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An Experimental Verification of the 
Hemispherical Cup Puckering 
Problem 
In this work is presented an experimental study of the hemispherical cup puckering 
test. This investigation is motivated by some theoretical as well as by some practical 
reasons which are elaborated upon in the introduction. After a brief outline of the 
analytical model and the corresponding numerical solution technique, the presenta­
tion continues with a description of the experimental procedure. A comparison be­
tween the experimental and the theoretical results is given next followed by a critical 
discussion. 

1 Introduction 
An interesting plastic instability phenomenon, which, in 

spite of its practical importance in sheet metal forming ap­
plications, has received little attention thus far, is the so-called 
"puckering" phenomenon. The earliest reference to this 
problem in the literature appears to be in the book by Devons 
(1941), where puckering is defined as the waviness formed in 
that part of the (usually curved) wall of a drawn shape that has 
already passed over the radius of the die (as opposed to 
wrinkling, which is the term used for the formation of cor­
rugations in the flat part of the blank, which has not yet 
passed over the die radius). 

The specific problem to be investigated here is the plastic 
bifurcation of an initially flat circular plate held between a 
blankholder and a die, and axisymmetrically deformed by a 
spherically shaped punch as shown in Fig. 1. Since material 
can flow inwards from the outer flange to the cup's wall, com­
pressive hoop stresses are developed at the contact-free part of 
the shell, which upon attaining a critical level, induce a 
nonaxisymmetric bifurcation. 

The motivation for the present experimental investigation is 
twofold. On the theoretical side the problem possesses the very 
interesting (and only recently investigated, see Triantafyllidis 
(1983), Nguyen and Triantafyllidis (1989) for more details) 
feature of strong deviations from proportional loading in the 
prebifucation solution, thus making a smooth bifurcation 
possible. On the practical side, the puckering of the 
hemispherical cup can serve as a simple but realistic model for 
surface waviness instabilities occuring during complex sheet 
metal forming operations. A consistent and general instability 
criterion for such problems, not requiring the consideration of 
a nonlinear shell theory, which is necessary for the classical 
analysis of this type problems, has been developed in Trian­
tafyllidis and Kwon (1987), and the present set of experiments 
provides a very good test case for the checking of aforemen­
tioned general theory. 

Although the theoretical model for the present experiments 

has been presented in a previous paper by Triantafyllidis 
(1985), for reasons of completeness of the presentation as well 
as in view of some differences with the analysis in Trian­
tafyllidis (1985) (mainly the inclusion of - the experimentally 
inevitable - friction into the model), a brief description of the 
theoretical model is presented in this work. Thus, Section 2 is 
devoted to the description of the prebifurcation solution, the 
bifurcation analysis and the corresponding numerical solu­
tion. In Section 3 the experimental procedures are described, 
while in Section 4 the experimental results are compared with 
the theoretical predictions. The presentation is concluded by a 
critical review of the results discussed in Section 4. 

2 Theoretical Formulation 

A detailed derivation of the model for the onset of a pucker­
ing instability in the hemispherical cup test has already been 
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Fig. 1 Schematic drawing of the punch test, (-
free configuration; ( ) final configuration 

- —) initial stress 
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presented in Triantafyllidis (1985). However, in view of some 
additional complications in the experiments reported here 
(mainly the presence of friction which is ignored in the 
aforementioned reference), as well as for the completeness of 
the presentation, a brief description of the theoretical model is 
included here. 

for a small value of uT; typically the friction coefficient is 
developed at 99 percent for Kr = 0.01H. Hence, the friction 
part of the external virtual work is assumed to be 

(E.V.W.)/ = /»*[Jo
L [rf,if(rfIy1(t1.8n)+rf2^(e/2)/2(t2.8n) 

2.1 Prebifurcation Solution. Consider an initially flat cir­
cular disk of uniform thickness H and radius RL. The plate is 
held between a die block of aperture radius RA, and a 
blankholder of aperature radius RB=RA +RT, where RT is 
the cross sectional radius of the die's throat, as depicted in 
Fig. 1. A hemispherical punch of radius RP(RP<RA) pushes 
the plate from its initial (flat) stress-free configuration into a 
deformed shape as shown in Fig. 1. Moreover, X denotes the 
total punch travel from the initial configuration, and serves as 
the time like parameter in this problem, since it increases 
monotonically during the test. 

