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Abmsaet-In the analysis of the bifurcation of thin orthotropic plates, the nonlinear terms associated with 
the thii-order elastic constants arc included in the stress-strain relation and large strain theory is used for 
the prebifurcation state. It is illustrated in an example that the second-order theory may affect considerably 
the buckling load (and mode). 

1. INTRODUCTION 

The second and higher-order elasticities (third and fourth-order elastic constants) describing the 
material nonliuearities of elastic solids in the constitutive equations (see, e.g. [ 1,2]) play an 
important role in the study of several anharmonic phenomena such as wave propagation in 
initially stressed solids[l, 31, vibrations of crystal plates-used as resonators-under initial 
stress[4,5], shock waves in solids that can sustain large elastic compression[6], etc. 

In the present work the effects of the third-order elastic constants on the buckling of thin 
orthotropic plates are examined on the basis of a stability criterion due to Hi11[7], which was 
subsequently used by numerous investigators in the analysis of the buckliug and post-buckling 
behavior of elastic structures. For details and references the reader is referred to the review 
article by Budiansky[8] regarding the stability of elastic structures respectively and to the 
review article of Sawyers [9] for a di@erent approach concerning fhrite isotropic elasticity. Here 
the noulinearities in the material behavior of the hyperelastic solid are described in the constitutive 
equation by the terms associated with the third-order elastic constants. For the effects of the 

. 
tbdeder elmtic coustants to be important, it is anticipated that the prebifurcation straius will be 
large. Thus one has a choice of frame of reference: in our anatysis the curreut state at the instaut of 
bifurcation is chosen since referring to it several expressions are considerably simplEed. No 
restrictive assumptions regar&g plane strain, material incompressibility or homogeueity of the 
prebifurcation stress field need to be made here (as, e.g. in Wesolowski[ lo] or Levison[ 111). It will 
be noticed that besides the strains, the strain gradients (up to second-order) may have signi6caut 
effect on the critical load. Emally the effects of the thud-order elastic constants on the buckling 
load (and mode) are ilhrstrated in a particular example. 

2. BIFURCATION CRITERION 

(a) General criterion for 3-D solids 
According to Hill’s [7] stability criterion, a sufhcient condition for uuiqueness of the solution 

describing the deformation of a body occupying a volume V in the reference state is obtained 
when 

where all the applied dead loads are considered in proportion to a siugle parameter A. Moreover 
it can be shown that for an elastic material bifurcation takes place for&e first time when 

F=O 
SF=0 and the condition (2) 

is satisfied with the corresponding absolute value of A being minimal. 
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In the above expressions all quantities are referred to a Cartesian frame at an arbitrarily 
chosen reference state; sii denote the components of the (symmetric) second Piola-Kirchhoff 
stress tensor, ‘yu the components of the Lagrangean strain (with respect to the reference 
configuration) and ui denote the components of the displacement vector. Moreover (-) denotes 
the difTerence of some field quantity evaluated at two adjacent equilibrium states and ( * ) 
denotes the derivative with respect to parameter monotonically increasing with time, and is also 
called increment of the quantity to which it refers (for further details see[8]). 

The reference frame may be chosen to coincide with the original stress-free one (as, e.g. 
in[8]) or with the current one at the instant of bifurcation (as in[lO, II]). In the present analysis 
it was considered expedient to choose the latter one, sine, by referring to it, the expressions for 
the increments of strain and displacement gradients (y,i, I(q) in eqn (1) become simpler. 
Therefore the stress-strain relations which are usually expressed in the natural stress-free state 
(see, e.g.[l] have to be mod&l and this is accomplished in the next paragraph. 

(b) Eflective mod& at an arbitrary state of deformation 
The constitutive equation for a hyperelastic material in which elastic constants up to the 

third-order are included is expressed in the ground state by: 

with the symmetries[l], 

Cw * CM, and Ci@m = C_ = Cum (4) 

In the strain-displacement relations 

(5) 

xl denotes the coordinates of a material point in the ground coafiguration. 
At this point the following notation is introduced: The superscript (0) denotes the natural 

stress-free state, superscript (1) some other equilibrium state-which will be taken as 
reference-& (2) the current state. Foliowiug standard definitions and relations for the 
Cauchy and second Piola-Kirehhoff stress-tensors (see, e.g. [ 12]), we obtain: 

where 

F$“= &+!$ 
i 

is the deformation gradient tensor between the reference and the final states for which it is 
considered. 

