CONCEPT OF A BIFURCATION M

FUNDAMENTAL ASSUMPTIONS USED:

* We study finite degree of freedom (u) systems

» Systems are time-independent

- Systems are conservative, i.e. they have an energy which remains constant
* Energy depends on a scalar parameter A (termed load parameter)

*Systems are highly nonlinear, i.e. energy is non-quadratic function of d.o.f. and as a
result for a given A, multiple equilibrium solutions can be found

-Stability of these equilibrium solutions are examined by investigating if their energy has
a local minimum at these solutions
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CONCEPT OF A BIFURCATION M

A BIFURCATION: Loss of uniqueness — as a
function of a control parameter — in the
solution of a nonlinear system of equations.
Bifurcated branch typically emerges as a
“fork” from the principal branch.

principal solution

bifurcated solution o System: f(ll,)\) =()

* Principal solution starts at A.=0, u=0

* Bifurcated solution emerges from principal
one at the critical point A

u,

E(u,\): energy of system at displacement u € R™ and load A > 0

f(u,\) =E&,4,=0, equilibrium is energy extremum : &,, = d€/0u
81()\) :  principal solution i.e. f(l(;.()\), A) =0, VA > 0; u 0)=0

Euu Au+E M AN~ 0 = Aux —AMNE,uu]| €, ur]; construct 8(>\) by continuation
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BIFURCATION POINT vs LIMIT LOAD &;‘_

non — invertible at u(A.) = principal solution singularity

. [828(u, /\)]
g yuua —
dudu | &ix)a)

€ uu] [(ﬁ)] =0,7=1,....m; A\.: critical load, @11) . critical mode, m : multiplicity

if : [€%un] [(131)] =0 = Dbifurcation at A.

if : [E%un] [(131)] #0 = limit load at A,

A A

A A
principal
solution

Limit load

principal
. _ solution
bifurcated solutions

> u * > u
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SIMPLE BIFURCATION EXAMPLE (m=1) &é_

dC
5 PERFECT RIGID T MODEL
C A
A ' \
l u=(v,0)
C’
0 ,’ v: vertical displacement, O: rotation
L =
1
]
'l * Vertical linear springs at A, B
]
,' O * Horizontal nonlinear spring at C
LA X § B
A b
‘L A ~——— l v d, * Small rotations approximation
.O.,h --~~§ Ba . .
* Frictionless movement
<— —>< >
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SIMPLE BIFURCATION EXAMPLE (m=1) &é_

KINEMATICS :
da=v—10, dg=v+10; vertical displacements at A, B

dc = LO; horizontal displacement at C

92
A=v+ L(1—cosf)~uv—+ L?; vertical displacement at C

ENERGY :
E E
Ea= E(dA)2, Ep = E(dB)2; energy of springs A, B

n

de k m
5() = / [kil? + me -+ TLCBg]dCE = §(d0)2 + §(dc)3 i 0
0

(dc)*;  energy of spring C

E=E2+E+E— AA; total energy of structure

E(u,\) = B2 + (10)2] + & (Lo)? + 2 "

L3
S 3(0)+

(LOY* — A [v - LH;I
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SIMPLE BIFURCATION EXAMPLE (m=1) M/

PRINCIPAL & BIBURCATED SOLUTIONS OF PERFECT RIGID T MODEL

0=6u=(E0,E0) =(0,0): equilibrium
Ew=2Fv—\=0,

E.9=(2E2 + kL2)0 + mL36? + nL*6® — A\LO = 0

0
u= (8, 0) = (A/2F,0) : principal solution (straight configuration)

u(A) = (v(A),0(\) = (V\/2E, (A — \.)/mL?) : asymmetric bifurcation (m # 0,n = 0)
u(\) = (v(A),0(N) = (A\/2E, £[(|X — A\|)/nL3]'/?) . symmetric bifurcation (m = 0,n # 0)

Ae = (2EI1? + kKL?)/L : critical load (where bifurcated solutions emmerge from)
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SIMPLE BIFURCATION EXAMPLE (m=1) M/

A
[
bifurcated branch :
& m<20

(a) > 0 (b) > 0

stable path, ~ unstable path

ASYMMETRIC (TRANSCRITICAL) BIFURCATION
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n>0

bifurcated branch:

[<—'principal path

(a) >0 (b) >0

stable path, ~~  unstable path

SYMMETRIC (SUPERCRITICAL n>0 OR SUBCRITICAL n<0) BIFURCATION
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SIMPLE BIFURCATION EXAMPLE (m=1) M/

STABILITY OF SOLUTIONS FOR PERFECT RIGID T MODEL

gavv gav@ 2F 0
R — = E.00 >0 — stable
E.v €00 0 (Ae— AL +2mL30 + 3nL*6?
2F 0
stability of principal path
0 (Ac—ANL
2F 0
stability of asymmetric bifurcated path (m # 0,n = 0)
0 mL30
2F 0
stability of symmetric bifurcated path (m = 0,n # 0)
0 2nL*6?
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SIMPLE BIFURCATION EXAMPLE (m=1) M

REVIEW OF PERFECT RIGID T MODEL

* Model has a simple bifurcation at the critical load

* Principal branch changes stability at critical load

* Bifurcated branches emerging from critical load are:
a) Stable if load increases (supercritical paths)
b) Unstable if load decreases (subcritical paths)

c) Stable solutions have, for a given load, less energy than their unstable
counterparts at the same load

d) Unstable solutions have, for a given load, more energy than their stable
counterparts at the same load

NOTE: Symmetric and asymmetric bifurcations are motivated by applications
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SIMPLE BIFURCATION EXAMPLE (m=1) &é_

IMPERFECT RIGID T MODEL

A
u=(v,0)
’ . .
L ! v: vertical displacement

!

’l 0: rotation

!

,’ o O: initial imperfection

A v B

§ T ——— § 45 Other assumptions same as in perfect T
O TTe==2

NOTE: MANY DIFERENT WAYS TO MAKE AN IMPERFECT RIGID T MODEL, ALL ARE EQUIVALENT
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SIMPLE BIFURCATION EXAMPLE (m=1)

m

KINEMATICS AND ENERGY OF THE IMPERFECT RIGID T MODEL

KINEMATICS :

A =v+ Llcosd —cos(0 + §)] New exact vertical displacement at C

92
~v+ L (? -+ 95) :  New approximate vertical displacement at C

ENERGY :

92

E(u,\;0) = E[v? + (10)%] + g(Lef + 2 (L6)* + 2 (LO)* — X [v +L (5 4

7]

]

extra term added for the imperfect model
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SIMPLE BIFURCATION EXAMPLE (m=1) &é_

EQUILIBRIUM SOLUTIONS OF IMPERFECT RIGID T MODEL

0=E,,u=(E,,E9)=1(0,0): equilibrium
Epv=2FEv—\=0,

E0=(2E12 + kL0 + mL36% + nL*6® — AL(0 + 5) =0

Al LO)?
v=MA2E, A= —ng ) , for asymmetric case (m # 0, n = 0)
c L§)?
v=M\/2E, \= A ;__7:(5 ‘) , for symmetric case (m =0, n # 0)

NOTE: IMPERFECT STRUCTURE DOES NOT HAVE BIFURCATION POINTS
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SIMPLE BIFURCATION EXAMPLE (m=1) M/

ASYMMETRIC
IMPERFECT CASE
A A
I I
0>0, 1,08<0 60>0;1,06<0
i"'"./ \.“"j:
m>0 1 I m<0
/‘I/x }\'\%\
R ¢ AA, Al i AN
s = N Ao N
/, \\
7 N
78 <0 §>0 §<0 §>0 S~
(a) ol N > 0 (b) e > 0

stable path, =~ unstable path e limit load
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SIMPLE BIFURCATION EXAMPLE (m=1) M_

SYMMETRIC
IMPERFECT CASE
A A
§>0 i §<0 >0 1 18<0
1
S A
- O
A A7\‘s $ /” }\’s N\\
6 < O ¢ 6 > 0 /’ T 7 a4 \\
4 \
4 \
0<0 0>0
n>0 n<o0
» O :
@ -0 0, (®) ~0, 0, X
stable path, =~ unstable path e limit load
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SIMPLE BIFURCATION EXAMPLE (m=1) M/

STABILITY OF SOLUTIONS FOR IMPERFECT RIGID T MODEL

ng gav@ 2F 0 .
27uu = = 5,99 >0 — stability
E.v €00 0 (Ae— AL+ 2mL30 + 3nL46?
. 0 ) 202 2
. d\  mL?6%+2mI205 + A6
) mI30(0 + 26) + A\ L6 limit load : = 05072 =0 (n=0)
i 0+0 i
- 2F 0 i
limit load : & — 2nL30% + 3nL360%6 + A0 (m = 0)
o, nL920430) 4 a.Ls | T g (0 +9)2 e
i 0+0 i