For reasons to be subsequently elaborated upon, only the 
axisymmetric membrane stresses of the prebifurcated solution 
are required to determine the onset of the asymmetric pucker­
ing instability. A full Lagrangian description of the weak form 
of the equilibrium equations (i.e. principle of virtual work) for 
the axisymmetric membrane is adopted here with the initial 
stress free configuration taken to be the reference one. If u(r) 
and w(r) are the horizontal and vertical displacements, 
respectively, of a material point initially at a distance r from 
the plate's center, the internal virtual work (per radian) of the 
plate is 

I.V.W.= f L l(r+u)arS(.\r)+\rraeS(\e)]hdr (2.1) 
Jo 

where ar, ae are the radial and circumferential Cauchy 
stresses, h is the current sheet thickness and \ , \e are the 
radial and circumferential stretch ratios given by: 

\ = [(l+du/dr)2 + (dw/dr)2]l/2, \e = l + u/r (2.2) 

The external virtual work term consists of two parts. The 
first part is due to the contact between the sheet and the 
punch, blankholder/die assembly and is taken to be 

(E.V.W.)e= - « [ - | - j * L [(d1)
2H(dl) + (d2)

2H(d2) + 

2(w-w0)
2H{r+u-RB)]rdr\ (2.3) 

where du d2, w are, respectively, the (small) penetration 
distances of the sheet on the hemispherical punch, the curved 
and the flat part of the die. In addition, k denotes the founda­
tion stiffness, H{x) designates the Heaviside function 
(H(x) = 0 if x<0, H(x) = 1 if x>0) , while w0 is the initial 
penetration of the sheet into the die block due to the applied 
blankholder load PR=2TTIC(RL

2-RB
2)W0. Moreover, the 

punch and die throat penetration distances dx and d2 are given 
by: 

d^Rp-Ur+uy + iw-Wo+Rp-X)2]"2, 

d,=RT-[(r+u-RB)2 + (RT-w+w0)
2]U2 (2.4) 

The second part of the external virtual work is due to fric­
tion. A slightly modified version of Coulomb's law that has 
been used in Triantafyllidis and Maker (1986), will be 
adopted. In this law, the friction coefficient depends on the 
total sliding distance uT of the point of the sheet in question 
on the rigid surface it contacts, and is equal to ixf(uT) *, where 
f(uT) is a monotonically increasing function of uT with 
f(0) = 0 and / ( oo) = 1. The function/is chosen to reach a value 
very close to unity shortly after the sliding contact starts, i.e. 

'Note: It is tacitly assumed that no sliding direction reversals occur, a condition 
which is always satisfied in this problem. 

+ 2wH(r+u-RB) (U8u)]rdr\ (2.5) 

where t,, t2 and t are the unit tangent vectors on the 
hemispherical punch surface, the die throat surface and the 
flat surface of the die, respectively. It should be mentioned 
here that the factor of two appearing in front of the third term 
in (2.4) and (2.5) is due to the fact that both the upper and 
lower parts of the blankholder/die assembly are in contact 
with the sheet. Hence, the weak formulation of the membrane 
equilibrium equations is 

(I. V.W.) = (E. V.W.)C + (E. V.W.)y (2.6) 

At this point, the constitutive equation for the solid is in­
troduced. As discussed in Triantafyllidis (1985), due to the 
presence of unloading in the principal branch of the solution, 
the phenomenological corner type model introduced by 
Christofferson and Hutchinson (1979) is employed here. The 
aforementioned model, which is a rate independent plasticity 
model, has a stress rate potential given by 

W=—lj(Mijkl + g(6)CijklfTkl (2.7) 

where 7,y is the Jaumann rate of Kirchhoff stress, MiJkl is the 
linear elastic compliance tensor 

\ + v 
Mw~-

andC, 

[-y- (M,v + My*) ~ Y~ V«) (2-8) 

Ci/W -

ijkl is the total plastic compliance tensor with 

d2<j> 

'74 ( - " — ) \E„ E / E / oV,ydTw 

1 / 1 _ 1 \ 30 

27VE7 " w ^ 
d<t> 

drk, 

72.=2</> = [(71 - T33)2 + (T22 - T 3 3 ) 2 +R ( T „ - r22)
2 

+ 2(1+2R)(T12)
2]/(1+R) (2.9) 

