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An Analysis of Drawbeads in 
Sheet Metal Forming: 
Part I—Problem Formulation 
The development of a one-dimensional finite strain elasto-plastic shell model ap
propriate for use in modelling straight drawbeads is outlined. Numerical results ob
tained using a finite element technique are shown for practical bead designs. The 
sheet deformation is divided into two phases: that when the binder locks the sheet 
metal to form the bead, and that when the punch advances to form the panel, pull
ing the sheet and (possibly) drawing material through the bead. The effects of fric
tion coefficient, bead geometry, and material properties are investigated, resulting 
in strain distribution diagrams and force-displacement curves for several bead 
designs. 

1 Introduction 

A very critical element in the design of dies employed in 
sheet metal forming processes is the design of the drawbeads. 
During the forming operation these beads, which are situated 
in the blankholder/binder surface, provide the restraining 
force which controls the flow of metal into the die. 

Previous studies in this area include the steady state ex
periments conducted by Nine [1], who used simplified bead 
geometry to investigate the various parameters affecting the 
restraining forces in the bead, and the modelling technique 
developed by Wang [2], which to date has been the only 
analytical investigation on the subject. In the latter work, 
however, the equilibrium equation in the direction normal to 
the sheet was ignored for analytical simplicity and only the 
steady state solution was investigated. In addition, a mem
brane approximation was employed for the calculation of the 
frictional forces, which is approximately valid only for the 
case of a circular bead. 

It is the purpose of this work to investigate, both analytical
ly and experimentally, in transient as well as steady state con
ditions, the straight bead problem in the case of realistic bead 
geometries. In Part I of this work, the theoretical formulation 
of the problem will be presented based on a consistent finite 
rotation, finite strain shell theory and a generalized Coulomb 
friction law. The significant increase in the model's complexi
ty as compared to the model proposed by Wang [2] is justified 
by the arbitrariness of the bead's geometry and the consistency 
of the formulation. The experimental verification of the pres
ent model will be the object of the forthcoming Part II of this 
investigation. 

The presentation starts with the variational formulation of 
the governing equations for the deformation of an initially flat 
sheet. A full Lagrangian description of the equations of mo
tion is adopted with the reference state chosen to be the initial-
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ly flat, stress free configuration of the sheet. After a brief 
derivation of an appropriate one dimensional (plane strain) 
large rotation and large strain shell theory valid for a wide 
class of rate independent incrementally linear solids, a penalty 
formulation for the contact part of the problem in the case of 
an arbitrary bead geometry is presented, together with a 
generalized Coulomb friction law, which is consistent with the 
full Lagrangian description of the governing equations 
adopted here. 

The formulation is subsequently applied to the case of beads 
with rectangular cross section. The numerical solution tech
nique is based on a Finite Element Method discretization of 
the governing nonlinear differential equations using an in
cremental Newton-Raphson approach. Both phases of the 
sheet deformation are analyzed: the "locking/clamping" 
phase as the binder forms the bead, and the "pulling" phase, 
which occurs as the main punch advances to form the part, 
causing bending and unbending of the sheet as it is pulled 
through the bead. The problem is solved incrementally, allow
ing the pulling phase to occur at any point during the locking 
process. 

Of interest here are the strain distributions at the end of 
each phase as well as the restraining force provided by the 
drawbeads, i.e. the horizontal force-displacement relation 
during the "pulling" phase of the deformation. The first piece 
of information (strain distribution) is important in the deter
mination of potential tearing failures for a particular bead 
design, while the second one (horizontal force-displacement 
relation) is necessary for the proper consideration of boundary 
conditions in modelling the actual sheet forming operations. 

Of particular interest in the calculations will be the effects 
of variations in bead geometry, material properties, friction 
coefficient and boundary conditions (whether or not the mo
tion of one end of the sheet is constrained by the presence of 
other beads). All the results presented here are based on the 
geometric and material properties of beads used in the ex
perimental investigations to be reported in Part II of this 
work. 

