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Abstract-Of interest here is the influence of imperfections on the stability ofelastic systems. discrete 

or continuous. with nearly simultaneous modes. The majority of such structures show an extreme 
sensitivity of their first instability load to the shape of these small amplitude but unavoidable 

imperfections. The determination of the worst such possible shape is thus a very important issue 

from the design standpoint. Following a general analysis of the stability of arbitrary elastic systems 

with nearly simultaneous bifurcation eigenmodes in the presence of imperfections. conditions are 
given for the determination of the worst imperfection shape which minimizes Ihe first local load 

manimum. For the case of coincident eigenmodes Ihe answer 10 the worst shape problem is 

considerably simplified. for it is determined from the equilibrium branch of rhe perfect structure on 
which the load drops more rapidly. 

I. lNTRODUCTlON 

Of interest here is the influence of imperfections on the stability of elastic systems (discrete 

or continuous) with nearly simultaneous modes. 

The study of bifurcation and stability in structures with simultaneous or nearly sim- 
ultancous nwdcs is a classical problem in solid mechanics. AS such it has received a great 

deal of attolltion in cngincoring literature. ~splklly aI*tcr Koitcr’s (1945) pioneering work 

that put the problem on a sound mathematical basis. In addition to its theoretical interest, 

and accompanying inherent dilliculties. the problem is also of great practical importance. 

There is a variety of engineering applications that exhibit multiple bifurcation points at 

their first buckling loads. Perhaps the best known such examples are the thin walled shell 

type structures such as thin walled beams, cylinders, cylindrical panels, spheres and spherical 

caps. The thinner such structures are.the greater the number of buckling modes that appear 

almost simultaneously near the lowest critical load. Another set of applications contains 

stitii’ned structures, such as rib stilknsd plates and cylindrical panels iis well iIS large frame 

type space structures in which a fundamental unit cell can be identified. Due to their 

particular geometry, both a global and a local buckling mode can occur at, or nearly at, 

the same load Icvel. The global modes, which have a characteristic wavelength on the order 

of the dimensions of the structure interact with the local modes whose characteristic 

wavelength is of the order of the unit cell size. Finally, an additional interesting application 

pertains to structures that have been optimized with respect to their lowest buckling loads. 

The optimization procedure leads to overlapping with the next higher buckling load. The 

higher the number of available design parameters, the more simultaneous modes appear in 

the optimized structure. For these structures, the first instability point (i.e. the first bifur- 

cation point or local load maximum) can be extremely sensitive to the shape of imper- 

fections. The determination of the worst such possible shape is thus a very important issue 

from the design standpoint and is the focus of this paper. 

Only a brief discussion of the literature pertaining to instability behavior and the first 
maximum load ofimperfect systems with simultaneous (or nearly simultaneous) eigenmodes 

will be presented. Attention will be further restricted to general formulations of the problem 

rather than the solution of particular applications. The approach of interest here is based 

on the decomposition of the space containing all the admissible displacement fields into 

two parts : one part contains all the m eigenvectors of the stability operator (where m is an 

integer) and is called the null space of the operator, while the other part is the orthogonal 
complement to the null space. This procedure considerably simplifies the required work 
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since it reduces the study of an infinite dimensional problem to the study of a finite m- 

dimensional one. In mathematics this decomposition is called the Lyapunov-~hmidt 

decomposition. It has been introduced to the engineering literature in Koiter’s (1945) work 

on elastic stability. 

The Lyapunov-Schmidt-Koiter (L-S-K) decomposition is usually combined with an 

asymptotic analysis of the equilibrium equations near the critical point. In this approach a 

solution is first obtained for the part of the equilibrium equation that pertains to the 

orthogonal complement of the null space. These results are then introduced into the 

equilibrium equation along the null space. The form of the asymptotic expansion of 

the equilibrium equations as well as the stability results for the perfect or imperfect struc- 

tures are obtained in a simple and straightforward fashion from the analysis. A very 

good description of this method can be found in Potier-Ferry (1979) as well as in the 

book of Iooss and Joseph (192%). A finite degree of freedom version for the study of 

equilibrium using this type of L-S-K decomposition is also given by Thompson and Hunt 

(1973). 

The main concern in the engineering literature is for the equilibrium solution of the 

imperfect structures in question [see for example the review article by Budiansky (1974)]. 

For a perfect structure, the asymptotic analysis for the minimum eigenvatue of the stability 

operator along the bifurcntcd equilibrium branch is given by 3udiansky (1974) for the 

sin@ cigcnmodc and by looss and Joseph (1980) for the multiple eigenmode asymmetric 

cast. An asymptotic analysis for the stability of the equilibrium solutions in imperfect 

structures with nearly simultaneous modes by means of calculating the lowest eigenvalue 

of the stability operator has not been prcscntod up to date. to the best of our knowlcdgc. 

The above mcntionc~l asymptotic stability analysis is subsequently employed in the for- 

mulation of the worst impcrfcction shape problem, for which the necessary conditions arc 

dcrivcd. 

The outline of the prsscntation is as follows: Section 2 presents the asymptotic equi- 

librium and stability analysis for the pcrfcct structure with simultaneous eigcnmodes using 

the ahovc described L-S-K approach. Although the results of this section are known [e.g. 

IOOSS and Joseph (19x0)]. their prcscnt~~tion is indispens~lble for the development of the 

subjcot. The symmetric multiple bifurcation stability analysis. which is also of practical 

intcrcst (its applications include plates. frames etc.) has only been presented so far under 

the somewhat more rcstrictivo conditions oflinear prebuckling [see Byskov and Hutchinson 

(1977) who arc mainly interested in the eyuilibrium of these structures]. Hence the general 

prcscntation of the symmetric case is adding to the interest of this section. 

In Section 3, the ~isymptotic L-S-K analysis is generalized to include the imperfections. 

One dilliznce in the results obtained here from what is usually presented in the existing 

literature, is the distinction of two diCerent control parameters: one, denoted by E, is related 

to the geometrical (in a more general sense) shape of the structure and the other, denoted by 

<, characterizes the critical load spacing of the interacting eigenmodes. This last parameter, 

tsrmcd here the mode separation parameter, is also called the splitting parameter by 

Thompson and Hunt (1973) and is an average measure of the difference in the critical loads 

of the nearly simultaneous-and thus intcracting-eigenmodes. The first instability load is 

found for both asymmetric and symmetric bifurcations where E, [ # 0. 

Section 4 investigates the issue of the worst imperfection shape. Necessary conditions 

arc found which maximize the difference between the critical load of the perfect structure 

and the first inst~~bility load of the imperfect one over all the possible shapes of the geometric 

impcrfcction. For the particular case when the mode separation parameter is negligible 

compared to the geometric imperfection amplitude (E # 0.; = 0) and when a particular 

choice of inner product is used for the admissible displacement space, the above mentioned 

conditions simplify considerably. It is shown that the worst shape always corresponds to a 

maximum load and that it can be found by determining the bifurcated branch with the 
stcepcst loitd drop in the perfect structure with the simultaneous modes. This particular 

result was proven using ;I different approach by Koiter (1976) [see also Ho (197411. For 

the gcncral case E. i f 0 the worst imperfection shape problem requires the solution of II 
more complicated problem which also depends on the adopted parameterization of the 
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equilibrium equations. An asymptotic lower bound for the maximum load drop is also 

provided in this case. 