NOTE: STABILITY OF AN EQUILIBRIUM PATH CHANGES AT LIMIT LOAD (dA/d6(6,) = 0)
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TR |
SIMPLE BIFURCATION EXAMPLE (m=1) M/

REVIEW OF IMPERFECT RIGID T MODEL

 Bifurcation point disappears and limit points appear in some of the equilibrium
paths

* The physically relevant solution of the imperfect structure starts from zero load,
follows the principal solution until near the critical load and then the closest
bifurcation path of its perfect counterpart

* In applications we can control the amplitude of the imperfection but not its shape.
a) Consequently for a perfect system with asymmetric or symmetric
subcritical (n<0) bifurcations, its imperfect counterpart will always

experience a path through zero load that exhibits limit loads near the
critical load

b) For a perfect system with symmetric supercritical (n>0) bifurcation, its

imperfect counterpart will not have in its path through zero load limit loads
near the critical load

NOTE: Branches close to supercritical part of perfect solution cannot be reached in
a continuous fashion from zero load due to energy barrier
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o MULTIPLE BIFURCATION EXAMPLE (m=2) M/

—> dg, PERFECT RIGID PLATE MODEL
de
A u=(v,0, ¢)
G
A v: vertical displacement
F lA 0: rotation about x axis

¢: rotation about y axis

e Vertical linear springs at A, B, C, D

* Horizontal nonlinear springs at G

» Small rotations approximation

* Frictionless movement
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o MULTIPLE BIFURCATION EXAMPLE (m=2) M/

KINEMATICS :
da=v+10—-1¢p, dg=v+10+1p, dc =v—10+1¢p, dp=v—10—1¢p; at A,B,C,D
dge = Lo =d,, dgy = L0 =d,; horizontal displacements at G

A=v+L[1-(1-sin”0—sin” @) ~v+L(02+¢?)/2; vertical displacement at G

ENERGY :
E E E E
Eq = §<dA)2’ Ep = 5(d3)2, Eo = 5(d0)2, Ep = E(dD)2; energy of springs A,B,C,D

Fo(dy,dy) = —[kdy +m(ds + d) + n(2d3 + 6d3d, — 3d,d; + 2d>)]; x — force at G

Fy(dy,dy) = —[kdy, + 2mdydy, + n(2d3 + 6d-d, — 3d,d; + 2d3)]; y — force at G

(da »dy)
Eq = / [Fy(z,y)dx + F,(z,y)dy]; energy of spring C; (0F;/0d, = 0F,/0d)
0

E=Ea+E+Ec+Ep+Ez— AA; total energy of structure
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Jd |
MULTIPLE BIFURCATION EXAMPLE (m=2) M

ENERGY, EQUILIBRIUM EQUS & PRINCIPAL SOLUTION OF PERFECT RIGID PLATE MODEL

mL3

3

2
£(u,A) = 2B[0? + 12(02 + 7)) + (0% + %) + - (3% + )

nL*

R

(20* + 80%¢ — 60%¢* + 809> + 2¢*) — A[v + g(e2 + ¢%)]

0=Eu=(&,80,€4) =(0,0,0) : equilibrium
Ew=4Fv—-—X=0
E,9=(4E1? + kL? — AL)0 + 2mL3¢0 + nL*(203 + 66%¢ — 30¢% + 2¢3) = 0

E,9= (4EI* + kL? — AL)$p + mL>?(¢? + 6%) + nL*(2¢> + 6920 — 3¢6% + 26%) = 0

0 0
(g, 0,9) = (A\/4F,0,0) : principal solution (straight configuration)

0
u
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ﬂ MULTIPLE BIFURCATION EXAMPLE (m=2) M

M3

ASYMMETRIC
m PERFECT PLATE’S
_______ EQUILIBRIUM PATHS

M3

___stablepath,  unstable path
M1: u\) = (w(N),00),0(N\) = (MN4E, 0, (A= A.)/mL?)

M2: u(A) = (v(A),0(0), 6(N)) = (A/4E, (A= Ac)/mL?, (A= Ac)/mL?)