Journal of Engineering Materials and Technology OCTOBER 1986, Vol. 108/321 

Copyright © 1986 by ASME
  

Downloaded From: http://materialstechnology.asmedigitalcollection.asme.org on 10/11/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



2 General Considerations 

Interest in this work focusses on the deformation of an in
itially flat sheet under a straight lockbead. An appropriate 
plane strain, thick shell theory capable of incorporating large 
rotations and large strains and valid for a wide class of rate in
dependent elastic-plastic materials will be employed. A general 
friction law consistent with the full Lagrangian description of 
the governing equilibrium equations adopted here, will also be 
presented. Although similar (but not as general) plane strain 
shell theories [3] and friction laws [4] have already been 
presented in the literature, the proposed model contains 
enough refinements to merit a separate presentation. An axi-
symmetric version of the present theory is given by Trian-
tafyllidis and Samanta [5]. 

2.1 Equilibrium Equations and Strain Measures. Consider 
a planar curve C (identified with the reference line of the shell) 
where material points have position vector t(s) in the 
reference configuration, with s denoting arc length (see Fig. 
1). Under the action of forces coplanar with C and moments 
with vectors perpendicular to its plane, the curve deforms to a 
new curve C(s) with s(s) the arc length on C. The arc length 
parameters s in the undeformed configuration will play the 
role of material coordinate for the points of C. Variable's 
symbols surmounted by a bar ( ) refer to the current con
figuration while omission of the bar denotes the corre
sponding quantity in the reference state. 

Let t and n be the tangent and normal unit vectors to C. If u 
is the displacement of the material point s, one has 

f = r + u = r + ft + wn (2.1) 

where v and w are the components of u in the (t, n) basis. Us
ing the Frenet formulas for the curve C(C)— see for example 
Goetz [6]—namely 

dt/ds = -K.n(di/ds= -m) , dn/ds = Kt(dn/ds~=Rl) (2.2) 

where K(K) is the curvature of C(C), in conjunction with 
(2.1), the axial stretch ratio X is found to be 

\ = ds/ds=[(\ + e)2 +f]1/2; 

e=dv/ds + KW , f=dw/ds—KV 

(2.3) 

At this stage another kinematical quantity is introduced, the 
angle 4> formed between t and t (or equivalently between n and 
n) which from (2.1), (2.2) and (2.3) is found to satisfy 

cos </> = (! +e) A , sin</>=— //A (2.4) 

Decomposing t and n with respect to the t, n basis using 
(2.4) and employing also (2.2), the current curvature k of C 
can be expressed as follows 

a = K/\+lf de/ds- (1 + e)df/ds]/\i (2.5) 

Suppose that N, Q, and M are the current axial, shear and 
moment resultants at any point of C, along t, n, n x t, respec
tively, as shown in Fig. 1. The equilibrium equations for C, 
subjected to distributed load p per unit current length with 
components pt and p„ along the current tangential and normal 
directions, respectively, take the form 

dN/ds + ii\Q+\pt = 0 , dQ/ds-ic\N+\pn=0 

dM/ds~\Q = 0 (2.6) 

The following expression for the external virtual work is 
postulated 

E.V.W.=M5x +Q(5u»n) 

+N(8wt) 
rs2 
\ (p»Su)Xcb + \ (p.Su)Xcfe (2.7) 

where x is the angle of rotation of a cross section initally along 
n. 

Fig. 1 Kinematic and dynamic variables related to the undeformed (C) 
and deformed (C) configuration of the sheet 

Denoting by p*, y*, e* the linear in 5i>, 5w, Sx quantities 
which are work conjugate to M, Q, N, respectively, the inter
nal virtual work is assumed to be 

I.V.W.= (M p* + Qy*+Ne*)ds (2.8) 

From the principle of virtual work (I.V.W. = E.V.W.) and 
after making use of the equilibrium equations (2.6) as well as 
the kinematic ones (2.1)-(2.5) one obtains 

P {M[p*-d(8x)/ds] + Q[y*-M5x-8<l>)] 
J Si 

+ N[e*-5X]}ds = 0 (2.9) 

At this point the additional assumption is introduced that 
the shear resultant Q is a workless (reaction) force and thus 
7* = 0. It then follows from (2.9), from the arbitrariness of 
the values of M, Q, N (and noting from (2.4) and (2.5) that 
d<f>/ds = XK-K) that p* and e* are exact variations of the two 
strain measures p and e given by 

p*=8p , p^iiX-K ; e* = Se , e ^ X - 1 (2.10) 

The attractive feature of this theory is that the work con
jugate quantities to the current bending moment M and cur
rent axial force N are the exact variations 8p and 5e of the 
strain measures p and e. What is more interesting is the fact 
that for a quite broad class of materials the rates p and e of 
these two strain measures appear in a natural way in the con
stitutive equations for M and N. 

