures its stability,
over the considered range of the load parameter 4, since it implies a strong local minimum
of the potential energy.

As the load parameter increases away from zero, it reaches a value called the critical
load and is denoted by A, for which the principal solution loses its stability, i.c. the principal
solution is no longer a strong local minimum of the potential energy. Consequently the
minimum eigenvalue of the stability operator &, evaluated on the principal solution and
at the critical load should vanish. At criticality, the corresponding stability opcrator has m

simultaneous eigenmodes denoted by u. In mathematical terms :
8 At = 0, (8, (4(), 2))ou = 05 (i t) =8, ij=1,....m. ()

The second relation in (2) expresses the fact that u is one of the m simultaneous
eigenmodes of the stability operator of the perfect structure at criticality while the first
relation in the same equation indicates that the critical point is a true m-fold birfurcation
point and not an extremum load point. In almost all the applications of interest in structural
and solid mechanics, the number of the simultaneous eigenmodes of the stability operator

tThe v_arious functional (Frechet) derivatives of the potential cnergy with respect to u arc denoted by a subscript
(). while the ordinary partial derivatives with respect to 4 arc denoted by a subscript ()

A
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at criticality 1s finite. The third condition in (2) (where 9,, = 11fi = jand J,, = 0 otherwise)
ensures that the eigenmodes form an orthonormal set. This property will facilitate some of
the subsequent calculations. Further simplification can be achieved by choosing a specific
inner product, as will be described later.

The main tool of the analysis is what is called in the mathematics literature the Lyapunov-

. .. . . . 0,
Schmidt decomposition of the displacement field «. According to this method. u —u(2) can
be decomposed in two parts: one which lies in the null space of the stability operator at
criticality.

. , L .
A= luellu=Y Su eR;

i=1

and one which lies in its orthogonal complement with respect to U,

- , i .
At =leeli(to) =0, i=1..... m}.

More specifically :

ror

a o " .
u=u(/~)+Zg,u+L‘:g,e‘)i. vre. b, (3)

g

In addition, it follows from (1), (2) and the continuity, with respect to the load
parameter, of the stability operator evaluated on the principal equilibrium path, that at
criticality the stability operator must be positive senudefinite on U. This implics its strict
positive definiteness on . 7. Thus there cxists a real number & > 0 [unrelated in general to
the onc defined in (1)) for which:

(8 (U(2). 20000 = afidr]*, Vore s, ()

The sought displacement w is thus replaced by an equivalent sct of unknowns (¢, &)
and the solution to the equilibrium cquation & ou = 0 proceeds in two steps: first ¢ 1s
determined as a function of A2 (A4 = 4—4,) and &, from the equilibrium equation in .44,
Then the resulting v is used in the remaining equilibrium equation on . 7. This provides the
relation between A4 and ¢,. The equilibrium equations that have to be solved are:

&0 =0=&, (G +A0)+ Y Eutr i +AN)0r =0, Vore.t
-

E.=0=8 (WU +A)+ Y Eutr i +AQu=0, i=1,...m (5)

-~
[N

From (4) it follows that (5), has a unique and adequately smooth solution ¢(&,. A4),

at least in the neighborhood of the critical point (u(2,), /.). The Taylor series expansion of
this solution is:

” l " ”t . ”n . . N
e(E,.A0) = Y &, +0i, + 7( Y OY && 284 ;,z’,;+(A/.)‘r,,,) SR (6)

(=1 rm 1= 1wt

Upon substitution of (6) into (5), and subsequent evaluation of its Taylor serics
expansion about (¢,.A%) = 0 onc obtains the following results: the O(1) term of the
expansion gives t #¢5c = 0 which is automatically satisfied in view of the equilibrium

R

tFrom here on the superscript ( )° or subscript () denotes evaluation of the quantity in question at the

o . oo, .
critical point, (u(4.). 4).
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equation (1). The O($,) terms yield. in conjunction with (2), the result: (£5, v;)dv = 0 which
in view of (4) implies:

r; =0. (7N

By taking I, = 0 into (5),. comparing the result to the equilibrium condition on the
fundamental solution (1). and invoking the uniqueness of the solution to (5), for ¢({.. A4),
it is readily seen that ¢(0.A4) = 0. This implies:

l';=l"11="'=0. (8)

This result could also have been obtained from the O(A4)” terms in the expansion of (5),.
One can similarly continue with the quadratic order terms in the expansion of the
equilibrium equation (5), to find:

O(Z,. &) term: (850, + (ECuntt) )0 = 0

O, Ad) term : (85,0, + (A€, /dA) )0t = 0. )

The above equations have unique solutions v,,, v, in view of (4). In a similar way one
can find the higher order terms in the expansion of ¢(¢,,A4) and hence determine the
solution to (5), uniqucly. Upon substitution of the thus found ¢(&,, A) into the remaining
equilibrium equation (5) ,, and after using (2). (7). (8) one obtains the following m equations
between Ad and

[Z Z S[Skfa/k + A/ Z Sﬂ’//l] [Z Z Z S/chl l/kl+ ] =0

1~ k=1 1~ t-1 k-1 1=1
N d [RY; du
Eou = (S, &, = B U=\ | B + 8 Ju Ju
' di A dij.
1 k
l/k/ = ((({' uunu“)u)“ + ((F uuul'/k )” + (‘fﬁluuvkl)/‘ + ('T,L;muvll)u)ll" ( IO)

As expected, an obvious solution to (10) is the principal equilibrium branch for which