Here Te is the material's equivalent stress, E^ and E, are the 
secant and tangent moduli of the uniaxial stress-strain curve, 
E is the Young's modulus, v the Poisson's ratio, and R the 
material's transverse anisotropy ratio (it is tacitly assumed 
that the sheet is isotropic in its own plane, but it can be 
transversely anisotropic in the thickness direction). Moreover, 
the material's transition function g(0) is assumed to be (see 
Christoffersen and Hutchinson (1979)) 

g(6) = 

"1 forO<0<0„ 

cos2[O.5?r(0-0o)/(0c-0o)] f o r 0 o < 0 < 0 c (2.10) 

0 for0„<0<TT 

where 0 is the angular deviation (in stress-rate space) from pro­
portional loading and is defined by 

COS0 = TyCyu Tkl/[(T ) \ m (2.11) 

Using (2.7), the incremental form of the material's con­
stitutive equation is 

Eu =dW/d?ij=(d2 W/dTijdTkl) Tkl (2.12) 

where the term in parenthesis is the material's compliance ten­
sor, i.e. the inverse of its incremental moduli tensor. 
{Lijkl=(d2W/driJdTkl)-

i) 
The aforedescribed constitutive equation for the material, 

in conjunction with the rate form of the equilibrium equation 
(2.6) will furnish the prebifurcation solution to the problem 
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via a f.e.m. (finite element method) technique, as it will be ex­
plained in the appropriate section. 

One should also mention at this point that the only nonzero 
stresses are the membrane plane stresses in the radial and hoop 
directions, which are calculated by inverting (2.12) after also 
taking into account the plane stress approximation 
( ? 3 3 = 7-33 = 0 ) . 

2.2 Bifurcation Analysis. Following Triantafyllidis 
(1985), the onset of a puckering instability is detected by the 
loss of positive definitness of the bifurcation functional 

F(\; u, v, w)=2TrlF0(\;ui, 0, w^)+Fo(\;0, v0, 0)] + 

T E [^»(^"«. v„> wn)+F„(\;un', v„', w„')] (2.13) 

where u„, v„, w„, u„', v„', wn' are the Fourier series 
amplitudes of the admissible functions u, v, w, namely the two 
tangential and the normal components of the bifurcation 
amplitude, i.e. 

CO 

u(r,8) = X) [u„' (r)cos(nd) +u„(r)s'm(nd)] 
n = 0 

ca 

v(r,ty = "E lVn(r)cos(n6) + vn'(r)sm(nd)] (2.14) 

*(/-.0) = D K ' (r)cos(n6) + wn (r)sin(«0)] 
n = 0 

Adopting for the sake of notational simplicity u*, v*, w* to 
stand for either u„, v„, w„ or u„', v„', w„', the functional F„ 
in (2.13) is given by 

F„(A; «*, v*, w*) = j * L [cn [ ( - ^ - + X,«,w*) + 

h1 / d / 1 dw* \ y 
" w T v x T dr )) 12 

2C12 (—--— +\rKrw*) (-nv* + u*cos<l> + w*sm<l>) 

h2 / d / 1 dw* \ \ / n2
 % cos0 cfw* \ 

+ 12 V dr V\7 ~dr~)) \ r+u W + ~ r dT) 

+ C22 (— «y* + u*cos</> +w*sin</>)2 + 

h1 / n2 cos</> dw* \21 

12 V r + u Xr dr / J 

(2.15) 
„ r / cfy* \ 2 h2 / d / nw* \ \ 21 

2D12 [ ( - J - ) (««* " w*cos«) 

+ h2 ( d ( nw* \\ ( n dw* ncos^ w*\] + 
12 I * V r+u ) ) \ \ dr r+u / J 

r h2 / n dw* ncos<t> A21 
D22\ (nu*-vcos<t>)2 + — — ( — • w*\ \ + 

L 12 \ Xr * r+u I J 

/ 1 rfw* \ 2 / n \ 2 

+ i/(rf2) + 2H r(r+i/-/?B))](r+M)X rrf/-

~^rrzz*-'zzrr'^zzzz ' 

LrrzzLzz68 ^ a u ) / X r ( T + « ) 

z^zzet'Lzzzz ' 

<OA2 

v) 