2.2 Constitutive Relations for the Stress Measures. Con
sider sheet metal of initial thickness h deforming under plane 
strain conditions and let C be the reference fiber curve of its 
undeformed cross section (see Fig. 1). If R is the position vec
tor of material point A at a distance z from C in the reference 
configuration then 

R(«)=f(s)+2n(s) •h/2<z<h/2 (2.11) 

For the current configuration the cross-sectional normality 
assumption is adopted in agreement with the kinematical 
assumption y* = 0 (or x = 4>), made in the previous subsec
tion. Cross sections normal to C in the undeformed state re
main normal to C in the deformed one while they are allowed 
to expand or shrink. Consequently the current position vector 
R can be expressed as 

R(s,z)=f(s)+z(s,z)n(s) (2.12) 

A Lagrangian formulation of the problem is adopted here 
with converted coordinates 0' = s, 62 = z. From (2.11) and 
(2.12) the nonzero covariant components of the undeformed 
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(deformed) metr ic tensor Gaf) = dR/dd"-dR/dd0 

( G ^ = dR/dea-dR/de'i)+ are found to be 

GU=(\+KZ)2 , (G„ = [X(1 + K2)]2) 

G22 = l . (G22 = (dz/dz)2) (2.13) 

where consistent with our assumption of zero transverse strain 
y* = 0 we have assumed dz/ds = 0. 

The rate of a field quantity is defined to be its derivative 
with respect to some monotonically increasing parameter 
characterizing the deformation history and is denoted by a dot 
superimposed on the symbol of the quantity in question. A 
fairly broad class of materials—which incorporates as special 
cases hyperelastic, hypoelastic as well as elastoplastic con
stitutive ones—is the class of incrementally linear materials. 
The corresponding constitutive equations relating the Kirch-
hoff stress rate ¥' to the rate of deformation tensor £>,-, are of 
the form 

rV=U*>Dkl , (A, = G,/2) (2.14) 

where L'jkl are the contravariant components of the incremen
tal moduli tensor with respect to the current basis. The in
cremental moduli tensor may depend in general on the current 
metric, stress state, material properties and loading direction, 
and is usually taken to have the symmetries Lijkl = LkH' = L'M 

= LW. 
Assuming a state of plane stress (i.e., T33 = 0) at every point 

of the sheet, one deduces from (2.13) and (2.14) 

f11 = [.C/(A(l + /cz))4]JD„; 

"£=-^(1111) ~^(2211)^(1122)/^'(2222) (2 .15 ) 

where Z(,yW) denote the physical components of L. 
Note that the current axial force and bending moment can 

be expressed as thickness integrals of the principal Cauchy 
stress <j(1i) 

[• A/2 (• A/2 

N=\ o(n)dz/dz dz , M-\ 0(U)zdz/dz dz (2.16) 
J —h/1 J —h/2 

Taking rates in (2.16), recalling that 

T'>' = (T'>'[detG,y/detG,y]
1/2 

and making use of (2.13-2.15) one obtains 

N=Cne + Cl2p , M=Cl2i + C22p , 
(z.l /) 

fh/2 
CafS = J ^ (£ + r(11))(l + KZ)z(a+fi-2)/[A(l + Rz)]2dz 

Observe that the strain rate measures appearing in (2.17) are 
exactly the rates of axial and bending strains found in the 
previous subsection. Moreover the symmetry of the incremen
tal stiffness matrix Ca|3 in (2.17) is a consequence of the sym
metry of the incremental moduli tensor L in (2.14). 

For the special case of a hyperelastic material with strain 
energy density Wper unit undeformed length 5 it can be shown 
that the constitutive equations assume the simplier form 
N=dW/de, M=dW/dp. This result was first noted by Ant-
man [3] who also found the strain measures introduced in 
(2.10) the most appropriate for a one dimensional elastic beam 
theory. 

For the general rate independent material case the incremen
tal relation between the stress and strain measures presented in 
(2.17) is the most useful form of the corresponding (shell) one 
dimensional constitutive equations, since it appears naturally 
in the incremental formulation of the governing equations (see 
(4.1)). 