. . . , . . 0
& =0 and A # 0 since from (3) and (6), one obtains for this case u = u(1). The deter-
mination of the remaining equilibrium paths through the critical point, i.e. the determination
of the curves £, (A4), is facilitated by introducing a new parameter &, defined as the amplitude

of the projection of w—1u on the null space .4° of &;,. Needless to say, the above para-
metrization is not the only possible one. However, it turns out to be the most convenient
one for the ensuing calculations. For a neighborhood of the critical point, assuming an
adequately smooth dependence of &, A on & one has:

£ =aleta 4o
g wheredi= ) (€)% ()
AAE) = A\l = -+ &

Two cases are to be distinguished at this point: first the asymmetric case for which
& # 0 at least for one triplet of indices (i, j. k). By inserting (11) into (10) and collecting
the terms of the like order in &, one obtains from the lowest order nontrivial term in this
expansion (the O(3*) term):
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Z Z lllzklg;_/k+2;.| Z 1,‘(!5””}_ =0,

j=1 k=1 j=1

(= 1. (12)

s

The above algebraic system of m+ 1 equations for the m+ 1 unknowns 2.4, has at
most 2™ — | pairs of real solutions (z,',4,) and ( —z'. — 4 ). with each pair corresponding
to a bifurcated equilibrium path through the critical point. Each one of these equilibrium
paths can be constructed by computing its Taylor series expansion as indicated in (11).
Higher order terms in the expansion of (10) show that the series can be continued to any
desired order if:

m

Det[B,] #0. B, =Y % i+/, (13)

k=1

The second case to be investigated will be the symmetric case for which &, = 0 for all
triplets of indices (i, j. k). [n this case (12) implies that 4, = 0. By inserting (11) into (10)
and collecting the terms of the like order in &, one obtains from the lowest order noatrivial
term in this expansion (the O(&?) term)

m m m m "

Z z Z 1:1,:/1/‘(5'”“4_3}': Z :xll(z‘v'”‘ =0, 2 (Irl): =L (‘4)
ped

Jed k=1 I=1 je

This algebraic system of m+ | equations for the s+ | unknowns %', 1, has at most
(3" — 1)/2 pairs of real solutions (/. 4,) and (—2,'. 4,). cach corresponding to a bifurcated
cquilibrium path through the critical point. Each onc of these ¢quilibrium paths can be
constructed by computing its Taylor sertes expansion as indicated in (11). The continuation
of the expansion (10) to terms of O (E*) and higher for cach particular branch is assured
when:

m m

Det[B,1#0, B,= Y Y xl4/6u+46,. (15)

k=1 1=

To complete the study of the above found bifurcated cquilibrium branches, once has to
investigate their stability. The general dynamic stability criterion applied to structures with
a potential encrgy can be shown to be essentially equivalent to the sign of the minimum
cigenvalue ™" of the stability operator &, (1. 4) evaluated on the equilibrium path whose
stability is under investigation. For f™" > 0, the potential energy has a strict local minimum
and the corresponding cquilibrium solution can be shown to be stable (for the continuum
case, some additional minor technical conditions on E(u, 4) and ||« have to be verified).
For ™" < 0, the equilibrium solution does not correspond to a local minimum of the
potential energy and hence the solution can be shown to be unstable. A word of caution is
in line at this point. The sign of ™" (i.c. whether f™ is positive, zero or negative) is
independent of the choice of norm for the case of finite degree of freedom systems. For
infinite systems, the sign of ™" depends on the adopted norm. For most of the practical
applications of interest, there are fortunately physically motivated choices for the norm in
the admissible displacement space U which give stability results in agreement with physical
intuition. For further discussion on this point the interested reader is referred to Koiter
(1965), Knops and Wilkes (1973) and Simpson and Spector (1987).

First the stability of the principal branch is to be investigated. To this end. assume

0 . vl . . L0 L
that fi(4) is any onc of the m cigenvalues of &, (1(4). £) that vanish at /.. whilc x(2) is the
corresponding normalized eigenvector. Hence:

(8 (A 1) ONSU = RGN 610, (X(A). N(A)) = 1. (16)

Evaluating (16) at the critical load one has in view of (2).:
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=Y L a7

[N
0 . o . . .
Assuming that g(4) and x(4) are smooth functions of their argument, (16) can be
differentiated with respect to A Evaluating the result at the critical point, and recalling that

3
Bi+.) = 0 one obtains:

)]
d_ Yo . (dx dﬁ) 0
((a—; c‘;'_,,,,)c.\c +8&5., (ai)c)éu = (37 c(:\:L.. ou). (18)

Taking du = « and recalling (2),. (16);. eqn (18} yields:
m (j;;
n 0
;; ﬂi‘,’xxl = (a“z)‘x: 19

1]
Since B(4) is positive for i < A, and vanishes at 4, it follows from continuity that the
0
derivative of this eigenvilue evaluated at criticality, (dff/d2),, cannot be positive. Assuming

1]
that this quantity is strictly negative, i.c. (dfi/d4), < 0, leads to the conclusion that E, ; must
he a negative definite matrix, This condition is satisfied in the majority of applications of
interest here.