The novel results in this paper are essentially derived in Section 4. The material 

presented in the previous sections (and which is indispensable for the analysis in Section 4) 

although known. is scattered in various places in the engineering and mathematics literature 

and treated under different notations and often using unnecessary restrictions. We believe 

that the presentation of this material using a unified and concise approach under the least 

restrictiveconditions possible brought together in one reference also serves a useful purpose. 

The presentation is concluded by a discussion of the general results obtained in this 

work. 

2. BIFURCATION AND STABILITY ANALYSIS OF THE PERFECT STRUCTURE 

The essential features of the problem are embodied in the perfect structure with the 

simultaneous eigenmodes at bifurcation. The analysis of the imperfect structure with the 

nearly simultaneous eigenmodes requires finding the multiple equilibrium paths of the 

perfect structure and the determination of their stability. Consequently. this presentation 

will start with the study of the bifurcated equilibrium paths of the perfect structure. 

In the present work, only nonlinear elastic structures arc to be studied. To this end. 

consider a structure whose potential energy is given by R(u. I.). Here u denotes the dis- 

placements of the structure from the stress free reference configuration and belongs to a 

vector space of admissible functions denoted by I/. In the applications of interest, an inner 

product can be defined on U, and the inner product of 11,. 11~ E U is dcnotcd by (11,. w,). The 

corresponding norm is Ilull = (u.u) “2 Moreover the scalar L dcnotcs the load paramctcr . 
of the system and increases monotonically away from zero during the loading process. For 

L = 0, the equilibrium solution is the stress free configuration with displaccmcnt u = 0. For 

values of the load parameter 0 < L < &,. the equilibrium solution of the pcrfcct structure. 

dcnotcd by :(,I) and c&d principal solution, is unique and stable. Marc specifically, for 

any I.E(O.J,) there exists a real number a(L) > 0 for which the following relations arc 

SiltiSLXl :t 

In the above equation, the first relation indicates that ;(,I) is an equilibrium solution 

for the perfect structure with potential energy B. The second relation ensures its stability, 

over the considered range of the load parameter 1. since it implies a strong local minimum 

of the potential energy. 

As the load parameter increases away from zero, it reaches a value called the critical 

load and is denoted by 4,. for which the principal solution loses its stability, i.e. the principal 

solution is no longer a strong local minimum of the potential cncrgy. Consequently the 

minimum eigenvalue of the stability operator B., evaluated on the principal solution and 

at the critical load should vanish. At criticality, the corresponding stability operator has nz 

simultaneous eigenmodes denoted by h. In mathematical terms : 

8.td.i(%&). 4): = 0. (B,u,(i(AJ, &)lr)bU = 0; (Ji.1) = S,,, i, j = I,. . . ,m. (2) 

The second relation in (2) expresses the fact that ; is one of the m simultaneous 
eigcnmodes of the stability operator of the perfect structure at criticality while the first 
relation in the same equation indicates that the critical point is a true nt-fold birfurcation 

point and not an extremum load point. In almost all the applications of interest in structural 

and solid mechanics, the number of the simultaneous eigenmodes of the stability operator 

( 
tThe various funclional (Frechet) derivatives of the potential cncrgy with respect to u arc dcnotcd by a subscript 
).. while the ordinary partial derivatives with reswt to L arc dcnokd by a subscript ( ),i. 



23-r %. TIUA%TMLLIUIS and R. PEEK 

at criticality is finite. The third condition in (2) (where ti,, = I if i = j and a,! = 0 otherwise) 
ensures that the eigenmodes form an orthonormal set. This property will facilitate some of 

the subsequent calculations. Further simplification can be achieved by choosing a specific 
inner product. as will be described later. 

The main tool of the analysis is what is called in the mathematics literature the Lyapunov- 

Schmidt decomposition of the displacement field 11. According to this method. u-&i.) can 
be decomposed in two parts: one which lies in the null space of the stability operator at 

criticality. 

and one which lies in its orthogonal complement with respect to L’. 

I“ E (I,E rq(r.I) = 0. i= I.....W). 

More specifically : 

W 

I( = &;., + c <,A + 1' ; <, E !G. (‘E. I“. (3) 
I- I 

In addition. it follows from (I ). (2) and the continuity. with respect to the load 
parameter. of the stability operator evaluated on the principal equilibrium path, that at 
criticality the stability operator must hc positive scmidefinitc on (1. This implies its strict 

positive dcfinitcncss on . f ‘I. Thus thcrc exists ;I real number s( > 0 [unrclatcd in gcncral to 

the one dcfinctl in (I)] for which : 

Tbc sought displ;tccmcnl II is thus rcplaccti by an cquivalcnl se1 of unknowns (IS. <,) 
and the solution to the equilibrium equation ~4,” iilr = 0 proceeds in two steps: first I’ is 

determined as ;I function of AL (A2 E E. -i.,) and 5, from the equilibrium equation in I ” 
Then the resulting I* is used in the remaining equilibrium equation on 1.. This proviclcs the 

relation between A>. and c,. The equilibrium equations that have lo be solwti ilrc : 

A~,, = O=.tY,,,(l:(i.,+AL)+ 1 f,;r+r.;.,_+Aj.);d = 0. i= I ,,.., ~1. 

From (4) it follows that (j), has a unique and adcquatcly smooth solution r(<,. A1), 

at least in the neighborhood of the critical point (I?(;.<). i,). The Taylor series expansion 01 

this solution is : 

m 
((<,,A;) = 1 <,r,+Ai.r*i+ <,<,r,,+ZA\i. c ,‘,r,;+(Aj.)‘r,, +... 

I- I ,I’, 1 

Upon substitution of (6) into (5), and subsequent evaluation of its Taylor 

(6) 

series 

expansion about (<,,Ai) = 0 one obtains the following results: the O(I) term of the 
expansion gives t Qk = 0 which is automatically satisfied in view of the equilibrium 

tFrom hcrc on the superscript ( )’ or suhscrlpt ( ), dcnorcr cvalualwn of the quantity m question at the 

crilical point. ($ j,). & ). 
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equation (I). The O(<,) terms yield. in conjunction with (2). the result: (8,:” r,)& = 0 which 

in view of (4) implies : 

c, = 0. (7) 

By taking <: = 0 into (5),. comparing the result to the equilibrium condition on the 

fundamental solution (I). and invoking the uniqueness of the solution to (5), for L.(&. Ai), 

it is readily seen that ((0. Ai.) = 0. This implies: 

1’; = pir: = . * . = 0. (8) 

This result could also have been obtained from the O(Aj.)” terms in the expansion of (5), . 
One can similarly continue with the quadratic order terms in the expansion of the 

equilibrium equation (5), to find : 

O(&. f,) term : (&.>,,I.,,+ (8: ,,,,, L)L)Sc = 0 

O(<,. Ai.) term : (~F,~,,c~,~ + (dR.,,/di.),;)& = 0. (9) 