M3: u(A) = (v(A),0(),6(N) = (V4AE, (A = A)/mL?, (A= Ac)/mL?)
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8 MULTIPLE BIFURCATION EXAMPLE (m=2) M_

STABILITY OF ASYMMERIC BIFURCATED SOLUTIONS FOR PERFECT PLATE MODEL

AE, 0, 0

M1: &€ uu= 0, (A= X)L, 0 Stable for A >\ .
0, 0, (A=A)L |
[ 4E, 0, 0 '

M2: Eau=| 0, 0, (A= Ae)L Unstable VA
0, (A-AJ)L, 0
[ AE, 0, 0 '

M3: Euwu=| 0, 0, (Ae = AL Unstable VA
0, (Ae— ML, 0 _
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< MULTIPLE BIFURCATION EXAMPLE (mn=2) &_/;’_

>

1

_-2 ------- SYMMETRIC

VR T G N2 PERFECT PLATE’S

EQUILIBRIUM PATHS

""""""""" ~2270=-¢

- /'/ ¢

TR 2T 20=¢
Z779=¢ stable path, =~ unstable path

_______________

_______________

u() = (v(),00), () = VAE, £[(Ac — X)/InL]2, F[(Xe — A)/9nL?]'/?)

u(A) = (v(A),0(N), 6(N) = (VAE, £2[(A — \o)/18n L3 /2, +[(A — A.)/18nL3]1/?)

(v(N),0(N), 6(N) = (\/4E, £[(A = A.)/18nL3]M/2, £2[(A — X.)/18nL?]'/?)
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8 MULTIPLE BIFURCATION EXAMPLE (m=2) M

STABILITY OF SYMMETRIC BIFURCATED SOLUTIONS FOR PERFECT PLATE MODEL

AR, 0, 0

N1: Euwu=]| 0, @/T)(A=X)L, (6/T)(A—=A.)L stable for A >\ .
0, (6/T)(A=A)L, (8/T)(A—Ac)L
" 4E, 0, 0

N2: & aqu= 0, 0, 2(Ac — AL unstable VA
0, 20— ML, 0
[ AF, 0, 0 '

N3: Euu=1| 0, B/2)(A=X)L, (A— X)L unstable VA
|0, (A= AL, 0 _
[ AE, 0, 0 ]

N4: Euu=| 0, 0, (A= X)L unstable VA
0, (A=XJ)L, (3/2)(A—=A)L
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A MULTIPLE BIFURCATION EXAMPLE (m=2) M

REVIEW OF PERFECT RIGID PLATE MODEL

* Model has a multiple (m = 2) bifurcation at the critical load
* Principal branch changes stability at critical load

 Bifurcated branches emerging from critical load are:
a) Atmost2™-1 (22-1 =3)in asymmetric systems
b) Atmost (3™- 1)/2 ((3%- 1)/2 =4) in symmetric systems
c) There is no general result about the stability of the bifurcated paths and
unstable supercritical paths can be found for both the asymmetric and

symmetric systems

NOTE: Multiple bifurcations are motivated by applications in systems with a high
degree of geometric symmetry (e.g. cylinders, crystals)
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MULTIPLE BIFURCATION EXAMPLE (m=2) M

IMPERFECT PLATE MODEL

u=(v,0,¢),e=(y.0)

,,,,, 15 L
. 2 v: vertical displacement

ol
'|| ':' A . .
I‘.‘ NI / 0: rotation about x axis

¢: rotation about y axis

v: imperfection about x axis

d: imperfection about y axis

;"“‘//%EL

Other assumptions same as in
perfect rigid plate model

0]
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o MULTIPLE BIFURCATION EXAMPLE (m=2) M/

KINEMATICS AND ENERGY OF THE IMPERFECT RIGID PLATE MODEL

KINEMATICS :
A =v+ L[(1 —sin® vy — sin® 6)*/2 — (1 — sin?(0 + v) — sin®(¢ + 6)*/?]

