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fo i l Growth a i l Local Necking in Biaxially 
Stretclel Sleets 
The role of void growth in triggering local necking in biaxially stretched sheets is in
vestigated. A recently proposed constitutive equation for porous plastic 'materials is 
employed in conjunction with the model of localized necking introduced by Marciniak 
and Kuczynski. An increased initial volume concentration of voids within the incipient 
neck plays the role of the imperfection. The predictions of this analysis are compared 
with corresponding predictions based on classical plasticity theory with various types 
of initial inhomogeneities. It is found that the porous plastic material model predicts 
forming limit diagrams qualitatively in accord with experimental results. However, 
the results also show that any microstructural inhomogeneity that gives rise to a con
tinually decreasing rate of hardening in the neck would be expected to predict qualita
tively similar forming limit diagrams. It is also found that the hypothesis of an equiv
alent thickness imperfection is not necessarily appropriate for high hardening materials. 

1 Introduction 
When an initially uniform sheet subject to biaxial tension is 

analyzed by means of the classical theory of a rigid plastic solid, 
local necking is not predicted to occur, [l].1 However, practical 
experience [2-4] and experimental tests [5-8] clearly show that 
sheets subject to biaxial tension do fail by a process of localized 
necking. Marciniak and Kuczynski [9] demonstrated that the 
occurrence of localized necking could be accommodated within 
the framework of classical plasticity theory (smooth yield surface, 
normality) by postulating the presence of an initial inhomogenei
ty in the sheet. This inhomogeneity was taken to be in the form 
of a localized thickness reduction and to lie perpendicular to the 
major principal strain direction. In this theory local necking is 
instigated by a drift of the strain state in the neck toward plane 
strain while the remainder of the sheet undergoes proportional 
loading. 

Azrin and Backofen [5] carried out experiments aimed at test
ing this Marciniak-Kuczynski, (M-K), model of localized neck
ing. The experiments did show the drift of the strain state in the 
neck toward plane strain, but the magnitude of the assumed 
initial thickness reductions required to fit the theoretical pre
dictions to the experimental data were much larger than those 
acti ally measured in the test specimens. Furthermore, for most 
of the materials tested, the dependence of the limit strain, the 
imposed strain at the onset of localized necking, on the imposed 
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strain ratio was qualitatively different from that predicted by 
the M-K model. 

As was stated by Marciniak and Kuczynski [9] and em
phasized by Sowerby and Duncan [10], the thickness imperfec
tion was intended to be regarded as a representative measure of 
the inhomogeneity of the material rather than as a literal thick
ness reduction. In order to account for the experimental results, 
Azrin and Backofen [5] suggested that this measure of the initial 
inhomogeneity would also need to depend on the imposed strain 
ratio. A number of more recent theoretical studies employing 
the basic M-K model have been carried out, e.g. [11-13], but 
only in [13] was an actual difference in material properties con
sidered and in that study attention was confined to the case of 
equal biaxial tension. 

A different line of attack was initiated by Storen and Rice 
[14] who showed that a simple model of a material with a vertex 
on its yield surface, namely a finite strain version of the simplest 
deformation theory of plasticity, does predict a bifurcation cor
responding to the onset of local necking. In the analysis of 
Storen and Rice [14] the local neck is found to lie perpendicular 
to the major principal strain direction when the sheet is subject 
to biaxial tension, as is observed experimentally. The limit 
strains given by this analysis for biaxial tension are qualitatively 
more in accord with the observed dependence on imposed strain 
ratio than those given by the M-K analysis. 

In this paper, we explicitly consider the effects of variations 
in material properties in conjunction with the basic M-K model 
of localized necking. The aim of this analysis is to determine 
whether or not an actual difference in material properties can 
account for the qualitative dependence of the limit strain on the 
imposed strain ratio. Particular attention is focused on the 
role played by void growth in triggering local necking. A con
stitutive relation proposed by Gurson [15, 16] for porous plastic 
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materials is employed. Recently, this constitutive model has 
been employed by Yamamoto [17] in a study of shear band forma
tion in porous plastic materials, using a three dimensional gen
eralization of the M-K analysis due to Rice [18]. As in [17], an 
increased initial void concentration inside the incipient neck 
plays the role of the initial inhomogeneity. Although the con
stitutive equation employed here is not a precise model for ma
terials with a random initial void concentration, it is analytically 
convenient and permits a preliminary evaluation of the effect of 
void growth on localized necking. Additionally, we consider the 
effects of inhomogeneities in the form of differences of material 
properties (strain hardening exponent and yield stress) within 
the context of the classical plasticity theory and compare these 
predictions for the onset of localized necking with those of the 
porous material model. 