<r9)/(/- + «)2 (2.16) 

C\2 = " (^rrt9 

t-22 = "(^eeee ~L_ 

Du=h(Lrerl)+(ar~ae)/2)/\2 

Dll = h(Lreri)-(ar + ae)/2)/\r(r+u) 

D21 = h(LrM+(oe-or)/2)/(r+u)2 

where LiJkl in (2.16) are the physical components of the in­
cremental moduli tensor of the material (the inverse of the 
compliance tensor given in (2.12) with indices 1,2,3 corre­
sponding to the r, 6, z directions, respectively). In addition to 
the principal stretch ratios Xr, \9 given by (2.2), the principal 
curvatures Kr and KS, as well as the angle <f> formed between the 
outward normal to the shell's midsurface and its symmetry 
axis are-required, and they can be expressed in terms of the 
prebifurcation horizontal and vertical displacements u(r) and 
w(r) by 

sin<£ = — (dw/dr)/\r, cos</> = (1 + (du/dr))/Xr 

Kr = ((dw/dr) (dPu/dr2) - (1 + (du/dr)) (d2w/dr2))/\j, 

Ke — — (dw/dr) A r (r+u) (2.17) 

with 

Note that F„ is quadratic with respect u*, v*, w*, and is 
completely specified once the total prebifurcation 
displacements u(r), w(r), the current thickness h(r), the 
membrane stresses ar(r), oe(r) and the current incremental 
moduli Ljjkl(r) are given. The determination of the aforemen­
tioned quantities, which depend on the punch advance 
parameter X, follows from the prebifurcation analysis of the 
axisymmetric membrane problem outlined in the previous 
subsection. 

The critical punch height Xc is then given by the minimum, 
over all integers n, of the lowest eigenvalue X (n) of each func­
tional F„. The circumferential wavenumber corresponding to 
the critical punch height Xc is denoted by nc. The essential 
boundary conditions to be imposed on the minimum eigen­
value problem for the functional Fn(\; «*, v*, w*) are the 
apex conditions u* = v* = w* = dw*/dr = 0 at r = 0 for n^O 
and u* = v* = dw*/dr = 0 for n = 0. 

As discussed in Triantafyllidis (1985), the derivation of the 
bifurcation functional for the puckering problem takes into 
account the Kirchhoff-Love hypothesis (i.e., the approximate 
plane stress condition in the shell and the negligible transverse 
shear strain assumption) and the shallowness of the eigen-
mode. The validity of these assumptions, as well as a 
mathematically more elegant (and consistent) derivation of the 
bifurcation functional in (2.13) using a multiple scales asymp­
totic expansion method, is presented in Triantafyllidis and 
Kwon (1987). 

2.3 Numerical Method. The finite element method is 
employed for the evaluation of the prebifurcation solution of 
the structure, as well as for the determination of the critical 
height \(n) corresponding to a given wavenumber n. 

The basis for the solution algorithm for the principal branch 
is the incremental virtual work formulation derived from 
(2.6), namely 

AX[(I.V.W.)"-(E.V.W.)"]= - ( I .V .W.-E .V.W.) (2.18) 

In the strain-displacement equation (2.2) (see also (2.4)) 
only spatial derivatives up to the first order of the total 
displacement components u(r), w(r) are involved. Thus 
piecewise continuous (C°) shape functions are employed here. 
Higher order shape functions cannot be used in this case in 
view of the anticipated shape discontinuities at the points of 
loss of contact between the membrane and the punch or the 
die throat. Consequently, the displacements u(r), w(r) are 
linearly interpolated within each element. 
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Due to the expected rapid variations of the stress field as
well as the loading direction angle () in the neighborhood of the
die throat, the power law type mesh refinement employed in
Triantafyllidis (1985) has been adopted

Irn -RB I =11l1 (RB + (a -1)l1l-ro)/a.MI ";

R B + (2a-l)AI>ro>RB -11l (2.19)

where rn is the new (refined) coordinate and ro the one cor­
responding to a uniform subdivision of the interval
[0, RL +2(a- l)Al]. The mesh refinement exponent is denoted
by a and the refined zone of the plate extends by Al on each
side of the blankholder radius R B • In all the calculations
reported here a=2, Al= 1.7Rr .