Furthermore, from the definition of the strain[l2], it easily can be shown that 

y$@) = y O” + Ffj”yfi2’Fj;“. (7) 

By taking increments in eqn (3) and considering (4) we obtain 

while next states (1) and (2) are considered to coincide respectively with the bifurcation state 
and a state on the bifurcation path arbitrarily close to the branch point. 

Hence ~1”’ = 0 but ri{‘” # 0 and by making use of (6) and (7) eqn (8) yields: 



Effects of third-order elastic constants on the buckling of thin plates 989 

with 

where xi is the Cartesian coordinates at state (1). Thus the incremental stress-strain relation 
with the current state at the instant of bifurcation used as reference takes the form: 

where the incremental moduli S’ijk are defined by: 

3. ANALYSISOFTHEBUCKLINGOFATHINORTHOTROPlCPLATE 

Let us consider a thin orthotropic plate and a cartesian frame with the x3 axis normal to the 
middle plane and coinciding with a principal axis of orthotropicity. For in-plane dead loading 
the initial middle-plane will remain plane and since the plate was assumed thin the pre- 
bifurcation states will be states of plaue stress. Therefore, and in view of the orthotropicity of 
the plate, all the usual kinematical assumptions made in the linearized plate theory are valid for 
the adjacent equilibrium state (on the bifurcation path) with respect to the state at the instant of 
bifurcation. These assumptions are: 

af &P&-X3- 
ax1 

i2= L - ati 
02 X3% 

where B&r, x3, 82(x,, x3, d(xr, x3 are the components along xl, x2, x3 respectively of the 
difference of two incremental vector displacement fields of a point of the prebifurcated 
middle-plane. With the additional assumption of the linear?& theory that the adjacent 
equilttium state (2) will also be a state of approximate plane stress, eqn (10) yields: 

where the plane effective incremental moduli Lm are given by[13]: 

Using (11) and (12) the variational form of the bifurcation 
fo11ows: 

equation (2) may be written as 

+ Ge{< &I - XJ&,#(V.~ - x36.4 + 6, . S6,}] dx, dA = 0 (13) 

which after integration yields: 

tHere and subsequently latin indices range from I to 3, grcck from I to 2. 
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where Sac denotes the Kronecker delta. It should be noted that at the derivation of eqn (14) it is 
taken into account that the Cauchy and second Piola-Kirchhoff stress tensors are coincident 
for this choice of reference frame and that in view of the material orthotropicity ai vanishes 
and that the contribution of &iJ to the incremental strain energy is negligible. By h is denoted 
the current thickness of the plate-which in general may be a function of position-and the 
plate is assumed symmetric about its middle-plane. 

Since no coupling terms are present in eqn (14), the out-of-plane buckling is governed by the 
Mere&l equation: 

which for homogeneous prebifurcation stress fields assumes the form: 

(16) 

The corresponding botmday conditions are: 

(18) 

where the integral is taken along the boundary curve c of the middle-plane with normal unit 
vector R,. 

4. EXAMPLE 

To illustrate the effect of the third-order elastic constants on the buckling of orthotropic 
plates, a par&r&r exampk is chosen. A thin simply supported rectangular plate of initial 

~x~x~~aritbaxesoforthotropicity~~toits~wrrscoasideredto 
be.subjeetedtoahomoOsneous stress &Id: uI1 = A, uzr = pA, so that: 

F@‘)= [i ;* i] and y(“)= [,,I,‘) i(+- 1) i(A3;_l-j 

where Ai denote the stretch ratios, namely At = (a/a& A2 = (#by) and AJ = (Mb), 4, 6, c being 
the dimensions of the plate at bifurcation. It is next sought to express the strains in terms of A ; 
terms of order (~i)~ or higher will be neglected. 