2 Local Necking Analysis 
As in the original analysis of Marciniak and Kuczynski [9], 

we consider an inhomogeneous band, region B in Fig. 1, in an 
otherwise homogeneous sheet. It is assumed that outside the 
band, region A in Fig. 1, homogeneous and proportional straining 
is maintained. Plane stress conditions are assumed to prevail 
both inside and outside the band. 

Compatibility across the band requires, 

62-° = «2" (1) 

where e% is the logarithmic strain parallel to the band. Here, and 
subsequently, the superscripts ( )A and ( )B refer to quantities 
outside and inside the band, respectively. 

Equilibrium across the band is expressed by, 

aiBtB = criAtA (2) 

Here, d is the principal value of the Cauchy or true stress normal 
to the band and t denotes the current thickness. 

The sheet material is characterized bj' an elastic-plastic con
stitutive law relating increments of Cauchy stress to logarithmic 
strain of the form, 

O'c = Lafiifi (3) 

where Lae are the plane stress moduli and here posess the sym

metry Lap = Lpa. In this paper the summation convention is 
employed with Greek indices ranging from 1 to 2 and Latin 
indices from 1 to 3. The subscript 1 denotes principal values 
normal to the band, the subscript 2 denotes principal values 
parallel to the band, and the subscript 3 denotes principal values 
normal to the plane of the sheet. 

The principal difference between the analysis given here and 
the original M-K analysis [9] is that by considering elastic-
plastic materials the stress increments can be directly related to 
the strain increments by (3). For a rigid-plastic material (3) 
does not hold and a somewhat different formulation is required. 

Taking increments in (2) and employing (3) yields, 

tBlLiaBia
B + aiBiB/tB] = tA[Ua

Aia
A + <nAiA/tA} (4) 

The through-the-thickness strain increment, e3, can be related 
to the in-plane strain increments in the form, 

is = t/t = yaia (5) 

For an incompressible material y\ = yi = — 1. However, due 
to void growth the materials considered here can exhibit plastic 
dilation. 

Employing (5) and (1) in (4) gives, 

{LnB + < n f l 7 i s ) ^ J = f - ) (LnA + cnAyiA) 

tA 

— ) {LnA + aiAyiA)p (LU
B + onBy2B)p (6) 

where p, the imposed strain ratio, is defined by, 

de2
A 

de^ 
dA 

(7) 

since proportional straining is assumed to occur outside the band. 
From (6) it follows that, 

deiB 

> CO 

d<tiA 

when, 
LnB + fflByiB = 0 (8) 

Thus, local necking takes place when (8) is satisfied. 

Fig. 3, Schematic drawing of a sheet subject to biaxial tension. 
Region B is the local neck. 
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3 A Constitutive Relation for Porous Elastic-
Plastic Materials 

The constitutive relation employed in this study is one pro
posed by Gurson [15, 16]. In order to simplify the treatment of 
large strain effects, the constitutive equation will be formulated 
for the special case of fixed principal directions, which is all that 
is needed in this analysis. Based on an analysis of a single 
spherical void in a spherical cell, Gurson [15, 16] proposed the 
following approximate form for the yield surface of a randomly 
voided material 

0 = 
(T 

--- -f 2/ cosh 
•* m 

ffl + 02 + <T3 •P - 1 = 0 (9) 

Here, / is the current volume fraction of voids, Ym is the flow 
stress of the matrix material, at are the principal values of the 
Cauchy stress acting on an element of the aggregate and cr,2 is 
given by 

CTj2 + C22 + C32 — O W o-jo-a cr20"3 (10) 

When / = 0, (9) reduces to the von Mises yield surface. 
The increment of plastic work is given by [15], 

<r>if - (1 - f)Ymim
p (11) 

Here (1 — / ) is the volume fraction of matrix material and 
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em
p is the increment of equivalent plastic strain in the matrix 

and is given in terms of the increment of flow stress in the matrix 
Ymby 

(L _ IV 
\E, E/ 

(12) 

where E is the Young's modulus of the matrix material and Et 

is the tangent modulus of the matrix material, which is the slope 
of the uniaxial true stress-natural strain curve. 

Thus, (11) and (12) give 

Y = Eft <rtf<f 

(E - Et)Ym (1 - / ) 
(13) 

Here, it will be assumed that the uniaxial stress-strain curve 
of the matrix material is characterized by a piecewise power law 
of the form 

E 
eu = 

<7„ > <TV 

(14) 

where e„ and au are, respectively, the logarithmic strain and true 
stress in a uniaxial tension test of the matrix material. 