The ahovc equations have unique solutions v,,. 19,~ in view of (4). In a similar way one 

can find the higher order terms in the expansion of r(&.Ai.) and hence determine the 

solution to (5), uniquely. Upon substitution of the thus found P(<,. Ai.) into the remaining 

equilibrium equation (5):. and after using (2). (7). (X) oneobtains the followingnrcquations 

bctwccn Ai. and ;, : 

As expected. an obvious solution to (IO) is the principal equilibrium branch for which 

4, = 0 and Aj. # 0 since from (3) and (6). one obtains for this case u = &I.). The dcter- 

mination of the remaining equilibrium paths through thecritical point, i.e. thedctcrmination 

ofthecurves &(A;.). is facilitated by introducing a new paramctcr 5. defined as the amplitude 

of the projection of II-I? on the null space _,I’ of 8:“. Ncedlcss to say. the above para- 

metrization is not the only possible one. However. it turns out to be the most convenient 

one for the ensuing calculations. For a neighborhood of the critical point, assuming an 
adcquatcly smooth dcpcndcncc of <,. AL on 5 one has : 

Two cases are to be distinguished at this point: first the asymmetric case for which 

c?,,~ # 0 at Icast for one triplet of indices (i.j.k). By inserting (I I) into (IO) and collecting 
the terms of the like order in s’. one obtains from the lowest order nontrivial term in this 
expansion (the O(<‘) term) : 



X86 N. TRIASFAFYLLIDIS and R. PWK 

jJ i Y~z:B,,,+2i., jJ I:$,,, = 0. ‘? (Y,‘)’ = 1. _ (12 
,= I t= I ,- I /= I 

The above algebraic system of m+ 1 equations for the nl+ 1 unknow-ns 2,‘. j., has at 

most 2” - 1 pairs of real solutions (r,‘, i. ,) and ( - z,I . - L, ). with each pair corresponding 

to a bifurcated equilibrium path through the critical point. Each one of these equilibrium 

paths can be constructed by computing its Taylor series expansion as indicated in (ii). 

Higher order terms in the expansion of (10) show that the series can be continued to any 

desired order if: 

Det [S,,] # 0. B,, - f ~ltS,,~ +L,cC,;,. (13) 
ir- I 

The second case to be investigated will be the symmetric case for which c?,,~ = 0 for all 

triplets of indices (i.j.k). In this case (12) implies that i., = 0. By inserting (ii) into ( 10) 

and collecting the terms of the like order in <. one obtains from the lowest order nontrivial 

term in this expansion (the O({‘) term) : 

This algebraic system of m+ 1 equations for the M!+ I unknowns I,‘. 2: has at most 

(3’” - I)/2 pairs of real solutions (z!, %?) and ( -cc/. i.,). each corresponding to ;I hifurcatcd 

cquiiibrium path through the critical point. Each OIW ol’ thcsc cquilihrium paths can be 

constructed by computing its Taylor scrics expansion as indic:1tcd in ( 1 I ). The continuation 

of the expansion (IO) to terms of O(<“) ;111d higher for catch particular branch is assured 

when : 

TO complctc the study of the above found bifurcatccl cquiiibrium branches. one has to 

investigate their stability. The gcnoral dynamic stability criterion applied to structures with 

a potential energy can be shown to be essentially equivalent to the sign of the minimum 

eigcnvaluc /r”“’ of the stability operator &,,,,(u. j.) cvuluatcd on tho cquiiibrium path whose 

stability is under investigation. For/P’” > 0. the potential cncrgy has a strict local minimum 

and the corresponding equilibrium solution can bc shown to bc stable (for the continuum 

cast. somc additional minor technical conditions on E(u, i) and IIl~jl have to bc verified). 

For /P” < 0, the equilibrium solution dots not correspond to ;I local minimum of the 

potential energy and hcncc the solution can bc shown to bc unstable. A word of caution is 

in line at this point. The sign of {I”“’ (i.c. whcthcr /I ““” is positive. zero or negative) is 

independent of the choice of norm for the cast of linitc dcgrcc of frocdom systems. For 

infinite systems, the sign of /I”‘” depends on the adopted norm. For most of the practical 

applications of intcrcst. there are fortunately physically motivated choices for the norm in 

the admissibic displaccmcnt space U which give stability results in agrccmcnt with physical 

intuition. For further discussion on this point the intcrcstcd rcadcr is rcfcrrcd to Koiter 

(1965), Knops and Wilkes (1973) and Simpson and Spector (1987). 

First the stability of the principal branch is to bc invcstigntcd. To this end. assume 

that ;(I.) is any one of the m eigcnvalucs of 8 ,,,,, (i:(i). i.) that vanish at L,. while .$j.) is the 

corresponding normalized eigcnvcctor. Hcncc : 

(K..,(t(i), &i.))Su = i(i)(.t(j.), brr). (i(i). Z(i)) = I. (16) 

Evaluating (16) at the critical load one has in view of (7): : 
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Assuming that i(i) and .$.) are smooth functions of their argument. (16) can be 

diff;trentiated with respect to E..,Evaiuating the result at the critical point, and recalling that 

;(&I = 0 one obtains : 

Taking Str = : and recalling (2):. (16):. eqn (18) yiefds: 

(19) 

Since ;(,I) is positive for i. <: i, and vunishes at 4,. it follows from continuity that the n 
I, 

dcrivutivc of this cigenvalue evaluated at criticality. (d/l/d,!),, cannot be positive. Assuming 

that this quantity is strictly ncgativc, i.e. (di/di.), < 0. leads to thcconcfusion that E+ must 

bc a ncgativc definite matrix. This c~?rI~iiti~~n is s~ltis~~cd in the majority of i~pplications of 

intcrcst hcrc. 

fkr each bifurcated cquilihriurn branch trough the critical point, its stability dcpcnds 

on the sign of the minimum eigcnvaluc /P”‘(<) of the corresponding stability operator R,,,,, 

In an;llogy to (IO). the dclinitions for each one of the m lowest cigcnvalucs /I(c) and the 

c~)rrcsp~~rl~{irlg r~~;rnl~lli~c~{ cigsnvcctors x(l) are : 

111 the above dc~~nition 5,. hi:. /L x are functions of the parameter 4. Recall that for 

every bif*urcatcd equilibrium path the nt lowest cigenvitlucs /J(t) of the corresponding 

stability operator have to vanish at r = 0. in addition, for euch bifurcatedequilibrium path, 

/j(t) and X(S) arc assurncd to be smooth functions of their argument with the following 

Taylor series expansions : 

By infroducing (21) into (20) and recalling (2). (6)-(8). (I 1). one obtains by expanding 

about - - , - 0 nnd collecting the terms of the like order in < the following results: the O(I) 

term yields : 

(22) 

Continuing with the O(c) term in the expansion of (20) one has: 

5As 29:18-F 
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Taking du = b and recalling (If:. the above equation yields : 

where B,, is given by (13). For the asymmetric bifurcation case. this matrix is nonsingular, 

which ensures that ail its eigenvalues /I, are nonzero (as well as real in view of the symmetry 

of the matrix). It follows from (24) that the constants x, introduced in (21) are the com- 

ponents of the eigenvector of B,, corresponding to the eigenvalue /I,. Hence the minimum 

eigenvalue fi”‘“(<) of b,,,, for the bifurcated equilibrium path in question is : 

Conscqucntly. if for a ccttain bifurcated branch the maximum :md minimum eigcn- 

values of B,, respectivciy fry’ and it’;” arc of the same sign, then the bifurcated branch in 

question changes stability as it crosses the critical point. while if the twoextrcmal eigenvalues 

;lrc of opposite sign the bifurcated branch in question is always unstable. 

