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STABILITY AT DIFFERENT SCALES - A 

TOPICS COVERED IN THIS LECTURE 

•  Numerical (FEM) techniques used in stability problems: 

Use of FEM techniques to solve nonlinear problems in solid mechanics and to 
detect critical load and corresponding modes 

•  Stability problems involving different scales:     

a) Fiber-reinforced composites 

In microstructured solids, instability phenomena starting at the microscopic 
scale (local instability, typically a bifurcation that destroys symmetry) do show 
up at the macroscopic level (global instability, typically in the form of a 
localization of the deformation pattern). Of interest is when (i.e. at what loads) 
the local instability starts and if it leads to catastrophic failure 
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FEM TECHNIQUES FOR SOLVING STABILITY PROBLEMS 

•  Using the Finite Element Method (FEM), problem’s principal solution at load λ is 
obtained using an incremental Newton-Raphson algorithm. Method, which starts from 
zero load – zero displacement, always converges for adequately small load step Δλ 
and gives equilibrium solution to any accuracy required. 

•  At any given load λ, method automatically calculates corresponding stability 
operator, which is the tangent stiffness matrix K(λ).  

•  Solution technique uses K = LDU (Cholesky) decomposition. Presence of critical 
points (i.e. limit load/bifurcation point) on the principal solution imply zeros in the 
diagonal matrix D (i.e. (Dii)min(λc) = 0). 

•  Bisection method is used to accurately find the critical load. 

•  If the critical load is an m-tuple bifurcation point, the m lowest entries of D are zero at 
the critical load.   

•  If the critical load is a limit point, arc-length continuation methods are used to go 
past this point. 

NUMERICAL TECHNIQUES FOR STABILITY 



Page 3 MEC563 – STABILITY OF SOLIDS: FROM STRUCTURES TO MATERIALS – LECTURE 6 

INCREMENTAL NEWTON-RAPHSON METHOD 
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Equilibrium solutions (principal/
bifurcated) of continuum problems 

amenable to finite d.o.f. case through 
discretization techniques (FEM) 

Incremental method starting from zero 
load/displacement is needed to 

guarantee convergence of N-R (for 
small enough load steps) 

N-R method finds equilibrium 
solutions and stability operator K. 

K=LDU decomposition of stability 
operator – available as part of the 

solution procedure – in combination 
with bisection gives critical points 

LSK asymptotics used to start 
bifurcated paths 

NUMERICAL TECHNIQUES FOR STABILITY 
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FEM DISCRETIZATION OF NONLINEAR EUILIBRIUM 

NUMERICAL TECHNIQUES FOR STABILITY 
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INCREMENTAL NEWTON-RAPHSON METHOD 

NUMERICAL TECHNIQUES FOR STABILITY 
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GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD 

•  Several FEM codes include a method termed “linear buckling” analysis or “geometric 
stiffness method” which is based upon the approximation of the stability operator, 
typically about the initial, stress-free configuration. 

•  The method works for linearly elastic structures with small strains and moderate 
rotations and seeks a multiplier of the stress state that will change the positive 
definiteness of the approximate stability operator. 

•  The stiffness matrix of the FEM discretized structure is approximated as:  Ke + λKg, where 
Ke is the elastic stiffness matrix and Kg is the geometric stiffness matrix, both independent 
on the solid or structure’s current geometry. 

•  The critical load λc is found from: Det [Ke + λcKg] = 0. 

NOTE: Use caution when you apply this method, especially for solids/structures with 
material nonlinearities and large deformations. 

NUMERICAL TECHNIQUES FOR STABILITY 
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GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD 
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NUMERICAL TECHNIQUES FOR STABILITY 
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GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD 

NUMERICAL TECHNIQUES FOR STABILITY 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION IN FIBER-REINFORCED COMPOSITES 

force!

displacement!

Fiber-reinforced composite is compressed along fibers. 
When forces/displacements exceed a critical value: 

Local mode 
(short wavelength, 

dictated by 
microstructure)  

Global mode 
(long wavelength, 

dictated by structure 
dimensions)  

Global mode is usually catastrophic, since it involves a post-
bifurcated solution with a reduction of both force and displacement. 

Post-buckling deformed pattern involves kink-band modes. 