Thus, 

Et _ 5. /i?Y~n 

n \ (TyJ 
(15) 

As shown in [15, 16], the rate of change of void volume frac
tion, / , and,the plastic dilation are related by 

/ = (1 ~ /)(«ip + £2P + i,p) (16) 

As Berg [19] and Gurson [15, 16] have noted, drawing on the 
argument employed by Bishop and Hill [20], plastic normality 
for the matrix material implies plastic normality for the matrix-
void aggregate. 

Thus, 

iip = A 
d 0 

(17) 

During plastic loading 0 = 0, since the current loading point 
must remain on the yield surface. Thus, the total rate of change 
of 0 must be zero during plastic loading. Employing (17) in con
junction with this consistancy condition yields [15], 

h = -

(18) 

30 
dYm 

Eft 
E - E, 

+ (1 

A = 

(1 -

- / ) 

1 30 . 
h OCTi 

Ui d<j> 

- f)Ym 6V; 

d<j>/d4> 
df Ydo^ ' 

30_ 

d<r2 

3 0 

3cr3 
(19) 

Assuming that the strain increment can be written as the sum 
of the elastic strain increment and the plastic strain increment, 
the incremental stress-strain relation is given by 

in = Eaiij - e / ) (20) 

where 2?,y is the matrix of elastic moduli given in terms of Young's 
modulus, E, and Poisson's ratio, v, by, 

E 

+ 
v~E 

Eu = 
1 + v (1 + v){\ - 2v) i = j 

(21) 
vE 

. (1 + .0(1 - 2v) 
i ?* j 

Employing (17) and (18) in (20) yields the stress increment-
strain increment relation for plastic loading, 

where 

30 30 

(22) 

C„- = B„ - *- Eik | * Eti | * q ~h + & BV | * «,, 
0<Tk 3(71 r)rr.. flrr. ^"al dtJi d(Tj 

The plastic loading condition is, 

50 • 
za< > ° a at (24) 

In this analysis, it is expected that the plastic loading condition 
(24) will be satisfied both inside and outside the neck, one;1 

initial yielding has occurred, up to the onset of localized necking. 
In the numerical calculations this was checked and, as expected. 
(24) was always satisfied once initial yielding occurred. 

To obtain the plane stress moduli, the three dimensional 
moduli were evaluated with as set zero after all necessary deriva
tives of 0 were evaluated. Then, from <r3 = 0, the relation (5) 
between the in-plane and through the thickness strains is ob
tained, namely 

7a = - CzJC3i (25) 

and the plane stress moduli Lap in (3) are given by, 

La = Ca, - ^ S - (26) 

4 Results and Discussion 

A numerical solution to (6) was obtained by a straightforward 
incremental procedure. When (8) was satisfied the calculation 
was terminated and the values of eiA and etA at which this oc
curred are denoted by ei* and «2*, respectively, and referred to 
as the limit strains. In all the examples considered here the pa
rameter values vA — vB = 0.3 and <ry

A/EA = 0.002 were em
ployed. Limit strains were calculated for p = 0.1, 0.2, 0.4, 0.6, 
0.8, 1.0 and a smooth curve was drawn through these points. To 
facilitate accurate extrapolation to p = 0, additional limb 
strains were obtained for p = 0.02 and p = 0.05, in certain 
cases. During the computations the increment size was adjusted 
so that equilibrium (2) and the yield condition (9), both inside 
and outside the neck, were satisfied to within a tolerance of 3 
X 10"3. In many of the computations, (2) and (9) were actually 
satisfied to within a much smaller tolerance. To start a com
putation, the initial conditions inside and outside the neck were 
given. Namely, the values of initial thickness ratio (tA/t")o, 
the strain hardening exponents nA and nB, the yield strain in the 
neck, ay

B/EB, and the initial void concentrations foA and fa" 
were specified. 

Figs. 2 and 3 display forming limit curves, tha t is curves of the 
dependence of the limit strains on the imposed strain ratio, p, for 
the case where there is only an initial difference in initial voic 
concentration between the material inside the neck and that 
outside, i.e., 

(tA/tB)o = 1, (TyB/EB = <T»A/EA, nA = nB = (27) 

The strain hardening exponents in Figs. 2 and 3 were chosen to 
cover the range of strain hardening exponents exhibited by the 
materials employed in the experiments of [5, 6]. The aluminum 
tested in [6] had n ~ 25 (the strain hardening exponent employed 
here is the reciprocal of the one used in [5, 6]), while the 301 
stainless steel and the 70/30 brass used in [5] had a strain harden
ing exponent in the range of 1.5. A strain hardening exponent 
of 2.5 is representative of the value for copper and n ca 4 is a 
representative value for A-K steel. With the exception of the 
A-K steel, none of these materials seemed to exhibit a pure power 
law uniaxial stress strain curve so tha t the above identification 
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p = I.O 