An incremental Newton-Raphson algorithm based on (2.18)
is adopted for the principal solution. The material used for the
experiment was transversely isotropic and thus in all the
calculations R = 1. As discussed in Triantafyllidis (1985), an
0(10- 3) stress accuracy requirement dictated a step size
AA = O.lH; In some calculations AA =0.05H is also considered
with no appreciable difference in the results.

To avoid numerical problems associated with the beginning
of the loading process, a slightly deformed stress free shape of
the membrane is considered. More specifically, following
Triantafyllidis (1985), in the stress free state the initial devia­
tion Wi (r) of a material point r from the planar reference con­
figuration is taken to be

(R~- r2 )1/2 - Rp +Ai + Wo

for O<r<Rp sin{3i

(2.20)

where A; is the distance of the apex of the membrane from the
flat configuration and 2{3; is the angle of initial contact be­
tween the punch and the membrane. The relation between Ai
and {3i is found from simple geometrical considerations to be

A; =Rp +R r + [RBsin{3; - (Rp +Rr)]/cos{3; (2.21)

In addition, Wo is the initial uniform vertical displacement of
the plate due to the imposition of the applied blankholder load
PB = 27rk(RL

2 - R B2)WO' For reasons elaborated upon in
Triantafyllidis (1985), the initial contact angle is {3i = 0.035
rad, while the punch stiffness is k = 0.05 E/H in all the calcula­
tions reported here. As far as the mesh employed in the finite
element calculations is concerned, the stretched coordinate ro
(see (2.19» interval [0, R L +2(a -1)Al] is divided into equal
subintervals of constant size Ar. Following Triantafyllidis
(1985), in all the calculations Ar= 0.025RA'

The determination of the critical height }..(n) for a given
wavenumber n, requires the investigation of the positive
definitness of the functional Fn defined in (2.15), a check
which is repeated at every step of the deformation as the
punch advance A increases. A straightforward finite element
discretization of Fn is employed, using linear interpolation for
1I* and v* within each element and a Hermitian interpolation
for w* , the choice being dictated by the functional dependence
of Fn on u* , v* , w* and their spatial derivatives. The resulting
discretized stiffness matrix, say K, is subsequently decom­
posed using a modified Cholesky decomposition K=LDLr ,
with L a lower triangular matrix and D a diagonal matrix.
Positive definitness of K is lost as soon as an entry of D
becomes negative.

R r = 0.00347 m

Rp = 0.01666 m

RA =0.01945 m

R r =0.00694 m

Rp = 0.03333 m
RA = 0.03887 m

Table 1 Tooling dimensions

R r = 0.01041 m

Rp = 0.05000 m

RA = 0.05833 m

Plate 2 Loading device in Its open position

Plate 1 Experimental setup. General view

3 Description of Experiments

The tests reported in this work were performed using a
series 866 Metal Forming Analysis System developed by MTS.
This system, which can be seen in Plate 1, consists essentially
of the axisymmetric punch and blankholder die assembly (also
called ring assembly), depicted in the open position in Plate 2,
and uses closed loop computer controlled servohydraulics.
The inputs to the system are the punch load or velocity and the
blankholder (ring) load.

Three sets of tools 8 1 , 82 , 83 were machined out of D2
hardened tool steel for the experiments. Each set consisted of
a hemispherical punch of radius R p , an upper ring of aperture
radius R A with cross sectional die throat radius R r , and a

R r (1- cos{3d + [R A +Rr (1- sin{3i) -r]tan{3i + Wo

for R p sin{3;<r<RA +Rr (1- sin{3i)

R r - [R}+ (RB _r)2jl/2 + Wo

for R A +Rr (l-sin{3;) <r<RB

Wo for RB<r<RL

w;(r) =
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Stress (MPa) -Strain Curve for Brass

T 2110

r 260

u
e

220

S 200

t 160
r
e HiD

s 1<10

5 120

.,

True Strain

.032" brass

. 040" brass

Fig. 2 Uniaxial stress-strain curves for brass: 0.020, 0.025, 0.032 in.
curves are marked by " 0.040 in. curve is marked by +

matching lower ring. The geometric dimensions for 8 j , 82 and
83 are given in Table 1 (see also Fig. 1). Circular blanks were
precision cut from the same flat sheet of brass to the ap­
propriate diameter and deburred.