Kink-band mode 

Graphite-epoxy Balsa wood 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION - LOCAL FAILURE MECHANISM 

For the case of thin, much stiffer than the matrix 
fibers, they buckle as beams on an elastic 
foundation.  The foundation stiffness constant is 
k = 2( Em/0.5Hm) –  since both the green and 
orange columns exert normal forces on the fiber 
due to the vertical displacement w(x) 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION - LOCAL FAILURE MECHANISM 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION - LOCAL FAILURE MECHANISM 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION – GLOBAL FAILURE MECHANISM 
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For the case of thick, much stiffer than the matrix 
fibers, they rotate as to remain parallel to each 
other.  The matrix shear strain is γ = ( v,y + w,x)  –  
and energy is stored in axial deformation of fiber 
(no bending) and in shear deformation of matrix. 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION – GLOBAL FAILURE MECHANISM 
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FIBER-REINFORCED COMPOSITES 

AXIAL COMPRESSION – GLOBAL FAILURE MECHANISM 
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FIBER-REINFORCED COMPOSITES 
AXIAL COMPRESSION – NUMERICAL (FEM) CALCULATIONS 

•  Calculations for axially compressed, fiber-reinforced composites done using a hyperelastic, layered 
composite (Mooney-Rivlin) in plane strain (finite strain formulation is used to solve this FEM problem). 

•  Finite strain formulation needed because it takes consistently into account kinematic as well as 
constitutive nonlinearities. Hyperelastic material is the simplest model with these properties. 
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FIBER-REINFORCED COMPOSITES 
AXIAL COMPRESSION – NUMERICAL (FEM) CALCULATIONS 

•  Calculations for axially compressed, fiber-reinforced 
composites done using a hyperelastic, layered 
composite (Mooney-Rivlin) in plane strain (finite strain 
formulation is used to solve this FEM problem). 

•  In calculations: C >>A = 4B and the ratios Af /Am = Bf /Bm =Cf /Cm = Ef /Em 
are kept constant.  

•  A block of initial dimensions Lx × Ly (where Ly = 2Lx) is used for the 
calculations with two ends free (y = 0, y = Ly) and two ends straight and 
shear-traction free (x = 0, x = Lx) with a displacement imposed on the right 
end (x = Lx), i.e. ux(Lx) = -Δ). The thickness of each unit cell is H. 

•  7800 four node, bilinear quadrilateral elements are used in the reported 
FEM calculations. Model has 20 layers of matrix and 19 fibers.  

•  Theoretical analysis (exact analytical model) can predict critical strain λc 
at the onset of a bifurcation instability, and also determine if the instability 
is local or global, according to if the wavelength (L/H)c is finite or goes to 
infinity.  

•  Approximate model is reasonable for large values of Ef /Em.   
 Lx  

 Ly  
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FIBER-REINFORCED COMPOSITES 
AXIAL COMPRESSION – GLOBAL FAILURE MECHANISM 

εxx = 0.005 εxx = 0.0225 εxx = 0.03 

εxx = 0.10 εxx = 0.10 

•  Calculations for thick fiber composite: 
• Ef/Em = 100, Vf = 0.33. 

•  Imperfection used: all fibers were tilted 
with respect to their perfect position by an 
angle φ = 0.001 (same for all fibers) 

• Notice symmetric (bareling) mode at      
εxx = 0.0225 before going to antisymmetric 
(S-shape) mode for higher strains.   
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FIBER-REINFORCED COMPOSITES 
AXIAL COMPRESSION – LOCAL FAILURE MECHANISM 

εxx=0.07 

εxx = 0.09 εxx = 0.10 

εxx = 0.10 εxx = 0.07 εxx  = 0.05 

•  Calculations for thin fiber composite: 
Ef/Em = 100, Vf = 0.10. 

•  Imperfection in top 3 figs: fibers were tilted 
with respect to their perfect position by a 
random  angle  0.001 <  φ  < 0.003.  

•  Imperfection in left fig: fibers were tilted by 
a random  angle  -0.001 <  φ  < 0.003, while at 
right fig. all fibers have same tilt φ  = 0.002. 
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AXIAL COMPRESSION IN FIBER-REINFORCED COMPOSITES 

•  Fiber reinforcing of solids is good for tension, but bad for compression due to instability.  

•  Instability of fiber-reinforced composites under compression due primarily to nonlinear kinematics.  

•  Approximate models presented find critical load and mode for high fiber/matrix stiffness ratios. 

•  Thin, stiff fibers correspond to a local critical mode, thick fibers to a global critical mode. 

•  Exact, analytical solution exists for nonlinear layered solids (finite strain, nonlinear constitutive response) to 
determine critical load and wavelength of corresponding mode (local or global). 

•  Post-buckling behavior requires numerical solution. 

•  Careful in seeking numerical solutions because (depending on the imperfection you put) you might miss modes. 

•  NOTE: Having analytical solutions/asymptotic results available is always a good idea when doing numerical 
solutions of nonlinear problems to avoid mistakes… 

FIBER-REINFORCED COMPOSITES 