92_|_¢2
2

~v+ L ( + 0~ + ¢5> . New vertical displacement at G :

ENERGY :

3
(30%¢ + ¢°)+

J— L2 L
E(u, \;€) = 2E[v? +1%(0% + ¢*)] + %(92 + ¢?) + m3

nL*

4

L
+—(20% + 80%p — 60%¢? + 809> + 2¢*) — A[v + 5(92 + ¢% +[270 + 269)

extra term added for the imperfect model
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o MULTIPLE BIFURCATION EXAMPLE (m=2) M/

EQUILIBRIUM SOLUTIONS OF IMPERFECT RIGID PLATE MODEL

0=Eu=(£0,E0,E,6)=1(0,0,0): equilibrium

Ew =4FEv— X\ =

Ep = —ALy+ (Ae — AN)LO + 2mL30¢ + nL*(20° + 60%¢ — 30¢? + 2¢%) = 0

E,p = —ALS + (A\e — A) Lo+ mL3(¢? + 02) + nLA(2¢> + 6420 — 3¢0% + 203) = 0

*The physically relevant solution (i.e. the one that goes through zero load) of the
imperfect structure skirts the principal path up to near critical load and then,
depending on the shape (y/0) of the imperfection, it can skirt any of the bifurcated
paths of its perfect counterpart.

» The worst imperfection shape senario is the one that follows the perfect system’s
bifurcated path with the steepest load decrease, i.e. M1 in the asymmetric case and
N2 in the symmetric case.
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LIMIT POINT EXAMPLE &é’_

PERFECT TWO BAR TRUSS MODEL

u=(u,v)
u: horizontal displacement at C

v: vertical displacement at C

* Bars deform axially (no bending)
* Large displacements & rotations
» Small strains, elastic response

* Frictionless joints
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LIMIT POINT EXAMPLE &_/;

KINEMATICS AND ENERGY OF THE PERFECT TWO BAR TRUSS MODEL

KINEMATICS :

l; — L
L

e; = , lei] < 1; engineering strain in bar i

(41)? = (Lcos ¢ +u)? + (Lsin¢ — v)?, final length of bar 1

(03)? = (Lcos¢ —u)? + (Lsing —v)?, final length of bar 2

1|6\ i
g; = 5 (Z) — 1] ~ <1 + %) e;; strain measure in bar ¢
ENERGY :

£(u, \) = %EAL[(sl)z +(£2)2] — M
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LIMIT POINT EXAMPLE M

EQUILIBRIUM SOLUTIONS OF PERFECT TRUSS MODEL

EA

Eu = T[sl(u+Lcosq5) + eo(u— Lcosp)] =0
Ep = ETA[€1<U — Lsin¢) + ex(v — Lsing)] — A =0
EAo, .0

Fv()\)[v()\) — 2L sin ¢ [8()\) — Lsing] — A =0, 7?1,()\) = 0: principal solution

u? 4 (v — Lsin¢)? = L?(3sin? ¢ — 2) :

bifurcated solution

A =2FEAcos? ¢(sing —v/L) :
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LIMIT POINT EXAMPLE &_/;

Stability of principal path (force control) :

(/L) — 2(v/L)sin ¢ + 2 cos® 0

0 3[(v/L)? — 2(v/L)sin ¢ + %SinQ ¢]

Euu=0 = '8/L — sin ¢ & (3sin? ¢ — 2)1/2 : bifurcation points

Ewp=0 = v/L =siné(1+1/v3): limit loads (dv/d\ = 0)

Stability of bifurcated path (force control) :

L pa [y 2(u/L)[(v/L) — sin ¢}
L 2(u/L)[(v/L) —sing] 2[—(u/L)? + 4sin® ¢ — 3]
Det[€,uu | = % (%)2 [sin® ¢ — 1] < 0 = bifurcated path unstable
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LIMIT POINT EXAMPLE &_/;

PERFECT TRUSS RESULTS IN A — (v/L) SPACE FOR: 90°> ¢ > 60° (FORCE CTRL.)

NMEA
A bifurcated branch
(2/3V3)sin2 ¢  L_____._ . . _
¢ /"7'\\ * Principal solution has limit
;N . loads and bifurcation points
A L / | \ principal path
IS .
\\; \ * Bifurcated solution emerges
: e \‘ from principal one before
1 S
. ) : ..
{1-173)isin q;\\\ (1+1A/3) sin ¢ » maximum and after minimum
Vi T sing N | Vo [ 25sin ¢ > load
1 1
1 : .. .
i ! ! * Principal solution changes
\ NS stability at bifurcation points
My femmme - N----- iREEEL
\ ! ! , L
NS « Bifurcated solution is unstable
-2/3V3)sin? ¢ | g for the case of load control
stable path, = unstable path ® limitload ¢ bifurcation point
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LIMIT POINT EXAMPLE &é‘_