2.3 Appropriate Formulation for Contact and Friction. 
The determination of the surface part of the external virtual 
work term will take place in two parts. First the normal forces 

+ Note: Here and subsequently greek indices range from 1 to 2, while latin in
dices range from 1 to 3. 

due to (frictionless) contact will be specified and subsequently 
the tangential (frictional) forces will be derived. 

Constraining the sheet's middle surface to lie between the 
upper and lower drawbead surfaces is achieved via a penalty 
method formulation as follows: Assuming that the distances 
of a point M with material coordinate s on the sheet's middle 
surface from the bead's top and bottom surfaces are du and 
dL, respectively, the contribution of the normal contact forces 
to the external virtual work is given by 

(E.V.W.)contact= -k/2 SJJ*2 diH(du)ds+ ^2dlH(dL)ds] 

(2.18) 

where du and dL are functions of s, u as well as the geometry 
of the bead, and are signed negative if the material point Mis 
outside the upper or lower bead surface, respectively. In addi
tion H(x) designates the Heaviside function (defined as 
H(x) = 0 for x<0 and H(x) = 1 for A: >0). The above 
assumption for the external virtual work term corresponds to 
a Winkler type foundation for the upper and lower bead sur
faces, where the normal force per unit reference area is linear
ly proportional to the sheet's penetration depth, du or dL, with 
coefficient of proportionality k. For adequately high values of 
the "foundation constant" k the upper and lower bead sur
faces will behave almost rigidly. 

The advantage of this type of formulation, usually called a 
penalty type of formulation in the literature (see for example 
Oden [4] and references quoted therein), apart from its 
realistic physical interpretation—in reality no contact can ever 
be perfectly rigid, there is always a small amount of elastic 
deformation involved—is that it simplifies considerably the 
resulting numerical calculations. Since the method decides 
automatically which part of the sheet is in contact with the 
rigid surfaces, it avoids more complicated iteration schemes 
usually employed in similar analyses of sheet metal forming 
processes (see for example Wang and Budiansky [7]). 

In addition to the aforementioned advantages, the proposed 
formulation for the contact presents some additional benefits 
for the friction modeling. Denoting the distances du or dL of a 
material point M from the top or bottom rigid surfaces by d 
for simplicity and observing that if the material point M is in 
contact with a rigid surface the normal force at the contact 
point is t„ = — k d H(d) n (where n is the outward normal to 
the rigid surface in question) the corresponding contribution 
to the E.V.W. can be written as (see (2.18)). 

(E.V.W.)contact=\S2 {-k[dH(d)5d]u-k[dH(d)5d]L)ds 

(2.19) 

= r 2 [ ( t „ . o u ) H + ( t „ . 5 u ) J & 

and hence since Sd is linear in 5v and 5w by putting 
dd = A 5v + B 5w one can find the outward normal and 
tangential unit vectors to the rigid surface to be given by 

n = ^ i + 5 j , t=±(-Bi+Aj); 

8d = i\'5u=A 5v + B5w (2.20) 

The frictional force t, at material point M is then specified 
as follows: Its magnitude t, depends on the magnitude of the 
normal force t„, as well as on the total distance uT that the 
material point M has traveled on the rigid surface during con
tact. The proposed frictional constitutive law is a modified 
Coulomb law, of the type used by Oden and Pires [4]. Since at 
most one directional reversal is expected during the frictional 
process in the bead problems analyzed here, the constitutive 
equation for the friction assumes the form (see also Fig. 2) 
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f=4>e(uT) ; 0<uT<uf and UT(T)>Q for t0<r<t 

t^-titj; f=[ct>e(u?)-(uf-uT)/e]; uf-e<l>e(u?)<;uT<u? 

f=~[<j>t(u'f-uT-e4>Auf))];uT<,uf~e^(uf) 

where t0 is the "time" at which frictional contact started at ' 
point M, uT is the distance traveled on the surface of the 
punch by the material point in question from the time of initial-
contact, i.e., 

(2.21) 

uT= iiTdt= (t-u)dt* 
J 'o J 'o 

(2.22) 

and uf is the distance at which a reversal in the direction of 
friction occurs, i.e., UT(T) > 0 for r 0 <T<r '" , U J - ( T ) < 0 for 
rm < r, and UT(T'" ) = 0, uT{rm) = uf. In addition 0e (x) is a 
monotonically increasing function of uT with monotonically 
decreasing first derivative taken to satisfy 0<$ e (x ) <1 with 
4>e(0) = 0, {d<j>c/dx)(0) = l/e, dfyjdx > 0, d2<j>e/dx2 < 0, and 
also (j>e(x) —• 1 as x — oo. Moreover e is a small positive 
number and the family of curves </>s is assumed to have the 
property </>e (x) — 1 as e — 0. 