For the symmetric bifurcation cast. since ~f,,~ = i., = 0, H,, = 0 in (24) which implies 

that /I, = 0. Conscqucntly, one has to consiticr the Of<‘) term in the cxp;lnsion of (20). 

where B,, is now given by (15). For the symmetric bifurcation case. this matrix is nonsingular, 

which ensures that all its eigcnviilucs /j2 arc nonzcro (as well as real in view of the symmetry 

of the matrix). It follows from (28) that the constants x, introduced in (22) arc the com- 

ponents of the eigenvector of f3,, corresponding to the cigcnvnlue p2. Hence the minimum 

eigenvalue f2”‘“(5) of b.,,, for the corrcspondin~ bifur~tcd equiiibri~ln~ path in question is: 

Consequently if the minimum eigcnvalue IF”’ of B,, is positive, the bifurcation branch 

in question is stable. Any negative eigcnvalues render it unstable. 
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3. EQUILIBRIUM ASD STABILITY OF THE IMPERFECT STRUCTURE 

2’89 

Having analysed the bifurcation and stability behavior of a perfect structure with a 

multiple bifurcation point. attention is turned to the effect of imperfections. The term 

“imperfections” is employed in a very broad engineering sense here, as opposed to the more 
rigorous mathematical term “control parameters” of singularity theory [see Golubitsky 

and Schaeffer (198.5)). Guided by the vast majority of applications in solid and structural 

mechanics, two types of such imperfections (or control parameters) will be distinguished : 
the first is a geometric imperfection. denoted by W, where w is a function which characterizes 

the departure of the unstressed configuration of the structure from its perfect shape. 

More generally. a geometric imperfection can be due to the eccentricity of the applied 

loads. thickness variations, errors in the boundary conditions. residual stresses etc. The 

second is the mode separation parameter [also referred to as “mode splitting” parameter by 

Thompson and Hunt (1973)], denoted by [. which quantifies the average distance of the nearly 

simultaneous critical loads. Note that mode separation can occur in perfect structures, 

such as rectangular plates under in-plane loading, axially loaded cylinders or externally 

pressurized spheres that exhibit no geometric imperfections of any kind. Although one can 

find examples of strongly interacting modes with critical loads that are far apart [see for 

example Healey (1988)] attention is focused here on the interaction of almost simultaneous 

modes. i.e. eigenmodes with corresponding critical loads that are close to each other. 

The potential energy of an imperfect structure with nearly simultaneous eigenmodcs 

is given by A(u. L. <. w). Here II again denotes the displaccmcnt of the structure from some 

reference configuration and 11’ dcnotos the geometric imperfection of the structure. It will 

bc assumed that rr~ U while WE It’ whore W is a vector space of admissihlc goomctric 

imperfections. It is convcnicnt to distinguish hctwccn the impcrfcction amplitude t: f /W-II 

and the impcrfcction shape \? z II,/II ~1). Morcovcr the scalar I. 2 0 dcnotcs once more the 

load paramctcr of the system and the scalar i E 111 is the mode separation paramctcr. A 

structure with nearly simultaneous cigcnmodcs but with no goomctric impcrfcction has a 

potential cncrgy &‘(rr, 2. <) c ,?(K i.. <, 0). The potential cncrgy of the pcrfcct structure with 

the simult~~nc~~us rigcnrnodcs obviously satisfies R(u. i.) = (?(I,. 2.0). The relations bctwecn 

the cncrgics of thcsc rliffcrcnt structures illI! thus sunimarizcd : 

The perfect structure with the nearly simultaneous eigcnmodes has a principal solution 
0 
$2. i) which in view of ( I ), and (30), satisfies : 

R,u(S(%. i), %, &Srr = 0, i(i) = E(%.O). (31) 

Morcovcr, for the pcrfcct structure with the nearly simultaneous modes, one has m 

distinct critical UIUCS k(i) of the load paramctcr at the noighborhood of I.,. Each such 

critical value corresponds to a singular point of the stability operator R.U,(l?r(I.. C), I.. 0 with 

eigcnvcctor I(i). All these critical values are close to 2, in the sense that i(i) -2., = O(6). 

More spccificslly for i = I.. . . , m : 

A,i(z(i(;,. i). to. i>l;c;, = 0, (ff”,,(l?(~(;,. i). ;r(n, i)i(i))h = 0; 

i(O) = i,. i(O) = id. (32) 

From the above properties of&u. 2. C) one can deduce the following useful relations: 
by evaluating the derivative with respect to < of the equilibrium equation (31) at C = 0 and 

making use of (30) one has : 
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(33) 

Upon-taking ciu = ;d and recalling (1)2 the above equation yields: 

By evatuatin_p the derivative with respect to ; of (31): at 2’ = 0 and recalling once again 

(30) one obtains : 

Upon taking cSrr = I and recalling (2) as welt as the defnition of A,,, given in (IO) the 
above equation yields : 

(36) 

As wilt hc discussed in the nont section. thcrc exist apprnpriatc choices of the inner 

product in II such that the MI x m matrix a,,, = -S,,. t tcncc from (36) one can conclude 

that for this convcnicnt inner product choice, c?,,; is also diagonal. 
The t.yapunov Schmidt dccomposi~ion of Ihc disptacemcnt lictd 0 introduced in (3), 

but with $2. <) rcptacing I:(r). is again going to hc ctiiptoyctt for lhc sotulion of the 
cquitihrium equations of Lhc impcrfcct structure. ‘l’hc unknc>wn disptaccmcnt II is thus 

replaced by an cctuivalcnt set (17. i;‘,) and the solution to the cquitibrium equation ff,,dlr = 0 
. proceeds in fwo steps. tirst 1% is dctcrminctt as ;I function of<,, A,?, <, c from the equilibrium 

equation in t ” Then the resulting 19 is used in the remaining equilibrium equation on I . . 
thus providing the rctation hctwccn 5,. Aj., < and I:. The cquitibrium equations that have to 

hc solved arc : 

cc,, (51~ = 0 =z-d,,,(&;.,+Aj.,<)+ f ~,~,+~~,i.,+Ai..;.~:~~)tir~ = 0, V&E. I“ 
I.1 

From (4) and (30). it follows that (37), has ;t unique and adcquntcly smooth solution 

r(<,, A;., <, I:). at Icast in the neighborhood of criticality, whose Taylor scrics expansion is of 

the form : 

d<,. AL <. I:) = c <,r., + A,+, + cc*; + IX’,: + , 
I- I 

I(,$, ,E,i.;,l.,,+?-2,: i <,r,, 
<- I 

!,I I!# 
+ ?< c (,r,: + 3: c f,r,, + (hi.) ‘ril + ZjALr,; + I:Ai.r,, +<‘L,;; 

