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ASYMPTOTICS FOR ELASTIC CONTINUA - A 

LSK (LYAPUNOV - SCHMIDT - KOITER) ASYMPTOTICS 

•  General asymptotic method to study motion of systems (discrete or continuous) 
near singular points. Here the method is applied to the equilibrium of conservative 
elastic systems.  

•  IDEA: Study the projection of equilibrium equations along the finite dimensional 
null space of the system’s stability operator at critical point. This way the study of a 
large problem is reduced to the study of a nonlinear system of m equations, where 
m is the multiplicity of the stability operator’s eigenvalue at the critical point. 

•  Method follows asymptotically equilibrium paths emerging from bifurcation points 
(simple or multiple) of perfect systems and determines their stability. 

•  Method also investigates the equilibrium and stability of imperfect systems, near 
critical points of their perfect counterparts, for small imperfection amplitudes. 

•  NOTE: Method is useful in determining post-bifurcation behavior and imperfection 
sensitivity in applications as well as in providing efficient numerical tools for 
finding solutions near the singular points of complex nonlinear systems. 
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FUNCTIONALS & THEIR DERIVATIVES 

PRELIMINARIES – FUNCTIONALS & THEIR  DERIVATIVES 
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FUNCTIONALS & THEIR DERIVATIVES 

CALCULATING DERIVATIVES OF ANY ORDER 
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FUNCTIONALS & THEIR DERIVATIVES 
CALCULATING FUNCTIONAL DERIVATIVES - EXAMPLES 
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FUNCTIONALS & THEIR DERIVATIVES 
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PERFECT STRUCTURE – SIMPLE MODE 

BIFURCATION VS LIMIT POINT 

•  About critical point uc project solution 
increment Δu along null space N  and its 
complement N ⊥. 

•  Solve equilibrium in N ⊥ and use v(ξ, Δλ) 
to find equilibrium in N  from which you 
determine Δλ as a function of ξ  

•  If Δλ(ξ) is unique: limit point 

•  If Δλ(ξ) is not unique: bifurcation 
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BIFURCATION VS LIMIT POINT 

NOTE: Unique & stable principal solution near zero load assumed (realistic structures)  

PERFECT STRUCTURE – SIMPLE MODE 
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BIFURCATION VS LIMIT POINT 

PERFECT STRUCTURE – SIMPLE MODE 
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BIFURCATION VS LIMIT POINT 

PERFECT STRUCTURE – SIMPLE MODE 
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BIFURCATION VS LIMIT POINT 

PERFECT STRUCTURE – SIMPLE MODE 
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BIFURCATION VS LIMIT POINT 

PERFECT STRUCTURE – SIMPLE MODE 
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ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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STABILITY – SIMPLE BIFURCATION CASE 

Eigenvalues and eigenvectors of stability operator along principal path 

PERFECT STRUCTURE – SIMPLE MODE 
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STABILITY – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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STABILITY – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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ENERGY – SIMPLE BIFURCATION CASE 

Comparing energy of principal & bifurcated paths for same load 

PERFECT STRUCTURE – SIMPLE MODE 
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____ stable path,  _ _ _  unstable path 

ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

PERFECT STRUCTURE – SIMPLE MODE 
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ASYMPTOTIC EXPANSIONS – SIMPLE BIFURCATION CASE 

•  LSK asymptotic expansion for simple bifurcation point, reduces infinite dimensional 
problem to the study of one dimensional problem (projection of equilibrium on the critical 
operator’s null space). 

•  Principal branch changes stability at critical load (from stable at lower loads to unstable). 

•  For transcritical (asymmetric) bifurcation, supercritical portion of path is stable, 
subcritical portion of path is unstable. 

•  For symmetric bifurcations, supercritical paths are stable, subcritical paths are unstable. 

•  Stable paths have, for a given load, less energy than their neighboring unstable paths 

NOTE: General case asymptotics obtained here are similar to results of the rigid T model! 

PERFECT STRUCTURE – SIMPLE MODE 
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ELASTICA EXAMPLE – MODEL SETTING & ENERGY 

EXAMPLE - I – SIMPLE MODE 
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ELASTICA EXAMPLE – GOVERNING EQUATIONS 

EXAMPLE - I – SIMPLE MODE 
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ELASTICA EXAMPLE – STABILITY OF PRINCIPAL PATH 

EXAMPLE - I  – SIMPLE MODE 
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ELASTICA EXAMPLE – CRITICAL LOAD AND MODE 

EXAMPLE - I  – SIMPLE MODE 
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ELASTICA EXAMPLE – LSK ASYMPTOTICS 

EXAMPLE - I  – SIMPLE MODE 
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ELASTICA EXAMPLE – REVIEW 

•  Euler’s elastica has a trivial principal solution (straight configuration) that 
changes stability at the critical load. 

•  Critical load and mode depend on boundary conditions. 

•  Bifurcation at critical load is a simple (unique eigenmode), symmetric  bifurcation. 

•  Principal path changes stability at critical load. 

•  Bifurcated (symmetric) path is supercritical near the critical load, which implies 
that it is stable. 

•  Asymptotic results are confirmed by exact solution (in terms of elliptic integrals). 

EXAMPLE - I  – SIMPLE MODE 

Exact: Asymptotic: 