Since puckering is facilitated by the absence of friction,
every effort was made to minimize friction between the
workpiece and the tooling. A teflon sheet 0.005 in (0.127 mm)
thick was placed on top and bottom of the test specimen. In an
effort to further reduce friction, mill oil was also applied to
both sides of each teflon sheet.

The proper centering of the specimen in the machine turned
out to be extremely important, for a small eccentricity in the
initial position of the blank leads to unacceptable asymmetric
prebifurcation deformations. The centering of each specimen
was accomplished as follows: A cross-hair was scribed at the
center of each blank. The tooling had a transparent plexiglas
device permitting the location of the machine's axis (the device
consisted of two parallel planes perpendicular to the
machine's axis of symmetry and each having a cross-hair
scribed on its center). Once the three cross-hairs (two of the
centering device and one from the specimen) were aligned, the
specimen was centered and the binder plates were brought
together.

In order to prevent wrinkling on the specimen's flange, a
ring (or binder) load PR had to be applied. The minimum ring
load for flange wrinkling avoidance was determined ex­
perimentally for each case.

Once the blank was clamped and the ring load applied to it,
the punch penetrated the sheet metal beginning the draw.
Prior to the initiation of each test a maximum punch displace­
ment was input into the machine. At the end of the punching
phase, the test specimen was inspected for any apparent
puckering by shining light onto the specimen and also rubbing
it with a soft paper cloth in order to feel any asymmetric sur­
face irregularities. Once a dome height was determined at
which puckering can be found, the exact critical dome height
value for which the onset of puckering occurs was determined
by running different test specimens at progressively less dome
heights (maximum punch height decrease each time
MI= 0.635 mm) and checking every time for signs of asym­
metric deformation in the unsupported area of the specimen
until no such asymmetry could be found.

The material used in the tests was soft tempered brass of
61.5 percent Cu, 35.4 percent Zn and 3.1 percent Pb. The
basic mechanical properties of interest, namely the plastic

252/Vo1.111, JULY 1989

Plate 3 Test specimens corresponding to various stages of deforma·
tlon: prebuckllng state (far right), onset of buckling (far left) and
postbuckllng stale (middle)

anisotropy ratio R and the uniaxial stress-strain curve, were
measured and used into the material model described in Sec­
tion 2.

The sheet's anisotropy ratio was found to be R = 1 and did
not vary significantly with the change of direction (variations
of R at angles of 0, 45, and 90 deg with respect to the rolling
direction were of the order 2 percent).

The material's uniaxial stress-strain curve is shown in Fig. 2.
Of the four different sheets of brass used in the experiments,
the sheets with thicknesses of 0.020 in. (0.508 mm), 0.025 in.
(0.635 mm), 0.032 in. (0.813 mm) had the same uniaxial
response (marked with • in Fig. 2), while the 0.040 in. (1.016
mm) thick sheet had a different uniaxial stress-strain curve
(marked with + in Fig. 2). For computational convenience,
the uniaxial stress-strain curve was idealized as a bilinear
hardening model, as one can also see in Fig. 2.

Finally, a note about the experimental determination of the
critical circumferential wavenumber nc at the onset of pucker­
ing. In view of the aforedescribed experimental determination
of the critical dome height, the experimental determination of
nc is very difficult. Assuming no mode jumping in the
postbifurcated range of the deformation, i.e., that nc is also
the axial wavenumber of the postbifurcated solution, few ex­
periments were carried well into the postbuckling range and
their corresponding nc were determined. As expected, since nc
is basically a factor depending on geometry (see Triantafyllidis
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Table 2 

Draw 
Ratio 

R L 

*A 

R L 

*A 

RL 

* 4 

\ 

= 1.3 

= 1.5 

= 1.7 

Thickness 

\ 
\Tools 

H, 

Si 

P * = 

46,726 
Nt 

P* = 

47,189 
Nt 

= 0.508 mm 

s2 
Pfi = 

56,445 
Nt 

P * = 

46,010 
M 

P« = 

49,570 
M 

H2 = 0.635 

S3 S| S2 

P* = 

45,632 
M 

P* = 

33,168 
M 

P« = 

34,637 
M 

P* = 

57,535 
Nt 

Pfi = 

43,434 
Nt 

P * = 

49,837 
Nt 

mm 

S3 

PR = 

46,980 
Nt 

PR = 

33,373 
Nt 

P * = 

33,809 
Nt 

H3 =0.813 

Sl S2 

PR = 

54,865 
Nt 

mm 

S3 

PR = 

41,316 
Nt 

PR = 

33,818 
Nt 

P * = 

41,227 
Nt 

H4 = 1.016 mm 

Si S2 S3 

PR = 

40,938 
Nt 

PR = 

41,320 
Nt 

P * = 

41,316 
Nt 

N. Thickness 

Draw \ j o o l s 
Ratio X . 