For each bifurcated equilibrium branch trough the critical point, its stability depends
on the sign of the minimum cigenvalue ™" (§) of the corresponding stability operator &,
In analogy to (160), the definitions for cach one of the m lowest eigenvalues f(&) and the
corresponding normalized cigenvectors x(&) are:

(ﬂ.,,,,<;;(}.c +Ad)+ Z E,t'l+t‘(§,, LY N +Al)x>5u = fB(x,0u), (x,x)=1. (20)

1wt

In the above definition ¢, AZ, i, x are functions of the parameter &. Recall that for
every bifurcated equilibrium path the m lowest cigenvalues (&) of the corresponding
stability operator have to vanish at £ = 0. In addition, for each bifurcated equilibrium path,
B(5) and x(&) are assumed to be smooth functions of their argument with the following
Taylor series expansions :

BEY = BiE+pr o+
(& - . o= Cz
X&) =xp+x+xy T+ )

2

By introducing (21) into (20) and recalling (2), (6)-(8), (11), onc obtains by expanding
about 5 = 0 and collecting the terms of the like order in ¢ the following results : the O(1)
term vields :

Continuing with the O(¢) term in the expansion of (20) one has:

SAS 29:18-F



2238 N. TrianTAFYLLIDIS and R. PEEK

((&;ﬁ( <:j) +k; zku)+/_ & )(Z x,u)«i»é’u,,r,\)mt = (Z 2. Ou) (23)

=1 =1

Taking du = u and recalling (2)-. the above equation yields:

Z Br/X/’ = /30(: (24)

r=1

where B, is given by (13). For the asymmetric bifurcation case, this matrix is nonsingular,
which ensures that all its eigenvalues §, are nonzero (as well as real in view of the symmetry
of the matrix). It follows from (24) that the constants ¥, introduced in (22) are the com-
ponents of the eigenvector of B,, corresponding to the eigenvalue 8,. Hence the minimum
eigenvalue f™%(&) of &, for the bifurcated equilibrium path in question is:

<0
> 0.

U aTIt

:{5mu‘+0(:2) n‘
ﬁmm(:) = {S ! A (25)

AT +0Eh if

Consequently, if for a certain bifurcated branch the maximum and minimum eigen-
values of B, respectively 7% and 7" are of the same sign, then the bifurcated branch in
question changes stability as it crosses the critical point, while if the two extremal eigenvaluces
are of opposite sign the bifurcated branch in qucstion 1s always unstable.

For the symmetric bifurcation case, since & = 4, = 0. B, = 0 in (24) which implics
that 8, = 0. Conscquently, one has to consider the Q(&7) term in the expansion of (20).
which with the help of (2), (6)-(8), (1), (21) yiclds:

i
m P " d u "t i "
<<(6"‘;m""( Z 12 u))( Z % U) +d& uuu( ( ) + Z Z al\ al Uiy + Z X ") +A & uuA)
k-1 I-1 di ket 11
( Z x,u)—%”((f’um,( Z «2;‘?1))\'! +t€’j,,,x3>5:: = [5’3< Z xg’c,«)’u). (26)
j=1 k1 i=1

From (23) and since 4, = f§, = 0 onc obtains with the help of (9), that:

m m

xo=Y ¥, 5 20

ial gt

with ¥, e .47, By subsequently taking du = u and using (27) into (26) one obtains:

”

Z By =Bt (28)

=t

where B, is now given by (15). For the symmetric bifurcation case, this matrix is nonsingular,
which cnsures that all its cigenvalues f§, are nonzero (as well as real in view of the symmetry
of the matrix). It follows from (28) that the constants y, introduced in (22) are the com-
ponents of the eigenvector of B, corresponding to the cigenvalue .. Hence the minimum
eigenvalue f™"(¢) of £, for the corrcspondmg bifurcated equilibrium path in question is:

11}
1o

ﬂmm(:) — »/’I;‘nn+0(§])' (29)

to

Consequently if the minimum cigenvalue 7 of B;;1s positive, the bifurcation branch
in question is stable. Any negative eigenvalues render it unstable.
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3. EQUILIBRIUM AND STABILITY OF THE IMPERFECT STRUCTURE

Having analysed the bifurcation and stability behavior of a perfect structure with a
multiple bifurcation point, attention is turned to the effect of imperfections. The term
“imperfections” is employed in a very broad engineering sense here, as opposed to the more
rigorous mathematical term “‘control parameters™ of singularity theory [see Golubitsky
and Schaeffer (1985)]. Guided by the vast majority of applications in solid and structural
mechanics, two types of such imperfections (or control parameters) will be distinguished :
the first is a geometric imperfection. denoted by w, where w is a function which characterizes
the departure of the unstressed configuration of the structure from its perfect shape.
More generally. a geometric imperfection can be due to the eccentricity of the applied
loads, thickness variations, errors in the boundary conditions. residual stresses etc. The
second is the mode separation parameter [also referred to as “‘mode splitting™ parameter by
Thompson and Hunt (1973)], denoted by (. which quantifies the average distance of the nearly
simultaneous critical loads. Note that mode separation can occur in perfect structures,
such as rectangular plates under in-plane loading, axially loaded cylinders or externally
pressurized spheres that exhibit no geometric imperfections of any kind. Although one can
find examples of strongly interacting modes with critical loads that are far apart [see for
example Healey (1988)] attention is focused here on the interaction of almost simultaneous
modes, i.e. eigenmodes with corresponding critical loads that are close to each other.

