
BRIEFNOTES 

microrotation fields (3), (4). The total macroscopic load, 
however, is the same at the end, which may be arbitrarily far 
from the region of interest. The different stress distributions 
at the end in fields (3) and (4) are therefore equivalent in the 
sense of Saint-Venant. In this sense, the case N=0 is 
pathological. For some specific problems, the solution for 
A/=0 is found to coincide with the solution for classical 
elasticity. This case is not equivalent to classical elasticity, 
however; the microstructural degrees of freedom remain. 
Classical elasticity is recovered as a special case of micropolar 
elasticity only if a, /3, 7, and K all vanish. 

A physical example that exhibits some features of the 
situation just considered is as follows. Consider a long rod of 
a composite material made of parallel stiff fibers embedded in 
a compliant matrix. Fiber orientation is random, so 
macroscopic properties are isotropic. The spatial average of 
force per unit area upon fibers and matrix may be regarded as 
the force stress, and the corresponding spatial average of 
couple upon each individual fiber, per unit area, may be 
regarded as the couple stress. At each end of the rod, we may 
macroscopically twist the end by a given angle, and 
microscopically twist the end of each fiber in the opposite 
direction until the net end torque is zero. If the interface 
between fiber and matrix is perfectly lubricated, the effect of 
the end displacements and rotations may be expected to 
propagate an arbitrary distance down the rod. This situation 
is analogous to the continuum case A/=0 considered in the 
foregoing. Significant end effects may also occur in classical 
elasticity of highly anisotropic materials [9]; by contrast the 
preceding example depends on micromechanical degrees of 
freedom rather than anisotropy. 

Micropolar elasticity has been found to be useful in the 
interpretation of recent experiments upon solids with fibrous 
[10] and cellular [11] structures. Nonzero values of N were 
inferred from these experiments. No structures corresponding 
to the preceding physical example, however, were studied. 

To conclude, the special case A/=0 in micropolar elasticity 
is pathological in that specification of the macroscopic end 
load on a rod does not uniquely determine the displacement 
and microrotation fields far from the end. The dependence of 
these fields on remote, localized distributions of self-
equilibrated load calls into question the applicability of Saint-
Venant's principle for such solids. 
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Effect of Debonding on the Stability of 
Fiber-Reinforced Composites 

J. Barber1 and N. Triantafyllidis1 

1 Introduction 

In this work we present some analytical solutions to a 
model problem in order to elucidate the effects of a 
preexisting debonding between fiber and matrix on the 
stability properties of reinforced composites. 

Our analysis is motivated by some recent experimental [1] 
and theoretical investigations [2, 3] on delamination buckling 
of fiber-reinforced and laminated composites subjected to 
compressive loads along the reinforcing direction. Of par
ticular interest is the effect of the debonded length on the 
critical buckling load which is investigated here for two ex
treme cases of the fiber-to-matrix relative stiffness. By 
ignoring fiber interaction effects and using a simple model for 
our problem, we are able to obtain closed-form analytical 
solutions. 

More specifically, we consider a beam on two elastic type 
foundations. The effect of debonding in a certain region is 
modeled by the local exclusion of tensile lateral forces. 
Realistic buckling loads and eigenmodes have been found for 
all the cases considered and all critical loads were of the same 
order of magnitude as that for the fully bonded composite. 
Our results at this stage are preliminary in nature, but they 
indicate the possibility of solution of some more complicated 
but more realistic delamination buckling problems. 

2 Fiber Buckling in a Soft Matrix 

To study the effects of debonding in the fiber buckling of a 
soft matrix composite, the matrix material on each side of the 
fiber is idealized as an elastic foundation of modulus k. Two 
cases will be considered. In the first case the entire fiber is 
assumed to be debonded from the matrix material so that 
tensile stresses at the matrix-fiber interface are nowhere 
allowed. In the second case debonding will be assumed only in 
a finite zone of length 2a. 