PERFECT TRUSS RESULTS IN (u/L) — (v/L) SPACE FOR: 90°> ¢ > 60° (FORCE CTRL.)

bifurcated branch
* Principal solution has limit

loads and bifurcation points
principal path

* Bifurcated solution emerges
from principal one before
maximum and after minimum

load
v/L

v

* Principal solution changes
stability at bifurcation points

* Bifurcated solution is unstable
for the case of load control

stable path, = unstable path ® limitload ¢ bifurcation point
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LIMIT POINT EXAMPLE &_/;

PERFECT TRUSS RESULTS IN A — (v/L) SPACE FOR: 60°> ¢ > 54.7° (FORCE CTRL.)

MEA bifurcated branch

(2/3V3) sin2 ¢ |

A * Principal solution has limit

o loads and bifurcation points
principal path
* Bifurcated solution emerges
from principal one after
maximum and before minimum

» V/L Joad

* Principal solution changes
stability at limit points

e Bifurcated solution is unstable

A for the case of load control

-(2/3V3) sin2 ¢

stable path, = unstable path ® limitload ¢ bifurcation point
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LIMIT POINT EXAMPLE &é‘_

PERFECT TRUSS RESULTS IN (u/L) — (v/L) SPACE FOR: 60°> ¢ > 54.7° (FORCE CTRL.)

bifurcated branch

* Principal solution has limit

loads and bifurcation points
principal path

P kel IO

* Bifurcated solution emerges
from principal one after
maximum and before minimum

- load

:
<I>
i

* Principal solution changes
stability at limit points

e Bifurcated solution is unstable
for the case of load control

stable path, = unstable path ® limit load ¢ bifurcation point
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LIMIT POINT EXAMPLE &é‘_

PERFECT TRUSS RESULTS IN A\ — (v/L) SPACE FOR: 54.7°> ¢ > 0°(FORCE CTRL.)

MEA
A bifurcated branch
Q3V3)sin2d | _____.
E principal path
* Principal solution has
‘ limit loads
] \
L 1 :
(1-1/\/3); sm? : (1+1N3.) sin ¢ | . VL * No bifurcated solution
sin ¢ \‘ ! 2sin ¢ exists in this case
\ |
\ * Principal solution changes
stability at limit loads
@BV3)sin ¢ LN :
stable path, = unstable path ® limit load
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LIMIT POINT EXAMPLE M

Energy for displacement control :

E(u, ) = %EAL[(&)2 + (2)?]; only one d.o.f. here : u

Equilibrium solutions for displacement control :

Euw=(FA/L)e1(u+ Lcosp) +ea(u— Lcosp) =0

Principal solution : o = 0

Bifurcated solution : u? + (v — Lsin¢)? = L?(3sin® ¢ — 2)

Stability for displacement control :

Principal : &, = (EA/L)[(’?}/L)Q — 2(8/L) sin ¢ + 2 cos? ¢], changes at bifurcation

Bifurcated : &, = 2(FA/L)[(u/L)?] > 0, always stable!
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LIMIT POINT EXAMPLE &_/;

PERFECT TRUSS RESULTS IN A — (v/L) SPACE FOR: 90°> ¢ > 60° (DISPL. CTRL.)

MEA

A bifurcated branch
(2/3V3)sin?¢p L ______ o~ . . _
Rt * Principal solution has limit

\ . loads and bifurcation points
. principal path

\ * Bifurcated solution emerges
\‘ from principal one before

\ (1+143) sin L maximum and after minimum
2 sin ¢ > load

~
-

(1-1A/3)isin ¢

Ml sin ¢

‘ i
\ ]
1

\ ' * Principal solution changes
stability at bifurcation points

.
)

}\42 __________________

/ e Bifurcated solution is stable
-(2/3V3)sin? ¢ [ N~ for the case of displacement
control

-
~

stable path, = unstable path ® limitload ¢ bifurcation point
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LIMIT POINT EXAMPLE &é‘_

bifurcated branch

* Principal solution has limit
loads and bifurcation points

principal path
* Bifurcated solution emerges
from principal one before

maximum and after minimum

load
v/L

v

* Principal solution changes
stability at bifurcation points

* Bifurcated solution is stable
for the case of displacement
control

stable path, = unstable path ® limitload ¢ bifurcation point
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