The potential encrgy of an imperfect structure with nearly simultancous cigenmodes
is given by §(u, 4., w). Here u again denotes the displacement of the structure from some
reference configuration and w denotes the geometric imperfection of the structure. It will
be assumed that «we U while we W where W is a vector space of admissible geometric
imperfections. It is convenicnt to distinguish between the imperfection amplitude & = [w
and the imperfection shape w = w/]lw|. Morcover the scalar 4 2 0 denotes once more the
load paramcter of the system and the scalar {eWM is the mode separation pirameter. A
structure with nearly simultancous cigenmodes but with no geometric imperfection has a
potential encrgy &(u, 4.0) = &(u, 4., 0). The potential energy ol the perfect structure with
the simultancous cigenmodes obviously satisfies &(u, ) = £ (u, 4,0). The relations between
the energies of these different structures are thus summarized

S, ) =8, A.0), S i) =8wil0); uel, weW, 220, {eR. (30

The perfect structure with the nearly simultancous cigenmodes has a principal solution

[t}
u(4,{) which in view of (1), and (30), satistics :

8 (5.0 A OSu =0, 8(3) = d(4,0). 31

Moreover, for the perfect structure with the nearly simultaneous modes, one has m
!
distinct critical values £(¢) of the load parameter at the neighborhood of A,. Each such
0
critical v.nlm corresponds to a singular point of the stability operator J,m(u(/ {), 4.0) with

cigenvector u(g) All these critical valucs are close to 4, in the sense that /(g) i = 0()).
More specifically fori = 1,....m:

i

o 0 i P i w 0L .
& (A0, 0. A0 Q) = 0, (& (@A), D). AD. Di(C))ou = 0
£0) = . 6(0) = i (32)
From the above properties of £(u, 4, {) one can deduce the following useful relations :

by evaluating the derivative with respect to { of the equilibrium equation (31) at { = 0 and
making use of (30) onc has:
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o {c 1) .
);“, +(p ()U = 0. (33)
dS C

Upon'taking du = u and recalling (2). the above equation yields:

& =0. (34)

By evaluating the derivative with respect to  of (32), at { = 0 and recalling once again
(30) one obtains :

( £ <<d )(d) +<aii> ‘)+<d”‘>f " ) <d,‘; - s
) dL A A (L. g d‘\ g HUA + ] “+"_uu dE c(“ — (- )

Upon taking ou = w and recalling (2) as well as the definition of &
above equation vields:

. given in (10) the

ds - P
dc (r,“‘"{"(:”: :()
- a . P\ _ Du
(‘rll‘: = e l"",uu W = (""_Luuu +(' RN “ “ (36)
(HS © “s ©

As will be discussed in the next section, there exist appropriate choices of the inner
product in u such that the mxm matrix §,, = —3,,. Henee from (36) one can conclude
that lor this convenient inner product choice, &, - is also diagonal.

The L 3 ipunoy Schmidt decomposition of the displacement ficld « introduced in (3),
but with u(/ ) replacing u(/) is agatn going to be employed for the solution of the
cquilibrium cquations of the imperfect structure. The unknown displacement w is thus
replaced by an equivalent set (0, ¢,) and the solution to the cquilibrium equation & ,0u = 0
proceeds in two steps: first ¢ is determined as a function of £, A4, {, & from the Lqulllbrmm
equation in .+ *. Then the resulting ¢ s used in the remaining cqunhbnum cquation on .+
thus providing the relation between &, AZ, { and «. The equilibrium equations that have to
be solved arc:

"m

&0 = ()=>(‘)?,,(u(/ +A/.g)+z.,,u+z Ac+ALC ew)or =0, Ydre bt

"

iy —0:(',,(11(/ + A7, (,)+Zg,ll+l Y +A/,g,“\)ll—0 i=1,....m (37)

From (4) and (30). it follows that (37), has a unique and adequately smooth solution
v(&,, As S 6), at keast in the neighborhood of criticality, whose Taylor series expansion is of
the form::

e(E. 8450 = Y v+ Ade, (e e, + (Z Y OES U, 4284 Ly

BN t=1 =1 Pl

+2 Y Era+2e Y Er, (A4 v+ 2{AM; +2eAdr,, +
[t

=1

+20ev. € L,,>+"' (38)

Upon substitution of (38) into (37), and a subscquent Taylor serics expansion about
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(&.. A4 (. €) = 0 one obtains by collecting the terms of the like orders in these variables the
following results : since from (30). &(u. 2,0.0) = &(u. £) all the terms in the expansion of
(37), of O(E7(A4)). i.e. the terms which do not contain any powers of ¢ or ¢, coincide with
those found in the previous section for the perfect structure [see equations (7)-(9)]. By
taking ¢, = ¢ =0 in (37), comparing the result to the equilibrium equation in (31) and
invoking the uniqueness of the solution to (37), for v(,, A4, {,¢). it is readily seen that
t(0,A4,¢,0) = 0. This implies :

l': = l.i; = l':' == 0 (39)

This result could have also been obtained from the O({?(A4)Y) terms in the expansion of
(37

The remaining terms in the expansion for ¢, i.e. v,. t;, U, Uz U, €LC., are given from
equations of the type (&<, + &5, Ww)or = Ocan aII be determined uniquely since the operator
operating on the unknown function is always &%, which is invertible in view of (4). Upon
substitution of the thus found ¢(S;. A4. (. €) into the remaining equilibrium equation (37),
and after using (30). (2). (7). (8). (34). (39) one obtains the following m equations between
.84 ande:

|
EJ,5+ é[z Z é;Sk(ca/k +~A/ Z %/"l/} +"S Z Sl(yllg +: ]

Ju ) k=1 1=1 j=1

[Z Z Z:/:é l/kl+ :] ”=0
= k=

[

&, = (& v (40)

The coctlicients &, &, and &, appearing in (40) are the same as those defined in
the corresponding equilibrium equation for the perfect case [see eqn (10)] while &, ; has
been defined in (36). As expected, for { = ¢ = 0 the equilibrium equation for the imperfect
structure with the nearly simultancous cigenmodes (40) reduces to its perfect structure
counterpart (10).