It should be noted here that the Voigt notation for the indices[l2] 
22+2, 33-3, 12+6, 13+5, 2344. Inserting eqn (19) into (3) yields: 

where 

D a& 3E Cd - v 

was adopted: i.e. 1 1 + 1, 

(1% 

m 

D Q&V = C& - G&Y + ci#GY + G&al3 + G&,c33, + c3L?c3,G&l+ c,,c,c,, 

c33 (C33T 

C333C3PC3sC3y 

(C33) 
2 (20) 
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so that y2 can be expressed as a function of y,: 

Y2 = -$+ 
[ 

4, 2624 &(Ed2 (r,12 

-x+m-- (E2Y I 

with 

E, = 4, - PD,.~ 4, = her - PJ&- 

Hence eqns (19H21) allow yI (and consequently y2, y3 to be expressed 

(21) 

in terms of A: 

A = D,, - D,2 +) y, + [D,,, - D,2E,, ;y,2E, + D7’$)2 + 2D,2&E, _ D,2;;;E,)2 (,,,)2. 
2 2 2 3 1 (22) 

Thus in the buckling eqn (16) all quantities involved are expressed in terms of material 
constants, ground geometry, the stress ratio parameter and the buckling parameter A. 

The simply-supported boundary conditions are found from (18) to be: 

and 

w=o, W,ll =0 at x,=O,c 

w =o, w,n= 0, at x2= 0,b. 

(23) 

and the buckling modes are A,. sin (nlrx,/a) sin (mrxdb) (see, e.g. [14]). The critical load is 
given by the implicit relation 

A 
R2 a,, + A) 

=-- 
12 

(~)‘+[~L,~+~L~+A(~+P)I(~)~(~)~+(L,+~)(~~ (24) 

wherefrom eqns (12) and (18): 

(25) 

with 

The above equations were applied to a copper plate with dimensions and loading shown in 
Table 1. The third-order elastic constants used were those of Hiki and Granato[ 141 for high 
purity single crystals of Cu which belongs to the cubic system. Materials with high elastic limit 
and measured thirdarder elastic constants (such as sapphire and quartz[6]) belong to higher 
symmetries not covered by the previous analysis. Differences between abiatic, isothermal or 
mixed constants were neglected. 

The plate eqn (24) was solved numerically and the differences in the buckling load (and 
mode) due to the second-order theory are presented in Table 1 for the plate of the previous 
example. These effects are observed to be appreciable (up to 30% with strains at bifurcation of 
the order of l-2% and up to 15% with strains as low as 0.5%). 

For all around compression (p > 0) the critical buckling load increases as expected in the 
second-order theory for negative values of the third-order elastic constants. For tension- 
compression (p <O) it may increase or decrease and also change the buckling mode as it 
appears in Table 1. 
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Table 1. 

IO&i “Ii 
ratio 

P 

1 

-1 

2 

-2 

-5 

-8 

1 

-1 

2 

-2 

-5 

1 

first -0 rdm thr0l-y second der -or theory 

a 
bO 

h a x 

& (cm) CC:) (lO8d;;c& 
n.m 

(108d;;cm2) 
n*m 

1 1 0.05 -0.5430 1.1 -0.6787 1.1 

1 1 0.05 1.9388 1,2 1.5528 1,3 

1 1 0.05 -0.3620 1.1 -0.4622 1,l 

1 1 0.05 0.8309 1.2 0.8183 132 

1 1 0.05 0.2715 191 0.3291 1.2 

1 1 0.05 0.15515 l,l 0.2042 1.2 

1 2 0.05 -0.2908 191 -0.3247 1,l 

1 2 0.05 -0.4847 1.1 -0.4478 1,l 

1 2 0.05 -0.2423 1.1 -0.2873 I,1 

1 2 0.05 -0.7270 1.1 -0.5548 191 

1 2 0.05 0.2633 I,3 0.3093 1,3 

1 1 0.01 -0.2192 1.1 -0.2172 1.1 
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