I-I (3 I 

+7jsr;,+A, +... 
1 

Upon substitution of (38) into (37), and ;I subscqucnt Taylor series expansion 

(38) 

about 
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(i,. AL. <. E) = 0 one obtains by collecting the terms of the like orders in these variables the 
following results: since from (30). 6( U. LO, 0) = b(u. i.) all the terms in the expansion of 
(37), of 0(<P(Ai)4). i.e. the terms which do not contain any powers of E or <. coincide with 
those found in the previous section for the perfect structure [see equations (7)-(9)]. By 
taking 5, = E = 0 in (37), comparing the result to the equilibrium equation in (31) and 
invoking the uniqueness of the solution to (37), for r(<i,Aj.,C,~). it is readily seen that 
~(0, Ai. <, 0) = 0. This implies : 

I’: = L’;; = t’;; = f. . = 0. (39) 

This result could have also been obtained from the O(cp(Ai)q) terms in the expansion of 
(37) I. 

The remaining terms in the expansion for C, i.e. P,. I’;~. c,,, c;,. V, etc., are given from 
equations of the type (&,v, + &,, C)Sr = 0 can all be determined uniquely since the operator 
operating on the unknotin function is always c?‘&, which is invertible in view of (4). Upon 
substitution of the thus found I!( <,. AL. i. E) into the remaining equilibrium equation (37), 
and after using (30). (2). (7). (8). (34). (39) one obtains the following M equations between 
5,. Ai.. < and E : 

s’,, P (6~“H,F)1. (40) 

The cocflicicnts &,,L, 6,,1 and &,,t, appearing in (40) arc the same as those dcfinrd in 
the corresponding crluilihrium cquution for the pcrfcct cast [SW eqn (IO)] while R,,; has 
been dcfincd in (36). As expcctcd, for [ = I: = 0 the crluilibrium equation for the imperfect 
structure with the nearly simultaneous eigenmodcs (40) reduces to its perfect structure 
counterpart (IO). 

The solution for the nr equations in (40) for the m+3 unknowns I&, A1. i. c can be 
expressed as a function of three parameters t, A and Z. This parametrization is by no 
means unique, but it turns out to be convenient. In analogy to the perfect case, two casts 
will be distinguished : first the asymmetric case, for which &,,k # 0 at least for some triple{ 
of indices (i, j. k). In this case the adopted parametrization is : 

<,(&AJ..i) =~,I(A.Z)S+C(A,Z)~~+... 
whcrc: Ai. E <A. [ 3 <Z, <’ z “’ 

c(i,Ai.,i) = i’[~“(A.Z)+C,(A,Z)s+...] 

(41) 

By inserting (41) into (40) and subscqucntly collecting all powers of the like orders in 
5. one obtains from the lowest order nontrivial term in this expansion : 

For fixed values of A. 2 the above system of m+ I equations for the nrf I unknowns 
a?,‘,.?, has at most 2”’ real solutions. A tedious but straightforward calculation shows that 
the unique continuation of each solution found in (42) for the O(<‘) and higher terms in 
(40) is assured when : 
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Det[&,] #O. B,,(A.Z) = i ~:G,.+AR,,,+z&. (43) 
k=, 

Of all the possible solutions of (31) there is one of particular interest. It is the equi- 

librium branch that goes through the initial unloaded configuration II = 0. i. = 0. This 

solution is the unique and stable equilibrium solution that the system is going to follow 

during the early stages of the loading process. For a nontrivial imperfection, i.e. when 

/b,,ij # 0 this solution corresponds to large negative ~aluss of A (recall that A = (i.--i.,). 5 

and that 5 is a small positive parameter). It is not ditticult to see that for A -+ - x the only 

real solution to (42) is 

The second case to be investigated is the symmetric one. for which R,,i; = 0 for all 

triplets of indices (i,,j. k). The adopted parametrization for the unknowns <,. Ai.. <. I: in terms 

of the parameters 5. A. Z is : 

z: 
:,(f.A.E..,*) =a,‘(A.%);+i,‘(A.Z); +... , 

~(~,Ar.i,=~‘~~~,(A,Z,+~,(A.Z,~+~..I 

whcrc: LG. 3 . i= r_\-z, iL+;,)z. 

(JJ) 

Hy inserting (4-l) into (40) and suhscqucntly collecting all powers of the like orders in 

5, one obtains from the lowest or&r nontrivial tcrm in this cnpansion : 

For fixed values of A, Z the :tbovc system of MI + I equations for the HI + I unknowns 

3,‘, C,, has at most 3”’ real solutions. A straightforward calculation shows that the unique 

continuation ofcach solution found in (35) for the O(:‘) and higher terms in (40) is assured 

when : 

,,I ,,, 

Det[.&,] #O, fi,,(A.Z) z c 2 i:~,ld,,,,+A~,,;+Zff,,;. 
k-l ,-I 

Of all the possible solutions of (45) thcrc is one of particular interest. It is the cqui- 

librium branch that goes through the initial unstressed configuration II = 0, E. = 0. This 

solution is the unique and stable equilibrium solution that the system is going to follow 

during the early stages of the loading process. For a nontrivial impcrfcction this solution 

is identical to the one found for the asymmetric structure. This result is hardly surprising, 

given that ths symmetry or not of the bifurcation point rcfcrs to propcrtics of the structure 

near the critical load and dots not inllucncc the behavior of ths structure near tht: zero 

load. 

To complete the study of the imperfect structure with the nearly simultaneous buckling 

cigenmodcs one has also to investigate the stability of the equilibrium paths. Of all the 

equilibrium paths found ncarcriticality. only the one that passes through the initial unloaded 

state II = 0, i. = 0 will be investigated, since it is the actual path that the imperfect structure 

is going to follow during the loading process. It will be shown that the actual equilibrium 

path is unique and stable near i. = 0 (or equivalently as A + -co). As the loading 

progresses, i.e. as 2. increases away from zero (or equivalently as A increases away from 
- cn), there will be a load i,. which is called the snap-through load, for which theequilibrium 

branch in question will lose its stability, usually due to the attaining of a local load 
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maximum. The value of A, which obviously depends on C, E and E is very significant for 
the design of structures that exhibit multiple eigenvalues at criticality, for it represents the 
maximum load attained by the actual structure before becoming unstable. 