The solution for the m equations in (40) for the m+3 unknowns &, A4, {. £ can be
expressed as a function of three parameters &, A and Z. This parametrization is by no
means unique, but it turns out to be convenient. In analogy to the perfect case, two cases
will be distinguished : first the asymmetric case, for which &, # 0 at least for some tripley
of indices (i, j, k). In this case the adopted parametrization is:

2

J‘u

3

$l(g Aj, ‘a) = g, (A Z)S'*'“l (A 2) .
where: Al = EA, (= EZ,

(&, ALD) =éz[t:o(/\.Z)+£,(A,Z)g+'"] !

Catl
re
i
—_
Al
~—
o

5

(41)

By inscrting (41) into (40) and subsequently collecting all powers of the like orders in
£, one obtains from the lowest order nontrivial term in this expansion :

m

Z Zli,':i,:d,,k+/\vzl & ,,H-ZZaz & =0, Z
Pyl j=

j= 1 i=-

l.o

42)

hH

For fixed values of A, Z the above system of m+ | equations for the »t+ | unknowns
&', £, has at most 2™ real solutions. A tedious but straightforward calculation shows that
the unique continuation of each solution found in (42) for the O(&’) and higher terms in
(40) is assured when:
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Det[B,] #0. B, (A.Z)= Y %E.+AS

k=1

+Z8,,.. (43)

1jA

Of all the possible solutions of (42) there is one of particular interest. It is the equi-
librium branch that goes through the initial unloaded configuration « = 0.2 = 0. This
solution is the unique and stable equilibrium solution that the system is going to follow
during the early stages of the loading process. For a nontrivial imperfection, i.e. when
I €.l # 0 this solution corresponds to large negative values of A (recall that A = (4 —4.)/3
and that & is a small positive parameter). It is not difficult to see that for A - — x the only
real solution to (42) is )

m : /Y m i
i =Y (6078, [T EL E= =AY 6 6L
i I i

)= i

v
i

3

it

j=1 { '{/: ]

The second case to be investigated is the symmetric one, for which &, = 0 for all
triplets of indices (4. /. k). The adopted parametrization tor the unknowns &.. A4 (. ein terms
of the parameters S A Z is:

e«
vi

E(EALD =d AN Z)E+3(AN2Z) 0+

to v

Y

.8 .
where: A2 = ’——/\. ¢

[‘?()(A.Z)-%f,(/\‘Z):.*....l =

ey
L

it

1
N
i

(]
™~
S

z3
- P &
5(E840) =,

(44)

By inscrting (44) into (40) and subscquently collecting all powers of the like orders in
&, onc obtains from the lowest order nontrivial term in this expansion

m m " m " ”m

SY SRS AAY E,+ZY 36 =0, Y (E) =1 (45)

El)"fn: +
3/—ll«—ll—l ;=1 1=1 -1
For fixed values of A, Z the above system of m+ | equations for the nr+ 1 unknowns
2!, £, has at most 3" real solutions. A straightforward calculiation shows that the unique
continuation of cach solution found in (45) for the O (') and higher terms in (40) is assured
when:

™ m

Det[B,1£0. B,(AZ) =Y Y 246 u+AE,+78,. (46)

k=1 {=1

Of all the possible solutions of (45) there is one of particular interest. [t is the equi-
librium branch that goes through the initial unstressed configuration u = 0,4 = 0. This
solution is the unique and stable equilibrium solution that the system is going to follow
during the early stages of the loading process. For a nontrivial imperfection this solution
is identical to the one found for the asymmetric structure. This result is hardly surprising,
given that the symmetry or not of the bifurcation point refers to propertics of the structure
near the critical load and does not influcnce the behavior of the structure near the zero
load.

To complete the study of the imperfect structure with the nearly simultancous buckling
cigenmodes onc has also to investigate the stability of the equilibrium paths. Of all the
equilibrium paths found near criticality, only the one that passes through the initial unloaded
state u = 0, 2 = 0 will be investigated, since it is the actual path that the imperfect structure
is going to follow during the loading process. It will be shown that the actual equilibrium
path is unique and stable near i =0 (or equivalently as A — —o0). As the loading
progresses, i.e. as 4 increases away from zero (or equivalently as A increases away from
— o0). there will be a load 4,, which is called the snap-through load, for which the equilibrium
branch in question will lose its stability, usually due to the attaining of a local load
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maximum. The value of 4,, which obviously depends on {, ¢ and w is very significant for
the design of structures that exhibit multiple eigenvalues at criticality, for it represents the
maximum load attained by the actual structure before becoming unstable.