In the above presented frictional law we have considered 
UTOO) > 0- Such a condition is always possible in view of the 
sign arbitrariness in the definition of the tangent vector t to the 
rigid surface given in (2.20). Note also for the contact with 
friction case the distributed forces per unit reference area con
sidered in Section 2 are \p„ = t„, \p, = t,. 

The frictional contribution to the external virtual work can 
then be put in the form 

(Ey.W.)Mction=^k\S2 UdLH(dL)fL+duH(du)fuKt.5u)}dS 

(2.23) 

where/£ = / ( i / f ) sgn[u(#(.y))«t(.y)], 

fu =Auf)sgn[u(tu
Q(s)).t(s)], 

and where u%-(t%(s)), u"T(t%(s)) are the sliding distances on 
the lower and upper rigid surfaces from the onset of contact at 
times t% (s), t% (s), respectively, up to the current time t. 

The weak formulation of the equilibrium equations is given 
by 

I.V.W. = (E.V.W.)contact + (E. V.W.)friction = E.V.W. (2.24) 

Note: u represents the relative velocity between the point M and the punch 
surface. 

s 
O 
o 
< z o 
H 
O 
tr 

- 1 . 0 r 

0 i f 
DISPLACEMENT, u, 

Fig. 2 Frictional coefficient 1 versus displacement with one sliding 
direction reversal at uT = uf 

(see equations (2.8), (2.10), (2.18), and (2.23)). A discretized 
version of the rate form of (2.24) using finite elements con
stitutes the basis for the numerical solution of the bead prob
lem analyzed here. 

3 Formulation of the Boundary Value Problem— 
Localization Criterion 

The bead's geometry is depicted in Fig. 3. Note that for the 
idealized bead geometry (shell idealized by its centerline) the 
actual dimensions are augmented by half a sheet thickness. 
The lower (male) bead has a cross-section of width 2(5, +Rt) 
and a depth of / / , +R{, while the upper (female) bead has a 
cross section of width 2B2 and a depth of H2 +R2 where R{ 

and R2 are the radii of curvature at the corners of the lower 
and upper beads, respectively, and h is the initial sheet 
thickness. In its stress-free configuration the sheet's centerline 
touches the upper and lower bead as shown in Fig. 3, while the 
sheet's total length is 2L. In the applications studied here we 
take 40h < 2L < 60h, which is a reasonable value for the in-
terbead distance in most automotive die configurations. 

The deformation processess takes place in two stages. Dur
ing the first stage the male bead advances to its final position 
(punch advance H = Hl+Rl), simulating the binder locking 
the sheet into place. During the second stage of deformation, 
which occurs during the main forming operation, the right end 
is drawn inwards by an amount A. Boundary conditions at the 
edges of the sheet are therefore determined as follows: During 
the first stage of deformation the sheet does not slide across 
the binder surface, hence the right edge is held fixed 
(w = w=ve '=0 at s = L). During the second stage the right 
edge is displaced inward as material is drawn through the bead 
(y = A, w = w' = 0 at s = L). Two boundary condition cases are 
considered for the left edge of the sheet; the "clamped" case 
(v = w = w'=0 at s-—L) simulating the presence of other 
beads to the left of the present one, and the "free" case 
(H> = W' =0 at 5= —L). 

A finite strain version of the J2 flow theory of plasticity is 
employed in the present calculations. Since the theory has 
already been presented elsewhere in the literature [8] only a 
brief description is given in appendix A1 concerning the deter
mination of the 3-dimensional incremental moduli L appear
ing in Section 2.3. 