' n= 1.5 

p-O.Z /> = 0.4 0.6 /3 = 0.8 

0 0.1 0.2 0.3 0.4 0.5 

LIMIT STRAIN PARALLEL TO NECK, 

0.6 

Fig. 2 Predicted forming l imit diagrams for various strain hardening 
exponents, nA = nB = n, with a difference between the initial void 
concentration inside the neck and that outside the neck, Afa, of 0.01 

0 0.1 0.2 0.3 0.4 0.5 

LIMIT STRAIN PARALLEL TO NECK, 

0.6 

Fig. 3 Predicted forming l imit diagrams for various strain hardening 
exponents, nA = nB = n, with a difference between the initial void 
concentration inside the neck and that outside the neck, Af„, of 0.03 

of strain hardening exponents with real materials is only made 
for reference purposes. None of these materials is highly anisot
ropic (/-values range from 0.76 to 1.46) so that it is unlikely 
that any significant discrepancy between the experimental results 
and predictions based on a theory assuming isotropic material 
behavior can be attributed to anisotropy. 

In Fig. 2, A/0 = 0.01, while in Fig. 3 A/0 = 0.03, where 

A/o = /oB - /oA (28) 

The computations displayed in Figs. 2 and 3 were carried 
out with f„A = 0. Some were repeated with f«A = 0.01 and these 
results did not differ significantly from those displayed in the 
figures. 

The most significant feature of the forming limit curves ex
hibited in Figs. 2 and 3 is that while for lightly or moderately 
hardening materials the limit strain, ei*, increases monotonically 
with imposed strain ratio, p, for a very high hardening material, 
n = 1.5, ei* can initially decrease with p. For n = 1.5, with 
A/o = 0.01, the limit strain ei* reaches a minimum at about 
p = 0.3 and then increases again as p approaches unity, while 
with A/o = 0.03, ei* is nearly constant for p > 0.4. For a some
what lighter hardening material, n = 2.5, «i* is nearly constant 
in the range 0 < p < 0.4 with A/„ = 0.03, whereas when A/0 

= 0.01 this range is narrowed to 0 < p < 0.2. 

This prediction of a relatively flat forming limit curve for high 
hardening materials with dei*/dp < 0 at p = 0 is qualitatively 
in accord with the experimental observations in [5, 6] for stretched 
sheets. In the experiments, lightly hardening materials, with the 
exception of the results for Zircaloy reported in [5], tend to exhibit 
a rising forming limit curve. Zircaloy is a relatively lightly 
hardening material, n ~ 9, for which ei* is virtually independent 
of p. However, Zircaloy was also the only highly anisotropic 
material tested (an r-value of 4.54). 

Quantitatively, the predicted forming limit curve are very 
sensitive to the assumed value of A/„. The values taken here, 
A/o = 0.01 and A/» = 0.03 give limit strains in the observed 
range but are probably unrealistically high for the materials of 
interest. This may be due to the fact that the constitutive equa
tion employed [15, 16] uses a very simplified model of a voided 
material. The flow rule is derived by means of an analysis em
ploying a perfectly plastic matrix. Workhardening is included 
•n an approximate fashion. While the manner in which work-
hardening is included [15] is probably a reasonable approximation 

for lightly hardening materials, the degree to which the resulting 
flow rule models a high hardening material is certainly question
able. Furthermore, most voids present in the materials of interest 
in forming applications are probably nucleated during the defor
mation history, for example by inclusion cracking and/or de-
bonding, rather than being initially present as assumed here. 
Nevertheless, even with due regard taken of the limitations of 
the constitutive model, the present results do clearly reveal the 
possibility that void growth may be responsible for the observed 
shapes of forming limit diagrams. 

In Figs. 4 and 5, the forming limit curves resulting from 
various types of inhomogeneities are compared. The curves 
marked {(Ty

B/av
A) = 0.99, correspond to a one percent yield 

stress reduction in region B, with all other initial values being 
identical in regions A and B. Similarly, the curves marked 
(t"/tA)a = 0.99, correspond to a one percent initial thickness re
duction in region B with all other initial values being identical in 
regions A and B and so on. With the exception of the curves 
marked A/0 = 0.01, which, for comparison purposes are repeated 
form Fig. 2, the initial void concentrations in regions A and B 
was taken to be identically zero. With an initial void concentra
tion of zero the constitutive equation described in Section 3 
reduces to the Prandtl-Reuss equations and, therefore, the void 
concentration remains zero (excluding roundoff error) through
out the deformation history. 