As for the perfect structure, the stability of an equilibrium solution will depend on the
sign of the minimum eigenvalue f™(¢, A.Z) of the corresponding stability operator
& .(u.4,{.ew). In analogy to (20). the definitions for each one of the m lowest eigenvalues
B(. A, Z) of &, and their corresponding normalized eigenvectors ¥(¢, A, Z) are:

(3,,.(u(/. +A4, C)+Z Eu+r(E ALL €) A +ALL, an) >6u = (% 0u), (%.%)=1.

i=1

47

In the above definition, AA(S. A), ((£. Z). E(E.A, Z), e(&E, A, Z) are given in (41) or
(44) for the asymmetric or the symmetric case respectively. Note also that
r(E(E.AZ),AME A)C(E.Z).e(E. A Z)) will be given from (38). Assuming adequate
smoothness with respect to &, the Taylor series expansions for f(&, A, Z) and ¥(&, A, Z)
are:

BEA.Z) = (A, Z)f*‘ﬂz(/\vz)% +

(48)

FEA Z) = T (A Z) + 1A Z)E+ F4(A. Z) %

By introducing (38) into (37) and recalling (2), (7)-(8). (30), (38)-(39). onc obtains
(for fixed values of A, Z) by expanding about & = 0 and collecting the terms of the like
order in &, the following results: The O (1) term yields :

% =Y qu (49)

Continuing with the O (&) term in the expansion of (47) one has:

0

((é"m(/\(du) <3C) +3 a,,u)+Ad’f,',,,,l +Zd;j,“c),€o+ef§,u,\’,)6u = f (%o, 0u).

(50
Taking ou = uand recalling (2), and (49), (50) yields:
Y Byx, =Bk (51)
I~

In the above equation the m x m matrix B, is given by (43) and for the asymmetric
bifurcation case, this matrix is a nonsingular one which ensures (in conjunction with the
symmetry of this matrix) that all the eigenvalues f§, are real and nonzero. Consequently, if
B (A, Z) is the minimum eigenvalue of B,,, then the required lowest eigenvalue (£, A, Z)
of the stability operator £, is given by :

™" (& A Z) = EFT™(A, Z)+ 0 (&), &>0. (52)
The choice of & > 0 is in agreement with the assumption that A » ~o0 as 4 — 0.

Moreover, for the actual equilibrium path one can easily show that it is stable as A —» — o0,
[ndeed, in view of the boundedness of &/ (A, Z) and the assumption that &,;; is a negative
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definite matrix, as A — —x then B8, — A&, ;. which is a positive definite matrix. As the
loading progresses (as 4 increases away from zero), it reaches a value, say 4, = 4.+ A4, for
which the actual equilibrium path becomes unstable, 1.e. f™(Z A..Z) = 0. For a fixed
value of Z, the following relations hold between the load drop corresponding to the first
instability of the actual equilibrium path A4, (S, Z) in the case of an asymmetric bifurcation
[see also (41)]:

FrGALZ) =00 A=A = A4 =ALL D). AL Z) = AU +IAUZ0+-- (5D

Thus. inview of (531). (52). (53). A’(Z) is the first value of A as it increases from —
(expected to be negative, since only structures with A4, < 0 are of interest) at which B,,(A. Z)
loses its positive definiteness. i.e.:

m

Y B (ANZ). )T (AANZ).Z) = 0. (54)

j=1

For any other vector not colinear with , say N,. one has:

4 "

Y Y NB,N, >0 (55)

i~ =1

The above condition, in conjunction with (53) gives us the lowest load at which the
first instability in the actual equilibrium solution of the asymmetric imperfect structure will
oceur. For A? to correspond to a maximum load and not a bifurcation point, one should
satisfy

m n

Y OY L& (AN Z) £ 0. (56)

N RS

For the symmetric case, the O (&) term in the expansion ol (47) gives fi, = 0 while the
O (") term, after some lengthy but straightforward manipulations, gives:

13
™

/}11\-:1(;_" A, Z) — Vﬁléllll(/\. Z)+()(;5 ‘) (57)

to Y

where [ is the lowest eigenvalue of the matrix B, which is given in this casce by (46). The
first instability load of the actual equilibrium solution satistics

v

I}'mm(é:' /\‘,Z) =0: ,‘_/L - A/‘ = %‘),A‘(Q‘.Z), /\\(E.Z) = /\:’(Z)*‘:/\\'(Z)'F .. (53)

ta

Note that A’(Z) is also given in this case by (54) and satisfics (55). (56) but with I?U
taken from the definition in (46).

An alternative parametrization of the equilibrium equations of the imperfect structure
in (40) which has an attractive physical interpretation can also be considered. For the
asymmetric case it is:

A .
c=nt Ai=gA. (=nZ. L ALY = ZHAZm+E(NZ) {7 4 (59)

while for the symmetric case it takes the form:
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3 2 2

e=T ai=TA =Tz LmALD =RAZN+END o (60)

This parametrization is equivalent to controlling the size of the imperfection ¢ (or
equivalently n) instead of controlling the amplitude ¢ of the projection of the solution on
the null space. The equilibrium and stability results for this new parametrization can be
obtained from the equations given in this section if one sets £, = 1 and drops the constraint
I™ (£')° = 1. The advantage of this second parametrization is that by varying only A.
while keeping all the other parameters fixed. one can follow the actual equilibrium path of
a given imperfect structure. The advantage of the first parametrization is that it includes
the perfect structure, in addition to providing a simpler solution to the corresponding worst
imperfection shape problem, as it will be seen in the next section.

Finally a remark of practical importance is in order. In many applications, the func-
tions 4({) are not known explicitly. thus posing problems to the calculation of the matrix
&, [see (36)]. For these cascs. the following definition of the mode separation parameter ¢
gives an approximation of the required derivative of A(C) at the critical load within an O(<)
error:

mo h i mo 12
=Y A=A (j’:)=(Z-/‘.L.)/[Z(_Z»/‘.u)’J : (61)
i-1 S /¢ i=1

4. WORST GEOMETRIC IMPERVECTION SHAPE OF THE STRUCTURE

The results obtained in the previous section provide the load drop A4, corresponding
to the first load maximum cncountered during a monotonic (with respect to the load
parameter 4) loading ol a given imperfect structure, In practical applications pertaining to
the design of such structures, the control of the geometric imperlection amplitude ¢ is often
casicr than the control of the imperfection shape . [tis thus very important to identify the
worst geometric imperfection shape, i.e. the shape that maximizes [A4].