Finally a remark of interest about the numerical calculation 
of the localization of deformation that occurs during the 
deformation of the sheet. Failure by localization of deforma-

III 
SB^ 

W///h 

iB 
• B 2 

- B , -

^ 

t 
H 2 

vx 

H, 

* 

Fig. 3 Geometric variables of the flat bead 
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Fig. 4 True stress versus natural strain curves for (a) mild steel and (fa) 
brass 

tion is the only type of failure that is considered in this process 
and its knowledge is of paramount importance for the suc
cessful design of such a bead. From a mathematical stand
point this type of failure occurs when the corresponding in
cremental equations of equilibrium admit a singular point. Us
ing the rate form of (2.6) in conjunction with (2.17) and 
writing all the corresponding equations in an updated 
Lagrangian formulation, the corresponding governing equa
tions admit a singular point when 

CnC-22 — (C12) —0 ; Cap-
(1+KZ)2 -dz 

(3.1) 

for as long as the left-hand side of the above equation is 
positive, no localization instability occurs. The first time (as 
the "time" parameter for this deformation process increases 
monotonically) that the above criterion is met for a given 
point s-s*, i.e., the first time that the incremental 
equilibrium equations for the shell admit a singular point, 
localization failure is considered to have occurred. 

4 Numerical Method 

The finite element method (F.E.M.) is employed in order to 
solve the boundary value problem discussed in the previous 
section, i.e. the deformation of an initially flat sheet of 
thickness h due to the advance by a distance H of the male 
bead and the subsequent pulling by a distance A of one of its 
ends. The basis for the solution algorithm is the incremental 
virtual work formulation derived from (2.24) namely 

[ ( I .V.W.) ' - (E.V.W.) ' ]A/=-( I .V.W.-E.V.W.) (4.1) 

where (') denotes differentiation with respect to the 
monotonically increasing time-like parameter / which is iden
tified with H (the upper bead displacement) during the first 
step of the deformation and with A (the horizontal displace
ment of the right edge) during the second stage of the defor
mation. It can be seen from the strain-displacement equations 
(2.3), (2.5), and (2.10) that up to the second order spatial 
derivatives of the horizontal and vertical displacements v and 
w are involved. Thus C1 shape functions i.e., functions with 
continuous derivatives are employed here. Within each ele
ment v(s) and w(s) are approximated by Hermitian cubics 
and a four point Gauss-Legendre numerical integration 
scheme is used. 

A power law type mesh modification near the ends of the 
sheet is adopted namely 

rN=A(ror+B (4.2) 

where rN is the new (refined) coordinate and r0 the one cor
responding to a uniform subdivision in N+ 1 points of the in-

= 10°b 

Fig. 5(a) Strain distributions over the sheet for bead A, mild steel, 
clamped boundary condition, after punching (solid line) and pulling 
(dashed line) 

,T 
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Fig. 5(b) Strain distributions over the sheet for bead A, brass, clamped 
boundary condition, after punching (solid line) and pulling (dashed line) 

terval [ — L,L\. The mesh refinement exponent is denoted by /3, 
and in all the calculations reported here 1 < /3 < 3. 

An incremental Newton-Raphson algorithm based on (4.1) 
is adopted for the solution of the problem. The step size At re
quired for the convergence of the algorithm depends on the 
presence of friction (i.e., ^ = 0 or /z>0). For the case /t = 0, At 
may be taken as large as 0(h). For the case /z>0 it is found 
that A/ = 0(10^3ft) is necessary. In all subsequent calculations 
the sheet was taken to be transversely isotropic, i.e., R = l. 

The function 0e (x) involved in the modified Coulomb fric
tion law outlined in (2.21) is taken to be 

4>e (x) = 2/v tan"J(x/e) (4.3) 

with the value of e taken to be e = 0.001 in the numerical 
calculations presented here. The friction coefficient y. is taken 
to be ix = 0A or 0.2. 

The "foundation constant" k (see (2.18) for its definition) 
is taken to be k/Eh = 50. For this value of k the penetration 
distance du or dL never exceeds 10"2 h. All the numerical 
calculations presented here are performed using 50 < N < 80 
elements. 

Finally, the onset of localization is detected by checking the 
sign of the determinant in (3.1) at every integration station in 
every element of the shell. The first time during the deforma
tion process that a non-positive value for the aforementioned 
determinant is found signals the onset of a localization in the 
deformation process and the calculation is terminated. It 
should also be mentioned at this point that all the integrals 
through the thickness included in the computations (see equa
tion (2.16), (2.17)) are numerically evaluated using a 21 point 
Simpson rule. 