As for the perfect structure, the stability of an equilibrium solution will depend on the 
sign of the minimum eigenvalue /?““(<,A.Z) of the corresponding stability operator 
#.UU(~. A, i, ~6). In analogy to (20). the definitions for each one of the m lowest eigenvalues 
B(<. A, Z) of 8,,, and their corresponding normalized eigenvectors 1((. A. Z) are : 

E(~~+Al,j)f~~,~+~(~,.dL.i,~).i.,+AL.j.~~~ (_f._f)= I. 
is I 

(47) 

In the above definition. Aj.(& A), i(<. Z). <,({. A.Z), E(& A. Z) are given in (41) or 
(44) for the asymmetric or the symmetric case respectively. Note also that 
t(i,(5. A, Z), Aj.(i. A), i(<. Z). ~(5. A, Z)) will be given from (38). Assuming adequate 
smoothness with respect to 5, the Taylor series expansions for J?(<. A. Z) and .?(<, A, Z) 
are : 

.f(t, A. Z) = .i,,(A,Z)+.i,(i\.Z)if.Q(l\.Z)‘;+.~ (48) 

By introducing (38) into (37) and recalling (2). (7)-(g). (30). (38)-(39). one obtains 
(for fixed values of A,%) by expanding about < = 0 and collecting the terms of the like 
order in 5, the following results : The O( I ) term yields : 

.q, = ,g, x;:. (49) 

Continuing with the O(c) term in the expansion of (47) one has: 

Taking Su = I and recalling (2)* and (49). (50) yields : 

(51) 

In the above equation the nr x nz matrix &, is given by (43) and for the asymmetric 
bifurcation case, this matrix is a nonsingular one which ensures (in conjunction with the 
symmetry of this matrix) that all the eigcnvalues PI are real and nonzero. Consequently, if 
/??‘“(A, Z) is the minimum eigenvaluc of fi,,, then the required lowest eigenvalue#?“‘“(<, A, Z) 
of the stability operator 8,“” is given by : 

fim’“(<, A, Z) = C[‘Y(A, Z) + OK’), 5 > 0. (52) 

The choice of r > 0 is in agreement with the assumption that A + -co as ,I 4 0. 
Moreover. for the actual equilibrium path one can easily show that it is stable as A + -co. 
Indeed. in view of the boundedness of &‘(A, Z) and the assumption that &ii; is a negative 
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detinite matrix, as A + - x then B,, + Acf”,,i. which is a positive definite matrix. As the 

loading progresses (as i. increases away from zero), it reaches a value. say j., = L,+Ai.,. for 

which the actual equilibrium path becomes unstable. i.e. /?m’“(<. A,. Z) = 0. For a fixed 

value of Z. the following relations hold between the load drop corresponding to the tirst 

instability of the actual equilibrium path A;.,(<, Z) in the case of an asymmetric bifurcation 

[see also (4 I )] : 

$n’“(<. A,, Z) = 0: i., -i., = A;., = <A,($Z). ;\.(:.Z) = A:‘(Z)+<A,‘(Z)+.~~ (53) 

Thus. inview of (51). (52). (53). A:‘(Z) is the tirst value of A as it increases from - / 

(expected to be negative. since only structures with Ai, < 0 are of intercst) at Lvhich ,!?,,(A. Z) 

loses its positive definiteness. i.e. : 

,,# ,?, s,,(/\r(z),z)f,cA~(z)‘z) = ” 
(5-l) 

For any other vcctor not colincar with 2, say N,. one has : 

,?I ?,, 
N, f?,, N, > 0. (55) 

The above condition, in conjunction with (52) gives us the lo\vcst Io:KI at which the 

lirst instability in the actual ccluilihrium solution of the asymmetric inipcrfcct structiirc will 

occur. l:or A:’ to correspond to ;I maximum land and not ;I bifurcation point. ow should 

satisfy : 

,r, 0, 

5 ,?, &,,5: (Al’. Z)X,(A:. %) c o 

For the symnictric C;ISL’, the O(<‘) term in the expansion ~((-17) gives p, = 0 while the 

O(< ‘) term, after SOIW Icngthy but straightforward m:lnipulutions. gives : 

whcrc 17, ““” is the lowest rigcnvalue of the matrix fi,, which is given in this GISC by (-86). The 

tirst instability load of the actual equilibrium solution satisfies : 

$2 

/~““‘(& A,. Z) = 0 ; i.,-L, = Ai., = >-A,(<.Z), A,(<.Z) = A:‘(%)+fA,‘(%)+... (5X) 

Note that A:(Z) is also given in this case by (54) and satisfies (55). (56) but with fi,, 

taken from the definition in (46). 
An altcrnativc parametrization of the equilibrium equations of the impcrfcct structure 

in (40) which has an attractive physical intcrprctation can also bc considered. For the 

asymmetric cast it is : 

I: 5 t+. Ai. z ?\A. < - r/Z. <,(rr, Ai., i) = f,‘(A. Z)rl+ ?,‘(A. Z) 
I/ : 

, f. (59) 

while for the symmetric case it takes the form : 



This parametrization is equivalent to controlling the size of the imperfection E (or 

equivalently q) instead of controlling the amplitude 5 of the projection of the solution on 

the null space. The equilibrium and stability results for this new parametrization can be 

obtained from the equations given in this section if one sets C,, = I and drops the constraint 

zy! ,(i,‘)’ = I. The advantage of this second parametrization is that by varying only A. 

while keeping all the other parameters fixed. one can follow the actual equilibrium path of 

a given imperfect structure. The advantage of the first paramctrizution is that it includes 

the perfect structure. in addition to providing a simpler solution to the corresponding worst 

imperfection shape problem. as it will be seen in the next section. 
Finally a remark of practiccll importance is in order. In many applications. the func- 

tions i(c) are not known explicitly. thus posing problems to the calculation of the matrix 

R,,; [see (%)I. For these GISCS. the following definition of the mode separation parameter i; 

gives an approximation of the required derivative of i(c) at the critical load within an O(() 

error : 

The results obtained in the previous section provide the load drop Ai,, corrcspontling 

to the lirst load ni;ixiniuni cncountcrctl during ;i monotonic (with rcspcct to the lo;lil 

pnranictcr L) loading of ii given inipcrfcct structure. In practical applications pertaining to 

the dcsign of such structures, the control of the gcomctric impcrfcction amplitutlc K is often 

casicr than the control of the impcrfcction shape i?. It is thus very important lo identify the 

worst gcomctric imperfection shape. i.c. the shape that maximizes (A&(. 

For small values of <, the bvorst geometric impcrfcction shape is found by minimking 

A:’ (since one is intcrcstcd only for A: < 0) which satisfies (54)-(55). over all unit vectors 

6,‘. Consiclcration of all possible unit vectors 5, covers all possible equilibrium paths, as 

seen from (42). (4.5). In order to frrcilitate the subscqucnt algebra, it will bc further x~sun~cd 

in this s&on that the inner product choice in U corresponds to J,,* = -b,,. Such an inner 

product c;m bc easily found in most ofthc applications of interest and this extra assumption 

does not impair the gcneralily of lhc ilIlalpis. 

Two altcrnativc formulations of the bvorst impcrfcction problem will bc considcrcd. In 

both the solution to the equilibrium equations (42) or (45) as weIl as the limiting stability 

condition (54) is sought for which A = A:‘(Z) is minimized. tlowcvcr dilrcrcnt constraints 

arc usd In the first c;~sc (l:ormuliltion A). the amplitude < of the projection of u-&L) 

onto the null space . I‘ is held lixcd (by enforcing the constraint IIZ,‘I[ = I ). whcrcas the 

magnitude of the impcrfcction c,,I/~,,: 11 is allowed to vary. For the second C;ISL’ (t~ormulntion 

IS) the opposite is done: the amplitude < of the projection of II- i:(i) onto the null space 

. 1 ’ is allowed to vary (by relaxing the constraint IIS,’ 11 = I). whcrcas the mitgnittdc of the 

impcrfcction is tixcd as C,, = )I J,, 1) = 1. 