•57 -1"3 

J ^ . 1 . 5 
RA 

RL 

H, 

SI 

V 
8.38mm 

13.69 mm 
(11,12) 

10.92mm 

K = 
18.49mm 

(10) 

RW 

= 0.508 mm 

s2 

V 
8.38mm Ac = 
12.48mm 

(13) 

22.35mm 

15.65mm 

(13) 

34.80mm 

29°59mm 

(14) 

S3 

7.11mm 

K-
11.84mm 

(11) 

13.46mm 

12.51mm 
(12) 

13C95mm 

(13) 

H2 

Si 

NW 

NW 

NW 

= 0.635 mm 

S2 

V 
13.46mm 

13.04mm 
(10.11) 

28.70mm 

A0 = 

21.05mm 

(11.12) 

38.86mm 

32C35mm 

(12,13) 

S3 

7.87mm 

13.49mm 
(10) 

18.03 mm 

15.10mm 
(12) 

29.46mm 

18.31mm 
(14) 

H3= 0.813 mm 

Si 

NW 

NW 

NW 

S2 

23,88mm 

15.50mm 
(9) 

NW 

NW 

S3 

8.89mm 

16.54mm 
(10) 

24.38mm 

K = 
18.70mm 

(12) 

36.58mm 

Ac = 
33.98mm 
(12,13) 

H4 

Sl 

NW 

NW 

NW 

= 1.016 mm 

S2 

NW 

NW 

NW 

S3 

V 15.24mm 

Xc = 

18.83mm 
(9) 

41.91 mm 
Ac = 

40.77mm 
(10,11) 

54.36mm 

Ac = 
51C60mm 
(11,12) 

(1985)), the results were in agreement with the theoretical 
predictions. Some of the deformed specimens are depicted in 
Plate 3. 

4 Results and Discussion 

Blanks from four different thickness sheets were employed 
in the experiments, namely Hl =0.508 mm, H2 = 0.635 mm, 
7/3 = 0.813 mm and HA = 1.016 mm. For a given set of tools S, 
and a given initial sheet thickness Hj three different sets of 
blanks were considered with radii RL = 1.3RA, RL = l.5RA 
and RL = URA with RA the aperture radius of the blank. In 
total 36 sets of tests were conducted in order to determine the 
critical dome height (or punch advance) Xc at the onset of a 
puckering instability in each case. 

The ring loads, necessary to avoid flange wrinkling during 
the experiments are presented in Table 2 in the next page. 

Although all the possible measures to avoid the friction be­
tween the workpiece and the tooling have been taken, some 
friction is still unavoidable. Guided by strain distribution 
measurements for axisymmetrically drawn blanks, a best fit 
between theory and experiment was found for a friction coef­
ficient /i = 0.04. Hence, a friction coefficient /it = 0.04 was 
adopted for all the subsequent calculations. This value is well 
within the range of friction coefficients found by Nine (1978) 
during his draw bead experiments. 

The only material characteristics that cannot be directly 
specified from an experiment are the model's corner 
characteristics. As discussed repeatedly in the plastic bifurca­
tion literature (see for example Christofferson and Hutch­
inson (1979), Hutchinson [1974], or Storen and Rice (1975)), 
in spite of the nonobservability of such a vertex, the deforma­
tion theories of plasticity predict successfully the reduction of 

incremental moduli in load directions approaching propor­
tional loading, and hence they are found useful in modeling 
plastic buckling. 

Various values for the forward loading 60 and unloading 8C 
angles were tried. The values that were finally adopted for all 
the calculations presented in this work are B0 = 0 and 6C = ir/2 
and were chosen on the basis that they gave the best ex­
perimental/theoretical agreement for the S3 tooling case 
H4 = 1.016 mm thickness blanks. 

