STABILITY AT DIFFERENT SCALES - A M_

TOPICS COVERED IN THIS LECTURE

* Numerical (FEM) techniques used in stability problems:

Use of FEM techniques to solve nonlinear problems in solid mechanics and to
detect critical load and corresponding modes

- Stability problems involving different scales:

a) Fiber-reinforced composites

In microstructured solids, instability phenomena starting at the microscopic
scale (local instability, typically a bifurcation that destroys symmetry) do show
up at the macroscopic level (global instability, typically in the form of a
localization of the deformation pattern). Of interest is when (i.e. at what loads)
the local instability starts and if it leads to catastrophic failure
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‘A NUMERICAL TECHNIQUES FOR STABILITY &é‘_

FEM TECHNIQUES FOR SOLVING STABILITY PROBLEMS

» Using the Finite Element Method (FEM), problem’s principal solution at load A is
obtained using an incremental Newton-Raphson algorithm. Method, which starts from
zero load — zero displacement, always converges for adequately small load step AL
and gives equilibrium solution to any accuracy required.

« At any given load )\, method automatically calculates corresponding stability
operator, which is the tangent stiffness matrix K(\).

 Solution technique uses K = LDU (Cholesky) decomposition. Presence of critical
points (i.e. limit load/bifurcation point) on the principal solution imply zeros in the
diagonal matrix D (i.e. (D,),;,(A.) =0).

* Bisection method is used to accurately find the critical load.

* If the critical load is an m-tuple bifurcation point, the m lowest entries of D are zero at
the critical load.

« If the critical load is a limit point, arc-length continuation methods are used to go
past this point.
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& NUMERICAL TECHNIQUES FOR STABILITY M/

INCREMENTAL NEWTON-RAPHSON METHOD

A A A A
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Equilibrium solutions (principal/ N-R method finds equilibrium
bifurcated) of continuum problems solutions and stability operator K.
amenable to finite d.o.f. case through
discretization techniques (FEM) K=LDU decomposition of stability
operator — available as part of the
Incremental method starting from zero solution procedure — in combination
load/displacement is needed to with bisection gives critical points
guarantee convergence of N-R (for
small enough load steps) LSK asymptotics used to start

bifurcated paths
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NUMERICAL TECHNIQUES FOR STABILITY M

FEM DISCRETIZATION OF NONLINEAR EUILIBRIUM

E(u, A) : continuum energy at displacement u(x) € U and load A > 0

E(u, \) : discretized energy at displacement u € R™ and load A > 0

u={u;}i—q: ux)=> " upi(x), u;: dof, p;(x) €U : basis function

F.E.M. method : ¢;(x) have compact support, by using element shape functions

ADVANTAGE : &,4u is banded matrix, i.e. populated about its diagonal

E(WA)=0: 0E/0u; =0, i =1...n: equilibrium equations

Start at: A=0, u=0

Continue by : Incremental Newton — Raphson Method

MEC563 — STABILITY OF SOLIDS: FROM STRUCTURES TO MATERIALS - LECTURE 6  Page 4



Jd .
NUMERICAL TECHNIQUES FOR STABILITY M

INCREMENTAL NEWTON-RAPHSON METHOD
Newton — Raphson method : 0 =&,, (u+ Au, \) = €,y (W, A\) + E,qu (U, AN)Au =

1 0 0 — 0
ugz)) o ugz)) [gauu (ugz))a )‘(z))] 1gau (UEZ)), >‘(z'—|—1))7

= u(;) = u(A)), where uEZ)) : u at increment (i) and iteration (j)

(0)
start at u ( ) =

uE‘Z;_ ) B ugz)) [gauu ( Ej))a )‘(’H-l))]—lgau (ugz))a )‘(’H—l))a

end at ug)ﬂ) = u(y1) = W(A(41)), if error is small : HS,u( ) )‘(z+1))H <e

STABILITY CHECK : positive definiteness of &£,4, = LDU (Choleski decomposition)

L : lower triangular, L7 = U : upper triangular, D : diagonal, matrices

Euu (U(A), \) positive definite at load A <= D;;(A\) >0, V1<i<n
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‘A NUMERICAL TECHNIQUES FOR STABILITY &é‘_

GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD

» Several FEM codes include a method termed “linear buckling” analysis or “geometric
stiffness method” which is based upon the approximation of the stability operator,
typically about the initial, stress-free configuration.

* The method works for linearly elastic structures with small strains and moderate
rotations and seeks a multiplier of the stress state that will change the positive
definiteness of the approximate stability operator.

* The stiffness matrix of the FEM discretized structure is approximated as: K.+ \K, where
K. is the elastic stiffness matrix and K, is the geometric stiffness matrix, both independent
on the solid or structure’s current geometry.

» The critical load A is found from: Det [K_+ A K ] = 0.