For small values of £, the worst geometric imperfection shape is found by minimizing
A? (since one is interested only for A? < 0) which satisfics (54)-(55), over all unit vectors
&'. Consideration of all possible unit vectors &' covers all possible cquilibrium paths, as
seen from (42), (45). [n order o facilitate the subscquent algebra, it will be further assumed
in this section that the inner product choice in U corresponds to &€, = —4,,. Such an inner
product can be easily found in most of the applications of interest and this extra assumption
does not impair the generality of the analysis.

Two alternative formulations of the worst imperfection problem will be considered. In
both the solution to the equilibrium equations (42) or (45) as well as the limiting stability
condition (54) is sought for which A = A!(Z) is minimized. However different constraints
are used. In the first case (Formulation A), the amplitude & of the projection of u—-;;(}.)
onto the null space .17 is held fixed (by enforcing the constraint |4'] = 1), whereas the
magnitude of the impertection &, &, || is allowed to vary. For the second case (Formulation

- . . . 0.
B) the opposite is done: the amplitude & of the projection of u —u(/4) onto the null space
47 1s allowed to vary (by relaxing the constraint [|&' || = 1), whereas the magnitude of the
imperfection is fixed as &, = |5, = 1.

4.1. Formulation A
Since from (54)(55). Al(Z) is the minimum cigenvalue of £7'_, &, 4 4 +Z(‘f,,: for the
m vt

asymmetriccase of Z'. ) 7L | &, 3 % + Z&, . for the symmetric case., it follows that wanted
minimum of A(Z) is given by:
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i Ael

V=1 Nk~ / &

S om N
E: S ‘aniig i.'} +Z"€ui )}Zi; symmctric J

|

1 [/} 3

B ( S g +z(<:,,:)--,- asymmetric
"\:)(Z)mln = min { "

}

b

H

H

(s
11

e
¥

1

Vi = 1% =1 (62)

Since the functions to be minimized are continuous functions of their arguments and
the minimization takes place over a compact set (the m-dimensional unit sphere). the
minimum is attained tor vectors 4 and %, which satisty the following system of 2(m+1)
equations for the 2(m + 1) unknowns %' 7,. AlL M

\ o m
-1 : - 0= . - .
Y ( Y & +Z«?,,;)x, =AY N Sl = M3, asymmetric
k-t . -

p= 1

bidd 7" 3 1721 I ki3
=1t — & - [ - 2 el ot e [P
Y ( Y Y +Zﬂ,,;)4, =AY Y Y i i = M3 symmetric

j=1 Nk=11+1 f=l k=1 1=1

(63)

After Hinding the minimum solution of (63), the corresponding worst imperfection
shape &, can be found from the equilibrium equations (42) or (45) for the asymmetric or
the symmetric case respectively. I the solution of (63) also satisfies (56) the worst imper-
fection shape corresponds to a load maximuny.

Of interest is the case of Z = 0, tor which the solution of {62} is simplificd considerable.
Indeed from (62) one has

- E e "t et " " "t
0 : . e . T sl
Al =min | ¥ % Y & 3504, or 3 Y ¥ Y & wiGa % x,x,]

ooyt ke A A NI

over all unit vectors £'. 7, 1t can be castly shown that the minimum exists and is achicved
for ! = ¥,. Under this condition, by comparing (63} to (31), (33}, one convludes that the
worst impertection shape is the one for which &, % (%), where (%) 15 the direction
that minimizes 4, or s in the perfect structure. The required minimum Al(0) is equal to
the minimum possible solution 24, of (31) for the asymmetric case or to the minimum
possible solution 34, of (33) for the symmetric one. In addition, (56) is automatically
satisfied, thus ensuring that for Z = 0 the worst imperfection corresponds 1o a4 maximum
load. The result for the worst imperfection when Z = 0 has been given by Ho (1974), using
a different approach and invoking some additional properties for the coceflicients B . E,
and also subsequently by Koiter (1976}, who used a more clegant approach. The arguments
given in support of their result do not involve the stability analysis of the imperfect
cquilibrium branch presented in the previous section.

Notice that the polynomial system of equations in (63), whose solution is required for
the determination of the worst imperfection shape, in general has a number of solutions
that increases exponentially with #, Exhaustive scarches to tind the wanted solution are
numerically feasible for relatively low numbers m of interacting modes. Fortunately, by
minimizing separately cach one of the two terms of the sum appearing in (62), and with the
help of (36) one can deduce the following lower bound for AJ(Z )

20 o+ ZU(AAAD ) asymmeetric

; i o ) SANZ ) un- (64)
3 A e + ZUdAA) e SYmMmietric

4.2, Formulation B
The results in (62)-(63) have been obtained for the case of a fixed projection amplitude
parameter &. It is interesting to ask the same question about the worst imperfection for the
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case where the amplitude of the imperfection is fixed, i.e. & = I [see (59)—(60)]. For this
case one seeks to minimize A%(Z) satisfying the equilibrium conditions (42) or (45) as well
as the conditions for a limit point (54)—(56) under the constraint | &.] = 1 instead of the

constraint [|£'|| = 1. Hence, the extremality condition that has to be satisfied by A)(Z) is:
eA? ~
= . =0 65)
3z, + yé, (

where  is a scalar Lagrange multiplier. .