4. I . Fwrrrul~rriw ;I 

Since fmnl (54) -455). A?(Z) is the minimum eigcnvaluc of ,X:;“_ , f4,,k&! +Zi,,: for the 
asymmetric case of X;“_ , I;! , R,,A,5~ $ + Zcfrli for thesymmctriccrisc. it follows that wanted 
minimum of A:(Z) is given by: 



Since the func[ions to he ~~inirni~cd are continuous functions of their arguments and 

tht minimization takes place over a cumpact set (the nl-dimcnsionat unit sphere). the 

minimum is attainat for vectors f, and x, which satisfy the follokving system of 7(m-t- I) 

equations for the 2(rrr -t- I ) unknowns 2,‘. 2,. A(‘. .I[ : 

asymmetric 

1 

i\ftcr finding ihc minimum solution of (63). the corresponding worst impcrfcction 

s hapc CT,, C;LII hc fklund from the ccluilihrium equations (47) or (45) for the asymmetric or 
the syrnmclric cast rcspcctivcly. If the sotulion of (03) also satisties (56) the worst impcr- 

faction shape corrcspctnits to 3 tt)act ~ii~Isi~~i~i~~i. 
Ot’inicrc~t is the c;isc of% = 0, for- bvhich the solution of(Q) is siniptitiod considcrablc. 

Iridccrl from (02) 0~2 ha\ 

over ;tlt unit vectors 2,‘. 2,. It can hc c;ksity shown ihill the minimum exists :\ncf is achieved 

for I,’ = &. Unricr this cr~nrfik~n, by comparing (63) to (?I), (33). one concltrclcs that the 

worst impcrrfcction shupc is the one for which K,, X (rj),,,,,,. where (XL),,,,,, is Ihc direction 

1haL niinimi/cs L, or ;.: in Itic pcrfcct struclur’c. The recluircil minimum A:‘(O) is equal to 

the minimum possihtc sotttlion 22, of (?I ) for the ilSyrllIllClik c;ksc or to the minimum 

possihtc solution 3i, of (3.7) for the symmetric enc. in addition. (56) is ~~u~~~rn~itic~liIy 

s;ltistictl. thus ensuring thnl for Z = 0 the worst impcrfcction corresponds to ;I maximum 
Io:~l. The rcsutt for the worst impcrfcction when % = 0 has been given by HO ( 1974), using 
;i difYcrcnt :rppro:tcti and invokin, *r sott~c aclclitinn~tt propcrtic% li,r the coetkicnts E,,&, Eilkl 

;tnct ;ilsr) subscqucntly by Koitcr ( IWO). who used iI more clcg;tnt approach. The arguments 

lii,cn in support of their result do not invtrlvc the stability analysis of thr: imperfect -_ 
equilibrium branch prcsentsd in the previous section. 

Notice that the p(~ty~~~~t~~i~~t syskm Of~~lii~tiOflt; in (63). \shosc solution is required for 

fhc dctcrmination of (tic worst impcrfcction shape. in gcncral has a number of solutions 

th;it incrcascs caponcnti;itly with 111, Exhaustive sc;irchcs to lind the wanted solution arc 

numcricalty fasibtc t’or rctativcty tow numbers 111 of interacting md~s. Fortunately, by 

I~~iIlilni~in~ scparatcty each one of the two tams of the sum appearing in (611, and with the 

hdp d(M)) WC can d~‘ciucc the following Iowa bound for A?(Z),,,,,,: 

1 
1 

3i., A,,,, +%(fdjIid&h,,,, ;tsymniclric 

3(i.:l,,,,, + %((dL&l,L,,, symmetric 
‘r 

6 A,“(-a,,“. (64) 

The results in (62)-(63) have been obtained for the case of a fixed projection amplitude 

parameter 5. It is interesting to ilsk the same question about the worst imperfection for the 
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case where the amplitude of the imperfection is fixed. i.e. E0 = I [see (59)-(60)]. For this 

case one seeks to minimize g(Z) satisfying the equilibrium conditions (42) or (45) as well 

as the conditions for a limit point (54)-(56) under the constraint /It?, 11 = 1 instead of the 

constraint /I 5,’ 1) = 1. Hence. the extremality condition that has to be satisfied by A:(Z) is : 

(65) 

where $ is a scalar Lagrange multiplier. 

For either the asymmetric or the symmetric case. differentiation of (42) or (45) with 

respect to 8,,. multiplication of II and summation with respect to the index i gives in view 

of (54) : 

Since only load extrema are of interest, (56) is satisfied. From (65) and (66) one 

concludes that at extremality #,, CC fi and consequently from (42) or (45) and (54) the 

following condition has to be satisfied at the minimum A:(Z) : 

(67) 

whcrc 4 = 1 for the asymmetric cast while (b = 2 for the symmetric enc. 

To find the rcquircd worst gcomctric impcrfcction shape. i.e. to find 6,‘. A,!‘, one has 

to solve the system of rrr-t I equations (67) complcmcntcd by the constraint 

Notice however that the polynomial system in (67) has a rather high number of possible 

nontrivial real solutions which increasesexponentially with the number ofintcracting modes 

III. Exhaustive searches to find the required solution arc numerically feasible for relatively 

low numbers, W. ofintcracting modes. 

Once again, of interest is the solution of the worst imperfection shape problem for 

Z = 0. It will be shown that for this case, the problem is once more reduced to the solution 

of (12) or (14) and the required minimum AZ(O) is equal to the minimum possible solution 

22, of (12) for the asymmetric case or to the minimum possible solution 311* of (14) for the 

symmetric enc. 

Indeed. for Z = 0 and for the inner product choice that gives B,,* = -S,, one can 

rewrite the extremality condition (67) as: 

The wanted result I$‘#_, fi,& = 0 follows by establishing that the factor in parenthesis in 
(68) is a positive definite matrix. For this purpose. note that B,, is positive semidefinite by 
(54-55) and that the second term in the parenthesis is a positive multiple of the identity. 

Hence the lowest eigenvalue of the factor in parenthesis is -$JAP which is positive. 

Notice that when Z = 0, the worst imperfection shape problem has the same answer, 

irrespective on whether 5 or E is controlled. For Z # 0, one expects in general different 

solutions to (63) or (67). To find the minimum A:(Z) for Z # 0 and the corresponding 

worst imperfection shape, an incremental Newton-Raphson method based on (63) or (67) 

can be used, starting with the perfect structure solution obtained for Z = 0, and tracking 
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the solution for increasing values of IZI. This procedure is computationally more appealing 

than finding directly all solutions of (63) or (67). However. there may be some value of Z 

beyond which this incremental procedure no longer produces an absolute minimum for 

Ai’. 