NOTE: Use caution when you apply this method, especially for solids/structures with
material nonlinearities and large deformations.
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NUMERICAL TECHNIQUES FOR STABILITY M

GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD
S(u, )\) — Eint + ge:cta

Surface traction t

3> U3
‘ = X2 Uy Body force f
X, Uy
Volume V /

boundary oV

Displacement : u = u(X) = (u1(X), uz(X), u1(X)),

At reference configuration point : X = (X7, Xo, X3)

Elastic energy density/ ref. volume : W (E(X), X)

(Wi + wji + Uk iur,q)

DO | —

Lagrangian strain : E;; =

znt — / W dv ge:z;t - = [/ f’L uzdv ‘|_/ t’t()‘)usz] ; Uj,j = 8“1/8)(]
ov

ow O*W ]
W(0,X) =0, =0, = L., : elastic moduli
(0,X) [aEij]E o [aEijaEkl B0 gkt
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GEOMETRIC STIFFNESS METHOD FOR CRITICAL LOAD

2
1% 2 u

8Ez-j 8Ekl aEkl

1 0 0
AE;; = §(Aui,j + A, + Aug Uy 5 + 'UJk,z'Auk,j)

1 0 0
OE;; = 5(5’&1,]' + 0w + Oug iUk, j + Uk iOULk ;)

02W ] . [aw

0 1
OFE;;OFy, e (9Ek;l] o ATiy BB~ §(Aui’j + Auyi)
1] o

Approximation : [

EV Au)du ~ LS. Au; 0uk  + )\gi-Auk 0ug | dV — F.E.M. discretization
v 17kl 3] ) J 3 3]

ruu

(€2, Au)ou ~ AulK(N\)du = Au? K. + \K,]|du

ruu

At A=0: K(0) = K, Pos. def.; | Critical point is lowest A\, : Det|K. + A\.K,] =0
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— ~: Local mode
‘:"—‘ ——— (short wavelength,
e ————— / — — — dictated by
: : ‘ ——————————— microstructure)
| — | — e~ | Global mode
-:/v\“ ,I (long wavelength,
. . . . | e | dictated by structure
Fiber-reinforced composite is compressed along fibers. | |

. e o T e dimensions
When forces/displacements exceed a critical value: )

Kink-band mode
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perfect | il il ‘ S e
/ i ‘ i ‘ ) U RS 3
AL . oI TORA e e A L -
’ ‘\ ’ { i ¥
----- Graphite-epoxy Balsa wood

»
imperfect Global mode is usually catastrophic, since it involves a post-
_ > bifurcated solution with a reduction of both force and displacement.
displacement Post-buckling deformed pattern involves kink-band modes.
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v = For the case of thin, much stiffer than the matrix
» Hf'T‘ « fibers, they buckle as beams on an elastic
W(X) H,/2 foundation. The foundation stiffness constant is
_______________ k=2(E,/0.5H,)— since both the green and

Hf‘l' Hu/2 orange columns exert normal forces on the fiber
'T\ due to the vertical displacement w(x)

H 3 E,
Eint = / ~[EfHpe® + Efﬁli - 4H—w |dz; fiber (axial + bending) 4+ matrix energy
: : 1 9 : : df
fiber axial strain : € = v, +§(w,x )“, fiber bending strain : Kk = —w,, ; (here f,, = d—)
x

Eext = AEHy[v(L) —v(0)] = / AEfHpv,p |de, = —g,x : imposed axial strain

3

H E,,
E(u,N) = Eint + Eent = /{ Efoe +Ey— 12 —|—4H—w2] + AE¢Hypv,; oy u = (v, w)
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FIBER-REINFORCED COMPOSITES M

AXIAL COMPRESSION - LOCAL FAILURE MECHANISM

H3 E
Euw= /[EfoE(SE"‘Efl—QfH(SK)—i—ZJ:—mwéw + AEfHfdv,, |de = 0,

Hy,
where: de = v, +w,z; 0w,,, Ok = —0W,zz,
Principal solution (straight configuration) : | €p(z) = g,x () = =\, 1%(3:) = 0.

C
g?uu

H3 E
= /[Efo”ll),x 0V, —I—EfoEO‘&),x oW, 4 —|—Ef 1—2]0’&),3[;35 OW, 0 —|—4H—m&)(5w]dib = 0,

m

term dv : (Efolej,x )yze=0 — ?1J,a; (x) =0,

E,, .
f i W,rrxx ‘|‘4—&) =0 = ’&J(x) = Ozsm(wx).

term dw : ErH ¢\, w,m +Ey— T I

NOTE : bifurcation at \. since E,u,\@lb — /[Efo%),x |dz = 0.

T
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AXIAL COMPRESSION - LOCAL FAILURE MECHANISM

(wH)*/12 + A(E,,Hs/E;H,,)
(wH)?