Table 3 presents the experimental, as well as the theoretical 
results for the critical dome height corresponding to the onset 
of puckering. The top (shaded) number in every box cor­
responds to the experimentally measured critical advance X, 
and the bottom number is the theoretically computed counter­
part, while the integer in parenthesis is the theoretically com­
puted critical wavenumber corresponding to the test case in 
question. The symbol NW in Table 3 stands for a successful 
draw with no puckering observed (for a dome height equal to a 
punch radius RP). 

As seen in Table 3, the biggest discrepancy between the 
theoretical and experimental results occurs for the thinner 
sheets and for the lower drawing ratios. This systematic 
discrepancy (the theory always overestimates the critical 
height) is due to the crude modeling of the uniaxial stress-
strain curve at small strains. As explained in Triantafyllidis 
(1985), the determining factor for the onset of the puckering 
instability is reaching a critical level of hoop stress in the un­
supported part of the shell. Since for low strains, the bilinear 
approximation of the uniaxial curve (see Fig. 2) overestimates 
the strains (for a given stress level), the corresponding 
theoretical critical height is also going to be overestimated. 
The discrepancy is aggravated by the fact that at the beginning 
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of the drawing process, the strains increase less rapidly than at 
the end. 

Since in the present work the bifurcation of the structure 
well into the plastic range is of primary interest, no effort was 
made to finetune the model in the small strain regime. An im­
provement of the present model in this direction is straight­
forward. 

As discussed in detail in Triantafyllidis (1985), the pucker­
ing instability problem under investigation, possesses a rather 
unique feature in the class of plastic bifurcation problems, 
namely the very strong deviations of the principal solution 
from the total loading condition in the contact-free part of the 
sheet. Therefore, the fact that the values of 80 and 6C required 
for the best correlation between theory and experiment for the 
case of the instabilities occuring deep in the plastic range of 
the material's response are 60 = 0, 6C = TT/2 which correspond 
to the flow theory model (i.e. the stiffest possible incremental 
response) is of no surprise. 

Moreover, and in view of the presence of strong deviations 
from proportional loading in the principal solution in that 
part of the structure, where the eigenmode amplitude is max­
imized, a smooth bifurcation in the sense of Triantafyllidis 
(1983), Nguyen and Triantafyllidis (1989) is expected. The fact 
that the bifurcated branch emanates tangently from the prin­
cipal one, makes the accurate experimental detection of the 
onset of bifurcation difficult. It is expected that for bifurca­
tions deep in the plastic range their experimental detection will 
always be at a higher dome height than the one corresponding 
to their onset, thus justifying the fact in Table 3 the theoretical 
predictions in the corresponding cases are slightly lower than 
the experimental results. 

5 Conclusions 

As explained in the introduction, the scope of the present 
experiments is twofold. On the theoretical side, the problem 
possesses the very interesting feature of strong deviations from 
proportional loading in its prebuckling solution. This property 
makes a smooth bifurcation possible and poses difficulties in 
the experimental determination of the onset of buckling. In 
order to avoid taking sides in the still unresolved debate of the 
proper constitutive choice for plastic buckling problems, a 
constitutive relation was chosen for theoretical calculations 
that can model all types of incremental behavior from the 
softest (deformation type) to the stiffest (flow type) theory of 
plasticity. It is not surprising that, due to the stiffening effect 
of the large deviations from proportional loading in the prin­
cipal solution, the best experimental—theoretical fit is 

chieved when the flow theory of plasticity is employed. This 
finding is the opposite of what is observed in the vast majority 
of plastic buckling experiments conducted thus far, and 
understandably so, in view of their corresponding propor­
tional or near proportional loading prebuckling states. 

On the practical side, the present experiment also serves as a 
simple but realistic model for surface waviness instabilities oc­
curing in complex sheet metal forming operations. By employ­
ing an instability criterion which requires only the membrane 
prebifurcation solution of the structure (and thus avoiding the 
complication of a full nonlinear shell theory model that 
classical shell buckling theory would have required) one can 
achieve a very good agreement between the theory and the ex­
periment. Hence the present experiments provide a good check 
for the usefulness and accuracy of a general methodology 
developed in Triantafyllidis and Kwon (1987) for the deter­
mination of the onset of surface waviness instabilities in ar­
bitrarily shaped thin walled structures. 
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