For either the asymmetric or the symmetric case, differentiation of (42) or (45) with
respect to &,. multiplication of ¥, and summation with respect to the index i gives in view
of (54):

n A
il+ ( Z Z fgm@‘it)‘T =0. (66)
agl«

i= 1 j=1

Since only load extrema are of interest, (56) is satisfied. From (65) and (66) one
concludes that at extremality &, « ¥; and consequently from (42) or (45) and (54) the
following condition has to be satisfied at the minimum A}Z):

Z Z E,,(E,k-i-d)(/\:)d'/u+26;I*;))<i,: =0 (67)
el k=1
where ¢ = 1 for the asymmetric case while ¢ = 2 for the symmetric onc.

To find the required worst geometric imperfection shape, i.e. to find &', A, one has
to solve the system of m+ | equations (67) complemented by the constraint

L But+ N8+ Z8,)al | = d+1.
k=t

Notice however that the polynomial system in (67) has a rather high number of possible
nontrivial real solutions which increases exponentially with the number of interacting modes
m. Exhaustive searches to find the required solution are numerically feasible for relatively
low numbers, m, of interacting modes.

Once again, of interest is the solution of the worst imperfection shape problem for
Z = 0. It will be shown that for this case, the problem is once more reduced to the solution
of (12) or (14) and the required minimum A2(0) is equal to the minimum possible solution
24, of (12) for the asymmetric case or to the minimum possible solution 34, of (14) for the
symmetric onc.

Indeed, for Z =0 and for the inner product choice that gives &,, = —J,, one can
rewrite the extremality condition (67) as:

Z Z (Et/+¢/\‘a‘fl/l)§/ka-kl =0. (68)

J=l k=1

The wanted result X7, E,ka?,: = 0 follows by establishing that the factor in parenthesis in
(68) is a positive definite matrix. For this purpose, note that B, is positive semidefinite by
(54-55) and that the second term in the parenthesis is a positive multiple of the identity.
Hence the lowest eigenvalue of the factor in parenthesis is — A2 which is positive.

Notice that when Z = 0, the worst imperfection shape problem has the same answer,
irrespective on whether ¢ or ¢ is controlled. For Z # 0, one expects in general different
solutions to (63) or (67). To find the minimum A%(Z) for Z # 0 and the corresponding
worst imperfection shape, an incremental Newton-Raphson method based on (63) or 67
can be used, starting with the perfect structure solution obtained for Z = 0, and tracking
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the solution for increasing values of | Z{. This procedure is computationally more appealing
than finding directly all solutions of (63) or (67). However. there may be some value of Z
beyond which this incremental procedure no longer produces an absolute minimum for
Al

5. CONCLUDING REMARKS

So far we have established a general theory for the equilibrium and stability of arbitrary
(continuum or discrete) imperfect elastic structures with nearly simultaneous eigenmodes.
From the stability analysis one can subsequently determine the worst possible shape of the
geometric imperfection that will minimize the first local maximum load of the structure.
The analysis presented is asymptotic in nature and the fundamental question pertains to
the range of validity of the employed asymptotic expansions. It has long been known,
especially in the shells literature [see for example the review article by Hutchinson and
Koiter (1970)]. that the range of validity of the asymptotic expansions used in many
applications is restricted. Such results are often based on first term asymptotic analyses
where only a few modes are allowed to interact at the time, usually for reasons of analytical
tractability. Had it been possible for all the nearly simultancous modes to be taken into
account, in addition to the inclusion of the higher order terms, one can conjecture that the
conclusions about the validity of these expansions might improve. The so-called multimode
methods used in the hiterature are also an improvement upon the first order asymptotics, if
all the relevant interacting modes are included. These methods can be combined with the
results presented here as an alternative to the inclusion of the higher order terms in the
asymptolic expansions.

At any rate, the solution of the worst imperfection shape problem proposed here, will
have to be considered in conjunction with the solution of the full set of nonlincar equilibrium
cquations of the structure in question. The results of this analysis are in a way comple-
mentary to the full (usuvally numerical) solution of the impertfect structure for they provide
with an intelligent sefection of the imperfection shape that will produce the maximum load
drop A/, in the real structure. This methodology establishes a deterministic alternative to
the statistical methods proposed for the cylindrical shell case by Arbocz (1987). A com-
binativn ot both methods might also be useful. It 1s even conceivable that the worst
imperfection shape could be used to obtain estimates or bounds to the probability of failure
for random imperfections,

Once can think of applications where the number of interacting modes m to be con-
sidered is high. Since the determination of the worst imperfection shape requires the solution
of a nonlincur polynomial system with m simultancous equations, onc faces the problem of
computing all the roots of such a system in order to pick up the required answer. Numerical
algorithms for such a task do exist [based on homotopy methods—see for example Chow
er al. (1979) for the theoretical foundations of these methods and Morgan (1987) for the
algorithmic application]. However, the required solution time might be exceedingly high
for high values of m, since the number of solutions to (65) or (66) grows exponentially with
n. For these cases, one will have to rely on special propertics of these equations in
order 1o devise quicker solution procedures. For certain structures with a high number of
interacting modes, one of course has the option of using an amplitude modulation type
method [see for example Potier-Ferry (1987) and references quoted therein], for which
however a worst imperfection shape analysis has not been developed thus far.
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