E, Hy
EfH,,

critical load : A\, = min [

t: (w.Hp)* =4
wHeR & (w f> 8

volume fract. fiber : Vy = Hy/H, volume fract. matrix : V,,, = H,,/H, H = Hy + H,,.

B, Ve 1Y?
Ao = 2 m7J :critical strain for local buckling mode.
3E f(l — Vf)

; critical dimensionless wavelength for local buckling mode.

Le _ o [Er(1=Vp) 14
Se _ o
H T 3E.V;

EXAMPLE (typical of graphite fiber, epoxy matrix) : Ey/E,, = 100.

Ae ~3.8%, L.~131H =13.1Hy, for: Vy=10%.
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—> v(X)
H;l', P « For the case of thick, much stiffer than the matrix
'T‘ w(X) H, /2 fibers, they rotate as to remain parallel to each

B e etk other. The matrix shear strainisy = (v, +w,) —
oY — H,/2 and energy is stored in axial deformation of fiber
f'T‘ (no bending) and in shear deformation of matrix.

1
fiber axial : € = v, +=(w,; )2

5 , matrix shear : v = v,, +w,,,

Notice from kinematics (small angles) : H,,v,, = Hjw,,

8ext = )\Efo [’U(L) — ’U(O)] = / [)\EfoU,x ] dac,

xT

1
E(u,N) = Eint + Eent = /{g[Efoe2 + GmHm’yz] + AE¢Hyv,; o
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FIBER-REINFORCED COMPOSITES M

AXIAL COMPRESSION - GLOBAL FAILURE MECHANISM

Eu= /[Efo€5€ + G Hp vy + )\Efo(S’U,w ]dib‘ = 0,

where :  de = dv,, +w,, 0w, , Oy =0w,, (Hy + Hy)/Hp = 6w,y [V,

Principal solution (straight configuration) : | €g(z) = 8,33 () = =\, 19)(:[)) = 0.
y Uy 0 b 6+ G 2, S =
En= [ [EtH v,z 00,0 +E¢Hpeqw,z dw,; + m s Wi w]dz = 0,

term Ov : (Efozlj,x )ye=0 — %},x (x) =0,

H,,
term ow : Efo)\cf&),m —GmW’LlU,a;J; =0 = ,&]’m () # 0.

NOTE : bifurcation point at A, since E,U,\%L — /[Efo’llJ,x |dz = 0.

T
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AXIAL COMPRESSION - GLOBAL FAILURE MECHANISM

 EfViV  2E;(1+vp)Vi( = V)

critical load { \.

NOTE : G,, = Enn/[2(1 + v,)], v @ Poisson ratio of matrix.

EXAMPLE (typical of graphite fiber, epoxy matrix): Ef/E,, = 100, v,, =1/4.

Ae = 4.4%, for: Vy=10% Thin fibers, global mode found AFTER local.

For thick fibers: Vy =33%, global mode: A, =1.8%, local mode: \.=8.2%

NOTE : for layered composites in plane strain replace E¢ by E/(1 —vy)?
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FIBER-REINFORCED COMPOSITES M

AXIAL COMPRESSION - NUMERICAL (FEM) CALCULATIONS

« Calculations for axially compressed, fiber-reinforced composites done using a hyperelastic, layered
composite (Mooney-Rivlin) in plane strain (finite strain formulation is used to solve this FEM problem).

* Finite strain formulation needed because it takes consistently into account kinematic as well as
constitutive nonlinearities. Hyperelastic material is the simplest model with these properties.

W(E) = A(l, —3)+ B(I — 3), I3 =1, |A, B > 0; incompressible Mooney — Rivlin

1
I =tr(C), I, = 5[(tr(C)2 —tr(C?)], Iy = Det(C); invariants of Cauchy — Green C

1
E = §(C —I) Green — Lagrange strain, C = F! o F, deformation gradient F = I + uV

JI I
W(E) = A(Il—}?) —3)+ B(IQ—i3 —3)+ C'(I;/Q —1)%,|C >> A, B > 0; compressible case
3 3

compressible Mooney — Rivlin used in FEM (plus underintegration or special elements)
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FIBER-REINFORCED COMPOSITES M_

AXIAL COMPRESSION - NUMERICAL (FEM) CALCULATIONS

« Calculations for axially compressed, fiber-reinforced
composites done using a hyperelastic, layered
composite (Mooney-Rivlin) in plane strain (finite strain
formulation is used to solve this FEM problem).

* In calculations: C >>A = 4B and the ratios A;/A, =B;/B,, =C,;/C., = E;/E
are kept constant.

* A block of initial dimensions L, x L, (where L, =2L,) is used for the
calculations with two ends free (y =0, y = L,) and two ends straight and
shear-traction free (x =0, x = L,) with a displacement imposed on the right
¥ end (x=L,), i.e. u(L,) =-A). The thickness of each unit cell is H.