2.1 Fully Debonded Fiber (Debonded Zone -oo 
<x< + oo). In the case of full debonding, every point of the 
fiber will be in contact with one of the two foundations (the 
one corresponding to a compressive distrbuted load). Con
sequently, the problem is equivalent to the buckling (under a 
lateral force P) of a continuous beam resting on only one 
elastic foundation of modulus k. The critical load for this case 
is well known (see, for example, Timoshenko and Gere [4]) 
and is 

Pd = {4kEI)'A (2.1) 

where EI is the fiber's bending stiffness. For the fully bonded 
fiber, of course, both the elastic foundations on each side of 
the fiber will be active at buckling, and the total effective 
foundation stiffness will be 2k. Therefore the corresponding 
lateral buckling load Pb should be given by 

Pb = (SKEI)'/2 (2.2) 

For the partially bonded fiber to be analyzed subsequently, 
the corresponding critical load Pp is expected to satisfy 

2.2 Partially Debonded Fiber (Debonded Zone -a 
<x<a). If u{x) is the lateral displacement of the fiber due to 
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0-707 

Fig. 1 Nondimensionalized load P* versus crack length parameter a 
for a partially debonded fiber in a soft matrix 

an axial load 
buckling is 

Pp, the governing equation for the fiber 
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+ ku = 0 in debonded zone \x\ <a 

(2.3) 

+ 2 ku-0 in bonded zone \x\>a 

As mentioned earlier, only solutions in the range Pd <Pp <Pb 

are of interest here, and thus the general solutions to (2.3) can 
be put in the form 

[Cf cos(co(x - a)) + C2~ sin(co(x - a))] 

exp(-A (x-a)):x>a 

u(x) = \ A^ sin(o), (x - a)) + A2 sin(co2(x - «)) 

+ /4,+ sin(co,(x + a))+v42
+sin(co2(;c + a)): \x\ <a 

[C,+ cos(co(x + a)) + C2
+ sin(co(x + a))] 

exp(X(x+ « ) ) : * < - a (2.4) 

where co,, co2, co, X, and P* are given by 

co, =(/>* +(P*2 - Vi)'A)(2k/EI)'A, 

<o2 = (P* -(P*2 - Vi)'A)Vl(2k/EI)Vt 

(2.5) 

o) = ((l+P*)/2yA(2k/EI)y', 

-- ((1 -P*)/2)v'{2k/EI)v' ,P* =Pp/PbJ 

The eight continuity conditions (four at x= +a and four at 
x = - a) for u(x) and its first three derivatives - following 
from the displacement, slope, moment and shear continuity 
requirements for the fiber - provide a linear homogeneous 
system of eight equations for the eight unknowns A + , Af , 
C+, Cf (/=1,2). After considerable manipulations one can 
show that a nontrival solution to the aforementioned system is 
possible if and only if 

F(\^,^l ,co2; tan (.))F(X,u,u,,co2;-cot(.)) = 0 (2.6) 

where F(\,w,oil ,co2;g(.)) is given by 

F = 2X(co2
: - co?)(X2 + co2 + co, oi2g(.<>>i a)g(u>2a)) 

+ a!,£(co,«)(w2(X2+a>2) 

+ co2
2(co2 - 3X2) - (X2 + co2)2 - co?co2) 

+ co2g(co2tf)(co2 co2 + (X2 + co2)2 

-coi(X2 + co2)-cof(co2-3X2)) (2.7) 

It can also be shown that F( . . . ; tan (.)) = 0 corresponds to a 
symmetric eigenmode while F( . . . ; - c o t (.)) = 0 
corresponds to an antisymmetric one with respect to the origin 
x = 0. 

The results giving the lowest value ofP* satisfying (2.6) as a 
function of a = a(k/EI)v' (a properly nondimensionalized 
debonded zone size) are presented in Fig. 1. Note that, for 
fixed material properties, as the zone size a increases from 0 
(fully bonded fiber) to °° (fully debonded fiber), the non
dimensionalized critical load P* decreases montonically from 
1 to 1/V2 = 0.707. 

3 Fiber Buckling in a Stiff Matrix 

In the previous solution, the contact region(s) between the 
fiber and the matrix extend over a full half wave of the 
bifurcation eigenmode. In practice, a much more restricted 
contact area is anticipated in view of the nonlocal pressure-
displacement relation for the elastic matrix. A limiting case of 
some interest is that in which the contact area is sufficiently 
localized for the pressure exerted by the matrix to be con
sidered as a system of point forces. This will be the case if the 
stiffening effect of adjacent fibers is sufficiently weak for 
rigid body displacement of the matrix to dominate the 
localized elastic deformation. The problem can then be 
idealized as an elastic beam constrained between two parallel 
rigid beams on elastic foundations. The magnitude of each 
(normal) point force on the fiber is proportional to the local 
displacement and to the wavelength of the corresponding 
buckling mode say Aa i.e., 