5 Results and Discussion 

As explained in the introduction, of interest here are the 
strain distributions over the sheet at the end of the "locking" 
and "pulling" phases of deformation, as well as the normal 
and horizontal force-displacement relations. The present 
calculations investigate the effects of bead geometry, material 
properties, friction coefficient, and boundary conditions on 
the aforementioned strain distributions and force-
displacement relations. 

Two different rectangular bead geometries, which were 
employed in the experimental investigations to be reported in 
Part II of this work, are analyzed here. The first, to be subse
quently termed bead A for simplicity, is an almost square bead 
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Fig. 6 Strain distributions over the sheet for bead B, mild steel, 
clamped boundary condition, after punching (solid line) and pulling 
(dashed line) 
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VERTICAL DISPLACEMENT, H/h 

Fig. 7 Nondimensionalized punching force F/Ehw (w = bead width) ver
sus vertical displacement H/h for clamped boundary condition: (a) bead 
A, brass; (b) bead 4, mild steel; (c) bead S, mild steel 

HORIZONTAL DISPLACEMENT, i/h 

Fig. 8 Nondimensionalized horizontal restraining force N/Ehw versus 
horizontal displacement A/h for clamped boundary condition: (a) bead A, 
brass; (b) bead A, mild steel; (c) bead S, mild steel 

of dimensions i?, = R2 = 4.66ft, 5 , = 4.16ft, 5 2 = 8.83ft, 
H{ = 1.56ft, H2 = 5.66ft. The second one, hereafter called 
bead B, is a flatter bead of dimensions Rl = R2 = 4.66ft, 
5, = 13.0ft, B2 = 18.32ft,//, =0,H2 = 5.66ft. In both cases 
the nondimensionalization was based on a sheet thickness 
ft = 0.030". 

The materials employed here are mild steel and brass, whose 
uniaxial true stress—natural strain curves are shown in Fig. 4. 
As explained in Section 3, two different boundary conditions 
at the left edge of the sheet (s = —L) are investigated, one cor
responding to a clamped edge and one to a traction free edge. 
Finally, the friction coefficients employed in the calculations 
are /z = 0.1 and /x = 0.2. 

The mid-surface strain distributions over the sheet for the 
case of bead A with a clamped left edge are shown at the end 
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HORIZONTAL DISPLACEMENT, A/h 

Fig. 9 Nondimensionalized horizontal restraining force N/Ehw versus 
horizontal displacement A/h for free boundary condition: (a) bead A, 
brass, p = 0.1; (b) bead A, mild steel, n = 0.2; (c) bead A, mild steel, /»= 0.1; 
(d) bead S, mild steel, ;i = 0.1 

of the "locking" (solid line) and "pulling" (dashed line) 
phases of deformation in Fig. 5(a) for mild steel and Fig. 5(b) 
for brass. In each case, a friction coefficient of ^ = 0.1 was 
used. The "pulling" phase of deformation was continued un
til a localization of deformation occurred at some point in the 
shell (see discussion of Section 3). As expected due to the 
higher hardening in the brass sheet, its right end was pulled a 
distance Acr = 8.8h before localization occurred, as opposed to 
the mild steel sheet which failed at Acr = 1.lh. Figures 5(a) and 
5(b) also demonstrate the effect of "pulling" on the strain 
distribution over the sheet. In both cases, the redistribution of 
strains never affects the left half of the sheet, whose points 
practically do not move. Even in the case of brass where a 
significant displacement of the right end is possible before 
failure, points in the left two thirds of the sheet remain unaf
fected, a fact due both to the clamping restriction at the left 
end and to the presence of friction. 

Keeping the boundary conditions and friction coefficient 
the same, the above calculations were repeated for the case of 
mild steel using bead B. The corresponding strain distributions 
are depicted in Fig. 6. Due to the lower mid-surface strains at 
the end of the locking phase of deformation, a higher critical 
displacement Acr = 4.5h was required to initiate localization. 
In every case, the point at which localization began was the 
right edge of the rightmost radius in the bead. 