5. CONCLUDING REMARKS 

SO far WY have established a general theory for the equilibrium and stability ofarbitrary 

(continuum or discrete) imperfect elastic structures with nearly simultaneous eigenmodes. 

From the stability analysis one can subsequently determine the worst possible shape of the 

ocometric imperfection that will minimize the first local maximum load of the structure. 

?he analysis prcscntcd is asymptotic in nature and the fundamental question pertains to 

the range of validity of the employed asymptotic expansions. It has long been known, 

cspccially in the shells literature [SW for example the review article by Hutchinson and 

Koitcr (lY70)]. that the range of validity of the asymptotic expansions used in many 

applications is rcstrictcd. Such results arc often based on first term asymptotic analyses 

kvhcrc only ;I few modes arc allowed to interact at the time. usually for reasons ofanalytical 

tractability. Had it been possibic for all the nearly simultaneous modes to be taken into 

account. in addition to the inclusion of the higher order terms, one can conjecture that the 

cc~nclusions about the validity of thcsc expansions might improve. The so-called multimode 

mcthotls u~d in the litcraturc arc also an improvement upon the first order asymptotics. if 

all the rclcv:int interacting IIIOC~L’S arc included. Thcsc m&hods can bc combined with the 

results prcscntcd hcrc as an altcrnativc to the inclusion of the higher order terms in the 

:~~yniptotic cxpansioris. 

At ;111y r;ltc, the solution of the worst impcrfcction shape problem proposed hcrc, will 

h;lvc to hc consitlcrctl in conjunction with the solution of the full set of nonlinear equilibrium 

cqu;ltions of the structure in question. The results of this analysis arc in a way comple- 

iucritary to tlic full (iisu;illy numerical) solution of the impcrfcct structure for they provide 

with ~11 intclligcnt sclcction of the impcrfcction shape th:lt will product the maximum load 

drop AL, in the rc;ll structure. This methodology establishes a dctorministic altcrnativc to 

the ht;lti4tic;tl mcthotls proposccl for the cylindrical shell cast by Arbocz (1‘987). A com- 

bin;ltiL)ll 01‘ both methods might also bc useful. It is cvcn conccivablc that the worst 

impcrfcctiun shape could bc used to obtain cstimatcs or bounds to the probability of failure 

for random inipcrfcclions. 

0~ C;III think of applications whcrc the number of interacting modes fn to be con- 

hidcrcd is high. Since the determination of the worst imperfection shape requires the solution 

of ;I nunlincar polynomial system with t>I simultaneous equations, one faces the problem of 

computing :III the roots of such iI system in order to pick up the required answer. Numerical 

:\Igoritllms for such ;L task do exist [based on homotopy methods-see for example Chow 

(‘1 (r(. (1979) li,r the thcorctical foundations of these methods and Morgan (lY87) for the 

:lIgorithmic application]. However, the rcquircd solution time might be exceedingly high 

for high \;~luc\ of It/, since the number of solutions to (65) or (66) grows exponentially with 
1)). I:or thcsc C;IXS. one will have to rely on special propcrtics of these equations in 

order to Llcvisc quicker solution proceclurcs. For certain structures with a high number of 

in[cr~lcling modes, OIIC of course has the option of using an amplitude modulation lypc 

IIIctll(lCi [SCC for ~xamplc Poticr-l:orry (IYY7) and rcfercnccs quoted therein]. for which 

ho\ccvcr ;L worst impcrfcction shape analysis has not been developed thus far. 

REFERENCES 

Arhcw. J. ( iTi7). Poz~-huchl~n~ hchxkr of structures. numerical kohniqucs for more complicated structures. 
In flrr~k/~rrr/ ‘rrrl/ f’~wr-hwklinq (Edikzd by J. .Arbocz. M. Poticr-Ferry. J. Singer and V. Tvergaard), Lcxture 
Notes in Physics. Vol. X8. pp. $3.142. Sprinpcr. Rcrlin. 



Stability and the worst impcrfcztion shape 21YY 

Budiansky. B. (1974). Theory of buckling and postbuckling behavior of elastic structures. In .4&mcc.r in Applied 

Mechanics (Edited by C. H. Yih). pp. l-65. Academic Press. New York. 
Byskov. E. and Hutchinson. J. W. (1977). Mode interaction in axially stiffened cylindrical shells. .t/.q.d Ji 15. 

941-948. 
Chow. S. N.. Mallet-Parret. J. and Yorke. J. A. (1979). A homotopy method for Iocatine all zeroes of a system 

of polynomials. In Functional D@erential Equations and Appmrimvtion q/‘ Fi.red Pkrs (Edited by H. 0. 
Peitgen and H. 0. Walther). Lecture Notes in Mathematics. Vol. 730. pp. 228-237. Springer. Berlin. 

HeaIet. T. 1. (1988). A group-theoretic approach to computational bifurcation problems with symmetry. Cump. 
Merrh. Appl. Mech. Engng 67. 257-295. 

Ho. D. (1974). Buckling load of non-linear systems with multiple eigenvalues. Inr. J. .%/idr Sfru~~urc:~ IO. I3 IS- 
1330. 

Hutchinson. J. W. and Koiter, W. T. (1970). Postbuckling theory. Appl. .Ifcch. RCT. 23, I353- 1366. 
loos. G. and Joseph. D. D. (1980). Elementary Stability and Bifurcation Theory. Springer. Berlin. 
Knops. R. J. and Wilkes. E. W. (1973). Theory of elastic stability. Hmdhook of Plrkx Vol. VIJ. pp. 12531):. 

Springer, Berlin. 
Koiter. W. T. (1945). On the stability of elastic equilibrium. Thesis. Dclft University (in Dutch). Enghsh 

Translation : NASA Techn. Trans. F-IO. 833. 
Koiter. W. T. (1965). The energy criterion for stability for continuous elastic bodies. Pm.. A.m. ,Vcd. Aktrd. 

Wetensch B6U. I78-202. 
Koiter. W. T. (1976). Current trends in the theory of buckling. Bucklinq oj’.Sm~rurcr. Proceedings of the IUTAbl 

Symposium held at Cambridge MA/USA on June 17-21. 1974. pp. 178-201. Sprmger. Berlin. 
Morgan. A. P. (1987). Computing all solutions to polynomial systems using homotopy conttnuation. .+/p/. ,\ftrrh. 

C0nrpur. 24, 101-l 13. 

Potier-Ferry. M. (1979). Perturbed bifurcation theory. J. Dif, Equcrt. 33. II’-146. 

Poticr-Ferry. M. (1987). Foundations of elastic postbuckling theory. In Buckiiy UN/ Pm,-hrrcklirq (Edited by J. 
Arbocz. M. Potier-Ferry. J. Singer and V. Tvergaard). Lecture Notes in Physics. Vol. 288. pp. 83- 142. Springer. 
Berlin. 

Simpson. H. C. and Spector. S. 1. (19x7). On the positivity of the sccontl variation in tinrtc chtcticity. ,,~rc,/r. &rr. 
Met-h. Amd. 98. I -30. 

Thompson. J. M. T. and Ilunt. G. W. (1073). A Gcnrral Theory for Ehtstic St;rbrlity. John W~lcy. New York. 