7800 four node, bilinear quadrilateral elements are used in the reported
FEM calculations. Model has 20 layers of matrix and 19 fibers.

* Theoretical analysis (exact analytical model) can predict critical strain A,
at the onset of a bifurcation instability, and also determine if the instability
is local or global, according to if the wavelength (L/H), is finite or goes to
infinity.

v  Approximate model is reasonable for large values of E;/E,..

t >

X
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FIBER-REINFORCED COMPOSITES M

AXIAL COMPRESSION - GLOBAL FAILURE MECHANISM

S, Mises S, Mises S, Mises
(Avg: 75%) (Avg: 75%) (Avg: 75%)
+4,500e+02 4,500e+02 +4,500e+02
+4,125e+02 4,125e+02 4,125e+02
+3.750e+02 3.750e+02 3.750e+02
3.376e+02 3.376e+02 3.376e+02
3.001e+02 3.001e+02 3.001e+02
2.626e+02 2.626e+02 2.626e+02
2.251e+02 2.251e+02 2.251e+02
1.876e+02 1.876e+02 1.876e+02
1.501e+02 1.501e+02 1.501e+02
1.127e+02 1.127e+02 1.127e+02
7.517e+01 7.517e+01 7.517e+01
3.768e+01 3.768e+01 3.768e+01
2.000e-01 2.000e-01 2.000e-01
1.073e-01 +6.274e-02 7.485e-02

e = 0.0225

v 75%) _ L . gt 7o
+4.500s102 + Calculations for thick fiber composite: fare \\
+3.750e+02 +3.250e-01
3.376e+02 [ ] = = +2.667e-01
BB =100, V=055 N
Laeers _ _ _ S ~
Pee * Imperfection used: all fibers were tilted
2o with respect to their perfect position by an

angle ¢ =0.001 (same for all fibers)

*Notice symmetric (bareling) mode at ~
e, = 0.0225 before going to antisymmetric ~ &x— 0.10 \\

(S-shape) mode for higher strains. \\

e, =0.10
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S, Mises

(Avg: 75%)
+5.000e+02
+4.,583e+02
+4.167e+02
+3.750e+02
+3.333e+02
+2.917e+02
+2.500e+02
+2.083e+02
+1.667e+02
+1.250e+02
+8.333e+01
+4,167e+01
+0.000e+00

g = 0.05

S, Mises
{Avg: 75%)

+4,500e+02
+4,125e+02
+3.751e+02
+3.376e+02

+4.000e-01

e, = 0.09

S, Mises

(Avg: 75%)
+5.000e+02
+4,583e+02
+4.167e+02
+3,750e+02
+3.333e+02
+2.917e+02
+2.500e+02
+2.083e+02
+1.667e+02
+1.250e+02
+8.333e+01
+4,167e+01
+0.000e+00

€= 0.07

« Calculations for thin fiber composite:
E/E. =100, V.= 0.10.

« Imperfection in top 3 figs: fibers were tilted
with respect to their perfect position by a
random angle 0.001 < ¢ < 0.003.

* Imperfection in left fig: fibers were tilted by
arandom angle -0.001 < ¢ < 0.003, while at
right fig. all fibers have same tilt ¢ = 0.002.

S, Mises

(4vg: 75%)
+5.000e+02
+4,583e+02
+4,167e+02
+3.750e+02
+3.333e+02
+2.917e+02
+2.500e+02
+2.083e+02
+1.667e+02
+1.250e+02
+8.333e+01
+4,167e+01
+0.000e+00

e, =0.10

LE, Max. In-Plane Principal

(Avg: 759%)
+2.000e+00
+1.817e+00
+1.633e+00
+1.450e+00
+1.267e+00
+1.083e+00

+3.500e-01
+1.667e-01
-1.667e-02
-2.000e-01

€= 0.10

XX
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FIBER-REINFORCED COMPOSITES M_

AXIAL COMPRESSION IN FIBER-REINFORCED COMPOSITES

* Fiber reinforcing of solids is good for tension, but bad for compression due to instability.

* Instability of fiber-reinforced composites under compression due primarily to nonlinear kinematics.
» Approximate models presented find critical load and mode for high fiber/matrix stiffness ratios.

« Thin, stiff fibers correspond to a local critical mode, thick fibers to a global critical mode.

 Exact, analytical solution exists for nonlinear layered solids (finite strain, nonlinear constitutive response) to
determine critical load and wavelength of corresponding mode (local or global).

 Post-buckling behavior requires numerical solution.
« Careful in seeking numerical solutions because (depending on the imperfection you put) you might miss modes.

* NOTE: Having analytical solutions/asymptotic results available is always a good idea when doing numerical
solutions of nonlinear problems to avoid mistakes...
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