For the above three cases the (nondimensionalized) punch
ing force F/Ehw* versus (nondimensionalized) vertical 
displacement H/h relation is depicted in Fig. 7. As expected, 
flattening the bead's profile leads to a lower punching force 
F/Ehw due to the correspondingly smaller strains, while 
changing materials from steel to brass raises F/Ehw. All the 
calculations reported in Fig. 7 were performed using a friction 

Note: w is the constant (due to plane strain conditions) sheet width. 
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coefficient ^ = 0 to improve computational speed, as friction 
was seen to play a negligible role during "punching" with 
both ends of the sheet clamped. Indeed repeating the com
putations for bead A with mild steel, clamped edges and 
fi = 0.1 showed no appreciable difference in the results during 
the "punching" phase of deformation. Of course during the 
"pulling" phase friction plays a very important role as Figs. 
5(a), 5(b), and 6 show a significant strain increase in the areas 
of high relative motion between the bead and sheet. 

The (nondimensionalized) horizontal force N/Ehw versus 
(nondimensionalized) horizontal displacement A/h relations 
for the three aforementioned cases are shown in Fig. 8. This 
information is of great importance in modelling the actual 
stamping processes in sheet forming, since it gives the exact 
boundary condition resulting from a given bead design. 

The calculations were repeated for the case where the left 
edge of the sheet (s- —L) slides freely. The horizontal force 
N/Ehw versus horizontal displacement A/h diagram is 
presented in Fig. 9 for the four cases: bead A, mild steel, 
ji = 0.1 and /̂  = 0.2; bead A, brass, /x = 0.1; and bead B, mild 
steel, /i = 0.1. Note in all cases a steady state condition of 
deformation is reached after the horizontal displacement A 
becomes large (A = 4h). 

6 Concluding Remarks 

The formulation of the bead problem assumes the sheet to 
behave as a shell (as opposed to membrane), allowing for 
bending as well as stretching stiffness. The additional com
plexity of this model compared to previous membrane models 
seems necessary when considering the sharp corners found in 
typical automotive beads. Bending effects become increasingly 
important when friction is reduced, and when the sheet is pull
ed over large distances through the bead. 

Numerical results given here demonstrate several trends. 
Deep, narrow beads are seen to provide the greatest restrain
ing force during the pulling phase of deformation, but also 
have the greatest risk of sheet failure during the locking phase, 
especially when the binder surface includes more than one 
bead. Wide, shallow beads produce little risk of tearing during 
locking, since strains across the sheet are lower and more 
uniform, and also allow material to pull through more easily 
as the panel is formed. Higher work hardening rate materials 
such as brass allow far higher strains before tearing, hence 
deeper beads may be used. As compared to geometric and 
material changes, the friction coefficient has little effect on the 
restraining force and on the sheet failure at the pulling stage. 
A lower coefficient was seen to produce more even strain 
distribution across the sheet, allowing material to slip over 
sharp corners where it would otherwise have torn. 

= 2</> = 
( g < l l > _ ( y < 3 3 > ) 2 + ( ( r < 2 2 > _ ( T < 3 3 > ) 2 + j ? ( f f < l l > _ ( T < 2 2 > ) 2 + 2 ( l + 2 i ? ) ( 0 - < 1 2 > ) 

1+R 
(A.3) 

The present investigation, in conjunction with the forth
coming experimental verification in Part II of this work, 
serves a dual purpose. Firstly, it provides a realistic and ac
curate model for the study of a complex and important 
technological problem, and secondly it provides the die 
designer with a reliable analytical tool for the design of 

straight beads, a task performed to date on an expedient trial 
and error basis. 
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A P P E N D I X 

Three-dimensional incremental moduli for J2 flow theory 
are 

LW =LW - a Wjmn^ld°m") (L§"kld^/dGP") 
a2/(l/E, - l/E) + d<t>/do"">L™nP<id4>/do-Pi 

(A.l) 

where a = l for plastic loading and a = 0 otherwise. In the 
above equations, Le denote the isotropic elastic moduli, i.e. 

Lf< =(E/(l + v))[fe'V + g"gJk)/2 + (v/(l -2v))gh k l ] 

(A.2) 

with E, v the Youngs modulus and Poisson's ratio, 
respectivley. 

The equivalent stress a for the transversely isotropic 
material with anisotropy ratio R is given by 

For a material with a uniaxial true stress a natural strain e 
curve a = a(e) and a yield stress ay, the tangent and secant 
moduli are given by 

Es = a/e , E, = da/de for a>ay 

ES=E,=E for a < ay (A.4) 
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