In Fig. 4, with nA = 1.5, it is seen that the inhomogeneity cor
responding to (nB/nA) = 1.01, gives qualitatively the same be
havior as the model incorporating void growth. This is not 
entirely unexpected since the principle effect of void growth is to 
increasingly decrease the stiffness of the void matrix aggregate. 
On the other hand, the forming limit curves for (ay s /0y 1 ) = 0.99 
and (tB/lA)o = 0.99 monotonically increase with p. 

In Fig. 5, with nA = 4, all the forming limit curves have the 
same general shape, although the curve corresponding to A/0 

= 0.01 is somewhat flatter. 
These results have some bearing on the idea of an "equivalent 

thickness imperfection." In previous calculations of forming 
limit diagrams within the M-K [9] framework a thickness im
perfection was employed as the inhomogeneity and it was 
hypothesized that this was representative of microstructural in
homogeneities. The present results show that this hypothesis is 
not necessarily appropriate for high hardening materials. How
ever, in both Fig. 4 and Fig. 5 the curves with (nB/nA) = 1.01 
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* - 1.0 r 

p-0.2 p*0A p=0.6 p = 0.8 ,0 = 1.0 
0.6 

,0 = 0.2 p = 0.4 p = 0.6 p = 0.8 p-\.0 

^0.99 

0.2 

LIMIT STRAIN PARALLEL TO NECK, e^ 

Fig. 4 Comparison of the predicted forming limit diagrams resulting 
from various types of initial inhomogeneities with strain hardening 
exponent nA = 1.5 

are qualitatively similar to those with A/0 = 0.01. Thus, any 
microstructural inhomogeneity that has the effect of con
tinually decreasing the effective strain hardening exponent would 
be expected to give a qualitatively similar forming limit diagram. 
Although void growth is the most likely mechanism, it may not 
be the only possible one. In [5], Azrin and Backofen found no 
measureable effect of the inclusion content of copper on the form
ing limit diagram and, as mentioned previously, the most likely 
origin of voids is by inclusion cracking and/or debonding. How
ever, voids could initially be present or nucleate by other means. 
Of course, it is also possible that void growth is not the mech
anism responsible for triggering local necking in copper. 

One notable feature of the computed deformation histories is 
that most of the void growth occurs just prior to the onset of 
local necking. As can be seen from (16), fB must approach unity 
when the limit strain is reached. However, with nA = nB = 1.5, 
foA = 0, f/! = 0.01, the volume fraction of voids in the neck, fB, 
at an imposed strain eiA = 0.51 varies from about 0.02 for p 
near zero to 0.05 for p = 1. A similar variation of the volume 
fraction of voids in the neck, f, with imposed strain ratio, p, 
occurs with nA = nB = 4, f0

A = 0, f„B = 0.01, at strains, €iA, 
slightly less than the limit strain. 

5 Conclusions 
The results of the present analysis indicate that the weakening 

effect of void growth could account for the observed shapes of 
forming limit diagrams. Since other physical mechanisms which 
result in such a weakening effect would be expected to predict 
qualitatively similar forming limit diagrams, no definite iden
tification of void growth as the underlying physical mechanism 
can be made. In principle, this question could be resolved by 
experiment. 

A more quantitative assessment of the influence of void growth 
on local necking might require a more realistic model of void 
growth in a high hardening matrix material. Furthermore, the 
effects of void nucleation need to be investigated. Although the 
limitations inherent in the constitutive equation employed in this 
investigation are recognized, the results obtained using it are 
regarded as being encouraging regarding the utilization of con
stitutive equations incorporating microstructural features in the 
analyses of sheet metal forming problems. 

The bifurcation analysis of Storen and Rice [14], based on a 
simple model of a material with a vertex on its yield surface, also 
predicts forming limit diagrams qualitatively in accord with ex
periment, although differing somewhat in detail from the ones 
obtained here. Both vertex effects and void growth or other 

r =0.99 

0 O.I 0.2 0.3 0.4 0.5 

LIMIT STRAIN PARALLEL TO NECK, 

0.6 

Fig. 5 Comparison of the predicted forming limit diagrams resulting 
from various types of initial inhomogeneities with strain hardening 
exponent nA = 4 

microstructural inhomogeneities may contribute to determining 
the observed shape of forming limit diagrams and the relative 
importance of these effects could vary from material to material. 
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