F=Aaku(a) (3.1) 

with u(a) the eigenmode's maximum amplitude. 
It is sufficient to consider the governing (buckling) equation 

for one quarter wavelength, namely 

El-
d2u 

dx1 

with boundary conditions 

+ P(u) = Fx/2 0<x<a 

« = 0 at x = 0, — = 0 at x = a 
du 

~dx 

(3.2) 

(3.3) 
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For no interpenetration between fiber and support, u is ad
ditionally required to satisfy 

d2u 
. -—.r <0 at x = a (3.4) 

dxl 

The solution to (3.2), and (3.3) is thus found to be 

u(x)=Fx/2P-Fasm(rix/a)/2Pri cos 7];{n = a{P/EI)'A) (3.5) 

which, upon taking into consideration (3.1) and (3.4) yields 

P/Pb = [i}{-n-t&nrj)]Vl/2, with (2/?-l)7r<)7</j7r; nt\N 

(3.6) 

One can easily show from (3.6) that the minimum possible 
buckling load P corresponds to an ^-satisfying 

2jj = tan 2?;, 7r/2<r;<7r i.e., T/ = 2 . 2 4 6 7 

and hence the corresponding critical value for the non-
dimensionalized critical load is P* = P/Pb = 1.4008 (almost 
twice the value of the fully debonded fiber in the soft matrix 
P* =0.107). 

4 Conclusions 

In an attempt to investigate the effects of fiber debonding 
on the critical load for delamination-type buckling in fiber-
reinforced composites, we have constructed some simpler 
models for sparingly reinforced composites under plane strain 
conditions. It was found that the buckling load varies between 
1.4008 and 0.707 of that for the fully bonded fiber, with the 
upper limit corresponding to a highly rigid matrix and the 
lower one corresponding to a very soft matrix. These 
preliminary results indicate that considerable critical load 
variations can occur in a fiber-reinforced composite, 
depending on the fiber to matrix relative stiffness, and on the 
size of the debonded zone. 
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Crack Growth Prediction 
Crack in Yielded Material 

of Subsurface 

D. Y. Tzou1 andG. C. Sin2 

1 Introduction 

The problem of wear delamination by the growth of a 
subsurface crack subjected to compressive and shear loading 
was discussed in [1]. The objective of this Note is to show that 
the direction of crack growth can be determined by ap
plication of the strain-energy density criterion even though the 
surroundiong material undergoes plastic deformation. 

In what follows, the subsurface crack problem will be 
resolved by application of the incremental theory of plasticity 
and the strain-energy density criterion. The modified version 
of the PAPST finite element program [2] will be used to 
determine the first increments of crack growth at the left and 
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Intermediate Nodes 

Fig. 1 Crack tip elements and Gaussian points 

^^V\\,\\Wv^J^ 

Fig. 2 Finite element grid pattern and load applied 

Table 1 Mechanical properties of 
crack problem 

Young's Tangent Poisson's 
modulus modulus ratio 
£(MPa) £Y(MPa) v 
1.96 x10s 19.6 0.28 

material in subsurface 

Critical available 
strain-energy density 

(dWIdV)* (MPa) 
1.638 

right tips of the crack. The values of the strain-energy density 
function dW/dV at the nodes and Gaussian points in Fig. 1 
are first obtained. The Lagrangian method of interpolation is 
then applied to find the stationary values of dWIdV. 
Referring to the finite element grid pattern in Figs. 1 and 2, 
1/9 and 4/9 intermediate nodes are introduced at elements 
adjacent to the crack tips ensuring the required l/r singularity 
of the strain-energy density field3. The physical dimensions 
and loads in Fig. 2 correspond to those in [1]. Outlined in 
Table 1 are the material properties with the available critical 
strain-energy density {dW/dV)* defined as 

/dW\* _/dW\ _(dW\ 
(1) 

in which (dW/dV)p pertains to that portion of the energy 
density dissipated by plastic deformation being no longer 
available during the growth of macrocrack. The variations of 
dWIdV as a function of 6 are calculated for a fixed radius of r 
- 0.25 ixm centered at the right and left tips of the crack. 
Displayed graphically in Fig. 3 are the results. Note that the 
dW/dV curves indeed possess minima near d = 0 deg. They 
correspond to crack initiation angles of approximately 6 deg 
at the right tip and 0 deg at the left tip. According to the 
strain-energy density criterion [3], which remains valid when 
yielding occurs, the subsurface crack extends almost parallel 
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